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Abstract

In recent years, semi-supervised learning has been widely explored and shows excel-
lent data efficiency for 2D data. There is an emerging need to improve data efficiency
for 3D tasks due to the scarcity of labeled 3D data. This paper explores how the coher-
ence of different modalities of 3D data (e.g. point cloud, image, and mesh) can be used
to improve data efficiency for both 3D classification and retrieval tasks. We propose
a novel multimodal semi-supervised learning framework by introducing instance-level
consistency constraint and a novel multimodal contrastive prototype (M2CP) loss. The
instance-level consistency enforces the network to generate consistent representations for
multimodal data of the same object regardless of its modality. The M2CP maintains a
multimodal prototype for each class and learns features with small intra-class variations
by minimizing the feature distance of each object to its prototype while maximizing the
distance to the others. Our proposed framework significantly outperforms all the state-
of-the-art counterparts for both classification and retrieval tasks by a large margin on the
modelNet10 and ModelNet40 datasets.

1 Introduction

Due to the scarcity of large-scale labeled dataset, in recent years, the semi-supervised
learning method has been drawing wide attention and showing the great potential of boost-
ing up the performance of networks by jointly training on both limited labeled data and a
large number of unlabeled samples [21, 24, 31, 41, 54]. It can significantly improve the
data efficiency of the neural network training by leveraging unlabeled data, such as Pseudo-
Labeling [21] which uses the confident prediction of the network as labels to further optimize
the network, and FixMatch [37] which optimizes the network to predict consistency output
for images with different augmentation from the same image.
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Figure 1: The M2CP maintains a
multimodal prototype for each class
and learns features with small intra-
class variations by minimizing the
feature distance of each object to its
prototype while maximizing the dis-
tance to the others.
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Figure 2: For the unlabeled samples,
the features from multiple modali-
ties are aggregated together by an
Ensembled-MLP to produce more re-
liable and consistent pseudo-labels
which will be used by the our pro-
posed M2CP loss.

Although many semi-supervised learning methods have been proposed for 2D-related
image recognition tasks, semi-supervised learning for 3D-related tasks has not been widely
explored. Moreover, we observe that methods that were originally proposed for 2D-related
tasks are not able to achieve comparable performance for 3D tasks (e.g., 3D object classifica-
tion). Different from image and video data, 3D data usually consists of different modalities.
The multimodal coherent among these modalities contain rich semantic information of the
objects, which can be utilized to advance the 3D semi-supervised learning. Motivated by
multimodal learning in other fields [4, 18, 36], we propose a multimodal semi-supervised
learning framework based on two novel constraints including instance-level consistency and
multimodal contrastive prototype (M2CP) constraints.

As shown in Fig. 1, the M2CP maintains a multimodal prototype for each class and
learns to minimize the feature distance of each object to its prototype while maximizing the
distance to the others. By minimizing the M2CP loss, the features from different classes
are more separable while the features from the same class are closer, and it can potentially
benefit the classification and retrieval tasks. Extensive experiments are conducted on two
public benchmark datasets (i.e. ModelNet10 and ModelNet40) for both classification and
retrieval tasks with three different modalities including point cloud, mesh, and image. Our
key contributions are summarized as follows: 1) A novel multimodal contrastive prototype
(M2CP) loss is proposed to learn the coherent embedding across multi-modalities. It can
simultaneously minimize the intra-class distances and maximize the inter-class distances of
embedding features by utilizing prototypes in semi-supervised learning. 2) We propose a
novel multimodal semi-supervised framework that further encompasses instance-level con-
sistency loss which enforces the network to generate consistent predictions for multimodal
data of the same object regardless of its modality. 3) Our comprehensive experiments and
ablation studies demonstrated that our proposed method significantly outperforms the state-
of-the-art semi-supervised learning methods for both 3D object classification and retrieval
tasks across point cloud, mesh, and image modalities on the ModelNet10 and ModelNet40
datasets.
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2 Related Work

3D Object Classification: 3D object classification is a fundamental task for 3D un-
derstanding [28, 29, 42, 46, 51, 51, 52, 55, 56]. Since 3D objects usually can be rep-
resented in different modalities while each one has its advantages, many methods have
been proposed for different modalities including image [40], mesh [9, 11, 33, 45], point
cloud [22, 28, 29, 44], etc. However, these methods normally only focus on one modality.
Our method is specifically designed to explore the coherence of different modalities of 3D
data for semi-supervised learning.

Semi-Supervised Learning: Many semi-supervised learning methods have been pro-
posed, but most of them focused on image-related tasks and some of them are very difficult
to be directly transferred to other tasks or data [2, 5, 10, 21, 24, 25, 41]. These methods usu-
ally learn by enforcing networks to produce consistent predictions for different views of the
same data [1, 20, 37], by minimizing the entropy of the predictions on unlabeled data [21],
or by other types of regularization [54]. With the rapid development of self-supervised
learning, various self-supervised tasks are used as auxiliary loss for semi-supervised learn-
ing [3, 35, 54]. Recently, the 3D semi-supervised learning for tasks including 3D object clas-
sification [32, 39], 3D semantic segmentation [6, 23, 26] and 3D object detection [43, 57]
start to draw attention from the community. Most of these methods mainly use the data from
one modality and the coherence of multimodal data is normally ignored. By utilizing the
multimodal data with our proposed constraints, we set a comprehensive benchmark for both
3D classification and retrieval tasks and our proposed model significantly outperforms the
most recent state-of-the-art methods [32, 39].

Self-Supervised 3D Feature Learning: Due to the advantage of utilizing unlabeled
data, more and more 3D self-supervised learning methods have been proposed [15, 16, 32,
34, 49, 53, 58]. The existing self-supervised learning methods normally learn features by
accomplishing pre-defined tasks such as contrasting [19], context prediction [12], orienta-
tion prediction [27], etc. The self-supervised learning methods do not require any labels,
therefore, they can be used as an auxiliary task for other tasks to help the network to learn
more representative features.

Multimodal Feature Learning: Multi-modality has been widely studied in many tasks.
Different modalities capture data from different perspectives while the features from multiple
modalities are usually complementary with each other. A typical example is the two-stream
network [8, 36] for video action classification task which fuses feature extracted from RGB
video clips and features from optical flow stacks [7, 17]. The similar idea has been ex-
plored in many other tasks including RGBD semantic segmentation [30], video object detec-
tion [59], 3D object detection, and sentiment analysis [13] etc. In this paper, we propose a
novel multimodal semi-supervised learning framework with two constraints to jointly learn
from both labeled and unlabeled data for 3D classification and retrieval tasks.

3 Multimodal Semi-Supervised Learning

Fig. 3 is the overview of our framework, with labeled and unlabeled three modalities of
point cloud, mesh, and image as input. The framework consists of three components includ-
ing supervised learning on labeled data, instance-level consistency learning on unlabeled
data, and multimodal contrastive prototype (M2CP) learning on both labeled and unlabeled
data. The generalized formulation of our proposed model is described in the following sec-
tions.
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Figure 3: An overview of the proposed framework for multimodal semi-supervised learning.
Our model is jointly trained on data with three different modalities from both labeled and
unlabeled data. Three loss functions are employed to train the network including (1) a regular
cross-entropy loss on the labeled data to learn discriminative features, (2) an instance-level
consistency loss to enforce network to predict consistency features for multimodal data, and
(3) our proposed novel multimodal contrastive prototype loss which minimize the intra-class
distances and maximize the inter-class distances of multimodal features simultaneously.

3.1 Problem Setup

Given a set of limited labeled data X; and a large amount of unlabeled data Xy, the
labeled data X7 is formulated as:

N, M
XL = {tlg}izl ,tl-l = (Sg,y,) ,S; = {Xﬁm}m:1, (1)

where #! is a instance of labeled data containing M modalities {xf’” }Zzl with label y;.
The unlabeled data Xy is formulated as:
Xy = {f}ey = (s1) 5! = (" by @)

i=1°%

where each instance in the unlabeled data ¢} only contains data {x}" }ﬁle in M different
modalities. Our model is trained on both X7 and Xy for multimodal semi-supervised learning
with the proposed constraints.

3.2 Representation Learning
Given each data sample x* from modality m, a network F;, that designed for modality m

produces a general hidden feature vector as:

H" :Fm(xm)v 3

l l

while H" is the general hidden feature to represent the data x". There are m different feature
encoders in total and one for each modality.

To implicitly enforce the consistency, two shared multimodal feature encoders are em-
ployed across all the modalities to map each generally hidden feature vector H/" into two
outputs. One is a task-specific feature vector and the other is the classification prediction as:
E"=W(H["), 3"=G(H"), @)

1



where E!" is a task-specific feature vector to represent the data x;" which will be used for
instance-level consistency learning and " is the corresponding classification prediction
based on x/". By sharing W() and G() across all the modalities, the network implicitly en-
forces the feature extractors Fy, ..., F;, to generate consistent features for different modalities
of the same object.

Therefore, for each data instance ¢;, no matter it is from labeled dataset X; or unlabeled
data Xy, task-specific feature vectors E,-l, ... E", and predictions yA}, ..., yi" are obtained with
the shared multimodal encoder from a set of general hidden feature vectors Hil, .. H™. Our
proposed constraints are optimized over these extracted features and predictions.

3.2.1 Supervised Training

The supervised training over the labeled data X helps the network to learn discriminative
features. For each sample x; from the labeled set Xy, the cross-entropy loss is calculated
between all the predictions y7" and the fused prediction result y/. The corresponding ground

truth label:
1 N M

L=~ (Y (Y vi-log(57") + - log(y]). 5)
i=1 m=1
in which the cross-entropy loss from M and different modalities fused prediction are aver-
aged over N samples to optimize the network.

3.2.2 Instance-Level Consistency Learning

Normally there are two ways to perform the instance-level consistency learning either
from prediction level or from feature level. The existing methods mainly optimize networks
by enforcing consistency in the prediction level such as enforcing networks to make the same
classification prediction over two views of the same data sample. However, the predictions
of networks are often very noisy especially when the labeled data is very limited, and the
consistency learning from the prediction level inevitably involves severe noises during the
training. Relying on the multimodal attributes of 3D data, we propose to regularize the
network with instance-level consistency learning from the feature level in which the network
is trained to predict consistent features E,, for data from different modalities of the same
object.

We propose to directly maximize the similarity of multimodal features from the same ob-
ject while minimizing the similarity of multimodal features from different objects. Given the
recent progress of contrastive learning, the contrastive loss is employed for the instance-level
consistency learning over the task-specific features E,, extracted by our shared multimodal
feature encoder. Given any two modalities ¥/ and x> from a total of M different modalities
of the data x;, the multimodal features are firstly extracted and represented as E;”', Ei’”2
from the shared multimodal feature encoder. Then the instance-level cross-model consis-
tency loss is optimized through:

ml pm2
z:i(E,.’"l,E{ﬂ):—logg(Efi@), (6)
Lh(E[EL?)
k=1
where h(u,v) = exp (% /7) is the exponential of cosine similarity measure, 7 is the
temperature, and B is the batch size. Each mini-batch consists of data from multiple modal-

ities, and the instance-level consistency loss is calculated on combinations of any of the two
modalities.



3.3 Multimodal Contrastive Prototype Learning

The instance-level consistency focuses on the consistency of the instance-level feature
representation, but the relations among instance and classes are not utilized. To thoroughly
utilize the information hidden on categories, we propose the multimodal contrastive pro-
totype loss to jointly constraint the intra-class and the inter-class variations by using both
labeled and unlabeled data.

A prototype P, is defined for each class i and is learned and updated through the training.
Each prototype represents the semantic center for one class in the feature space. For each
data sample x/", the distance of features of x" to its corresponding prototype F; is minimized
while the distance with the rest of the prototypes is simultaneously maximized. Formally,
for data sample data x" with its general hidden features H;" and prototype F;, the multimodal
contrastive prototype loss is formulated as:

g(H" F;)

L, =—log c
Eettrn)

; @)

m__p.||2
while g(H",P;) = exp(— M), C is the number of prototypes ,and 7 is the temperature.

For each data sample from the labeled data, its category is required for the M2CP loss
to know the distance with which prototypes should be minimized. To fully utilize a large
amount of unlabeled data, we extend this loss to both labeled and unlabeled data by gen-
erating pseudo-labels for the unlabeled data during the training. A simple idea would be
to select the confident predictions (i.e. if the prediction y:*” is larger than a threshold) and
then use these confident predictions as labels for these selected unlabeled data as data to
jointly train the multimodal contrastive prototype loss. However, this may lead to inconsis-
tent pseudo-labels for the different modalities of the same object.

To generate consistent pseudo-labels for different modalities of the same object, we pro-
pose to fuse the general features F;, from different modalities to obtain an object-level pre-
diction which will then be used as pseudo-labels for all the modalities of this object, as shown
in Fig. 2. Formally, the features Hil, ..., H" from m modalities are aggregated concatenated
together to represent the object #; to get the final prediction:

y{:K(Hilr"aHim)) (8)

while K has two MLP layers network to predict y; based on the concatenated features of
multiple modalities. Having access to multiple modalities, the prediction y; is more reliable
compared to the predictions from a single modality. The pseudo-labels are further created

as:
o )1, if max(y‘if) >0
L 0, otherwise

; ©))

while 0 is the pre-defined threshold. By generating pseudo-labels for unlabeled data, our
proposed multimodal contrastive prototype loss is able to be trained by both labeled data X,
and large-scale unlabeled data Xp;.

Our entire framework is jointly optimized on both labeled and unlabeled data with the
three weighted loss functions as:

Loss = aL.+BL;+ALp, 10)

where a, 3, and A are the weights for each loss term.



3.4 Architecture

Feature Extractor: There are three feature extractors and one for each modality. Due to
the powerful ability to learn image features, ResNet [14] is used as backbone networks for
image feature extractors. For the point cloud feature extractor, the DGCNN [44] is employed
due to its powerful ability to capture local structures with the KNN graph module from the
point cloud. The MeshNet [9] is chosen as a feature encoder for mesh modality, and it takes
the n faces and its normal vectors as inputs. The shared multimodal feature encoder consists
of two parallel branches while one has three MLP layers with a size of 512,256,256 and the
other with a size of 512,256,C while C is the number of classes.

4 Experimental Results

Datasets: The proposed framework is evaluated on two datasets including ModelNet10
[47] and ModelNet40 [47] with different percentages of labeled samples. The ModelNet40
dataset is a 3D object benchmark that consists of 12,311 samples belong to 40 different
categories while 9,843 for training and 2,468 for testing. The ModelNet10 dataset consists
of 4,900 samples belong to 10 categories with 3,991 for training and 909 for testing.

Setup and Training Details On the ModelNet40 dataset, our model is trained with an
SGD optimizer with a learning rate of 0.01 for a total of 10,0000 iterations. The learning
rate is reduced by 90% every 4,0000 iterations. On the ModelNet10 dataset, the model is
trained for a total of 6,0000 iterations and the learning rate starts from 0.01 and is reduced
by 90% every 2,0000 iterations. The weights are 1, 2, and 9 for cross-entropy, instance-
level contrastive loss, and multimodal contrastive prototype loss respectively. For all the
experiments, a batch size of 48 is used while half of them are labeled data and the other half
are unlabeled data.

4.1 Performance on Semi-Supervised 3D Object Classification

Since there are only few existing semi-supervised learning methods specifically designed
for the 3D object classification task and without a comprehensive semi-supervised bench-
mark, we first compare with methods that were originally designed for 2D semi-supervised
learning but apply them to the 3D object classification task. We compare with the supervised
baseline and three different semi-supervised methods include Pseudo-Labeling (PL) [21],
FixMatch [37], and S4L [54] under the same settings. Worth to note that the FixMatch-
based methods achieve state-of-the-art performance on many semi-supervised tasks [57],
[38], [50], [48]. For a fair comparison, all the methods are using the same backbones and
data augmentations as our methods, and only one modality is available during the inference
phase for all the methods.

The performance comparison with the above-mentioned four methods on the Model-
Net40 and ModelNet10 datasets for 3D object classification are shown in Table 1. To exten-
sively evaluate the performance, we compare with the other methods under different percent-
ages (2%, 5%, and 10%) of labeled data for both datasets. The following conclusions can
be drawn from the comparison: 1) Since the state-of-the-art semi-supervised learning meth-
ods were mainly designed for image-based tasks, they perform well on the image modality
while having a negligible impact on the point cloud and mesh modalities. Directly adapt-
ing these methods to the 3D classification task obtains unsatisfied results due to the lack
of specific constraints. 2) By jointly training our framework with multiple modalities, the
performance with all three modalities is significantly improved regardless of the amount of
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labeled data. 3) With the different amounts of labeled data, our method consistently sig-
nificantly improves the classification performance and outperforms all three state-of-the-art
semi-supervised learning methods. These results confirm the advantage of our proposed
multimodal semi-supervised method.

ModelNet40 ModelNet10
Test Baseline PL FixMatch | S4L Ours Test Baseline PL FixMatch | S4L Ours
Modality [21] [37] [54] Modality [21] [37] [54]

2% of Labeled data
Image 69.61 72.20 75.69 80.96 | 82.78 Image 73.57 74.04 70.44 80.51 | 85.46
Point 63.21 65.68 65.56 68.64 | 79.86 Point 77.31 78.41 78.74 81.61 | 84.36
Mesh 48.18 49.33 52.59 51.72 | 78.81 Mesh 66.41 63.00 61.44 65.40 | 86.13
5% of Labeled data
Image 82.29 83.18 85.49 84.12 | 88.61 Image 83.70 86.56 84.36 88.33 | 92.14
Point 76.62 | 79.74 79.38 78.69 | 85.29 Point 83.59 86.34 85.13 84.91 | 89.87
Mesh 71.19 | 73.49 72.76 77.02 | 86.51 Mesh 80.51 80.73 82.60 79.74 | 90.75
10% of Labeled data
Image 85.90 86.95 89.02 87.16 | 91.61 Image 91.85 91.74 90.86 92.07 | 93.95
Point 82.86 84.04 84.81 83.75 | 88.49 Point 87.44 88.00 88.33 88.16 | 91.63
Mesh 80.39 82.47 81.36 82.42 | 88.29 Mesh 84.25 87.11 83.29 81.83 | 92.84

Table 1: Performance comparison for the 3D object classification task with the state-of-the-
art semi-supervised learning methods on the ModelNet40 and ModelNet 10 dataset with
different percentages of labeled data.

ModelNet40 ModelNet10
Test Baseline PL FixMatch | S4L | Ours Test Baseline PL FixMatch | S4L | Ours
Modality [21] [37] [54] Modality [21] [37] [54]

2% of Labeled data
Image 63.01 62.84 73.27 73.13 | 81.50 Image 68.90 65.87 73.34 78.52 | 83.82
Point 55.43 60.42 61.57 59.41 | 78.45 Point 72.81 76.42 76.96 68.94 | 84.85
Mesh 50.50 52.39 53.37 54.81 | 80.31 Mesh 64.17 70.99 72.62 67.23 | 84.09
5% of Labeled data
Image 73.68 74.38 78.87 74.90 | 85.71 Image 79.00 717.73 82.49 80.25 | 87.67
Point 57.92 64.02 63.09 61.11 | 82.05 Point 72.98 76.60 75.25 69.39 | 87.62
Mesh 56.98 63.94 63.59 58.81 | 84.84 Mesh 75.81 81.62 79.00 72.95 | 88.43
10% of Labeled data
Image 78.15 79.11 82.24 79.28 | 86.96 Image 85.33 85.28 87.68 83.39 | 90.74
Point 60.20 64.50 63.60 64.96 | 84.16 Point 72.93 76.33 74.70 71.18 | 89.75
Mesh 60.20 73.22 73.74 72.02 | 84.29 Mesh 81.01 84.70 78.03 70.92 | 90.61

Table 2: Performance comparison for the 3D object retrieval task with other state-of-the-art
semi-supervised learning methods on the ModelNet40 and ModelNet10 dataset with differ-
ent percentages of labeled data.

4.2 Performance on Semi-Supervised Object Retrieval

We further evaluate the performance of the 3D object retrieval task and compare it with
the state-of-the-art semi-supervised methods on both ModelNet40 and ModelNet10 datasets.
Following the convention, the mean Average Precision (mAP) is used to indicate the perfor-
mance.

We report the retrieval performance with different amounts of labeled data for all three
modalities. As shown in Table 2, all these three state-of-the-art semi-supervised learning
methods can only improve the performance on the image modality while the performances
for other modalities sometimes are even worse than the baseline, which is probably due to
the noises during the training. Benefited from our novel constraints, our method significantly
improves the performance consistently for all the modalities by using different percentages
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Modality [ L. | Le,Li [ Lo Ly | Le,Li L,
3D Object Retrieval

Modality | Mesh-Image | Image-Point | Point-Mesh [ All
3D Object Retrieval

Image | 78.15 | 76.74 | 85.26 86.96 Tmage 36.15 36.23 — $6.96

Point 60.20 | 70.40 | 82.51 84.16 Point _ 82.90 82.47 84.16

Mesh | 60.20 | 7491 | 78.04 | 84.29 Mesh 81.27 — 7968 | 84.29
3D Object Classification 3D Object Classification

Image | 85.90 | 89.34 | 89.79 | 91.61 Image 89.95 90.48 — 91.61

Point | 82.86 | 85.78 | 87.03 | 88.49 pomt s §7.48 |

Mesh | 8039 | 88.61 | 8582 | 88.29 = = :

Table 4: Ablation study for the number of
modalities to the 3D object classification
and retrieval tasks on ModelNet40 dataset
with 10% of labeled data.

Table 3: Ablation study for the combi-
nation of losses to the 3D object classifi-
cation and retrieval tasks on ModelNet40
dataset with 10% of labeled data.

of labeled data. These results demonstrate the effectiveness of our proposed framework and
the generalizability in the 3D object retrieval task.

4.3 Ablation Study

Ablation Study for Loss Functions: Our proposed framework is jointly trained with
three loss functions including cross-entropy loss L., instance-level consistency loss L;, and
a novel multimodal prototype loss L,. To understand the impact of each loss term, we
conduct ablation studies with four combinations of different loss functions including: 1) L,
2)Le+Li,3) Le+ Ly, 4) Lo+ L; + L,. We report the performance using different amounts
of labeled data for both 3D classification and 3D retrieval tasks on the ModelNet40 dataset
in Table 3. From the result of Table 3, we can draw the conclusion that: 1) When only the
cross-entropy loss L, is used, the performance for both classification and retrieval tasks with
all the modalities are very low due to the very limited labeled samples. 2) When the M2CP
loss L, is jointly used with the cross-entropy loss L., the performances for all the tasks are
significantly improved compared to the baseline, as well as significantly outperforms the
performance of L, + L;. The results are consistent with our hypothesis since L; does not use
the category information and only enforces the instance-level consistency, while the M2CP
utilizes the category information to regularize the hidden features. 3) The best performances
are achieved for all the tasks when all the three losses are used indicating that they are indeed
complementary with each other.

Ablation Study for Number of Modalities: Compared to other semi-supervised meth-
ods, our method is designed to explicitly leverage the multimodal coherence of multimodal
data with the proposed novel constraints. Our model is jointly trained from three Modali-
ties including point cloud, mesh, and image. When more modality data are available, better
performance should be achieved since more multimodal constraints are available to the net-
works. To verify the impact of the number of Modalities, we conduct experiments by train-
ing with three different modality combinations including (1) point cloud and image, (2) point
cloud and mesh, and (3) image and mesh. The performance for both classification and re-
trieval tasks on the ModelNet40 dataset is shown in Table 4. The performances for both tasks
are the best when all three Modalities are used in training. This confirms our assumption that
more Modalities can provide more constraints which produces better performance.



Method Percentage | Modality | Accuracy
Info3D [32] 2% Point cloud | 71.06%
Ours 2% Point cloud | 79.86%

Info3D [32] 5% Point cloud | 80.48%
Ours 5% Point cloud | 85.29%

Deep Co-training [39] 10% Point cloud | 83.50%
FixMatch [37] 10% Point cloud | 84.81%
Ours 10% Point cloud | 88.49%

Deep Co-training [39] 10% Image 89.00%
FixMatch [37] 10% Image 89.02%
Ours 10% Image 91.61%

Table 5: Comparison with the most recent state-of-the-art 2D and 3D semi-supervised meth-
ods [32, 37, 39]. Our model significantly outperforms all of them with different modalities
and different settings on ModelNet40.

S Comparison with the State-of-the-Art 3D
Semi-Supervised Methods

To further demonstrate the capability of our proposed methods, we compare with the
state-of-the-art methods [32, 39] that are specifically designed for the 3D semi-supervised
object classification task. The performance comparison with these methods on the Model-
Net40 dataset is shown in Table 5.

Our method significantly outperforms the state-of-the-art methods [32, 39] with dif-
ferent modalities under different settings demonstrating the effectiveness of our proposed
method. Our method outperforms the Info3D [32] by almost 9% when only 2% labeled
data is available during training. The Deep Co-training [39] is specifically designed for 3D
semi-supervised learning which mainly uses the consistency from the prediction level of
the multimodal data as constraints however, the results are comparable with the 2D based
method FixMatch [37]. Relying on our proposed constraints learning directly from fea-
ture level, our model significantly outperforms state-of-the-art 2D and 3D semi-supervised
methods by a large margin with both modalities under the same setting on the ModelNet40
dataset. Moreover, with our proposed novel M2CP loss directly optimizing from the feature
level, our model is able to learn features with small intra-class variations which can achieve
state-of-the-art results for the 3D retrieval tasks.

6 Conclusion

We have proposed a novel multimodal semi-supervised learning method for 3D objects
based on the coherence of multimodal data. The network jointly learns from both labeled
and unlabeled data mainly using the proposed instance-level consistency and multimodal
contrastive prototype (M2CP) constraints. Our proposed method remarkably outperforms
the state-of-the-art semi-supervised learning methods and the baseline on both 3D classifi-
cation and retrieval tasks. These results demonstrate that it is a promising direction to study
how to apply the multimodal for 3D semi-supervised learning tasks.
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