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A B S T R A C T   

Using a modified Cahn-Hilliard-Cook theory for spinodal decomposition in a binary mixture that exhibits both 
diffusion and interconversion dynamics, we derive the time-dependent structure factor for concentration fluc
tuations. We compare the theory and obtain a qualitative agreement with simulations of the temporal evolution 
of the order parameter and structure factor in a nonequilibrium Ising/lattice-gas hybrid model in the presence of 
an external source of forceful interconversion. In particular, the characteristic size of the steady-state phase 
domain is predicted from the lower cut-off wavenumber of the amplification factor in the generalized spinodal- 
decomposition theory.   

1. Introduction 

C. Austin Angell's pioneering work published 50 years ago hypoth
esized that the thermodynamic anomalies of liquid water could be 
attributed to the existence of two supramolecular states [1]. Later, this 
idea was further developed to predict liquid-liquid phase separation in 
supercooled water below the temperature of homogeneous ice forma
tion [2,3], as well as in the vitreous state of various substances [4–9]. 
This phenomenon, known as “liquid and glassy polyamorphism” 
[10,11], could be attributed to the interconversion between two alter
native molecular or supramolecular states [12]. In this work, we 
investigate the effects of interconversion between alternative species in 
a binary mixture on the phase separation and phase domain growth. 

Previous studies of a hybrid Ising/lattice-gas model exhibiting both 
interconversion and diffusion dynamics [13] and a chiral model with 
interconversion of species [14,15] have demonstrated that intercon
version dynamics breaks the symmetry of phase separation. As a result, 
depending on the rate of interconversion, to circumvent the energeti
cally unfavorable formation of an interface, one stable phase will grow 
at the expense of the other, a phenomenon known as “phase 

amplification” [13,16]. However, if the alternative species are forced to 
interconvert due to an external source, then the formation of interfaces 
between species may become more favorable and the system may phase 
separate into steady-state microphase domains [16]. Previous studies of 
a phase separating binary-lattice in the presence of an external inter
conversion force [17–19] and a chiral model with dissipative intermo
lecular forces [15] have demonstrated steady-state microphase 
separation. 

In this work, we consider a symmetric binary mixture that, when 
quenched along critical composition below the critical temperature of 
demixing, will phase separate via spinodal decomposition [20]. Simul
taneously, the alternative species may interconvert either naturally or 
forcefully. To characterize the formation of phase domains, we calculate 
the temporal evolution of the structure factor for the concentration 
fluctuations. We describe the time-dependent structure factor through 
two characteristic wavenumbers corresponding to the maximum and 
lower cut-off wavenumbers in the characteristic growth rate. We 
compare the theory to simulations of a nonequilibrium hybrid Ising/ 
lattice-gas model exhibiting natural and forceful interconversion in 
addition to diffusion and obtain a qualitative agreement. 
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2. Modified Cahn-Hilliard-Cook theory 

In this section, we generalize the Cahn-Hilliard theory of spinodal 
decomposition to allow for both natural and forceful interconversion of 
species and derive the structure factor for concentration fluctuations. 

2.1. Generalized spinodal decomposition 

The effect of interconversion on the temporal evolution of the con
centration for a symmetric binary mixture of species A and B in the 
presence of interconversion is given in the simplest form [16] as 

∂ĉA

∂t
= M∇2 μ̂ − Lμ̂ − KĉA (1)  

where ̂cA is the order parameter, related to the physical concentration of 
species A by ̂cA = 2cA − 1, M and L are kinetic coefficients for the mutual 
diffusion and natural (spontaneous) interconversion dynamics respec
tively, and the third term is an external source of forceful interconver
sion. We consider the case when interconversion, both natural and 
forceful, occurs through a reaction A ⇌ B where K is the forward and 
reverse reaction rate. Physically, a source of forceful interconversion 
could be introduced via irradiation through photons [21] which pro
mote interconversion of species or it could be introduced through a flux 
of matter [22]. In the absence of interconversion, when L = 0 and K = 0, 
then Eq. (1) reduces to the Cahn-Hilliard theory [20]. Lastly, the 
reduced chemical potential difference, μ̂ = μ̂A − μ̂B, is found from the 
variational derivative of the dimensionless Landau-Ginzburg free-en
ergy functional [16] as 

μ̂ =
μ

kBTc
=

1
2

(1 + ΔT̂ )ln
(

1 + ĉA

1 − ĉA

)

− ĉA − κ∇2 ĉA (2)  

where the reduced distance to the critical temperature, ΔT̂ = 1 − T/Tc, 
is negative in the spinodal (unstable) region, kB is Boltzmann's constant, 
and κ is the square of the range of intermolecular interactions. In this 
work, we adopt κ = 1 in the units of the square of the molecular size. 
Expanding Eq. (2) to first order and analytically evaluating Eq. (1) via a 
Fourier transform, the characteristic growth rate, known as the 
“amplification factor” [13,16,20], for spinodal decomposition in the 
presence of interconversion may be written in the form [16]. 

ω(q, t) = Mκq2
m(t)

[
q2

m(t) − 2q2
−

]
− Mκ

[
q2 − q2

m(t)
]2 (3)  

where the two characteristic wavenumbers, qm and q−, are the 
maximum and the lower cut-off of the amplification factor, respectively 
(see Fig. 1a). Using a first order approximation, they have the form 

q2
m = −

(Mχ̂
−1
q=0(t)+Lκ )

2Mκ and

q2
− = −

(K + LΔT̂ )

MΔT̂ + Lκ

(4) 

We note that the maximum of the amplification factor, qm = qm(t) is 
time dependent, while we hypothesize that q− is time independent. The 
time dependence of qm(t) is given through the higher order terms of the 
chemical potential, Eq. (2), and is introduced into the time-dependent 
inverse thermodynamic susceptibility, χ̂−1

q=0(t) = ∂μ̂/∂ĉA(t). The origin 
of this temporal evolution is due to the change in concentration at 
constant temperature from the unstable (ĉA = 0) to the stable (ĉA > 0) 
regime; as such, in the second order approximation, ̂χ−1

q=0(t) ≃ ΔT̂ + (1 +

ΔT̂)ĉ2
A(t) [16,23,24]. In contrast, q− is an intrinsic property of the sys

tem, and since q− determines the cut-off for the smallest possible 
growing domain modes, then the steady-state limit of the time evolution 
of the maximum wavenumber will also be cut-off by q− as qm(t → ∞) ∝ 
q−. To verify this prediction, we numerically compute qm from the 
wavenumber corresponding to the maximum of the structure factor, qm

s, 

and compare our results with the steady-state domain modes obtained 
from simulations of a nonequilibrium hybrid model. 

2.2. Structure factor modified by interconversion of species 

Defining the order parameter fluctuation variable as δĉ(r, t), the 
structure factor is given through the correlation function for the con
centration fluctuations [25]; such that 

S(q, t) =

∫

dr < δĉ(r, t)δĉ(r0, t). > eiq⋅r (5) 

As shown by Cook [26] and Langer et al. [27], the equation of motion 
for S(q, t) is found by introducing order-parameter fluctuations into the 
time evolution of the order parameter, Eq. (1), with δĉ(r) as the fluc

tuation variable and spatially integrating 
〈

|δĉ|
2

〉
. Following this pro

cedure, we obtain the first-order solution for mixed diffusion- 

Fig. 1. a) The amplification factor, ω(q), given by Eq. (3), for κ = 1 and ΔT̂ =

− 0.1. The red curve represents the Cahn-Hilliard theory (phase separation) for 
M = 1, L = 0, and K = 0; the purple curve represents phase amplification for M 
= 1, L = 1/127, and K = 0; the green curve represents the generalized Cahn- 
Hilliard theory in the presence of natural and forceful interconversion for M 
= 1, L = 1/127, and K = 1.3 × 10−3. For the latter case (with forceful inter
conversion), the green circles indicate the three characteristic wavenumbers of 
the amplification factor: the maximum, qm, the lower cut-off, q−, and the upper 
cut-off, q+. b) The time evolution of the structure factor, given by Eq. (9), for 
the same parameters used in the generalized Cahn-Hilliard-Cook theory in the 
presence of natural and forceful interconversion. The black dotted line depicts 
the evolution of the maximum of the structure factor. Due to the external source 
of forceful interconversion, the maximum of the structure factor is interrupted 
at the wavenumber q−, while for complete phase separation and phase ampli
fication, the maximum of the structure factor will evolve to q = 0 for an infinite- 
sized system. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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interconversion dynamics as 

∂S(qt)
∂t

= 2ω(qt)S(qt) + 2
(
Mq2 + Lκ

)
(6)  

where ω(q, t) is given by Eq. (3) [28–30]. We note that in the absence of 
interconversion and forceful racemization, this equation reduces to the 
result presented by Cook [26]. Solving this differential equation for the 
structure factor, assuming a linear approximation [23], with the con
dition ∂ω/∂t ≪ ω(q, t), gives [24,31–33]. 

S(q, t) = S∞(q) + [S(q, t = 0) − S∞(q) ]e2ω(q,t)t (7)  

where S(q, t) represents the modified Cahn-Hilliard-Cook structure fac
tor, which now includes natural and forceful interconversion. In the 
limit of infinite time, when ∂S(q, t)/∂t = 0, the steady-state structure 
factor, S∞(q), is given by 

S(q, t→∞) = S∞(q) =
Mq2 + Lκ

−ω(q, t→∞)
(8) 

It can be seen that when either L = 0 or M = 0, then this equation, in 
equilibrium conditions (K = 0), reduces to the Ornstein-Zernike struc
ture factor - SOZ = ξ2/(1 + ξ2q2), where the correlation length of con
centration fluctuations is ξ2 = − κ/ΔT̂. 

The time-dependent structure factor, Eq. (7), can be simplified by 
applying the condition that at t = 0, the system is quenched from a 
sufficiently high temperature where S(q, t = 0) = 0. Therefore, Eq. (7) 
may be written as 

S(q, t) = S∞(q)
(
1 − e2ω(q,t)t )

(9)  

which is valid from the initial stages of spinodal decomposition to the 
coarsening regime [32,34]. Evaluating ∂S∞/∂q = 0 to determine the 
wavenumber corresponding to the maximum of the structure factor 
gives qm

s = 21/4q− in the steady-state limit. The time evolution of the 
structure factor is illustrated in Fig. 1b. To account for the time depen
dence of qm(t), we assume a simple approximation of the transition in the 
form qm(t) = qm(t = 0) exp (−t/τ) + q−(1 − exp (−t/τ)) based on the 
limiting values of qm at t = 0 and t → ∞, where τ is a system dependent 
parameter that controls the crossover from spinodal decomposition to 
the coarsening regime. As shown in Fig. 1, where we have selected τ =
100, the wavenumber corresponding to the maximum of the steady-state 
structure factor, qm

s, aligns with the prediction of q− from the theory. To 
accurately match the predictions from the theory with the computa
tional results presented in the following section, we scale the charac
teristic wavenumbers from the theory by the size of the system. 

3. Methods 

3.1. Spatial and temporal evolution of the order parameter 

Using the finite difference method [35], with a spatial step Δx = 1 
and a time step Δt = 0.015, we calculate the temporal evolution of the 
order parameter given by Eq. (1) with a chemical potential given by Eq. 
(2). We observed that for time steps Δt > 0.015, the solution diverges 
[35]. We include a random force term, η, to account for the thermal 
motion of the particles [26,32]. The system is initialized on an ℓ × ℓ × ℓ 
cubic lattice with positions varied with initial random Gaussian noise, σi. 
The structure factor is calculated via a Fast Fourier Transform (FFT) of 
the order parameter throughout the system [35]. 

3.2. Nonequilibrium Ising/lattice-gas hybrid model 

We consider an “Ising-like” lattice model where mutual diffusion is 
modeled by “swapping” the position of two neighboring species and 
interconversion is modeled by “flipping” one species type to another 
[13]. The diffusion and interconversion dynamics are simulated using a 

hybrid of Kawasaki and Glauber Monte Carlo (MC) methods [25,36,37], 
respectively. The species are arranged on an ℓ × ℓ × ℓ cubic lattice with 
a coordination number of 6. Using the Ising model Hamiltonian [38] 

H = −
ε
2

∑ℓ3

i=1

∑

j∈Ω(i)

sisj (10)  

where si, sj = ± 1 are spins, Ω(i) is the set of 6 nearest neighbors of spin i, 
and ε is the interaction energy. The critical temperature of this system is 
Tc = 4.5115(1)ε/kB [39]. Realizations are initialized with a random spin 
configuration in which ℓ3/2 spins are positive and the other ℓ3/2 spins 
are negative. In addition, we assume that at each MC step the probability 
of a random spin flip (a Glauber step) is pr, while the probability of 
swapping a randomly selected pair of nearest neighbor spins (a Kawa
saki step) is 1 − pr. 

The equilibrium formulation, detailed in Ref. [13], is converted to 
nonequilibrium via the introduction of an additional energy, E, incor
porated into the Boltzmann factor for the probability that a spin flip will 
be accepted as p ~  exp [−(ΔU − E)/kBT], in which ΔU is the difference 
in internal energy of the system for this step [40]. Thus, the effect of the 
energy source only affects the interconversion dynamics of the system. 
The diffusion dynamics, determined in each Kawasaki step, occur with a 
probability that two spins will swap according to the Metropolis crite
rion without any additional energy source. We introduce a size- 
independent MC time as t = n/ℓ3, such that in every time unit, each 
spin in the system has a chance, pr, to flip, or a chance, 1 − pr, to swap 
with a neighboring spin. The probability of spin flipping is related to the 
diffusion and interconversion kinetic coefficients, M and L respectively, 
through pr = L/(M + L) [13]. Additionally, the frequency of spin flipping 
is absorbed into the time step, δt, so that the kinetic coefficients, and 
consequently pr, do not depend on temperature. 

The dynamic structure factor is calculated using the method 
described in Kumar et al. [41]. This method differed from the FFT 
method, used in Section 3.2, since the maximum of the structure factor 
(after normalizing by ℓ3) differed by a factor of π. Additionally, using the 
FFT method, the time evolution of the structure factor was interrupted at 
the wavenumber q = 1 (indicating that the size of the two phase domains 
were half the size of the simulation box, ℓ/2), while using the method 
presented in Kumar et al., the maximum of the structure factor was 
interrupted at a larger wavenumber. To correct for this difference, we 
scale the wavenumbers such that complete phase separation occurs at q 
= 1. 

4. Results and discussion 

We confirmed that the presence of a source of forceful interconver
sion causes the system to phase separate into steady-state microphase 
domains as presented in Fig. 2(a–d). Due to the periodic boundary 
conditions imposed in the continuum finite-difference method used to 
compute Eq. (1), we found that the stripe morphologies will form at any 
angle with respect to the simulation box. The characteristic size of the 
stripe-like domains decreases with increasing forceful interconversion 
source strength, K. We note that a condition for microphase separation is 
that K must be sufficiently “strong” as to overcome the natural inter
conversion. If the magnitude of K is not strong enough, then (depending 
on the rate of natural interconversion) the system will either undergo 
phase amplification or complete phase separation. For instance, for M =
1, L = 1/127, ΔT̂ = − 0.1, and K ≤ 4 × 10−4, then microphase sepa
ration is not observed. Since L = 1/127, the interconversion rate is 
relatively slow, and thus, the system has a higher probability of forming 
an interface between phases as shown in Fig. 2a. However, for a system 
with natural interconversion, this state is metastable, and eventually, 
the interface between phases will break down and phase amplification 
will occur [13]. 

The time-dependent structure factors, which produce the stripe-like 
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morphology, as illustrated in Figs. 2(a–d), are presented in Figs. 3(a-d). 
We observe that the time evolution of the maximum of the structure 
factor in Fig. 3a is interrupted at the wavenumber q = 0, which corre
sponds to a system undergoing phase amplification. For K = 4 × 10−4 

(Fig. 3b), the maximum of the time evolution of the structure factor is 
interrupted at q = 1, indicating complete phase separation where the 
phase domains have a characteristic size of half the simulation box, ℓ/2. 
In Fig. 3(c,d), the time evolution of the maximum of the structure factor 
is interrupted at higher wavenumbers depending on K. These wave
numbers correspond to the characteristic size of the stripe-like phase 
domains and are independent of the size of the system. We also observe 
that the structure factor at the maximum wavenumber (qm) contains the 
largest uncertainty, with respect to the other wavenumbers. The non- 
monotonic temporal evolution of the structure factor observed in 
Fig. 3b can be attributed to τ ≈ 1.5 × 103, a large characteristic crossover 
time scale between spinodal decomposition and coarsening. This 
observation suggests that the crossover time scale, τ = τ(K), may depend 
on forceful interconversion. 

The temporal evolution of the order parameter was calculated from 
Eq. (1) using the chemical potential given in Eq. (2). The average value 
of the order parameter, calculated by first averaging over all space and 
second averaging the absolute value over N = 100 realizations, is pre
sented in Fig. 4a. This method of averaging highlights the behavioral 
deviation from ̂cA = 0, when the concentration of species A is equivalent 
to species B; therefore, this figure represents the temporal evolution of 
the symmetry of phase separation. We observed that the initial value 
〈|ĉA|〉 is determined by σi, the random initial configuration, whereas the 
steady-state behavior of 〈|ĉA|〉 is determined by η, the thermal noise to be 
included in Eq. (1). We find that 〈|ĉA|〉 develops a peak during the for
mation of the stripe-like patterns. As the phase domains coarsen, the 
averaged order parameter reaches a steady-state value, 〈|ĉA(t→∞) |〉 =

c0 indicating the stable formation of the stripe-like domains. 
In Fig. 4b, we show the temporal evolution of the standard deviation 

of the averaged order parameter, calculated by first determining the 
standard deviation over all space and second by averaging over N = 100 
realizations. We observed that the N-averaged standard deviation, 〈σ〉N, 
was constant through the early stages of spinodal decomposition, but 
dramatically increased during the formation of the stripe-like patterns. 
We note that in the K = 0 case due to phase amplification 〈σ〉N rapidly 

Fig. 2. Steady-state phase domain morphology for different magnitudes of 
forceful interconversion (after ~105 time steps) computed from the time evo
lution of the order parameter, Eq. (1), with M = 1, L = 1/127, ΔT̂ = − 0.1, ℓ =
64, σi = 0.1, η = 10−5. Morphologies are shown for the middle slice of the three- 
dimensional system at (a) K = 0, (b) K = 5 × 10−4, (c) K = 15 × 10−4, and (d) K 
= 25 × 10−4. The red regions correspond to where the value of the normalized 
order parameter is ĉA/ĉmax

A = 1, the purple regions correspond to where the 
value of the normalized order parameter is ĉA/ĉmin

A = − 1, and the other colors 
depict the interface between these two regions. The image in (a) depicts a 
metastable structure toward phase amplification [13], while the images in (b-d) 
are modulated steady-state structures with a characterize size, 1/q−. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 3. Time evolution of the structure factor 
computed from the Fast Fourier transform (FFT) so
lution of Eq. (1) for M = 1, L = 1/127, ΔT̂ = − 0.1, ℓ 
= 64, σi = 0.1, η = 10−5 depicted at times t = 6 × 103 

(green), t = 1.2 × 104 (blue), t = 2.4 × 104 (orange), t 
= 5 × 104 (red), t = 1 × 105 (pink), and t = 2 × 105 

(black). The open circles in (a-d) depict the computed 
structure factors for the four selected magnitudes of 
forceful interconversion averaged over N = 100 re
alizations with 95% confidence interval error bars, 
while the solid lines illustrate the behavior of the 
structure factors assuming a Gaussian distribution. In 
(a), the evolution of the maximum of the structure 
factor is interrupted at the wavenumber q = 0, cor
responding to phase amplification, while in (b) the 
maximum is interrupted at q = 1, corresponding to 
phase domains with a characteristic size of half the 
simulation box, ℓ/2. In (c,d), the evolution of the 
maximum of the structure factor is interrupted at 
wavenumbers q = q− > 1 corresponding to micro
phase separation. (For interpretation of the references 
to colour in this figure legend, the reader is referred to 
the web version of this article.)   
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increases as the domains coarsen, but then decreases when one phase 
grows at the expense of the other. In this case, the constant steady-state 
limit of the averaged standard deviation, 〈σ(t → ∞)〉N = σ0, indicates that 
the order parameter has reached its equilibrium value, ∣ĉA∣ = c0, which 
depends on the distance to the critical temperature. 

In Fig. 5(a,b), we compare the structure factor theory with simula
tions of the nonequilibrium hybrid model (defined in Section 3.2). In 
Fig. 5a, we show the steady-state structure factor from simulations at 
three different additional energy values, E, at constant temperature, 
ΔT̂ = − 0.4, averaged over N = 60 realizations. Unlike the morphol
ogies computed from Eq. (1) via the finite-difference method, the 
snapshots of the MC simulations shown in the insets of Fig. 5a depict 
stripe-like phase domains that form along the diagonal of the simulation 
box. We attribute this affect to the lattice structure utilized in the MC 
simulations. We introduce three system-dependent constants into the 
steady-state structure factor (when qm ~ q−) and use Eq. (8) in the form 

S∞(q) =
S0a2

(
q2 + Leff

)

a2q4
− +

[
q2 − (1 + a)q2

−

]2 (11)  

where the amplitude ratio relating the theory to the nonequilibrium 
hybrid model is S0 = 46.5 and the effective interconversion kinetic co
efficient is Leff ~ L/M = 0.0012. The constant a = 0.2, which describes 
the relationship between qm(t → ∞) and q−, broadens or sharpens the 
scattering peak. At the maximum of the structure factor, when q = q−, 

then Eq. (11) reduces to S∞(q−) = S0/(2q − 2), which is independent of a. 
We note that in this form, Eq. (11) resembles the scattering intensity 
distribution of microemulsions [42]. 

In Fig. 5b, the dependence of the wavenumber corresponding to the 
maximum of the structure factor, qm

s, on the magnitude of forceful 
interconversion, K, is illustrated for the theoretical prediction (curves), 
computations of the time evolution of the order parameter (circles), and 
simulations of the nonequilibrium hybrid model (triangles). The curves 
are determined from the full expression for the lower cut-off wave
number, q−, found from Eq. (3), when ω(q,0) = 0. A variable amplitude 
and shift are introduced to scale the theoretical prediction of q− such 
that microphase separation begins at q = 1. An additional system 
dependent constant is introduced to describe the relationship between 

Fig. 4. The temporal evolution of the symmetry of phase separation. a) The 
time evolution of the average order parameter, calculated by first averaging 
over all space and second by averaging the absolute value over N = 100 re
alizations, for M = 1, L = 1/127, ΔT = − 0.1, σi = 0.1, η = 1.0 × 10−5, and 
various magnitudes of forceful interconversion, K. b) The time evolution of the 
N-averaged standard deviation of the averaged order parameter, calculated by 
first determining the standard deviation of the spatially averaged order 
parameter and second by averaging over N = 100 realizations. This method of 
averaging highlights the behavioral deviation from an equal concentration of 
species A and B, ĉA = 0. 

Fig. 5. a) Steady-state structure factors computed for the nonequilibrium 
hybrid model (open circles) and the prediction given by Eq. (11) (solid lines) for 
selected external energy sources (E) at ΔT̂ = − 0.4, M = 1, L = 1/127, ℓ = 100, 
and averaged over N = 60 realizations with 95% confidence interval error bars. 
The insets show steady-state (t ~ 3 × 105) domain morphologies observed in 
the nonequilibrium hybrid model for the selected energies. b) The dependence 
of the wavenumber corresponding to the maximum of the structure factor, qm

s, 
on the forceful interconversion source strength K, in the steady-state limit. The 
open circles are numerical computations of structure factors determined from 
FFTs of the time evolution of the order parameter, given by Eq. (1), in the 
steady-state limit (t ~ 105) for M = 1, L = 1/127, σi = 0.1, and η = 10−5, 
averaged over N = 100 realizations. The triangles correspond to the predictions 
of K determined from fits of Eq. (11) to the structure factor for the nonequi
librium hybrid model, like those presented in (a). The curves illustrate the 
theoretical prediction qm(t → ∞) ∝ q−, given by the full expression for q−, found 
from evaluating ω(q,0) = 0 using Eq. (3). The colors correspond to tempera
tures: ΔT̂ = −0.1 (blue), ΔT̂ = −0.2 (green), ΔT̂ = −0.3 (red), and ΔT̂ = −0.4 
(purple). The inset shows the relationship between K and E. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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qm(t → ∞) and q−. The numerical computations of qm
s (averaged over N 

= 100 realizations) from the time evolution of the order parameter, Eq. 
(1), are shown in the steady-state regime (after t ~ 105 time steps). The 
magnitude of forceful interconversion, K, (for different external en
ergies, E) was obtained for the nonequilibrium hybrid model using Eq. 
(11). In the inset of Fig. 5b, we illustrate the relationship between theory 
and the nonequilibrium hybrid model, as K ∝ E2. 

In addition, as illustrated by Fig. 5b, we find two values of forceful 
interconversion, K* and K** (indicated by the vertical lines), that bound 
the formation of microphase domains. Both boundaries increase with 
ΔT̂; such that, for ΔT̂ > − 0.1, K** is located off the scale of the figure. 
For K < K*, phase amplification was observed, while for K > K**, no 
striped patterns were observed; instead, only a homogeneous solution 
persisted, in which an apparent structure on a small scale may be 
attributed to the correlations between concentration fluctuations. In this 
case, the particles are forced to interconvert so rapidly that diffusion is 
impossible. As shown in Fig. 5b, the lower bound, K*, is associated with 
the characteristic wavenumber, q* = q = 1, which corresponds to phase 
domains that form at half the size of the simulation box, ℓ/2. In contrast, 
the characteristic wavenumber associated with the upper bound, q**, is 
strongly dependent on temperature [15,16]. 

We note that for ΔT̂ = − 0.1, no structured microphase separation 
was observed in the nonequilibrium hybrid model. We attribute the lack 
of structured domains to the increase in concentration fluctuations 
facilitated by the close proximity to the critical point. This effect was not 
observed in the time evolution of the order parameter, shown in Fig. 2 
(a–d), as the mean-field theory described in Section 2. is only applicable 
sufficiently far away from the critical point. 

Lastly, as shown in Section 2, the wavenumber corresponding to the 
maximum of the structure factor, qm

s, scales linearly with the lower cut- 
off wavenumber, q−. Consequently, we observe the scaling law that 
qs

m ∼
̅̅̅̅
K

√
∝

̅̅̅̅̅̅̅̅̅
f(T)

√
E, where the temperature dependent prefactor is f(T) ≃

9.71T/(Tc − T). This result, which verifies our initial hypothesis, has also 
been confirmed in studies of a chiral model where the source of forceful 
interconversion is established internally via dissipative intermolecular 
forces [15]. Interestingly, previous studies of phase separating block 
copolymers in the presence of forceful interconversion found that qm

s ~ 
K1/4 [19,28]. As these previous studies considered an n-component 
order parameter to describe the block copolymer system (whereas, in 
this work, we describe our binary mixture via a single-component order 
parameter), this implies that the effect of K on qm

s is system dependent 
and could depend on the nature of the order parameter. 

5. Conclusion 

We have demonstrated that the presence of a source of forceful 
interconversion in a hybrid binary system that possess both diffusion 
and natural interconversion dynamics may produce microphase sepa
ration. We characterize the time evolution of the phase formation 
through two characteristic wavenumbers, qm and q−, which correspond 
to the maximum and lower cut-off wavenumbers of the amplification 
factor obtained from the generalized theory of spinodal decomposition. 
In the infinite time (steady-state) limit, we showed that qm(t → ∞) ∝ q−

∝ K1/2, where K is the rate of forceful interconversion. We compared the 
structure-factor theory with Monte Carlo simulations of a nonequilib
rium hybrid model and demonstrated that the origin of microphase 
separation may be related to an external energy source, as E ∝ K1/2, 
which allows domain formation to be more energetically favorable. 

Our symmetric binary-mixture model with molecular interconver
sion of species represents the simplest case of liquid polyamorphism 
with the possibility of a liquid-liquid transition in a single-component 
substance. Indeed, the interconversion of species allows the concentra
tion to be a thermodynamically dependent property, equivalent to the 
reaction coordinate. Therefore, the system, in terms of its thermody
namic degrees of freedom, behaves like a single-component substance 

[12]. Thus, in our simple system, as in the Ising model, the equilibrium 
value of the reaction coordinate is always 50% above the critical tem
perature and contains two equilibrium values, corresponding to the 
coexisting liquid phases, below the critical temperature. Another simple 
system exhibiting liquid polyamorphism is a mixture of interconverting 
enantiomers [15]. In this system, the equilibrium interconversion frac
tion does not depend on temperature and pressure, like in our model. In 
the future, our approach could be generalized to more complex systems 
exhibiting or suggesting liquid polyamorphism, such as supercooled 
water [3], where the fraction of interconversion of alternative molecular 
or supramolecular states is usually a function of temperature and pres
sure [12,16]. 

Another possible application of our approach could be glassy pol
yamorphism, a largely unexplored area. It is commonly believed that the 
hypothesized liquid polyamorphism in supercooled water, which is 
possibly caused by the interconversion of alternative supramolecular 
structures, is related to the experimentally established existence of two 
glassy waters, high-density glass and low-density glass [3,43–45]. In this 
respect, it would be interesting to consider effects of structural inter
conversion in glassy systems. In addition, forceful interconversion, as a 
result of an external source of energy, may generate nonequilibrium 
microphase separation in glasses, similar to that studied in this work. 
These structures could be similar to the nonequilibrium nano-scale 
phase separation formed by “frozen” spinodal decomposition, as 
observed in metallic glasses [46]. This is another unexplored area of 
research. 
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