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Using a modified Cahn-Hilliard-Cook theory for spinodal decomposition in a binary mixture that exhibits both
diffusion and interconversion dynamics, we derive the time-dependent structure factor for concentration fluc-
tuations. We compare the theory and obtain a qualitative agreement with simulations of the temporal evolution
of the order parameter and structure factor in a nonequilibrium Ising/lattice-gas hybrid model in the presence of
an external source of forceful interconversion. In particular, the characteristic size of the steady-state phase

domain is predicted from the lower cut-off wavenumber of the amplification factor in the generalized spinodal-

decomposition theory.

1. Introduction

C. Austin Angell's pioneering work published 50 years ago hypoth-
esized that the thermodynamic anomalies of liquid water could be
attributed to the existence of two supramolecular states [1]. Later, this
idea was further developed to predict liquid-liquid phase separation in
supercooled water below the temperature of homogeneous ice forma-
tion [2,3], as well as in the vitreous state of various substances [4-9].
This phenomenon, known as “liquid and glassy polyamorphism”
[10,11], could be attributed to the interconversion between two alter-
native molecular or supramolecular states [12]. In this work, we
investigate the effects of interconversion between alternative species in
a binary mixture on the phase separation and phase domain growth.

Previous studies of a hybrid Ising/lattice-gas model exhibiting both
interconversion and diffusion dynamics [13] and a chiral model with
interconversion of species [14,15] have demonstrated that intercon-
version dynamics breaks the symmetry of phase separation. As a result,
depending on the rate of interconversion, to circumvent the energeti-
cally unfavorable formation of an interface, one stable phase will grow
at the expense of the other, a phenomenon known as “phase

* Corresponding author.

amplification” [13,16]. However, if the alternative species are forced to
interconvert due to an external source, then the formation of interfaces
between species may become more favorable and the system may phase
separate into steady-state microphase domains [16]. Previous studies of
a phase separating binary-lattice in the presence of an external inter-
conversion force [17-19] and a chiral model with dissipative intermo-
lecular forces [15] have demonstrated steady-state microphase
separation.

In this work, we consider a symmetric binary mixture that, when
quenched along critical composition below the critical temperature of
demixing, will phase separate via spinodal decomposition [20]. Simul-
taneously, the alternative species may interconvert either naturally or
forcefully. To characterize the formation of phase domains, we calculate
the temporal evolution of the structure factor for the concentration
fluctuations. We describe the time-dependent structure factor through
two characteristic wavenumbers corresponding to the maximum and
lower cut-off wavenumbers in the characteristic growth rate. We
compare the theory to simulations of a nonequilibrium hybrid Ising/
lattice-gas model exhibiting natural and forceful interconversion in
addition to diffusion and obtain a qualitative agreement.
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2. Modified Cahn-Hilliard-Cook theory

In this section, we generalize the Cahn-Hilliard theory of spinodal
decomposition to allow for both natural and forceful interconversion of
species and derive the structure factor for concentration fluctuations.

2.1. Generalized spinodal decomposition

The effect of interconversion on the temporal evolution of the con-
centration for a symmetric binary mixture of species A and B in the
presence of interconversion is given in the simplest form [16] as

%:MvzﬁfLﬁfK?A (€]

where €4 is the order parameter, related to the physical concentration of
species Aby ¢4 =2c4 — 1, M and L are Kkinetic coefficients for the mutual
diffusion and natural (spontaneous) interconversion dynamics respec-
tively, and the third term is an external source of forceful interconver-
sion. We consider the case when interconversion, both natural and
forceful, occurs through a reaction A = B where K is the forward and
reverse reaction rate. Physically, a source of forceful interconversion
could be introduced via irradiation through photons [21] which pro-
mote interconversion of species or it could be introduced through a flux
of matter [22]. In the absence of interconversion, when L = 0 and K = 0,
then Eq. (1) reduces to the Cahn-Hilliard theory [20]. Lastly, the
reduced chemical potential difference, i = fi, — g, is found from the
variational derivative of the dimensionless Landau-Ginzburg free-en-
ergy functional [16] as

—~ 1] 1 -~ 1+7Cy —~ o~
= (AT —o - 2
e a1 M(l—&) Ca =KV 2

where the reduced distance to the critical temperature, AT =1— T/T.,
is negative in the spinodal (unstable) region, kg is Boltzmann's constant,
and « is the square of the range of intermolecular interactions. In this
work, we adopt k = 1 in the units of the square of the molecular size.
Expanding Eq. (2) to first order and analytically evaluating Eq. (1) via a
Fourier transform, the characteristic growth rate, known as the
“amplification factor” [13,16,20], for spinodal decomposition in the
presence of interconversion may be written in the form [16].

w(q,1) = Mx’, ()[4, (1) =24 ] = Mx[¢* — 2(1) | ®)

where the two characteristic wavenumbers, ¢, and q_, are the
maximum and the lower cut-off of the amplification factor, respectively
(see Fig. 1a). Using a first order approximation, they have the form

~1
4= *7(%?)2“'() and
. (K+LAT) “)
MAT + Lk

We note that the maximum of the amplification factor, g, = () is
time dependent, while we hypothesize that q_ is time independent. The
time dependence of gn(t) is given through the higher order terms of the
chemical potential, Eq. (2), and is introduced into the time-dependent
inverse thermodynamic susceptibility, )?;Zlo(t) = 0ji/dC,(t). The origin
of this temporal evolution is due to the change in concentration at
constant temperature from the unstable (¢, = 0) to the stable (¢, > 0)

regime; as such, in the second order approximation, )?;:lo(t) ~AT+(1+

AT)Ei(t) [16,23,24]. In contrast, g_ is an intrinsic property of the sys-
tem, and since gq_ determines the cut-off for the smallest possible
growing domain modes, then the steady-state limit of the time evolution
of the maximum wavenumber will also be cut-off by q_ as gm(t — ) «
q-. To verify this prediction, we numerically compute g, from the
wavenumber corresponding to the maximum of the structure factor, gp,’,
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Fig. 1. a) The amplification factor, w(q), given by Eq. (3), for x = 1 and AT =
— 0.1. The red curve represents the Cahn-Hilliard theory (phase separation) for
M =1,L =0, and K = 0; the purple curve represents phase amplification for M
=1, L =1/127, and K = 0; the green curve represents the generalized Cahn-
Hilliard theory in the presence of natural and forceful interconversion for M
=1,L =1/127, and K = 1.3 x 10~°. For the latter case (with forceful inter-
conversion), the green circles indicate the three characteristic wavenumbers of
the amplification factor: the maximum, g,,, the lower cut-off, ¢_, and the upper
cut-off, q,. b) The time evolution of the structure factor, given by Eq. (9), for
the same parameters used in the generalized Cahn-Hilliard-Cook theory in the
presence of natural and forceful interconversion. The black dotted line depicts
the evolution of the maximum of the structure factor. Due to the external source
of forceful interconversion, the maximum of the structure factor is interrupted
at the wavenumber g, while for complete phase separation and phase ampli-
fication, the maximum of the structure factor will evolve to ¢ = 0 for an infinite-
sized system. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

and compare our results with the steady-state domain modes obtained
from simulations of a nonequilibrium hybrid model.

2.2. Structure factor modified by interconversion of species

Defining the order parameter fluctuation variable as &¢(r,t), the
structure factor is given through the correlation function for the con-
centration fluctuations [25]; such that

S(g,1) = /dr < 8¢(r,1)8¢(xo, 1). > €7 )

As shown by Cook [26] and Langer et al. [27], the equation of motion
for S(g,t) is found by introducing order-parameter fluctuations into the
time evolution of the order parameter, Eq. (1), with §¢(r) as the fluc-

tuation variable and spatially integrating <|(3? [ > Following this pro-

cedure, we obtain the first-order solution for mixed diffusion-
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interconversion dynamics as

0S(qt)
ot

=2w(q1)S(qt) +2(Mq* + Lk) (6)

where w(q,t) is given by Eq. (3) [28-30]. We note that in the absence of
interconversion and forceful racemization, this equation reduces to the
result presented by Cook [26]. Solving this differential equation for the
structure factor, assuming a linear approximation [23], with the con-
dition dw/dt < w(q,t), gives [24,31-33].

5(q,1) = Sea(q) +[S(q,1 = 0) — Swa () &> " @

where S(q, t) represents the modified Cahn-Hilliard-Cook structure fac-
tor, which now includes natural and forceful interconversion. In the
limit of infinite time, when dS(q,t)/ot = 0, the steady-state structure
factor, S (q), is given by

Mg* + Lk
8(g,1—>00) = Sx(q) = - (8)

It can be seen that when either L = 0 or M = 0, then this equation, in
equilibrium conditions (K = 0), reduces to the Ornstein-Zernike struc-
ture factor - Sgz = éz/ a+ ézqz), where the correlation length of con-
centration fluctuations is & = — x/AT.

The time-dependent structure factor, Eq. (7), can be simplified by
applying the condition that at t = 0, the system is quenched from a
sufficiently high temperature where S(q,t = 0) = 0. Therefore, Eq. (7)
may be written as

8(q,1) = Sw (g) (1 — 4) ©)
which is valid from the initial stages of spinodal decomposition to the
coarsening regime [32,34]. Evaluating dS,/0dq = O to determine the
wavenumber corresponding to the maximum of the structure factor
gives q,° = 21/%q_ in the steady-state limit. The time evolution of the
structure factor is illustrated in Fig. 1b. To account for the time depen-
dence of g, (t), we assume a simple approximation of the transition in the
form gm(t) = gm(t = 0) exp (—t/7) + q-(1 — exp (—t/7)) based on the
limiting values of q,, at t = 0 and t — oo, where 7 is a system dependent
parameter that controls the crossover from spinodal decomposition to
the coarsening regime. As shown in Fig. 1, where we have selected T =
100, the wavenumber corresponding to the maximum of the steady-state
structure factor, g,,°, aligns with the prediction of g_ from the theory. To
accurately match the predictions from the theory with the computa-
tional results presented in the following section, we scale the charac-
teristic wavenumbers from the theory by the size of the system.

3. Methods
3.1. Spatial and temporal evolution of the order parameter

Using the finite difference method [35], with a spatial step Ax =1
and a time step At = 0.015, we calculate the temporal evolution of the
order parameter given by Eq. (1) with a chemical potential given by Eq.
(2). We observed that for time steps At > 0.015, the solution diverges
[35]. We include a random force term, #, to account for the thermal
motion of the particles [26,32]. The system is initialized onan £ x £ x £
cubic lattice with positions varied with initial random Gaussian noise, o;.
The structure factor is calculated via a Fast Fourier Transform (FFT) of
the order parameter throughout the system [35].

3.2. Nonequilibrium Ising/lattice-gas hybrid model

We consider an “Ising-like” lattice model where mutual diffusion is
modeled by “swapping” the position of two neighboring species and
interconversion is modeled by “flipping” one species type to another
[13]. The diffusion and interconversion dynamics are simulated using a

Journal of Non-Crystalline Solids: X 13 (2022) 100082

hybrid of Kawasaki and Glauber Monte Carlo (MC) methods [25,36,37],
respectively. The species are arranged on an £ x £ x ¢ cubic lattice with
a coordination number of 6. Using the Ising model Hamiltonian [38]

Pl

€
H= -3 Z <)sl-sj (10)

i=1 jeQ(i

where s;, s; = & 1 are spins, Q(i) is the set of 6 nearest neighbors of spin i,
and ¢ is the interaction energy. The critical temperature of this system is
T. =4.5115(1)e/kg [39]. Realizations are initialized with a random spin
configuration in which #3/2 spins are positive and the other #3/2 spins
are negative. In addition, we assume that at each MC step the probability
of a random spin flip (a Glauber step) is p,, while the probability of
swapping a randomly selected pair of nearest neighbor spins (a Kawa-
saki step) is 1 — p;.

The equilibrium formulation, detailed in Ref. [13], is converted to
nonequilibrium via the introduction of an additional energy, E, incor-
porated into the Boltzmann factor for the probability that a spin flip will
be accepted asp ~ exp [—(AU — E)/kgT], in which AU is the difference
in internal energy of the system for this step [40]. Thus, the effect of the
energy source only affects the interconversion dynamics of the system.
The diffusion dynamics, determined in each Kawasaki step, occur with a
probability that two spins will swap according to the Metropolis crite-
rion without any additional energy source. We introduce a size-
independent MC time as t = n/#>, such that in every time unit, each
spin in the system has a chance, p,, to flip, or a chance, 1 — p,, to swap
with a neighboring spin. The probability of spin flipping is related to the
diffusion and interconversion kinetic coefficients, M and L respectively,
through p, = L/(M + L) [13]. Additionally, the frequency of spin flipping
is absorbed into the time step, &t, so that the kinetic coefficients, and
consequently p,, do not depend on temperature.

The dynamic structure factor is calculated using the method
described in Kumar et al. [41]. This method differed from the FFT
method, used in Section 3.2, since the maximum of the structure factor
(after normalizing by #) differed by a factor of 7. Additionally, using the
FFT method, the time evolution of the structure factor was interrupted at
the wavenumber q = 1 (indicating that the size of the two phase domains
were half the size of the simulation box, #/2), while using the method
presented in Kumar et al., the maximum of the structure factor was
interrupted at a larger wavenumber. To correct for this difference, we
scale the wavenumbers such that complete phase separation occurs at q
=1.

4. Results and discussion

We confirmed that the presence of a source of forceful interconver-
sion causes the system to phase separate into steady-state microphase
domains as presented in Fig. 2(a-d). Due to the periodic boundary
conditions imposed in the continuum finite-difference method used to
compute Eq. (1), we found that the stripe morphologies will form at any
angle with respect to the simulation box. The characteristic size of the
stripe-like domains decreases with increasing forceful interconversion
source strength, K. We note that a condition for microphase separation is
that K must be sufficiently “strong” as to overcome the natural inter-
conversion. If the magnitude of K is not strong enough, then (depending
on the rate of natural interconversion) the system will either undergo
phase amplification or complete phase separation. For instance, for M =
1,L =1/127, AT = — 0.1, and K < 4 x 10%, then microphase sepa-
ration is not observed. Since L = 1/127, the interconversion rate is
relatively slow, and thus, the system has a higher probability of forming
an interface between phases as shown in Fig. 2a. However, for a system
with natural interconversion, this state is metastable, and eventually,
the interface between phases will break down and phase amplification
will occur [13].

The time-dependent structure factors, which produce the stripe-like
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Fig. 2. Steady-state phase domain morphology for different magnitudes of
forceful interconversion (after ~10° time steps) computed from the time evo-
lution of the order parameter, Eq. (1), withM =1,L =1/127, AT = — 01,7 =
64, o; = 0.1, = 10~°. Morphologies are shown for the middle slice of the three-
dimensional system at (a) K =0, (b) K=5 x 107% () K =15 x 1074 and (d) K
= 25 x 107 The red regions correspond to where the value of the normalized
order parameter is ¢4/C, = 1, the purple regions correspond to where the
value of the normalized order parameter is C4 /El',;'i" = — 1, and the other colors
depict the interface between these two regions. The image in (a) depicts a
metastable structure toward phase amplification [13], while the images in (b-d)
are modulated steady-state structures with a characterize size, 1/q_. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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morphology, as illustrated in Figs. 2(a—d), are presented in Figs. 3(a-d).
We observe that the time evolution of the maximum of the structure
factor in Fig. 3a is interrupted at the wavenumber g = 0, which corre-
sponds to a system undergoing phase amplification. For K = 4 x 10~*
(Fig. 3b), the maximum of the time evolution of the structure factor is
interrupted at ¢ = 1, indicating complete phase separation where the
phase domains have a characteristic size of half the simulation box, £/2.
In Fig. 3(c,d), the time evolution of the maximum of the structure factor
is interrupted at higher wavenumbers depending on K. These wave-
numbers correspond to the characteristic size of the stripe-like phase
domains and are independent of the size of the system. We also observe
that the structure factor at the maximum wavenumber (gn,,) contains the
largest uncertainty, with respect to the other wavenumbers. The non-
monotonic temporal evolution of the structure factor observed in
Fig. 3b can be attributed to 7 ~ 1.5 x 10%, a large characteristic crossover
time scale between spinodal decomposition and coarsening. This
observation suggests that the crossover time scale, 7 = 7(K), may depend
on forceful interconversion.

The temporal evolution of the order parameter was calculated from
Eq. (1) using the chemical potential given in Eq. (2). The average value
of the order parameter, calculated by first averaging over all space and
second averaging the absolute value over N = 100 realizations, is pre-
sented in Fig. 4a. This method of averaging highlights the behavioral
deviation from ¢4 = 0, when the concentration of species A is equivalent
to species B; therefore, this figure represents the temporal evolution of
the symmetry of phase separation. We observed that the initial value
(|cal) is determined by o;, the random initial configuration, whereas the
steady-state behavior of (|¢4|) is determined by 7, the thermal noise to be
included in Eq. (1). We find that (|c4|) develops a peak during the for-
mation of the stripe-like patterns. As the phase domains coarsen, the
averaged order parameter reaches a steady-state value, {|Ca(t—o0)|) =
¢o indicating the stable formation of the stripe-like domains.

In Fig. 4b, we show the temporal evolution of the standard deviation
of the averaged order parameter, calculated by first determining the
standard deviation over all space and second by averaging over N = 100
realizations. We observed that the N-averaged standard deviation, (c)y;,
was constant through the early stages of spinodal decomposition, but
dramatically increased during the formation of the stripe-like patterns.
We note that in the K = 0 case due to phase amplification (c)y rapidly

Fig. 3. Time evolution of the structure factor

computed from the Fast Fourier transform (FFT) so-
lution of Eq. (1) for M =1,L =1/127, AT = — 0.1, 7
=64, 06;=0.1, = 10> depicted at times t = 6 x 10°
(green), t =1.2 x 10* (blue), t = 2.4 x 10* (orange), t
=5 x 10% (red), t = 1 x 10° (pink), and t = 2 x 10°
(black). The open circles in (a-d) depict the computed
structure factors for the four selected magnitudes of
forceful interconversion averaged over N = 100 re-
alizations with 95% confidence interval error bars,
while the solid lines illustrate the behavior of the

structure factors assuming a Gaussian distribution. In
(a), the evolution of the maximum of the structure
factor is interrupted at the wavenumber g = 0, cor-

@t
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responding to phase amplification, while in (b) the
maximum is interrupted at ¢ = 1, corresponding to
phase domains with a characteristic size of half the
simulation box, #/2. In (c,d), the evolution of the
maximum of the structure factor is interrupted at
wavenumbers ¢ = g > 1 corresponding to micro-
phase separation. (For interpretation of the references
to colour in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 4. The temporal evolution of the symmetry of phase separation. a) The
time evolution of the average order parameter, calculated by first averaging
over all space and second by averaging the absolute value over N = 100 re-
alizations, for M =1, L = 1/127, AT = — 0.1, 6;= 0.1, 7= 1.0 x 107>, and
various magnitudes of forceful interconversion, K. b) The time evolution of the
N-averaged standard deviation of the averaged order parameter, calculated by
first determining the standard deviation of the spatially averaged order
parameter and second by averaging over N = 100 realizations. This method of
averaging highlights the behavioral deviation from an equal concentration of
species A and B, ¢4 = 0.

increases as the domains coarsen, but then decreases when one phase
grows at the expense of the other. In this case, the constant steady-state
limit of the averaged standard deviation, (o(t - o))nN = 60, indicates that
the order parameter has reached its equilibrium value, [Ca| = cg, which
depends on the distance to the critical temperature.

In Fig. 5(a,b), we compare the structure factor theory with simula-
tions of the nonequilibrium hybrid model (defined in Section 3.2). In
Fig. 5a, we show the steady-state structure factor from simulations at
three different additional energy values, E, at constant temperature,

AT = — 0.4, averaged over N = 60 realizations. Unlike the morphol-
ogies computed from Eq. (1) via the finite-difference method, the
snapshots of the MC simulations shown in the insets of Fig. 5a depict
stripe-like phase domains that form along the diagonal of the simulation
box. We attribute this affect to the lattice structure utilized in the MC
simulations. We introduce three system-dependent constants into the
steady-state structure factor (when g, ~ q_) and use Eq. (8) in the form

S.. (q) _ Soaz (q2 + Leff) , an
aqt + [¢* — (1 +a)¢ ]
where the amplitude ratio relating the theory to the nonequilibrium
hybrid model is Sy = 46.5 and the effective interconversion kinetic co-
efficient is Legs ~ L/M = 0.0012. The constant a = 0.2, which describes
the relationship between g, (t — o) and q_, broadens or sharpens the
scattering peak. At the maximum of the structure factor, when ¢ = q_,

Journal of Non-Crystalline Solids: X 13 (2022) 100082

nsS(q, t) x 104

TrfTrrrrrrrrrrrrroerrr

0-
1 . . 0 f(T).Ez 30 :

+
0 10 20 30 40 50
Kx 104

Fig. 5. a) Steady-state structure factors computed for the nonequilibrium
hybrid model (open circles) and the prediction given by Eq. (11) (solid lines) for
selected external energy sources (E) at AT = —0.4,M=1,L=1/127, ¢ =100,
and averaged over N = 60 realizations with 95% confidence interval error bars.
The insets show steady-state (t ~ 3 x 10%) domain morphologies observed in
the nonequilibrium hybrid model for the selected energies. b) The dependence
of the wavenumber corresponding to the maximum of the structure factor, g,
on the forceful interconversion source strength K, in the steady-state limit. The
open circles are numerical computations of structure factors determined from
FFTs of the time evolution of the order parameter, given by Eq. (1), in the
steady-state limit (t ~ 10°) for M = 1, L = 1/127, 6; = 0.1, and 7 = 1075,
averaged over N = 100 realizations. The triangles correspond to the predictions
of K determined from fits of Eq. (11) to the structure factor for the nonequi-
librium hybrid model, like those presented in (a). The curves illustrate the
theoretical prediction g,,(t - o) x q_, given by the full expression for q_, found
from evaluating w(q,0) = 0 using Eq. (3). The colors correspond to tempera-
tures: AT = —0.1 (blue), AT = —0.2 (green), AT =-0.3 (red), and AT = —04
(purple). The inset shows the relationship between K and E. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

then Eq. (11) reduces to So,(q_) = So/(2q — 2), which is independent of a.
We note that in this form, Eq. (11) resembles the scattering intensity
distribution of microemulsions [42].

In Fig. 5b, the dependence of the wavenumber corresponding to the
maximum of the structure factor, q,’, on the magnitude of forceful
interconversion, K, is illustrated for the theoretical prediction (curves),
computations of the time evolution of the order parameter (circles), and
simulations of the nonequilibrium hybrid model (triangles). The curves
are determined from the full expression for the lower cut-off wave-
number, q_, found from Eq. (3), when w(q,0) = 0. A variable amplitude
and shift are introduced to scale the theoretical prediction of q_ such
that microphase separation begins at ¢ = 1. An additional system
dependent constant is introduced to describe the relationship between
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Gm(t — ) and q_. The numerical computations of q,,’ (averaged over N
= 100 realizations) from the time evolution of the order parameter, Eq.
(1), are shown in the steady-state regime (after t ~ 10° time steps). The
magnitude of forceful interconversion, K, (for different external en-
ergies, E) was obtained for the nonequilibrium hybrid model using Eq.
(11). In the inset of Fig. 5b, we illustrate the relationship between theory
and the nonequilibrium hybrid model, as K « E2.

In addition, as illustrated by Fig. 5b, we find two values of forceful
interconversion, K* and K** (indicated by the vertical lines), that bound
the formation of microphase domains. Both boundaries increase with

Af“; such that, for AT > — 0.1, K** is located off the scale of the figure.
For K < K*, phase amplification was observed, while for K > K**, no
striped patterns were observed; instead, only a homogeneous solution
persisted, in which an apparent structure on a small scale may be
attributed to the correlations between concentration fluctuations. In this
case, the particles are forced to interconvert so rapidly that diffusion is
impossible. As shown in Fig. 5b, the lower bound, K*, is associated with
the characteristic wavenumber, g* = g = 1, which corresponds to phase
domains that form at half the size of the simulation box, #/2. In contrast,
the characteristic wavenumber associated with the upper bound, g**, is
strongly dependent on temperature [15,16].

We note that for AT = — 0.1, no structured microphase separation
was observed in the nonequilibrium hybrid model. We attribute the lack
of structured domains to the increase in concentration fluctuations
facilitated by the close proximity to the critical point. This effect was not
observed in the time evolution of the order parameter, shown in Fig. 2
(a—d), as the mean-field theory described in Section 2. is only applicable
sufficiently far away from the critical point.

Lastly, as shown in Section 2, the wavenumber corresponding to the
maximum of the structure factor, g,,°, scales linearly with the lower cut-
off wavenumber, g_. Consequently, we observe the scaling law that
¢, ~ VK /f(T)E, where the temperature dependent prefactor is f(T) ~
9.71T/(T. — T). This result, which verifies our initial hypothesis, has also
been confirmed in studies of a chiral model where the source of forceful
interconversion is established internally via dissipative intermolecular
forces [15]. Interestingly, previous studies of phase separating block
copolymers in the presence of forceful interconversion found that g, ~
KY* [19,28]. As these previous studies considered an n-component
order parameter to describe the block copolymer system (whereas, in
this work, we describe our binary mixture via a single-component order
parameter), this implies that the effect of K on gy, is system dependent
and could depend on the nature of the order parameter.

5. Conclusion

We have demonstrated that the presence of a source of forceful
interconversion in a hybrid binary system that possess both diffusion
and natural interconversion dynamics may produce microphase sepa-
ration. We characterize the time evolution of the phase formation
through two characteristic wavenumbers, g, and q_, which correspond
to the maximum and lower cut-off wavenumbers of the amplification
factor obtained from the generalized theory of spinodal decomposition.
In the infinite time (steady-state) limit, we showed that gn(t > o) x q_
« K72, where K is the rate of forceful interconversion. We compared the
structure-factor theory with Monte Carlo simulations of a nonequilib-
rium hybrid model and demonstrated that the origin of microphase
separation may be related to an external energy source, as E « K/2,
which allows domain formation to be more energetically favorable.

Our symmetric binary-mixture model with molecular interconver-
sion of species represents the simplest case of liquid polyamorphism
with the possibility of a liquid-liquid transition in a single-component
substance. Indeed, the interconversion of species allows the concentra-
tion to be a thermodynamically dependent property, equivalent to the
reaction coordinate. Therefore, the system, in terms of its thermody-
namic degrees of freedom, behaves like a single-component substance

Journal of Non-Crystalline Solids: X 13 (2022) 100082

[12]. Thus, in our simple system, as in the Ising model, the equilibrium
value of the reaction coordinate is always 50% above the critical tem-
perature and contains two equilibrium values, corresponding to the
coexisting liquid phases, below the critical temperature. Another simple
system exhibiting liquid polyamorphism is a mixture of interconverting
enantiomers [15]. In this system, the equilibrium interconversion frac-
tion does not depend on temperature and pressure, like in our model. In
the future, our approach could be generalized to more complex systems
exhibiting or suggesting liquid polyamorphism, such as supercooled
water [3], where the fraction of interconversion of alternative molecular
or supramolecular states is usually a function of temperature and pres-
sure [12,16].

Another possible application of our approach could be glassy pol-
yamorphism, a largely unexplored area. It is commonly believed that the
hypothesized liquid polyamorphism in supercooled water, which is
possibly caused by the interconversion of alternative supramolecular
structures, is related to the experimentally established existence of two
glassy waters, high-density glass and low-density glass [3,43-45]. In this
respect, it would be interesting to consider effects of structural inter-
conversion in glassy systems. In addition, forceful interconversion, as a
result of an external source of energy, may generate nonequilibrium
microphase separation in glasses, similar to that studied in this work.
These structures could be similar to the nonequilibrium nano-scale
phase separation formed by “frozen” spinodal decomposition, as
observed in metallic glasses [46]. This is another unexplored area of
research.
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