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Abstract—In this work, we present a per-instant pose opti-
mization method that can generate configurations that achieve
specified pose or motion objectives as best as possible over
a sequence of solutions, while also simultaneously avoiding
collisions with static or dynamic obstacles in the environ-
ment. We cast our method as a multi-objective, non-linear
constrained optimization-based IK problem where each term
in the objective function encodes a particular pose objective.
We demonstrate how to effectively incorporate environment
collision avoidance as a single term in this multi-objective,
optimization-based IK structure, and provide solutions for how
to spatially represent and organize external environments such
that data can be efficiently passed to a real-time, performance-
critical optimization loop. We demonstrate the effectiveness
of our method by comparing it to various state-of-the-art
methods in a testbed of simulation experiments and discuss
the implications of our work based on our results.

I. INTRODUCTION

Optimizing individual poses to achieve some objective
is a common technique in robotics. For example, inverse
kinematics (IK) is one instance of single pose optimization
that involves optimizing a robot’s joint-angle pose to match
an input 6-DOF end-effector position and orientation goal.
Single pose optimization has many practical benefits, such as
its speed and comprehensible “single-input-to-single-output”
nature. However, this paradigm is often insufficient when
used iteratively to generate motions over a sequence of
poses, a paradigm historically referred to as per-frame IK in
animation [1], [2]. Problems with per-frame (or, per-instant)
optimization often stem from the stream of independent
poses lacking temporal coherence, e.g., jerky motion or joint
space discontinuities, or lacking motion feasibility, e.g., self-
collisions or collisions with obstacles in the environment.
Thus, despite the speed and convenience of per-instant pose
optimization, its shortcomings mean that larger motion plan-
ning or trajectory optimization frameworks are often needed
in order to achieve coherent and feasible motions.

In this work, we present a per-instant pose optimization
method, called CollisionIK, that optimizes single poses at
given time points that achieve certain accuracy objectives
as best as possible, e.g., matching end-effector pose goals,
without sacrificing temporal coherence and motion feasibility
on a sequence of solutions. In particular, our method fea-
tures environment collision avoidance as a sub-component,
meaning that feasible motions that avoid collisions with
static or dynamic obstacles can be generated on-the-fly in
a per-instant manner without requiring a motion planner or
trajectory optimizer. Our method can also incorporate joint
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Fig. 1. In this work, we present a per-instant pose optimization method
that is able to generate smooth, feasible paths on-the-fly without the use of
a planner or trajectory optimizer. This example shows a robot avoiding a
collision with a table while maintaining the same end-effector orientation
throughout the motion.

smoothness objectives that use a short history of previous
solutions to optimize over approximated derivatives. This
per-instant paradigm, where smooth motions are iteratively
constructed on-the-fly, effectively allows the robot to react
and adapt its motion to complex or dynamic environments,
all while still reflecting other objectives as best as possible.

We cast our method as a multi-objective, non-linear
constrained optimization-based IK problem. The objective
function is a weighted sum, where each term in the sum
encodes a particular motion objective. The weights on the
terms in the objective function set importances of the various
terms and allows the optimization solver to relax certain
objectives in favor of other, more important, terms in the
case of competing objectives. In particular, our method favors
motion feasibility objectives, such as avoiding collisions,
over other objectives, such as matching end-effector pose
goals. Throughout this work, we overview the structure of
this overall optimization framework and highlight how this
or similar frameworks extend well to the case of environment
collision avoidance.

Our current work offers two technical contributions: (1)
we demonstrate how to effectively incorporate environment
collision avoidance as a single term in a multi-objective,
optimization-based IK structure (§IV-B); (2) we provide
initial solutions for how to spatially represent and organize



external environments such that data can be efficiently passed
to a real-time, performance critical optimization loop (§IV-
A, §IV-C); and (3) we provide open-source code that imple-
ments our proposed method: [link will appear here].

We assessed the efficacy of our method by running a
testbed of simulation experiments (§V). We compared our
method to the Movelt! library Cartesian path controller [3]
and RelaxedIK [4] on various simulated robots and tasks. We
demonstrate that our method successfully avoids collisions
with static or dynamic objects in the environment in real-time
while consistently achieving additional motion objectives.
Our evaluation also shows that our method scales well and
maintains its efficient performance even in environments with
many obstacles. We discuss the benefits and drawbacks of
our method compared to the alternative approaches, such as
speed, local minima, and motion accuracy trade-offs, and
conclude with an overall discussion about the implications
of our work based on our results (§VI).

II. RELATED WORKS

In this section, we highlight prior works that our method
draws inspiration from in the areas of motion-planning,
trajectory optimization, animation, and inverse kinematics.

Motion Planning— Generating robot motions that avoid
collisions with obstacles in an environment is commonly
addressed with a technique called motion planning [5]. This
approach finds collision-free, feasible paths from a start state
to a goal state in configuration space. Sampling-based motion
planners often use random samples to bootstrap a search
strategy and build a graph structure from start to goal [6]-[9].
Such planners are commonly guaranteed to find a solution if
one exists, and some variants, such as RRT* [10], are also
guaranteed to find the shortest feasible path in the limit.

While standard planners are effective at eventually finding
collision-free solution paths, provided one exists, they are
less adept at consistently finding sufficient solutions in a
time-sensitive, real-time setting. Variants of these approaches
have focused on the real-time aspects of this problem, such
as Kroger et al. [11], who presented a real-time planning
algorithm that allowed robots to avoid dynamic obstacles
in real-time. Hauser [12] proposed an adaptive method to
adjust a planning horizon time such that prediction of a future
state that the robot will likely move toward and planning to
said future state can be interleaved in a stable manner. Also,
work by Murray et al. [13] accelerated road-map based path
planning by creating custom hardware computer chips that
check collision states in parallel.

As mentioned above, motion planning algorithms are
effective at getting from a start point to a goal point, but it is
difficult for these approaches to enforce what the path does
between these boundary points. In contrast, our method tries
to achieve any other motion objectives as best as possible on-
the-fly in addition to environment collision avoidance, such
as end-effector pose matching over time.

Trajectory Optimization— Trajectory optimization is an
approach used to optimize motions to match desired motion

qualities (see Betts [14] for a review). Trajectory opti-
mization methods for robot motion, such as CHOMP [15],
STOMP [16], and Trajopt [17] include environment collision
avoidance techniques; however, the quality and convergence
of the computed motion paths using these methods greatly
depends on the quality of the initial condition. Further,
these methods often formulate their environment collision-
avoidance objective with respect to a pre-computed signed
distance field of the environment, which is infeasible to rou-
tinely re-compute and update on-the-fly. Thus, these methods
are generally not well suited for real-time, dynamic envi-
ronments. In contrast, our method not only accommodates
arbitrary motion objectives and constraints, but also accom-
modate real-time, dynamic environment collision avoidance,
at the expense of global optimality.

Inverse kinematics— The process of calculating joint
values on articulated chains that produce desired pose goals
of end-effectors, called inverse kinematics (IK), has been
extensively studied in robotics and animation (see Aristidou
[18] or Nakamura [19] for a full review). A main objective
of IK solvers is to reliably match a given end-effector pose
goal as quickly as possible. A state-of-the-art solver to
achieve this central goal on is the optimization-based Trac-
IK solver proposed by Beeson and Ames [20]. Recent work
has showed the benefit of incorporating motion feasibility
objectives, such as self-collision avoidance and singularity
avoidance, in addition to the standard motion accuracy objec-
tives mentioned above [4]. This was shown to be particularly
effective for practical use cases such as teleoperation or
shared control [21]-[23]. Our current work builds on this
concept of providing both motion feasibility and accuracy
in real-time inverse kinematics, though we are attempting
to extend the definition of motion feasibility to include the
avoidance of environment collisions in addition to kinematic
singularities, self-collisions, and joint-space discontinuities.

III. TECHNICAL OVERVIEW

In this section, we provide background and notation for
our problem, and overview our overall method.

A. Notation and Problem Statement

Suppose © € R" is an n-dimensional robot configuration.
Next, consider f(¢, ©) to be an objective function that maps
a time value 7 and a robot configuration to some scalar
objective output value, f € R. Note that this implies that
the robot’s objective can change with respect to time, ¢. The
output of the objective function, f, signifies how well the
joint configuration © reflects the objective specified by f at
time 7. Lastly, consider a set E consisting of obstacles in the
environment. Each of the K obstacles in E will be considered
a function ey (7) that maps time 7 to spatial information about
the obstacle. This spatial information could take many forms,
such as a signed distance field, occupancy map, triangulated
mesh, etc. Regardless of spatial representation choice, we
assume that there is some defined notion of distance between
a robot configuration and an obstacle at time ¢, which we will
denote as d(O, e, (¢)). We intentionally leave these definitions



as quite general in this section, and we detail the exact
environment spatial representation and definition of distance
we used in our method in §IV-A.

Using the notation above, the problem investigated in
this work is to compute a joint configuration © at a given
time ¢ that minimizes f(z, ©), that may include sub-objectives
like joint smoothness or matching end-effector pose goals,
while maintaining a distance d(O, ex(f)) > €, Vk, where € is
some reasonable cut-off distance between collision and non-
collision. Additionally, the objective f at time 7+ ¢ and the
spatial information about each obstacle at time 7+ 6, for any
0 > 0, are unknown at time ¢. We also want to solve the
above problem as fast as a possible since a fast run-time is
essential for many applications.

B. Non-linear Optimization Structure

We cast the minimization problem posed above as a
constrained non-linear optimization problem:

O =argmin f(z,0)
© ()
s.t.c(®) > 0,

Here, c is a set of inequality constraints and 1; and u; values
define the upper and lower bounds for the robot’s joints.

We express our objective function as a weighted sum of
individual motion goals as follows:

; <6; <u,Vvi

J
f(1,0) =) " wj*fj(t,0,0) 2)
i=1

Here, Wi is a weight value for each term which sets an
importance for a given objective term, and fj is an objective
term function that encodes a single sub-goal, with €; being
model parameters used to construct some loss function.

To facilitate combining of potentially many objectives, it is
important to normalize each term such that their outputs are
over a uniform range. For instance, a term with weight 2 will
ideally hold twice as much importance in the optimization
as a term with weight 1, regardless of the common output
ranges of the two terms. To accomplish this normalization,
we use the Groove parametric loss function proposed in
prior work [4], [24], though any loss function that achieves
effective normalization of multiple objectives should suffice.
The Groove loss function places a narrow “groove” around
the goal values, a more gradual falloff away from the groove
in order to better integrate with other objectives, and exhibits
a consistent gradient that points towards an optimal point.
This normalization loss is a Gaussian surrounded by a more
gradual polynomial:

£(1,0,0) =
~(xi(1, ©) —s)* )
D ep(—EES ) 4 (0, €) =)'
Here, the scalar values n,s,c,r form the set of model
parameters (). Together, they shape the loss function to

express the needs of a certain term. Here, n € {0,1},
which dictates whether the Gaussian is positive or negative.
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Fig. 2. (Left) Our method takes as input a robot platform and set of any
collision objects as point clouds. (Right) Our method converts these inputs
into a Collision Scene, comprised of convex capsule shapes around the robot
links and convex hull shapes enveloping the point cloud objects.

The value s shifts the function horizontally, and ¢ adjusts
the spread of the Gaussian region. The r value adjusts the
transition between the polynomial and Gaussian regions,
higher values showing a steeper funneling into the Gaussian
region and lower values flattening out the boundaries beyond
the Gaussian. The scalar function x assigns a numerical value
to the current robot configuration that will serve as input to
the loss function.

Our method includes seven objective terms and one
constraint in the non-linear optimization structure above
by default. The default objective terms encode: (1) end-
effector position goal matching; (2) end-effector orientation
goal matching; (3) minimized joint velocity; (4) minimized
joint acceleration; (5) minimized joint jerk; (6) self-collision
avoidance; and (7) environment collision avoidance. The one
constraint is designed to avoid kinematic singularities. We
model objectives 1-6 and the constraint based on prior work
[4]. Derivative information about velocities, accelerations,
and jerks are approximated using finite differencing over a
short history of prior poses. We provide details on how we
structure and pass spatial information into the environment
collision avoidance objective in the following section. We
note that this overall structure is modular and any of the
above objectives or constraints can be removed and any
additional objectives or constraints can be accommodated.

IV. TECHNICAL DETAILS

In this section, we provide details on how we represent
spatial information in our method and how we structure our
collision avoidance objective that uses this information.

A. Environment Representation and Structure

As mentioned above, each collision function, ey(f), maps
time to some spatial information about the collision object
at that time. At a high level, our goal is to use convex
shape representations that are fast and scalable for computing
distances between collision objects and the robot’s links.
This technique that has been shown to be effective in many
robotics and graphics applications [17], [25], [26], and we
extend these approaches to integrate them within a per-
instance optimization. Our method takes four steps to achieve
this goal: (1) Each collision object is input as a point cloud
representation; (2) Each point cloud is converted into a



convex hull object using the QuickHull algorithm [27]. If a
particular collision object is not well represented as a convex
hull, a decomposition algorithm could break down the object
into convex sub-components [28], [29]; (3) Each convex hull
object is updated at each given time ¢ using some rigid
transformation. This means that the ey () mappings represent
rigidly transformed convex hull shapes at time #; and (4) Each
link of the robot is automatically wrapped in a convex shape
(a capsule, by default). Each of these link objects is also
updated at each given time ¢ based on the robot’s forward
kinematics model associated with its joint state at that time.
We refer to a function that maps ¢ to the rigidly transformed
convex shape wrapped around the n-th link as I,(, ©).

We refer to the collection of all all convex hull collision
objects and all robot link convex shapes as the Collision
Scene (illustrated in Figure 2). In the following section, we
overview how we use this representation to compute the
robot’s distance to a collision state at any given time.

B. Environment Collision Avoidance Objective Term

In order to discourage the robot from colliding with the
environment, it is necessary to define of what it means for
the robot to be “close” to an obstacle. We encode a distance
to a collision state using the following cost function:

(,O) = Z ZN: Go? 4
Xeth, - dis(ex (1), In(t, ©))? @

ex€A n

Here, € is some scalar value that signifies a reasonable
cutoff distance between collision and non-collision. For
example, in our prototype system, we use a value of € =
0.02 (represented in meters). The dis function computes the
shortest straight-line distance between the input shapes, i.e., a
collision object and one of the robot’s links. We compute the
dis function using a Support Mapping computation, as this
is an efficient way to find the shortest distance between two
convex shapes [30]. Lastly, A is a set of “active” collision
objects at the given time, t. Calculating this sum over just a
subset of all collision objects maintains the efficiency and
scalability of this computation when many obstacles are
present in the Collision Scene. We overview how we filter the
Collision Scene to select a subset of salient collision objects
in the following section.

The cost function in Equation 4 was designed to be smooth
and differentiable, as opposed to, for example, taking the
minimum distance, such that it effectively mixes into a multi-
objective, gradient-based optimization structure. We incor-
porate the cost function in Equation 4 into our optimization
framework as a single objective term using the loss function
in Equation 3. In our prototytpe system, we used Groove loss
parameters of n = 1, s = 0, ¢ = 2.5, and r = 0.0035. These
values were selected to reflect the standard output range of
the cost function. In particular, these loss function parameters
ensure that this term’s objective output significantly ramps
up when the robot approaches a distance ¢ from an obstacle.
Note that the cost function output is high when the robot is

close to collision, thus the goal Gaussian region is negative
in the loss function.

C. Collision Scene Filtering

As mentioned above, we only compute Equation 4 over
a set of “active” obstacles in set 4. Filtering the obstacles
and only considering a subset at any given time prevents the
collision avoidance objective term from becoming too slow,
especially in the presence of many environment obstacles. At
every given time #, our method starts with all collision objects
set as active and prunes this set based on two criteria: (1)
All obstacles with a distance greater than some margin, T,
from all of the robot’s links at a given time will be removed
from the active set; and (2) If |.A| > N after step 1, only the
N obstacles that have the highest cost according to Equation
4 are active. All other obstacles are removed from A.

Our method efficiently achieves criterion 1 above by
using a broad-phase and narrow-phase collision detection
pipeline. The broad-phase step uses axis-aligned bounding
box (AABB) hierarchies to quickly disregard obstacles that
are guaranteed to not be within a distance of Y. This
phase uses a Dynamic Bounding Volume Tree to efficiently
store, update, and query collision information, even in a
dynamic environment. The narrow-phase performs ground
truth distance checking only on the obstacles that were not
culled by the broad-phase. Our prototype system uses an YT
margin distance of one meter, and sets the maximum number
of active obstacles, N, as three.

V. EVALUATION

In this section, we overview our experiments designed to
assess the efficacy of our method.

A. Implementation Details

A prototype implementation of our method was configured
as an extension of the Rust version of the RelaxedIK library’.
Spatial data structures relating to the broad and narrow phase
collision checking and convex hull conversions all use the
ncollide3d libraryz. Our method uses the proximal aver-
aged Newton-type Method (PANOC) optimization approach
[31], implemented in the Rust Optimization Engine (OpEN)
library. Our approach also works well with a variety of non-
linear solvers, such as those offered by NLopt. All gradients
in our work were computed using finite differencing. All
evaluations were run on an AMD Ryzen 7 2700X Processor
(3.70GHz) with 16GB RAM.

B. Evaluation Benchmark

We developed a set of three benchmark tasks to compare
our method against alternative approaches. We will refer to
these tasks as Around Table, Square Tracing, and Isolated
Rotations.

The Around Table task involves the robot’s end-effector
being driven toward and through a table surface. The robot’s
goal in this task is to avoid colliding with the table and

Uhttps://github.com/uwgraphics/relaxed_ik
Zhttps://ncollide.org/
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o H#Enw Mean Pos. Mean Rot. Mean Velocity Mean Accel. Mean Jerk # Self- # Kinematic
Collisions Error (M) Error (Rads.) (Rads. / S) (Rads. / $?) (Rads. / $%) Collisions Singularities
CIK 0 0.106 +- 0.065 0.005 +- 0.007 0.277 +- 0.173 0.012 +- 0.009 0.004 +- 0.004 0 0
A;‘;;;‘ed RIK 1365 0.038 +- 0.051 0.004 +- 0.006 0.219 +- 0.129 0.003 +- 0.005 0.002 +- 0.003 0
MCC 26 0.216 +- 0.087 0.67 +- 0.386 1.533 +- 0.98 0.256 +- 0.46 0.511 +- 0.919 0 1
CIK 0 0.101 +- 0.035 0.007 +- 0.003 0.588 +- 0.101 0.031 +- 0.02 0.02 +- 0.024 0 0
;g:::g RIK 2309 0.023 +- 0.016 0.006 +- 0.005 0.583 +- 0.12 0.013 +- 0.009 0.008 +- 0.009 0 0
MCC 559 0.299 +- 0.028 0.954 +- 0.302 2.291 +- 0.761 0.476 +- 0.601 0.95 +- 1.203 0 5
CIK 0 0.122 +- 0.079 0.063 +- 0.086 1.942 +- 0.262 0.096 +- 0.032 0.059 +- 0.055 0 0
lii‘:iaézis RIK 1202 0.057 +- 0.035 0.05 +- 0.057 1.997 +- 0.161 0.092 +- 0.024 0.045 +- 0.039 0 0
MccC 2033 0.202 +- 0.101 1477 +- 0.704 2.867 +- 1.537 122 +-2.236 2.438 +- 4.474 0 9
Fig. 3. Results from Experiment 1. Range values represent standard deviation.

continue following the goal trajectory on the other side.
The Square Tracing task involves the robot’s end-effector
tracing a square shape. A dynamic cube object approaches
the robot on its way around the square, and the robot’s goal
is to avoid colliding with the cube and continue to follow
the perimeter of the square as best as possible. Lastly, the
Isolated Rotations task involves the robot’s end-effector po-
sition remaining static, and the robot rotates its end-effector
90 degrees around all of its primary axes in sequence. While
these rotations are happening, three dynamic sphere objects
in the environment continuously encroach on the robot’s
space, and the goal is to avoid colliding with these spheres
while still matching the specified end-effector rotations and
static position point as best as possible.

The tasks listed above were all run on five simulated
robots: a Universal Robots URS5 (6-DOF), a Rethink Robotics
Sawyer (7-DOF), a Kinova Jaco (7-DOF), a Kuka ITWA (7-
DOF), and the torso and right arm of the Rainbow Robotics
Hubo+ (8-DOF). Each task was run 10 times per robot for
every condition in our benchmark.

C. Evaluation Measures

We assessed eight primary measures in our evaluations:
mean position error (meters), mean rotational error (radians),
mean joint velocity (rad/s), mean joint acceleration (rad/sz),
mean joint jerk (rad/s?), total number of kinematic singu-
larities, total number of self-collisions, and total number of
environment collisions.

D. Experiment 1: Comparisons with Alternative Approaches

In our first experiment, we compared our method to two
alternative approaches: (1) RelaxedIK [4] (which we will
refer to as RIK); and (2) the Movelt Cartesian Controller
[3] (which we will refer to as MCC). The RIK condition
uses the open-source Rust version of RelaxedIK. It includes
many objective terms in its objective function, such as
end-effector pose matching, smooth joint motion, and self-
collision avoidance, but does not include the environment
collision avoidance methods discussed in this work.

The MCC controller uses the open-source Movelt library.
It involves three steps: (1) Compute a configuration that
matches a desired end-effector pose goal using Trac-IK
[20]; (2) Compute a feasible, collision-free path to the
configuration found in step 1 using the RRT-Connect planner
[9]; and (3) Move along the path found in step 2, and return
to step 1 once the robot either completes the path or hits a
dynamic collision along the path. If the planner ever does

not find a feasible path to the given configuration in step 2,
the robot maintains its current configuration, time advances
some fixed step, and the approach goes back to step 1.
In our evaluation, we “pause” the time parameter ¢ on the
trajectory and obstacles during step 2. Thus, this allows the
planner to be “infinitely fast” from the perspective of the
input trajectory and environment. We made this evaluative
decision because our goal was to assess the general MCC
approach under ideal conditions rather than potentially show
that one implementation of one particular planner is too slow
to keep up with the real-time demands of our benchmark.

Our results from Experiment 1 are summarized in Figure
3. We see that our method avoids collisions with the en-
vironment more effectively than both RIK and MCC. Also,
our method achieves smoother motion and reflects the given
end-effector pose goals more precisely than MCC. While
RIK does avoid self-collisions and kinematic singularities (as
reported in prior work), and reflects lower end-effector pose
errors than our method, this extra accuracy comes at the high
cost of many collisions with the environment.

E. Experiment 2: Local Minimum Test

In our second experiment, our goal was to assess if our
method is prone to getting stuck in local minimum regions.
This assessment involved moving the table closer to the robot
in the Around Table task, such that the end-effector was
guided more through the center of the table rather than close
to the edge. We compared our method to the MCC approach
described above on this task.

While our method still avoids colliding with the table, it
does not ultimately find a way to get around the table to the
other side. Thus, we see that our method is prone to falling
into local minima, while other global planners do not get
stuck in such regions. We note that while MCC did find a way
around the table, this came at the expense of considerably
high end-effector position and rotation errors. A graph of
end-effector translation errors of the two conditions can be
seen in Figure 5.

F. Experiment 3: Assessment of Objective Term Variants

In our third experiment, we compare results on our eval-
uation benchmark with adjusted objectives. This experiment
was designed to show the flexibility of our approach in
terms of accommodating different or dynamically changing
objectives. Our first condition, CIK, uses the same position
and orientation matching objectives as Experiments 1 and



#Env. Mean Pos. Mean Rot. o Mean Velocity o  Mean Accel. Mean Jerk # Self- # Kinematic

Collisions Error (M) Error (Rads.) (Rads. / S) (Rads. / §?) (Rads. / S%) Collisions Singularities
Around CIK 0 0.106 +- 0.065 0.005 +- 0.007 0.277 +- 0.173 0.012 +- 0.009 0.004 +- 0.004 0 0
Table CIK-3 0 0.086 +- 0.063 0.897 +- 0.669 0.238 +- 0.123 0.021 +- 0.012 0.021 +- 0.012 0 0
CIK-A 0 0.076 +- 0.037 0.217 +- 0.127 0.267 +- 0.078 0.021 +- 0.012 0.014 +- 0.01 0 0
Square CIK 0 0.101 +- 0.035 0.007 +- 0.003 0.588 +- 0.101 0.031 +- 0.02 0.02 +- 0.024 0 0
Tracing CIK-3 0 0.052 +- 0.047 1712 +- 0.438 0.585 +- 0.119 0.038 +- 0.012 0.03 +- 0.008 0 0
CIK-A 0 0.061 +- 0.019 0.521 +- 0.313 0.699 +- 0.133 0.04 +- 0.014 0.032 +- 0.017 0 0
CIK 0 0.122 +- 0.079 0.063 +- 0.086 1.942 +- 0.262 0.096 +- 0.032 0.059 +- 0.055 0 0
lii)ot:xat:(e:)s CIK-3 0 0.062 +- 0.046 1.962 +- 0.699 0572 +-0.178 0.048 +- 0.041 0.045 +- 0.046 0 0
CIK-A 0 0.108 +- 0.117 1.096 +- 0.811 1.095 +- 0.133 0.077 +- 0.059 0.071 +- 0.079 0 0

Fig. 4. Results from Experiment 3. Range values represent standard deviation.
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Fig. 5. End-effector position and rotation errors from our local minimum
experiment. (Left) We see that our method falls into a local minimum when
the table is moved closer to the robot. While MCC gets around the table
using its global planning capibilities, this comes at the cost of high end-
effector position and rotation errors.

2 above. Our second condition, CIK-3, only considers end-
effector position goal matching, and does not try to match the
orientation of goals as well. Lastly, our third condition, CIK-
A, adaptively adjusts the weight on the orientation matching
objectives on-the-fly, such that the importance of orientation
matching is reduced when the robot is close to a collision
state and raised to its standard value when the robot is not
close to a collision.

Our results from Experiment 3 can be seen in Figure 4. We
see that all of the evaluated variants of our method achieve
their respective objectives, all while avoiding collisions with
the environment. For example CIK-3 reliably matches end-
effector position goals, though it has a very high orienta-
tion matching error, while CIK-A achieves some orientation
matching accuracy while still achieving higher positional
accuracy than the baseline CIK. This demonstrates that our
method is able to reflect a variety of different objectives,
even those that dynamically change in real-time.

G. Experiment 4: Performance and Scalability Testing

In our final experiment, we tested the performance and
scalability of our method in a real-time control setting. This
experiment involved a user interactively driving the end-
effector position and orientation of a simulated Sawyer robot
in a ROS RViz environment using a keyboard controller.
Obstacles placed in the environment were also able to be
interactively moved by the user. Our ability to test our
method on a real robot using a more robust control interface
was hindered by the SARS-CoV2 pandemic.

Our first interactive test environment involved four sphere
obstacles placed around a simulated robot. Our method
avoided collisions with all obstacles during this test, and
average run-time performance for this environment was
approximately 500 microseconds per solve (2,000 Hz). Our

second test environment was designed to test the scalability
of our method, and involved 100 Stanford bunnies, each
with over 30,000 vertices, around the environment. Each
Stanford bunny took 18 milliseconds on average to compute
a convex hull using the QuickHull algorithm. Our method
again avoided collisions with all obstacles during this test,
and average run-time performance for this environment was
approximately 16 milliseconds per solve (60 Hz).

VI. DISCUSSION

In this work, we presented a method for generating robot
motions on-the-fly that avoid collisions with static or dy-
namic obstacles in an environment, while also simultane-
ously accommodating any other motion objectives. In this
section, we discuss limitations and implications of our work.

A. Limitations

We note a number of limitations of our work that suggest
future extensions. First, our method is prone to becoming
trapped in local minima regions, as seen in Experiment
2. Further investigation is required to characterize when
our method is susceptible to falling into local minima, and
extensions of our work could explore ways to infuse more
global path planning techniques within our optimization-
based structure to get out of these minima [5]. Also, our
work was tested in simulation with synthetic data and does
not consider the challenges of real-world sensing or noisy
data. Extensions of our work could explore how to efficiently
accommodate sensed data form the environment and how to
incorporate confidence bounds into our objectives in the case
of noisy sensors.

B. Implications

We believe that our method could benefit various areas
of robotics, such as teleoperation, shared-control, and rein-
forcement learning. For example, teleoperation and shared-
control interfaces could utilize our method in home health-
care, telenursing, or nuclear materials handling applications
to mitigate collisions while still achieving other goals as best
as possible. Also, unsupervised or semi-supervised learning
agents could explore and manipulate their environments
without high risk of collisions when forming their policies.
We plan to explore these directions in future work.
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