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Abstract—In telemanipulation, showing the user multiple views
of the remote environment can offer many benefits, although such
different views can also create a problem for control. Systems
must either choose a single fixed control frame, aligned with
at most one of the views or switch between view-aligned control
frames, enabling view-aligned control at the expense of switching
costs. In this paper, we explore the trade-off between these
options. We study the feasibility, benefits, and drawbacks of
switching the user’s control frame to align with the actively
used view during telemanipulation. We additionally explore the
effectiveness of explicit and implicit methods for switching control
frames. Our results show that switching between multiple view-
specific control frames offers significant performance gains com-
pared to a fixed control frame. We also find personal preferences
for explicit or implicit switching based on how participants
planned their movements. Our findings offer concrete design
guidelines for future multi-camera interfaces.

Index Terms—telemanipulation, camera, awareness, control
frame, multiple views, operator interfaces

I. INTRODUCTION

Robot telemanipulation extends human capacity by allowing
users to explore and physically affect a remote environment.
During telemanipulation, visibility of the remote workspace is
necessary for users to complete tasks safely and successfully.
To provide visibility, telerobotics interfaces commonly use
video streams from one or more remote cameras [1]. Multiple
viewpoints of the remote workspace can improve remote
perception by providing cues about scale, depth, and spatial
relations between elements in the remote environment and
alternate sources of information in the presence of occlusions.
However, controlling a robot using multiple viewpoints can be
a challenge because the various views may not align with the
coordinate frames of the user’s input device or the robot in the
remote workspace, resulting in loss of spatial orientation and
poor teleoperation performance. Prior work considering a single
viewpoint has shown that aligning the control frame, the frame
of reference in which the user provides motion commands,
with the viewpoint can improve performance because of the
consistency in the direction of the user’s movement and the
consequent movement of the robot on the video display [2H6].
However, extending this idea to multi-camera interfaces requires
answering questions regarding which view the control frame
should be aligned with and whether, and how, the control frame
should be changed when the user switches between views.
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Fig. 1. In this paper, we investigate the effects of using multiple view-specific
control frames in a multi-camera interface on task performance and user
experience during robot telemanipulation. A. In our user study, participants
controlled a robot arm in simulation to complete tasks that followed a home-
care scenario using live video feeds from three static cameras placed in the
remote environment. B. In a multi-camera interface, viewpoints with different
frames of reference can negatively impact performance. Here, the control
frame is aligned with the top-left view (green border). User input to the right
results in robot movement that is rightward in the top-left view, but leftward
in the bottom view. This mismatch makes it challenging to control the robot
using the bottom view and a control frame aligned with the top-left view.

Previous multi-camera interfaces have primarily used a single
control frame aligned with the robot’s base or one of the views
[5,/7,8]. This approach requires the user to perform mental
transformations when the control frame and the view frame do
not align. We posit that using multiple control frames aligned
with the different views will reduce the mental transforms
required. However, given that a single control frame can be used
at any given time, users must switch control frames based on
which view frame they wish to use, which may also introduce
additional control burden. Automated approaches, particularly
an attention-based (using eye-tracking) approach, to control-
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frame switching might alleviate this burden. In this paper, we
investigate the advantages and limitations of using multiple
control frames in multi-camera interfaces and examine two
approaches, manual and attention-based, to changing control
frames when the user switches views.

We conducted a user study to investigate the effects of
using multiple view-specific control frames on telemanipulation
performance. We compared a baseline interface with a single
control frame against two interfaces with multiple view-specific
control frames. In our baseline interface, the control frame
was aligned with the static frame of the robot’s base joint,
offering a one-to-one mapping from the user’s space to the
robot’s space that remains consistent across various viewpoints.
However, using viewpoints that are not aligned with the
robot requires additional mental transformations for control,
increasing cognitive load and reducing task performance [4}|9].
The other two interfaces offered access to three control frames
corresponding to three camera views. These view-specific
control frames allow for visual consistency between the user’s
input and the robot’s movements in each view. However,
switching between control frames requires the user to reorient
from one frame to another. For the interfaces with multiple
control frames, we designed two methods for real-time selection
of the view that the control frame is aligned with: (1) explicit
view selection by the user manually pressing a button; and (2)
implicit (or automatic) view selection based on the view that the
user is attending to as inferred from eye-gaze data. Our results
show that using multiple view-specific control frames offers
significant performance gains compared to a single control
frame. Additionally, user preferences for explicit or implicit
view selection depend on how they plan their movements.

The central contribution of our work is the demonstration
of the feasibility and benefits of using multiple view-specific
control frames in multi-camera telemanipulation interfaces,
which has implications for the design of multi-view interfaces.

II. RELATED WORKS
A. Control Frames

The control frame, or the frame of reference in which the user
provides motion commands, is an important design decision for
teleoperation interfaces that can affect task performance and
user experience. In comparisons of three widely used control
frames, aligned with the frame of the robot’s base (robot frame),
of the viewpoint (view frame), or of the target object (task
frame), no one frame has emerged as the “best” [9]. These
control frames have trade-offs that make them more or less
suitable for different applications. Because task frames are
bespoke to the specific objects to be manipulated [10], in this
work, we aligned control frames with the robot and with the
view frames to maximize the generalizability of our findings.

Based on prior work, we discuss the trade-off between
control frames aligned with the robot and view frames. A
control frame aligned with the robot’s base is easy to define with
respect to the robot and allows spatial correspondence between
the user’s and the robot’s workspaces (e.g., [[11}/12]). However,
if the user’s viewpoint is not aligned with the robot, additional

mental transformations are required for the user to predict the
result of their inputs [4}/13]]. Hence, a control frame aligned with
the viewpoint (e.g., [4,/6]) can be beneficial because the robot,
as seen from that viewpoint, moves in the same direction as the
user’s motion command and requires no mental transformations.
While a viewpoint-aligned control frame results in a lower
cognitive load, it can be less efficient (requiring more motion
commands) due to its indirect spatial relationship to the robot’s
workspace [9]. Note that this discussion of trade-offs in prior
work is limited to using a single control frame aligned with
the robot or view frame.

B. Multi-Camera Telerobotics Interfaces

Studies of factors that affect human performance in teleoper-
ation systems have noted that multiple viewpoints improve re-
mote perception, but integrating information across viewpoints
with different frames can have a negative impact [1]]. Nielsen
et al. [[14]] addressed this issue by creating a single integrated
view by spatially combining information from sources with
different frames. Similarly, other works have displayed one
video feed within another in a manner that is spatially consistent
with the locations of the cameras in the remote environment
[[15,/16]. These solutions enable the user to control the robot in
a single frame of the reference of the integrated view. While
prior work has effectively combined two views, scaling this
approach to an arbitrary number of disparate views, which can
be necessary for complex telemanipulation, is challenging and
not always feasible. Another approach to combining multiple
views is to display a spatial map of the remote scene on a
head-mounted display [[I7519]], providing the user with access
to different vantage points by moving through a 3D scene. This
approach can offer a more immersive and intuitive experience
than displaying multiple video feeds. However, due to the
technical and computational challenges of high-quality real-
time 3D reconstruction, directly streaming video feeds is still
the prevalent approach in large, cluttered, and dynamic settings,
such as in construction [8]] or search and rescue [20].

Existing multi-camera interfaces (e.g., [7-9,/15,20]) com-
monly use a single frame of reference aligned with the base
of the robot or one of the views. Keyes et al. [21] highlighted
the limitations of a single frame of reference. Their robot
was equipped with a front-facing and a rear-facing camera.
The interface allowed an Automatic Direction Reversal (ADR)
mode that reversed the commands along the front-back axis
when using the rear-facing camera. This mode enabled users to
control the robot with fewer collisions. In the absence of this
mode, the performance of the two-camera system was similar
to an interface with only the front-facing camera. This result
suggests that users may not effectively utilize an additional
viewpoint if their control frame is misaligned with the view
frame. Similarly, a study of the use of multiple camera views
during laparoscopic surgery found that while multiple views
improved task performance, the view that was most misaligned
with the control frame provided the least benefit [22].

Based on this literature that underscores the limitations
of a single frame of reference in multi-camera interfaces,



we propose using multiple view-aligned control frames. As
discussed in a view-aligned control frame has been
shown to be beneficial in single-camera interfaces. We posit
that those benefits will extend to multi-camera interfaces and
outweigh any costs associated with switching from one control
frame to another. Keyes et al. [21] consider control frame
switches in their interface; however, the control frame change
in their work was limited to one translational axis (front-back).
In contrast, our work considers three control frames with
differences in multiple translational and rotational axes to
address a knowledge gap in the existing literature on the costs
of switching between disparate view-specific control frames.

C. View Selection

Our proposed solution requires users to switch between
control frames based on which view frame they wish to use.
To enable this feature, similar to work by Keyes et al. [21], we
implemented explicit view selection where the robot movement
depends on the view that the user manually selects with a button.
However, given the high cognitive demands of telemanipulation
[1]], we posit that there will be benefits to automating the view
selection. Because users are visually attending to the views,
we consider the use of the direction of gaze of the operator
as an automated and implicit way of aligning control frames
with the currently attended view. To further develop this idea,
we draw from HCI literature on attention-based interfaces
[23/24]] and gaze-based selection [25}26]]. We implemented
the simplest design for implicit view selection, where the robot
movement depends on the view the user is currently looking
at as determined by the measured direction of gaze. Jacob et
al. [27] note that people often move their eyes for reasons that
may or may not be task-related. Given the lack of prior work
on gaze-based switching of control frames, it is unclear if the
advantages offered by automation outweigh unintended control
frame switches due to movements that are not task-related. Our
work aims to address this knowledge gap.

III. DESIGN AND PROTOTYPE

In this section, we discuss the design of our implicit and
explicit view selection approaches and implementation details
of our prototype system for our study with human subjects.

A. Design of Active View Selection

We define active view as the view with which the control
frame is aligned. We identify two costs for switching the active
view. The first cost is a loss in momentum. Switching from one
control frame to another may require the user to give different
motion commands for the same robot action. For example,
imagine two control frames, C/ and C2, that have their left-
right axis flipped with respect to each other (refer Figure [I]B).
For simplicity, let C/ be aligned with the robot’s base frame.
To move the robot to its left, the user would need to move
the controller left in C/ and right in C2, as the left-right axis
is flipped in the second control frame. Suppose that the user
is trying to reach a target to the left of the robot. The user
starts by using CI and moves the controller to the left to move

the robot leftward. When the user switches to C2, the user
needs to now move the controller to the right to maintain the
robot’s leftward trajectory. This reorientation of the controller
command leads to a loss in momentum. The second cost is the
additional control burden of providing an appropriately-timed
input for active view selection.

The trade-off between explicit and implicit active view
selection approaches is shaped by the trade-off between the
control burden and loss in momentum. Explicit view selection
requires the user to deliberately select a view for control (the
user may look at a view without selecting it), whereas during
implicit view selection, looking toward a view automatically
aligns the control frame with that view. Implicit view selection
allows fast and easy selection but results in a loss of momentum.
Explicit view selection requires deliberate selection but allows
the user to prepare for the change in the control frame.

B. Prototype Details

1) Teleoperation Control Interface: Our system used Re-
laxedIK, a mimicry-control teleoperation approach proposed
by Rakita et al. [11,]28]] that allows novice users to effectively
control a robot arm using full six-DoF arm-space control. An
HTC VIVE motion controller served as the input device to
capture user commands mapped to the robot’s movement. Prior
work [[11,29] suggests that free-form controllers such as a
VR controller are significantly better for telemanipulation than
alternatives such as a touch interface or keyboard and mouse.
Our interface allowed clutching, the ability to disengage control
and move the input device independent of the robot (similar
to lifting a finger and repositioning it on a trackpad). We
implemented this capability using the grip button on the VIVE
controller. In addition, we configured the controller’s trigger
to toggle the opening and closing of the robot gripper.

2) Multi-Camera Interface: We implemented a multi-camera
interface using OpenGL and ImGui that allows a variable
number of video feeds to be displayed in various layouts (such
as Picture-in-Picture or Grid layout). For this work, we used a
grid layout to display live video feeds from three cameras (see
Figure [1]B). Both layout and number of cameras are key design
decisions for multi-camera interfaces, and our choices represent
only one possible combination. We chose a grid layout because
it does not emphasize one camera and concurrently shows all
feeds. We chose three cameras because a pilot study suggested
that three cameras were adequate for our telemanipulation
tasks but presented sufficient complexity to necessitate frequent
switching of control frames. The active view or the view with
which the control frame was aligned was highlighted with a
green border (see top-left view in Figure [I]B).

3) Active View Selection: For view selection, we imple-
mented two approaches. For explicit view selection, we spatially
mapped regions on the trackpad of the VIVE controller to
corresponding views: Trackpad Left — Camera 1, Trackpad
Right — Camera 2, Trackpad Down — Camera 3. This mapping
allowed the user to switch their active view with one click on
the trackpad. For implicit view selection, we used the Tobii
Pro X2-60 screen-based eye tracker along with the Tobii Pro



SDK to determine the view toward which the user was looking
and selected that view as the active view. If the user’s gaze
fixation did not fall within the boundaries of one of the views
(for example, when the user looks away, looks at the blank
space between views, or the eye tracker does not detect the
eyes), then the last used view continued to be the active view.

4) Simulated Workspace: We chose to use a simulated
workspace for our evaluation to have easy access to arbitrary
viewpoints and maintain the robot’s safety during shifts in con-
trol frames. We simulated the workspace on the CoppeliaSim
[30] platform with the ODE physics engine and created separate
scenes for each task in the user study. Users controlled a six-
DoF Universal Robots URS5 robot arm equipped with a parallel
gripper. We implemented all dynamic task objects using native
shapes in CoppeliaSim to allow fast simulation by the physics
engine. Our implementation tried to maintain realistic physics
that the user would encounter in an actual teleoperation scenario.
For example, if the robot was holding an object in its gripper
and collided with the table, the object could drop from the
gripper due to the collision force. For real-time performance
in CoppeliaSim, the graphical rendering of the workspace was
simple and lacked realistic shadows and textures. Because
multiple views are the root cause of the control frame issues
we are addressing, we do not anticipate the graphics quality
to impact our findings significantly. However, we note that
recently developed platforms such as NVIDIA Isaac Sim can
offer more realistic simulations.

5) Viewpoint Selection: We added three exocentric vision
sensors to the simulated workspace corresponding to each
task. We chose viewpoints to provide three requirements: (1)
adequate coverage of the workspace, (2) detail and context of
the objects to be manipulated, and (3) depth perception. Across
all tasks, Camera 1 was placed above the robot’s base, aligned
with the static frame of the base joint. This view was selected
as the active view in the condition where the user operated the
robot in a single fixed control frame. The other two viewpoints
were different for each task to fulfill the requirements listed
above. Video feeds from the simulated cameras are shown in
real-time on the multi-camera interface described in

6) Control Frames: We used a right-handed Cartesian coor-
dinate system to represent all frames of reference. We obtained
the camera’s orientation matrix in the simulated environment
relative to the base of the robot. In real life, this matrix can
be obtained from camera calibration using a checkerboard
pattern. Based on prior work [6,[31], we constructed the view
frame matrix to have camera-right and world-up axes. Thus,
the view frame consists of three orthogonal vectors: (1) the
camera’s left-right axis; (2) the direction of gravity for the
up-down axis; and (3) for the front-back axis, a normalized
vector perpendicular to both aforementioned axes. When a
view is selected as the active view, the user’s control input is
transformed to match that frame.

C. System Architecture

We implemented our teleoperation system on a single
computer running Linux OS using Robot Operating System

(ROS). The user provides inputs to the system through a VIVE
controller and Tobii eye tracker. The outputs from the system
were robot joint states from RelaxedIK that were used to
operate the robot arm in a simulator, three views of the remote
workspace displayed on a 24-inch video monitor, and the
selection of an active view corresponding to the control frame.

IV. USER STUDY

We conducted a user study to assess how control frame
choices affect teleoperation performance and user experience.

A. Hypotheses

H1: In a multi-camera telemanipulation interface, en-
abling the user to switch between several view-specific
control frames (either explicitly or implicitly) will result
in better task performance and user experience than a
single fixed control frame.

discussed issues with control and viewpoint usage in
existing interfaces that use a single fixed control frame. We
expect the benefits of using a view-aligned control frame in
single-camera interfaces to extend to multi-camera interfaces
and outweigh the costs of switching from control frames.

H2: In a multi-camera telemanipulation interface with
several view-specific control frames, implicit (or auto-
matic) view selection will result in better task perfor-
mance and user experience than explicit view selection.

Due to the high cognitive demands of telemanipulation, we
expect automating view selection to result in better outcomes.

B. Experimental Design

To test our hypotheses, we designed a 3 x 1 within-
participants experiment in which participants completed tele-
manipulation tasks using (1) fixed frame, (2) adaptive frame
(explicit), and (3) adaptive frame (implicit) in a fully coun-
terbalanced order. In fixed frame, the control frame, which
was aligned with the static frame of the robot’s base joint and
Camera I’s view, remained fixed during the tasks. In adaptive
frame (explicit), the control frame was aligned with the active
view frame that the user selected by pressing the appropriate
region on the controller’s trackpad. In adaptive frame (implicit),
the control frame was automatically aligned with the active
view frame based on the direction of the user’s gaze.

C. Tasks

We designed three pick-and-place tasks based on home care
scenarios: cleanup, meal-serve, and meal-prep. Cleanup and
meal-serve had to be completed in three minutes, and meal-prep
in four. The tasks were ordered to increase in difficulty.

The cleanup task involved picking up two bottles and
dropping them in the trash bin placed at a distance. This
task was easy in terms of manipulation but challenging in
terms of tracking broad motions across the different views.

The meal-serve task involved picking up a sandwich and a
bottle from a shelf and placing them on a tray for service. Any
collisions with the shelf were converted into audible warning
beeps to discourage collisions. This task was challenging due



to the need to maintain spatial awareness to avoid collisions
while reaching an ergonomically inconvenient location and
precisely orienting the gripper to grasp the objects.

In the meal-prep task, participants picked up two small jars
with meal ingredients (two cubes) and emptied them into a pan.
This task was challenging because of the rotational dexterity
required to empty the content of the jars.

All tasks asked participants to interact with two objects in a
pre-specified order to maintain consistency across participants.
Participants heard an auditory confirmation for each subtask
they completed. For the cleanup and meal-serve tasks, each
object to be manipulated was considered a subtask resulting
in two subtasks each. Each cube in the jar was considered a
subtask for the meal-prep task, resulting in four subtasks.

We designed a training task with a time limit of 7.5 minutes
that included all the objects that the participants would interact
with in the main tasks but placed them at different locations.

D. Procedure

The procedure was administered under a protocol reviewed
and approved by the Institutional Review Board (IRB) of
University of Wisconsin—-Madison. Following informed consent,
the experimenter introduced participants to the idea of remotely
controlling a robot in someone’s kitchen to finish up their
chores and guided them through an interactive training session
to familiarize themselves with teleoperation. Then, participants
completed training for each condition, where the experimenter
explained the control frame choices for that condition and
provided details about each task. Participants were informed
that the tasks were challenging and that they should get through
as much of the tasks as possible in the time allotted and aim
for performing the tasks well. If participants had a catastrophic
failure, such as dropping the object on the ground where it
is inaccessible by the robot, they were asked to move on to
the next object. After completing three tasks in the current
condition, participants filled out a questionnaire regarding their
experience. After all three conditions, participants completed
a demographics survey and engaged in a semi-structured
interview about their overall experience. During the interview,
participants were asked to articulate their planning and execu-
tion strategies in each condition and pick one condition that
they preferred overall and reason about it. These responses
were recorded and transcribed by an experimenter.

E. Measures

1) Performance measures: Participant task performance
reflected the average task score of the three tasks. For each task,
we calculated the normalized binary success over its subtasks.
Thus, the possible scores for cleanup and meal-serve were {0,
0.5 and 1}, and for meal-prep were {0, 0.25, 0.5, 0.75, 1}.

2) Subjective measures: We developed a 10-item ques-
tionnaire (Table [[) and derived three scales that measured
perceived ease of use (items 3, 6, 10; Cronbach’s a = 0.89),
perceived predictability (items 1, 4, 8; Cronbach’s a = 0.83),
and perceived spatial orientation (items 2, 5, 7, 9; item 5
reversed; Cronbach’s o = 0.77). Participants responses were

TABLE I
QUESTIONNAIRE ITEMS ADMINISTERED AFTER EACH CONDITION

=

Item

The robot’s motion was not surprising.

I was aware of what was happening in the remote environment.

The control method made it easy to accomplish the task.

The robot responded to my motion inputs in a predictable way.

I felt disoriented while completing the tasks.

I felt confident controlling the robot.

I always knew how to get to my desired location in the remote

environment.

The robot consistently moved in a way that I expected.

9 1 felt confident about where things were located in the remote
environment.

10 T could accurately control the robot.

NN R W

oo

captured using a seven-point rating scale (1-7; 1 = “Strongly
Disagree,” 7 = “Strongly Agree”). We took an unweighted
average of ratings of the items on the NASA Task Load Index
(TLX) to measure perceived workload [32].

3) Behavioral measures: We recorded screen coordinates
derived from eye gaze data using Tobii Pro X2-60 and all
inputs provided by the user through the HTC VIVE controller.

FE. Participants

We recruited 24 participants (17 male, 7 female) from a
university campus between the ages of 18 and 39 (M =21.7,
SD =5.29). Participants reported some familiarity with robots
(M = 3.33, SD = 1.46, measured on a seven-point scale).
Two participants reported an interaction with a robot in prior
robotics research studies. The study took 90 minutes, and all
participants received $20 USD as compensation.

V. RESULTS AND DISCUSSION

Our data analysis provides partial support for our hypotheses,
and we discuss these results in Interestingly, the data
distribution across all the measures showed high inter-subject
variability. To better understand these variations between
participants, we conducted a post hoc data analysis discussed
in This analysis identified groups of participants who
had similar strategies for planning their movement, which helps
us better characterize the cost of switching control frames.

A. Results

Our analysis used one-way repeated-measures analysis of
variance (ANOVA), considering the control method as the
within-participants factor for each of the outcome measures
described in If there was a significant effect, we used
pairwise t-tests with Bonferroni correction to determine where
the differences lied. These results are summarized in Figure 2]

Our results provide partial support for HI. Both adaptive
frame conditions resulted in significantly higher task scores
than the fixed frame condition. However, the results for user
perception effects were mixed. Scores for ease of use, pre-
dictability, and spatial orientation were higher in the adaptive
frame (implicit) condition than the fixed frame condition, but no
significant differences were found between the adaptive frame
(explicit) condition and the fixed frame condition. For perceived
workload, there were no significant differences between the
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Fig. 2. Tukey boxplots overlaid on data points from performance and user perception measures. Horizontal lines indicate significant pairwise comparisons with

Bonferroni correction (p < 0.05*, p < 0.01**, p < 0.001***).

three conditions for the TLX score. However, among the sub-
scale ratings, perceived physical demand was significantly lower
for the adaptive frame (explicit) condition than the fixed frame
condition. Finally, we found no support for H2: no significant
differences were observed between the two adaptive frames.
For all measures, we tested for order effects using repeated-
measures analysis of covariance (ANCOVA) considering ordi-
nal position (first, second, third) as the covariate and found no
significant effects of the order of the control frames.

B. Post hoc Analysis and Discussion

Motivated by the high inter-subject variability in our dataset,
we conducted a multimodal exploratory analysis using addi-
tional data collected during the study, such as motion data,
eye gaze data, and responses from semi-structured interviews.
Our findings, summarized in Table |H| allow us to characterize
control frame choices in multi-camera interfaces better. We
discuss the findings in connection with our two hypotheses.

We report participant numbers (P/—P24) in our findings,
with participants sorted based on the best task score among
the three conditions. Thus, P/ finished the least proportion of
tasks in any condition, while P24 finished the most.

1) Fixed vs. Adaptive Frames: Participants in Group 1 (GI:
P12, P20, P21, P22, P23, P24) successfully used or preferred
the fixed frame. These participants employed a distinct strategy
that sometimes resulted in more efficient movements than when
using adaptive frames but likely led to higher physical demand.
We discuss the analysis that supports this finding below.

Our observations suggest that not clutching played a vital
role in the performance outcomes of successful participants in

the fixed frame condition. As explained in clutching
allows the user to move the controller independent of the
robot. We counted instances of clutching across all tasks in the
fixed frame condition and found a medium negative correlation
(Pearson’s r = —0.56) with task scores. As seen in Figure @A,
many successful participants (P20, P21, P22, P23, P24) rarely
used the clutch. These participants indicated that resuming
robot control after clutching required them to rethink the
mapping from their workspace to the robot’s workspace, which
they avoided altogether by not clutching. Clutching enables
operators to reorient. In the fixed frame condition, reorientation
can result in loss of spatial orientation and predictability,
particularly in rotational movements. Not clutching led to
awkward arm positions, as seen in Figure 3]C, which may
explain the increased physical demand scores compared to the
adaptive frame (explicit) condition.

In the interviews, four participants (P12, P20, P21, P22)
chose fixed frame as their overall preferred condition because
they perceived it to be more efficient for task completion.
Averaging task times of completed subtasks for the five most
successful participants (P20, P21, P22, P23, P24) showed that
using adaptive frame (explicit) and adaptive frame (implicit)
took 32% and 43% longer, respectively, compared to using
fixed frame. Participant comments highlight a drawback of
using multiple control frames that require frequent reorientation.
Because clutching can be utilized for reorientation, we averaged
the clutching counts for the five participants. We found that, on
average, they used clutching 34, 24, and 5 times in adaptive
frame (explicit), adaptive frame (implicit), and fixed frame
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Fig. 3. A. Scatterplot of the number of times clutching was utilized across
all tasks in the fixed frame condition with respect to task scores. We found
a medium negative correlation (Pearson’s r = —0.56) between the measures.
B. Tukey boxplots of improvements in task scores in the explicit and implicit
conditions compared to the fixed frame condition. Our post hoc analysis dives
deeper into the strategies employed by participants who had high performance
gains (Task Score Improvement > 0.33) and saw performance losses (Task
Score Improvement < 0) compared to the baseline. C. A participant completing
manipulations in an awkward arm position in the fixed frame condition.

conditions, respectively. This frequent reorientation could
contribute to the inefficiency of multiple view-specific frames.
However, efficiency is not the only objective in telerobotics
systems: all five participants completed all tasks using one of
the adaptive frames, but only one (P22) did using fixed frame.

In summary, a few participants (GI in Table [[I) could effi-
ciently complete some tasks with a fixed frame by employing a
physically demanding strategy. However, even these participants
could complete more tasks using adaptive frames.

2) Implicit vs. Explicit Active View Selection: While there
were no significant differences between the adaptive frame
conditions across measures, we observed some differences
in the distribution of the data. A multimodal analysis of our
dataset identified participant groups who used similar strategies
for planning their movement. Table [[] summarizes the different
groups and strategies. Our findings suggest that users perceive
the trade-off between the costs associated with switching
control frames differently depending on their strategy.

To compare the adaptive frame conditions, we first calcu-
lated improvement in task scores in the explicit and implicit
conditions compared to the fixed frame condition (Figure [3]B).
Consistent with the results presented in §V-Al a majority of
participants had performance gains (Task Score Improvement >
0) when using either of the adaptive frame conditions (explicit:
21/24 participants, implicit: 17/24 participants).

Further, we examined data of nine participants in each
condition (explicit: P6, P8, P9, P10, P13, P16, P17, PI§,
P19, implicit: P6, P7, P8, P9, P10, P15, P16, P17, P18)
who had high performance gains compared to the fixed frame
condition (Task Score Improvement > 0.33). Seven out of nine
participants (explicit: not P13, P19, implicit: not P7, P15) had
high performance gains in both conditions, and six out of these
seven participants (not P§) performed better in the implicit
condition. Note that performance gains for this group cannot
solely be attributed to learning effects since the ordinal position
of the implicit condition was first for three participants and
last for the other three participants. To sum up, a substantial
number of participants who benefited highly from using the
adaptive frame conditions preferred automatic view selection.

Data from the nine participants (P6, P7, P8, P9, P10, P15,
P16, P17, P18) who had high performance gains in the implicit
condition indicate two distinct groups of participants based
on the strategy they used to complete the tasks. Group 2 (G2:
P10, P15, P16, P17, P18) was more likely to manually switch
their active view when they looked at a new view. Because this
function was automatic in the implicit condition, this group saw
performance gains over the explicit condition. This group chose
implicit as their overall preferred condition. Group 3 (G3: P6,
P7, P8, P9) often forgot to switch their active view when they
were engrossed in the task, which resulted in mistakes such as
collisions and dropping objects. Only one participant (P8) in
this group performed better in the explicit condition but had
a better subjective experience in the implicit condition. This
group was equally split in their overall preferences (explicit:
P6, P7, implicit: P§, P9). One participant (P24) completed all
tasks in both adaptive frame conditions but preferred automatic
camera selection because it allowed for more fluid interaction.
Overall, G2 and G3 (Table benefited from the implicit
condition in either or both subjective and objective outcomes.

We also examined the data from six participants (P11,
Pi2, P13, Pi14, P21, P23) who saw performance losses in
the implicit condition compared to the baseline (Task Score
Improvement < 0). Except for one participant (P12), all other
participants completed the most tasks in the explicit condition
and chose it as their overall preferred condition. To this group
of five participants, we added one participant (P/9) who also
completed the most tasks in the explicit condition and chose
it as their preferred condition but did not have performance
losses in the implicit condition compared to the baseline. The
strategy of this group (G4: P11, P13, P14, P19, P21, P23)
was to make a minimal number of switches to their active view
only when absolutely necessary.

The other group that completed the most tasks in the explicit
condition and chose it as their overall preferred condition were
the participants with the lowest task scores, Group 5 (G5:
P1, P2, P3, P4, P5). This group preferred the convenience of
manipulating in view-specific control frames. However, they
often switched between views (only for visual information, not
with the intention of switching control frames), making control
too jarring with automatic view selection. Overall, G4 and G5
(Table |lI)) were discouraged by the frequent loss in momentum



TABLE II
PARTICIPANT STRATEGIES AND PREFERRED EXPERIMENTAL CONDITIONS FELL INTO FIVE GROUPS

Group Participants

Strategy

Participant Quote

Favorable Frame

P20: T am a pretty spatial person. Once I put
myself in the robot’s space, it (fixed frame) was
easy. I couldn’t pause (clutch) the robot though.

Fixed

P15: With B (explicit) I had to stop moving and
switch the camera, but C (implicit), I just did it,
without stopping, without having to think at all

Adaptive (implicit)

P9: 1 thought B (explicit) was irritating, a distrac-
tion almost. Thinking about which button I want
to press and then pressing it, was so much work

Adaptive (implicit)

P11: With B (explicit), I could look at a different
camera but still move in the direction I originally
planned with another camera

Adaptive (explicit)

Gl P12, P20, P21, P22,  Rarely utilized clutching, benefited from efficient
P23, P24 spatial mapping between the user’s and robot’s
workspaces with the single fixed frame
G2 P10, P15, P16, P17,  Switched active view frequently, benefited from
P18, P22 automatic selection
G3 P6, P7, P8, P9, P24  Forgot to manually switch active view when
focusing on the manipulation task, benefited from
attention-based selection
G4 P11, P13, P14, P19, Experienced loss in momentum during gaze-based
P21, P23 selection, preferred minimal switching of the
active view when absolutely necessary
G5 P1, P2, P3, P4, P5  Experienced loss in momentum during gaze-based

selection, preferred having time to think and

P4: My brain was so tripped up by how I move my
hand and how the arm moved on the screen, and

Adaptive (explicit)

prepare for switching the active view

I couldn’t process it fast enough in C (implicit)

in the implicit condition and preferred the explicit condition to
switch the active view when they deemed it a value-addition.

While our post hoc analysis identified groups of participants
with similar strategies for planning their movement, we have no
additional insight into why participants chose these strategies.
Analysis of demographic data, which included aggregate scores
of participant familiarity with video games, joystick controllers,
VR controllers, and 3D modeling software by groups (G/ —
G5) did not offer meaningful insights.

VI. GENERAL DISCUSSION

In this paper, we explore the use of multiple view-specific
control frames to improve telemanipulation using multi-camera
interfaces, highlighting its feasibility, advantages, and limita-
tions. The current practice of using a single control frame
requires the user to integrate information from various views
with different frames of reference and maintain a global spatial
mental model of the robot’s workspace. In contrast, switching
between view-specific control frames allows the user to work
in a local frame of reference without maintaining global spatial
awareness. However, switching control frames comes at a cost,
namely the control burden of selecting the appropriate view
to align the control frame with and a loss in momentum from
changing the frame of reference of the input commands. Users
perceive the trade-off between these costs differently depending
on their strategy (refer Table [II).

Implications for Design of Future Multi-view Interfaces:

1) Enabling switching between multiple view-aligned con-
trol frames allows users to work in a local frame of
reference without maintaining global spatial awareness.

2) A view offers visual information as well as a control
frame to move through the workspace. Therefore, when
picking a suitable viewpoint for a task, it may be
worthwhile to optimize not only for the visual objectives
but also for a reasonable frame of reference for the task.

3) Both manual and attention-based switching are feasible
approaches that can be beneficial in different ways de-
pending on the user. For example, some users experience
an additional control burden while switching between

frames and benefit from attention-based switching. Other
users experience a significant loss of momentum during
control and prefer to switch frames manually.

4) While attention-based switching is promising, the simple
design we provided needs improvement to benefit a
broader range of people. One possible approach is using
a two-step selection process such as EyePoint [33]], where
eye gaze is used to reference a view, and manual input
is used to select it as the active view. Other potential
approaches are Pinpointing [34] and ReType [35].

Limitations — Our study has some limitations that must be
addressed by future work. First, participants were given minimal
training to perform the study tasks, and how their strategies may
evolve with more training and long-term use must be explored
further. Second, our study followed a within-participants study
design, which required participants to learn and adapt to
different control frames and switching methods in a single
90-minute session. A study with separate sessions for each
condition on different days or a between-participants design
would provide participants with more time to build expertise
on each method. Third, our study involved a six-DoF robot arm
as the minimum requirement for unconstrained traversal of a
3D workspace, and participant strategies, including their ability
to adapt to different control frames, might differ across robot
designs. Because our proposed control frame switches facilitate
visual consistency between user input and robot movements
in each view, we expect these results to translate to higher
DoF robots. Future work can investigate the effects of robot
morphology on how teleoperators adapt to different control
frames. Fourth, given the knowledge gap on the impact of
switching between disparate control frames, we were unsure
about the effect of control frame changes on the safety of robot
motion and thus utilized a simulated environment. While we
expect our findings to translate to real-world scenarios, further
research is needed to substantiate this expectation. Finally,
our multi-camera interface included three static cameras with
bespoke viewpoints. Future work can examine how additional
views, different types of views, and dynamic cameras affect
the costs for switching control frames.
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