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Geometric Calibration of Single-Pixel Distance
Sensors

Carter Sifferman1, Dev Mehrotra1, Mohit Gupta1, and Michael Gleicher1

Abstract—Single-pixel distance sensors are a low-power, low-
cost option for distance ranging, and are often attached to
robots for collision detection and avoidance. The relative sensor
pose, i.e., its position and orientation relative to the robot, must
be known to relate its measurements to 3D scene geometry.
However, sensor pose is difficult to measure accurately, which
has precluded the use of single-pixel sensors from applications
such as environment mapping and precise collision avoidance. In
this work, we provide a calibration procedure that can accurately
determine the pose of a single-pixel distance sensor given only
the known motion of the robot and an unknown planar target.
We establish a geometric relationship between the relative sensor
pose, robot motion, and an arbitrary plane, and show that the
plane and sensor parameters can be recovered via nonlinear
optimization. The result is a practical procedure for sensor
calibration. We evaluate the procedure in simulation and in real
world experiments, and provide an open source implementation.
We consider two commonly available sensors (ST VL6180X and
ST VL53L3CX) and characterize them to show that while they
deviate from the idealized model used in our derivation, their
poses can be recovered precisely and used for effective 3D scene
reconstruction.

Index Terms—Calibration and Identification, Localization,
Range Sensing

I. INTRODUCTION

S INGLE-PIXEL distance sensors return only a single
approximate distance measurement. Despite being low-

fidelity and having only single-pixel resolution, these sensors
find several applications due to their small size, low cost
and minimal compute and power requirements. For example,
they are often attached to robots and vehicles as proximity
sensors for collision detection and avoidance. However, the
location and pose of these sensors relative to the platform
that they are mounted on (e.g., robot, vehicle) is typically not
known precisely. This makes it challenging to relate sensor
measurements to the precise 3D geometry of the environment,
as a small error in estimated sensor pose can result in large
errors in the reconstructed geometry. For example, if the
sensor is rotated by a few degrees, a robot might incorrectly
estimate the location of an obstacle by many centimeters.
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Fig. 1. This work enables extrinsic calibration of distance sensors
attached to a robot arm. Accurate sensor calibration is critical, as small
errors in sensor pose can lead to large errors in scene points. We provide a
calibration procedure that uses known robot motion to accurately determine
the sensor pose based on observations of an arbitrary plane. Using this
recovered sensor pose, more meaningful interpretation of sensor measurements
is possible. This is a step towards using distance sensors for precise tasks.

Because of this weakness, tasks such as environment mapping,
localization, and precise collision avoidance are infeasible with
single-pixel distance sensors alone.

In this work, we consider a single-pixel distance sensor
attached to a robot arm, and show that it is possible to recover
the sensor’s 5D pose relative to the robot via an easy-to-
perform calibration procedure. Standard camera calibration
procedures do not apply because a single-pixel sensor cannot
provide correspondences. Therefore, in order to perform cali-
bration we derive a relationship between the pose (position and
orientation) of a distance sensor relative to a robot segment,
the motion of the same robot segment, and a calibration plane
at which the sensor is pointed. Assuming the sensor makes
multiple observations of the plane, this relationship enables
us to recover the 5D pose of the sensor and 3D pose of the
plane without initial estimates or constraints on their poses. We
demonstrate this calibration procedure both in simulations and
in the real world with a single-pixel distance sensor attached
to a robot arm.

The geometric relationship that we derive is based on an
idealized sensor model in which distance is measured along
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a single direction, assuming an infinitesimal field-of-view
(FOV) along a single ray. In practice, single-pixel distance
sensors have a finite conical FOV, as well as several other
noise sources that corrupt their distance measurements. To
understand how these deviations might affect our calibration
procedure, we empirically evaluate two low-cost, low-power
distance sensors (ST VL6180X1 and ST VL53L3CX2). In
Section IV, we show empirical sensor characterization results
(precision and robustness to oblique angles), and in Section
VI, we demonstrate that our proposed geometric recovery
techniques are robust to these deviations in the real world.

Implications– Applications in which single-pixel distance
sensors are attached to a robot will benefit from our calibration
procedure as it determines the accurate pose of the sensor
relative to the robot. Our work enables applications that require
geometric accuracy, such as localization, mapping and precise
collision avoidance. Accurate calibration also allows combin-
ing multiple sensors to create a “distributed camera” where the
known relationship between sensors enables combining their
observations into a single geometric model. The calibration
procedure is particularly useful in development and laboratory
settings, where sensors are attached by hand and may be
relocated often.

II. RELATED WORK

A. Single-Pixel Distance Sensors on Robots

Single-pixel distance sensors have been used on robot arms
for obstacle detection. Early work used infrared or ultrasonic
sensors to avoid collisions [1], [2]. Avanzini et. al. [3] used
a CAD model of a robot and optimization to find optimal
distance sensor placements on the robot and implemented a
control strategy which avoids collision with humans. While
this previous work considers where to place distance sensors,
it does not consider how to determine their location once they
are placed. Tsuji et. al. [4] created an array of 54 single-
pixel distance sensors to mount on a robot, and implemented
a control strategy to prevent collisions. Similarly, rings of
distance sensors have been characterized for their precision
and theoretical performance at obstacle avoidance [5], [6], [7].
Himmelsbach et. al. [8] considered the problem of a distance
sensor detecting the robot itself and introduced a method
for predicting self-detection. In each of these cases, distance
sensors are placed manually on the respective robot, and no
geometric calibration is performed before using them to detect
and avoid collisions. Because of this, sensor poses are not
well-known, and these approaches cannot take full advantage
of the distance measurements.

Gandhi and Cervera [7] introduced a way to perform col-
lision avoidance without explicitly determining the locations
and poses of the sensors on the robot. Their approach uses
Q-learning to determine appropriate actions for avoiding a
collision without estimating where the sensors are. Since they
do not aim to recover the positions of the sensors, this method
is not suitable for other downstream tasks such as 3D mapping
of the environment and path planning.

1https://www.st.com/resource/en/datasheet/vl6180x.pdf
2https://www.st.com/resource/en/datasheet/vl53l3cx.pdf

B. Sensor Calibration

Extrinsic camera calibration is a classical problem in com-
puter vision and robotics [9]. In robotics, extrinsic calibration
of a camera in the robot’s coordinate frame is necessary to
relate 2D points in the image to 3D points in the robot’s
environment. Existing approaches rely on finding feature and
2D keypoint correspondences between images [10], [11].
Other approaches calibrate full depth cameras by matching
dense 3D geometry of moving objects across frames [12].
These approaches are not applicable to single-pixel sensors
where each measurement is only a single distance value rather
than a 3D point cloud or 2D image, making it impossible to
extract image features or perform dense geometry matching.
Shiu and Ahmad [13] introduced a method for using robot
motions to calibrate a sensor attached to a robot. However,
this requires that the sensor be able to detect the 6D pose of
some calibration object from each robot position. The closest
related work to our approach is by Watanabe et. al. [14] who
recover the 6D pose of a single-pixel distance sensor on a robot
arm by coupling the sensor with an inertial measurement unit
(IMU), and relating IMU measurements to robot motions. In
contrast, our work does not require an IMU, but instead uses
a calibration plane. To our knowledge, our work is the first
to perform geometric extrinsic calibration of a single-pixel
distance sensor on a robot using measurements from the sensor
itself.

The geometric constraint that we use was introduced by
Thanh et. al. [15] to extrinsically calibrate a single-point
laser range finder and camera pair. Using this constraint, they
recover the pose of a range finder which is facing a known
moving plane. While we use the same geometric relationship
as Thanh et. al., our approach enables extrinsic calibration
of the sensor relative to the robot, rather than relative to a
camera, and is able to simultaneously recover the sensor pose
and plane pose.

C. Sensor Characterization

The sensors that we use are based on single pho-
ton avalanche diode (SPAD) technology [16]. Recently, re-
searchers have performed detailed characterization of such
single-pixel distance sensors. Jans et. al. [17] characterize the
STMicroelectronics ST VL53L1X SPAD sensor array, which,
like our sensor, utilizes SPAD technology, but has an array of
receivers compared to the single receiver in the VL6180X and
VL53L3CX. They present results for distance measurement
accuracy, noise, error, and range of ambient illumination under
which the sensor performs reliably. Some of these results are
likely to hold true for other SPAD sensors, such as the sensors
we use. In this work, we evaluate the geometric properties of
the VL6180X and VL53L3CX that are likely to affect their
performance in our calibration procedure.

III. GEOMETRIC CONSTRAINT

A. Problem Overview

In this section, we describe our calibration procedure based
on moving the robot arm while the sensor observes a pla-
nar surface as calibration target, and derive the associated
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Fig. 2. Visualization of notation used in Section III-B. We consider
a distance sensor attached to a robot arm. The sensor’s pose in the local
coordinates of the segment it is attached to is given by its position p and
orientation as a unit vector u. Robot motions are given as a transform Ri, ti,
which relates some global coordinate system (shown at robot base) to the local
coordinate system of the segment. Sensor readings are given by mi, and the
point which the sensor sees is given by xi. The plane which the sensor sees
is described by the parameters a and d in the equation ax+d = 0. Unknown
variables are shown in red.

geometric constraint. For ease of exposition, we derive this
constraint assuming an idealized “point-imaging” model (i.e.,
sensor measuring distance along a single direction).

Consider a single-pixel distance sensor attached to a rigid
segment of a robot whose movements are known. The sen-
sor can be described by its position p = ⟨px, py, pz⟩ and
orientation, given by a unit vector u = ⟨ux, uy, uz⟩ relative
to the coordinate system of the robot segment to which it
is attached (illustrated by colored axes at the end effector in
Figure 2). The motions of the segment can be described by a
rotation R and translation t between a global coordinate system
(usually defined by the robot at its base) and the segment’s
local coordinate system.

B. Derivation of Geometric Constraint

Suppose the robot segment is moved to n positions given
by R1...Rn and t1...tn. Then, for the ith robot segment pose,
the position of the sensor in global coordinates is given by
Rip + ti, and its orientation is given by Riu.

Suppose the sensor is facing a planar surface in the world,
described by its normal vector a = ⟨ax, ay, az⟩ and offset d in
global coordinates, via the equation axx+ayy+azz+d = 0.
For the ith robot segment pose (1 ≤ i ≤ n), let the distance
to the plane measured by the sensor be mi. Assuming no
measurement noise, the coordinates of the point xi where the
sensor ‘sees’ the plane is given by:

xi = Rip + ti +miRiu . (1)

We also know that xi lies on the plane, so:

a · xi + d = 0 . (2)

Substituting 1 into 2 and rearranging provides:

(a · Rip) + a · (miRiu) = −d− ati . (3)

This equation is the key geometric constraint that relates
sensor pose, sensor distance measurements, plane parameters,
and robot motion. We assume that robot motions (R1...Rn

and t1...tn) are exactly known via precise forward kine-
matics available on industrial robots. Distance measurements

(m1...mn) are also known, although with noise. Our goal is
to recover the pose of the distance sensor via the unknown
parameters p and u, which amounts to extrinsic calibration of
the sensor relative to the robot. We also recover the parameters
(a, d) of the plane that the sensor is facing.

C. Nonlinear Solution

In the case where neither the sensor pose (p, u) nor the
plane pose (a, d) are known, but the robot motions are known,
the distance between the points x1...xn and the plane can be
minimized directly as follows:

min
p,u,a,d

n∑
i=1

((a · Rip) + a · (miRiu) + d+ ati)2

subject to ||u||2 = 1,

||a||2 = 1

(4)

The constraints on the length of a and u eliminate ex-
traneous degrees of freedom in the parameterization of the
sensor orientation and plane pose, respectively. Without them,
an optimal solution would be to set all free variables to 0.

To implement this nonlinear solver, we use the
scipy.optimize.minimize function in the SciPy
Python library3, with solver="slsqp". The SLSQP
Solver [18] uses a quasi-Newton approach that is well suited
for such non-linear least squares problems. Our open source
implementation is available online4.

Iterative non-linear solvers, such as SLSQP, require an
initial estimate for free variables, and SLSQP is not guar-
anteed to find the global minimum for any one set of
initial estimates. We prefer not to rely on an initial esti-
mate of the sensor pose. To avoid local minima, we use
a search process that solves from each of a pre-determined
set of initial estimates and chooses the found solution with
the lowest loss. We search over the following values for
u: ⟨1, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 0, 1⟩, ⟨−1, 0, 0⟩, ⟨0,−1, 0⟩, ⟨0, 0,−1⟩,
while maintaining that a = ⟨0, 0,−1⟩, p = ⟨0, 0, 0⟩ and d = 0.
Through experimentation, we found that searching over values
for u allows for a smaller search set than other variables. The
choice of a and d is arbitrary, and has little effect. While this
approach provides no guarantee of finding a global optimum,
we find that it is effective in practice. Section V-A and Section
VI show that the process finds good solutions efficiently and
reliably in simulation and the real world.

D. Degenerate Cases

The nonlinear system given in Equation 4 has eight degrees
of freedom in the unknowns; three DoF in sensor position, two
DoF in sensor orientation, and three DoF in the plane parame-
ters. Therefore, in the absence of noise, eight observations are
sufficient to find a solution for all unknowns. However, there
exist degenerate cases in which more observations are needed.

Consider the scenario where the plane parameters a and
d are known, which amounts to knowing the pose of the

3https://scipy.org/
4https://github.com/uwgraphics/SPD-Geometric-Calibration
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calibration plane. In this case, Equation 3 can be expressed
as a linear system Ax = b where rji refers to the jth column
of Ri:

A =

ar11 ar21 ar31 m1ar11 m1ar21 m1ar31
...

...
...

...
...

...
ar1n ar2n ar3n mnar1n mnar2n mnar3n



x =


px
py
pz
ux

uy

uz

 , b =

−d− at1
...

−d− atn

 (5)

Although this resulting linear system has 6 constraints,
there are only 5 DoF when the additional nonlinear con-
straint ||u||2 = 1 is included, as in Equation 4. Therefore,
rank(A) >= 5 is required for the system to have a unique
solution. If this linear system is underdetermined, then the
nonlinear system (Equation 4) to solve for both sensor and
plane parameters is also underdetermined; if the nonlinear
system has no unique solution with two of its parameters (a
and d) fixed, then it has no unique solution with them free.

1) No rotations: If no rotations are present in the robot
motions (R1...Rn are all equal), when solving the linear
system given in Equation 5, the coefficient matrix A has the
following form:

A =

ar11 ar21 ar31 m1ar11 m1ar21 m1ar31
...

...
...

...
...

...
ar11 ar21 ar31 mnar11 mnar21 mnar31


Columns 1, 2, and 3 are linearly dependent, as are columns 4,
5, and 6, meaning rank(A) = 2. As described previously, this
means the linear system is underdetermined, and the nonlinear
system given in Equation 4 is also underdetermined.

2) Measurements are same distance: Similarly to “no-
rotation” degeneracy, if each distance measurement is the same
(m1...mn are all equal), the coefficient matrix A as given in
Equation 5 is rank deficient, with the following form:

A =

ar11 ar21 ar31 mar11 mar21 mar31
...

...
...

...
...

...
ar1n ar2n ar3n mar1n mar2n mar3n


Columns 4, 5, and 6 are equal to columns 1, 2, and 3
scaled by m, so rank(A) = 3. Again, this means that the
containing nonlinear optimization problem given in Equation
4 is underdetermined.

3) No spread on calibration plane: If the points x1...xn
where the sensor senses the plane lie on a line, the plane’s
true parameters are ambiguous, as there are infinitely many
planes which pass through any one line. In this case, it is
impossible to solve for a or d.

In practice, completely degenerate cases can be avoided by
choosing random robot motions. In our real world tests in
Section VI, we did not encounter a completely degenerate
case, despite making no specific effort to avoid them beyond

moving the robot with some randomness. In Section V, we
verify these degenerate cases in simulation and show that
accuracy is harmed when near a degenerate case.

IV. SENSOR CHARACTERIZATION

Our theoretical model described so far assumes an ideal
sensor that measures distance along a single ray and provides
an exact measurement. In practice, real sensors measure dis-
tances over a finite cone, and provide noisy measurements.
Sources of noise include finite geometric effects caused by the
finite measurement cone, practical issues such as quantization,
and the inherent randomness in measurement processes. In this
section we examine two representative commercially available
sensors to evaluate how far they deviate from the ideal sensor
model and understand their effectiveness when used with our
calibration procedure.

The sensors we examine are the ST VL6180X and the ST
VL53L3CX. The VL6180X has been widely used in prior
robotics applications [4], [19], [20], while the VL53L3CX
is a newer sensor that offers a greater distance range. Both
sensors are based on single photon avalanche diode (SPAD)
technology [16], and use time of flight (ToF) to measure
distance. SPADs come coupled with a light source which
sends out a cone of light, and the sensor measures the return
time of many photons over some interval, gathers an internal
histogram of photon times-of-flight from that cone, and returns
a single value by summarizing that histogram. This process
leads to specific artifacts (systematic errors and noise) in the
resulting measurements. In the following, we investigate how
both sensors deviate from the idealized model in ways that are
relevant to our calibration procedure.

A. Precision

While we expect our calibration procedure to smooth out
noise over many measurements, understanding the magnitude
of that noise is helpful for running simulated experiments in
Section V. To measure this noise, we position either sensor
orthogonal to a plane at various distances, and measure the
standard deviation over 1000 distance measurements in Table
I. The measurements are taken in a well-lit, windowless room
against a light colored dry wall, the same environment in
which we evaluate the calibration procedure itself in Section
VI. We see that the VL53L3CX is better tuned to longer
distances, while the opposite is true for the VL6180X.

B. Oblique Measurements

Because SPADs have a finite conical field-of-view (quoted
at 25◦ for both the sensors we use), distance measurements
of a plane may vary depending on the angle of incidence. We
measure this effect with both sensors by pointing the sensors
at a plane and changing the angle of incidence only, while
maintaining the same idealized distance by tilting the plane
along an axis which runs through the point where an idealized
sensor “sees” the plane (xi in Section III-B). We find that
the VL53L3CX is robust to ± 40 ◦, and begins to under-
report distance at more extreme angles, while the VL6180X
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TABLE I
PRECISION OF SENSOR DISTANCE MEASUREMENTS

Distance
(mm)

Standard Deviation (mm)

VL53L3CX VL6180X

10 out of range 1.21

20 1.45 1.49

100 0.64 1.79

250 0.78 2.84

500 1.51 out of range
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Fig. 3. VL53L3CX distance sensor is more robust to oblique measure-
ments of a plane. Sensors were pointed at a planar surface, and the angle of
incidence with the surface was changed, while maintaining a constant distance.
While both sensors read near the idealized distance at low angles-of-incidence,
after 40 degrees, both sensors’ readings become inaccurate. We see larger
inaccuracies at oblique angles in the VL6180X.

is robust to ± 40 ◦and under-reports distances more drastically.
Therefore, when performing the calibration procedure, we
avoid oblique angles beyond what the sensors are robust to,
to prevent systematic errors.

C. Other Noise Considerations

While both the VL6180X and VL53L3CX are subject to
temperature- and voltage-dependent drift, we operate at a
constant voltage and temperature, and perform offset calibra-
tion under these conditions as instructed by the manufacturer
before using either sensor. Both sensors are also subject to
quantization noise, as they both quantize at 1mm. To overcome
this, we perform macro-averaging over one second (about 30
measurements) for each distance measurement. Small amounts
of noise in the readings effectively serve as dithering and
average out to reduce quantization noise in the macro-averaged
result.

V. SIMULATED EXPERIMENTS

We utilize the geometric relationship derived in Section III
to recover sensor and plane poses from known robot motions.
All simulations are run in Python, and motions generated are
modeled as moving coordinate frames, and are not necessarily
kinematically feasible on a given robot arm. We demonstrate
the procedure on a real robot, with kinematically feasible
motions in Section VI.
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Fig. 4. Search of six initial estimates for optimization solver results in
lower error in simulation. Blue points represent performing the optimization
procedure with only one initial estimate for the free variables, while orange
points represent picking the best of six initial estimates, based on loss.
Solutions with a very high error rate are eliminated by search over initial
estimates. 100 trials per column, 32 observations per trial.

A. Search of Initial Estimates

As discussed in Section III-C, the nonlinear SLSQP solver
has the best chance of finding a global minimum when given
a reasonable starting estimate for the free variables p, u, a, and
d. In practice, gathering this starting estimate is cumbersome,
and negates the convenience of our calibration procedure. In
Section III-C, we describe the search that we perform over
initial estimates. Through simulation, we empirically observe
that performing this search of initial estimates results in a good
solution 100% of the time for 10,000 randomly generated pos-
sible robot motions under reasonable zero-centered Gaussian
sensor noise models (σ ≤ 40mm), as shown in Figure 4. When
solving with an initial estimate search, average solution time
is 0.7 seconds on a laptop with an Intel Core i7-10750H CPU
at 2.6 GHz. This solution time is reasonable given that the
calibration procedure only needs to be run once per sensor, and
physically performing the robot motions takes much longer
than running the solver. We use this search based approach
throughout; all results shown are without the help of initial
estimates.

B. Degeneracy Analysis

We simulate the three degeneracy conditions described in
Section III-D to confirm that they are degenerate and evaluate
how solution accuracy is affected when near a degenerate
case. We simulate 100 randomly generated trials at varying
proximity to each degenerate case. Simulations of no-rotation
degeneracy are shown in Figure 5 (left), same-distance de-
generacy in Figure 5 (center), and no-spread degeneracy in
Figure 5 (right). We perform the experiments at a reasonable
scale, using robot motions which are feasible with a Universal
Robots UR5, and sensor noise similar to that found in Table
I. In each case, we see that solution accuracy decreases as
each degenerate case is approached. However, even at small
distances from each degenerate case, error in the recovered
parameters is reduced dramatically.
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Fig. 5. Simulated experiments demonstrate no-rotation, same-distance, and no-spread degeneracy. For each type of degeneracy as described in Section
III-D, error in the solved parameter (y axis) increases as the degenerate case is approached. However, relatively small deviations from each degenerate case
dramatically reduce solution error. Each box represents 100 trials, each with 32 observations and Gaussian measurement noise (µ = 0mm, σ = 0.5mm).
Diamonds indicate outliers.
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Fig. 6. More observations leads to lower error in recovered sensor
pose. Our solver is able to overcome zero-centered sensor noise by averaging
over many observations; the more observations that are available, the more
effectively noise can be smoothed and an accurate solution found. Each
box represents 100 trials with Gaussian measurement noise (µ = 0mm,
σ = 0.5mm). A few outliers in the 16 observation case have been hidden to
allow reasonable y-axis scale. Diamonds indicate outliers.

C. Effect of Varying Number of Observations

Given the presence of zero-centered sensor noise, it is
expected that, as the number of observations used to solve
for the sensor pose increases, averaging effects will smooth
over the sensor noise and the error in the solved sensor pose
will decrease. To verify this, we run the calibration procedure
in simulation with 16, 32, 64, and 128 observations and
a constant (σ = 0.5mm) sensor noise. Robot motions are
randomly generated and keep the sensor within one meter of
its starting position, while looking at a square plane two meters
across. The results of these simulations are shown in Figure
6. As expected, we find that error decreases as the number of
observations increases.

D. Effect of Varying Sensor Noise

We expect noise in any known parameters (robot motions
R1...Rn or sensor measurements m1...mn) to negatively im-
pact the accuracy of the recovered sensor pose (p,u) and
plane pose (a, d). Industrial robots, such as our test case, the
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Fig. 7. Error in solved sensor position increases with sensor noise. We
see a roughly linear relationship between sensor noise and solution error in
both the p and u parameters, and errors in position are at the same order of
magnitude as input noise. Each box represents 100 trials with 32 observations
per trial. Diamonds indicate outliers.

Universal Robots UR5, are highly precise in their motions
(quoted at ± 0.1mm 5). Of most concern is the effect that
noise in sensor measurements will have on the recovery of
the sensor pose. To evaluate this effect, we generate scenarios
in the same manner as in Section V-C, but keep the number
of observations fixed, and vary sensor noise from σ = 0mm
to σ = 15mm. The results of these simulations are shown in
Figure 7. As expected, a higher σ leads to higher error in the
recovered sensor pose. Additionally, we find that output error
is on the same order of magnitude as input error, given 32
observations of the plane.

VI. REAL WORLD EXPERIMENTS

We evaluate our calibration procedure in the real world by
attaching a distance sensor (VL6180X or VL53L3CX) to a
Universal Robots UR5 robot arm, as shown in Figure 8. The
sensor is attached to a custom 3D printed end effector to
ensure rigidity and consistency between trials. We interface
with the sensor through an Arduino Nano connected to a

5https://www.universal-robots.com/media/50588/ur5 en.pdf
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Fig. 8. We test our calibration procedure in the real world by attaching
distance sensors to a robot arm. Top: robot arm in two different poses
during calibration procedure; sensor is mounted at the end effector. Bottom:
close-up view of sensor (VL53L3CX) and Arduino on the end-effector of the
robot, as used to conduct real world experiments

Linux computer, and control the robot by sending end effector
goals as transforms via the URX Python library 6. We run
the procedure a total of 16 times, each one with a different
combination of sensor model, sensor pose, robot motions, and
plane pose, and with 32 robot motions per trial. The robot
motions are selected by hand to ensure kinematic feasibility.
Attention was paid to make sure that for each robot motion:
1) the sensor points at the plane, 2) the sensor’s angle-of-
incidence to the plane is less than 50◦, and 3) each pose is
superficially different than the last. No specific effort was made
to avoid degenerate robot motions.

A. Solution Precision

For both of our sensors, we perform the geometric calibra-
tion procedure eight times, given different robot motions, plane
poses, and sensor poses. We then cross-validate between trials
in which the sensor pose did not change to get a measure of the
calibration procedure’s precision in recovering the sensor pose.
Average precision results are shown in Table II as the average
deviation between solved sensor poses. We observe that the
solved poses of the more optically robust VL53L3CX sensor
are more precise than those of the VL6180X. In the case of the
VL53L3CX, precision in position is on the order of magnitude
of the size of the SPAD unit itself (which is 4.4 x 2.4 mm).
Our real-world position precision results are comparable to
what the IMU-based approach of [14] is able to achieve in
simulation. Real-world quantitative results are not provided
for the IMU-based approach. Our orientation precision results
cannot be directly compared to [14], as their approach recovers
three rotational degrees of freedom, while ours recovers two.

6https://github.com/SintefManufacturing/python-urx

TABLE II
PRECISION OF SOLVED SENSOR POSE IN REAL WORLD TRIALS

Sensor
Average Deviation

Position (p) Orientation (u)

VL53L3CX 3.18 mm 0.61◦

VL6180X 7.29 mm 2.01◦

B. 3D Reconstruction Using Single-Pixel Sensors

While Table II quantifies the precision of our procedure, it
does not directly establish the method’s accuracy. Because the
exact sensor pose is unknown, we assess the accuracy of our
calibrated poses indirectly, by assessing their performance in
a downstream task: 3D scene reconstruction. For each of 16
calibrated sensor poses, we point the sensor at a previously
unseen plane from 32 different robot poses. For each robot
pose, we then project a point onto the plane according to
the true observed measurement and the calibrated sensor
pose. We fit a plane to these 32 points, and measure the
average orthogonal distance from the points to the best-fit
plane (average residual). These average residuals are plotted
as blue dots in Figure 9. In each trial with the VL53L3CX
sensor, the average residual is < 2mm, indicating a high-
quality reconstruction of previously unseen planar object, and
indicating that our calibration procedure is effective.

In a world with no noise, and a perfectly calibrated sensor,
the average residual would be zero in every case, as every
projected point would lie perfectly on the best-fit plane. In
the real world, even with a perfectly calibrated sensor, the
average residual will be non-zero due to sensor noise. To test
whether our non-zero average residuals are due to sensor noise
or to poor calibration, we add small perturbations (in the range
p± 1cm, u± 10◦) to our calibrated poses and perform the
same projection and plane-fitting procedure. If our calibrated
poses are inaccurate, we would expect some of the perturbed
poses to better reconstruct the plane, and result in a lower
average residual. The average residuals resulting from these
perturbed sensor poses are plotted as orange dots in Figure
9. We find that, in almost all cases, a small perturbation
causes a higher average residual to the best-fit plane. In the
case of the VL53L3CX sensor, only two of 600 perturbed
sensor poses better reconstruct a plane than the calibrated
pose, across all trials. Similarly encouraging results are found
for the VL6180X, aside from trial 14. This experiment also
highlights the importance of accurate extrinsic calibration; it
demonstrates that, given only small inaccuracies in sensor
pose, the quality of a reconstructed scene object decreases
significantly.

VII. DISCUSSION

This paper presents a geometric relationship between sensor
pose, robot motions, and plane pose for a single-pixel distance
sensor attached to a robot arm observing a plane. We show
how this relationship allows us to perform extrinsic calibration
to simultaneously determine the 5D pose of the sensor and
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Fig. 9. Calibrated sensor pose reconstructs a previously unseen plane
better than nearly any other sensor pose: Blue points indicate our calibrated
sensor poses, while orange points indicate random perturbations of that pose
in the range p± 1cm, u± 10◦. We find that a never-before-seen plane
reconstructed using our calibrated sensor pose tends to have a lower residual
from the point cloud used to construct it when compared to small perturbations
of the same pose. This indicates that our pose is more accurate than those
perturbations, and that an inaccurate sensor pose leads to a poor reconstruction
of a plane.

3D pose of the plane. We characterize how a practical sensor
deviates from the idealized model used in our derivation. We
show empirically that our approach is able to combine multiple
observations to smooth over noise and precisely and usefully
recover sensor pose, both in simulation and the real world.

Limitations– Our sensor characterization experiments iden-
tify a key source of structured error when at an oblique
angle-of-incidence with the detected plane. While our method
is functionally robust to this error to a certain extent, our
simulations do not account for it, and additional understanding
is needed to fully mitigate its effects. Additionally, further
analysis of the effect that the selection of robot motions has on
solution precision could allow quicker and more accurate pro-
cedures with automatically generated robot motions. Our work
also assumes that the sensor is always facing the calibration
plane, and is not practical in unknown environments without
human supervision; in a less supervised setting, the solver may
need to be modified to better handle outliers. Additionally, our
work considers only a single sensor; while a set of sensors
could be treated individually, combining information across
multiple sensors and incorporating constraints on their relative
motions could result in higher accuracy of the recovered sensor
poses. Lastly, our experiments only consider a sensor mounted
on a robot joint which has a full six degrees-of-freedom.
Additional constraints may need to be implemented to recover
the pose of a sensor mounted elsewhere on the arm, as the
motion of the segment alone might not be diverse enough to
resolve all ambiguities.

In its current form, our work provides a practical procedure
to calibrate a single-pixel distance sensor attached to a robot
arm knowing only that the observations measure the same
plane. Our work allows location of the sensor and plane

without access to precise ground truth. While improvements
to the method will improve performance, we already envision
using the approach to calibrate sensors on robot arms for use
in applications that require precise interpretations of single-
pixel distance sensor measurements, such as creating collision
maps for planning.
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