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Abstract

n-board diagnostics (OBD) data contain valuable

information including real-world measurements of

vehicle powertrain parameters. These data can
be used to gain a richer data-driven understanding of complex
physical phenomena like emissions formation during combus-
tion. In this study, we develop a physics-based machine
learning framework to predict and analyze trends in engine-
out NO, emissions from diesel and diesel-hybrid heavy-duty
vehicles. This model differs from black-box machine learning
models presented in previous literature because it incorporates
engine combustion parameters that allow physical interpreta-
tion of the results. Based on chemical kinetics and the char-
acteristics of diffusive combustion, NO, emissions from
compression ignition engines primarily depend non-linearly
on three parameters: adiabatic flame temperature, the oxygen
concentration in the cylinder when the intake valves are
closed, and combustion time duration. Here these parameters
were calculated from available OBD data. Linearizing a

Introduction

ir pollution from combustion sources is implicated

in more than 100,000 deaths annually in the U.S.

alone. A major component of combustion-generated
pollution emitted from vehicles, nitrogen oxides (collectively
called NO,) are important to study because they can react in
the atmosphere to produce Ozone and acid rain, which in turn
causes eutrophication in water-based ecosystems. NO, emis-
sions are heavily regulated by the U.S. Environmental
Protection Agency (EPA) and more than half of all NO,
present in the air originate from automotive sources, mainly
diesel-powered vehicles. NO is primarily formed during the
diffusion burning portion of combustion in compression
ignition engines due to high temperature (above 1800K) and
lean fuel-air ratios. NO, is then formed through equilibrium
processes in the combustion chamber and in the atmosphere.
In modern diesel vehicles, NO; is controlled through the

use of selective catalytic reduction (SCR) aftertreatment;
however, its effective reduction and the required flow rate of
diesel exhaust fluid (DEF) highly depends on the NO,

physics-based NO, emissions prediction model provides an
opportunity to evaluate several machine learning regression
techniques. The results show that an ensemble learning
bagging-type model like random forest regression (RFR) is
highly effective in predicting engine out NO, emissions
measured by the on-board NO, sensor. We also show that
real-world OBD data has high heterogeneity with clustered
co-occurrences of vehicle parameters. In terms of accuracy,
the developed model provides an average R? value of 0.72 and
mean absolute error (MAE) of 78 ppm for different vehicle
OBD datasets, an improvement of 53% and 42% respectively
when compared to non-linear regression models, and provides
the opportunity to interpret the results because of its linkage
to physical parameters. We also perform drop-column feature
sensitivity analysis for the RFR Model and compare prediction
results with black-box deep neural network and non-linear
regression models. Based on its high accuracy and interpret-
ability, the developed RFR model has potential for use in
on-board NO, prediction in engines of varying displacement
and design.

concentration produced by the engine. Predicting and
measuring engine-out NO, is of keen interest to researchers
and engine manufacturers alike. Electrochemical NO, sensors
are commonly used in production engines both upstream and
downstream of the SCR. Though effective, sensors are expen-
sive and can result in errors, especially at low exhaust tempera-
tures [1]. Predictive models could be an effective way to elimi-
nate the upstream sensor to save cost or for use in validating
sensor performance.

Emissions prediction using data-driven methods has been
of increasing interest due to the availability of high quality
data, the emergence of advanced machine learning models,
and faster computational speeds. Data can be obtained either
from laboratory engine testing or from instrumented vehicles
under real-world driving conditions. Non-linear regression
[2], support vector machine [3], adaptive regression splines
[4], and decision trees [5] are some of the machine learning
regression techniques that are used to predict NO, emissions
using both sources of data. However, these techniques rely on
high time resolution (i.e. > 1 Hz) data for accurate predictions
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and are seldom capable of handling sparse data that is gener-
ally obtained from low-cost loggers used by telematics
providers. Furthermore, the lack of a physics basis for these
black-box techniques means that each data entry is treated as
part of an identical and independent distribution (i.i.d) and
they also fail to interpret why a prediction model behaves a
certain way for specific types of engines or vehicles.
Black-box neural network models have also been used
recently to accurately and conveniently predict emissions from
vehicle data. Techniques in this category include artificial
neural networks [6], deep neural networks with Bayesian
parameter optimization [7], and long short-term memory
(LSTM) neural networks [8, 9]. In particular, convolutional
neural networks [10] have been used to study emissions based
on imagery from computational fluid dynamic simulations
and experimental data. In the trade-oft between accuracy and
interpretability of artificial intelligence models [11], black-box
models such as these rank lowest in terms of interpretability
while having generally high accuracy. In other words, these
techniques, while accurate, cannot explain how NO, forms
inside a compression-ignition engine or be used to diagnose
why emissions are elevated under given engine conditions.
Ensemble learning models are a grey-box intermediate
between black-box models and physics-based regression
models. They have been shown to have better predictive
accuracy than popular machine learning models while
resulting in better interpretability compared to neural
networks. Ensemble learning models such as random forest,
XGBoost, GradientBoost, etc, have been successfully employed
for regression problems [12] in domains dealing with real-
world data. These include areas like chemoinformatics [13],
electricity load prediction [14], building energy prediction
[15], and vehicle fuel consumption [16, 17]. Random forest
models, which are employed in this study, have been explored
for applications closely related to vehicle emissions predictions
like forecasting combustion profiles for spark ignition engines
[18]. Other uses of random forest models include predicting
street-level particulate matter and NO, concentrations [19]
and electric vehicle energy consumption [20]. For complex
real-world applications, physics-informed models (like [21])
would be imperative in order to understand the physical and
chemical causes of observed data. Though ensemble learning
models produce good predictive accuracy, physical interpreta-
tion is required to understand variations in NO, formation
due to different engine operating conditions observed in
on-board diagnostics datasets. Selecting carefully constructed
physics-based feature variables based on physical phenomena
has potential to result in more effective and efficient predic-
tions when used in random forest models compared to
selecting raw attributes. The physics-based features also help
handle sparse datasets often obtained through OBD sampling.
In this study, a physics-based random forest regression
model is presented that accurately predicts engine-out NO,
emissions from on-board diagnostics datasets collected from
different compression-ignition engine powered vehicles.
Validation experiments are conducted to compare the
proposed model’s predictions with that of non-linear regres-
sion and deep neural network models, and also to physically
interpret the results of the random forest regression model
over a range of vehicle operating conditions and duty cycles.

A feature importance study is performed to understand varia-
tions in the effectiveness of physics-based feature variables
for predicting NO,, and to analyze the variations between
different vehicle datasets.

Methodology

Chemical Kinetics-Based NO,
Formation Model

Engine NO, is mostly formed at high temperature (> 1800 K)
in combustion following the well known Extended Zel’dovich
Mechanism. Based on previous work [22] and the mechanism
[23], engine-out NO, from a compression-ignition engine is
assumed to depend on three main parameters - Adiabatic
flame temperature (T,;,,), the oxygen concentration in the
cylinder with closed intake valves(xoz), and combustion time
duration (¢,,,,;). To emulate the chemical kinetics equation for
the high temperature NO, formation mechanism, a chemical
kinetics-based NO, formation model is developed where NO,
emission values depend on the four terms, £ o, %0, Tudiayand
1/T, 4., with a time delay of 1 second, as shown in Equation 1.
The ground truth data or observed values for engine-out NO,
are obtained from on-board sensors in the Selectic Calatylic
Reduction (SCR) system.

b c ~d —e
XNOx,theory =a* tcomb * sz * T“di“b * exp (1)
adiab

Nox,rhearyppm = XNOy theory *1000000

where, Xyoy, teory 18 the predicted mole fraction of NO,
formed with a delay of 1 second (since a time delay was
observed during initial data analysis), t.omp is the dimension-
less form of combustion time duration (¢,,,,, in seconds) which
is obtained by multiplying ¢,,,,, by engine speed (engRPM),
X0, is the concentration in mole fraction of oxygen in the
cylinder when intake valves are closed, T, is the dimension-
less adiabatic flame temperature of the combustion products
obtained by dividing T,;,, by intake manifold temperature
(intakeT), a, b, ¢, d, e are the coeflicients to be obtained through
a regression analysis. and NO,. ycoryppm 18 the predicted NO,
emission value in parts per million.

Taking a natural logarithm of the proposed physics-based
NO, Prediction Model given by Equation 1, Equation 2 is
obtained. This provides an interesting opportunity to experi-
ment with different machine learning algorithms like random
forest regression (RFR) that are more appropriate for linear
equations than on highly non-linear ones like the physics-
based NO, model given in Equation 1.

log(xNox)theory) =log(a)+b* log(tfomb ) +cxlog(xo,)

+ d*log(Tadiag)_TL

adiab

@
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Datasets and Predictive
Accuracy Metrics

The on-board diagnostics (OBD) datasets used in this study
contain 1Hz time resolution data of various engine and vehicle
parameters for five different heavy-duty compression-ignition
engine-powered vehicles, with either a hybrid or a conven-
tional drivetrain. Since NO, emissions are formed inside the
engine cylinder and feature variables are not dependent on
the battery of a hybrid vehicle, the drivetrain of the vehicles
is assumed to have negligible impact on the effectiveness of
our proposed prediction model. The transit bus (TB) dataset
is obtained from Metro Transit, a local public transportation
agency in Minneapolis, whereas the remaining four are
obtained from the FleetDNA database managed by the
National Renewable Energy Laboratory, Colorado [24]. Details
of the five datasets are presented in Table 1. The data have been
pre-processed to filter out highly erroneous, noisy measure-
ments as well as data files where vehicles have been stationary
for prolonged periods of time. However, all the important
vehicle operating conditions such as engine idling, accelera-
tion, etc., are represented in the filtered datasets. The terms
in Equation 2 were calculated in a similar way for each of these
datasets and different ensemble learning models. Their use as
part of the random forest regression model, the primary
method in this work, is explained in the following sections.

Since there is a need to statistically compare the accuracy
of NO, prediction from different models to ground-truth data,
three predictive accuracy metrics are used in the study:
Coefficient of determination (R? value), root mean square
error (RMSE), and mean absolute error (MAE). Adjusted R?
value, which is generally used to account for overfitting in
regression problems, is not required owing to the low number
of feature variables used in the model.

Physics-Based Random Forest
Regression

Random forest regression (RFR) [25] is a type of ensemble
learning model that consists of a set of decision trees (also
known as regression trees). The RFR model was chosen
because it showed better predictive accuracies than the other
ensemble models such as XGBoost and Gradient Boost for
predicting NO, from the obtained datasets. Decision trees,

m Map plot of different trips (represented by
different colors) of the vehicle in the transit bus Dataset

which are binary trees (each parent node splits into two
children nodes), help predict a target value using feature vari-
ables. Ensemble learning models like random forest involve
using multiple low-strength machine learning models in place
of a single, one-size-fits-all, high-strength one to obtain
accurate predictions in highly heterogenous datasets. An RFR
model consists of several such decision trees and predicts
values based on a voting procedure. In each decision tree of
the RFR model, every data entry or sample is assigned to nodes
that are created based on the values of the feature variables.
This sampling of entries into nodes is based on finding the
minimum sum of square residuals, which is also called
variance reduction, to split a parent node. A least-square
regression on each leaf node gives the predicted value for the
corresponding target variable values.

A sample decision tree of the RFR Model from the scikit-
learn python package [26] for predicting NO, from the TB
dataset is visualized in Figure 2. Parameters that can be tuned
for this RFR model are n,,,,, (number of decision trees),
maxDepth (maximum depth of the tree or a threshold for
length of the longest branch), and minSampleSplit (minimum
number of samples in a node that cannot be divided further).
As shown in Figure 2, the four feature variables used are:
log(t,./engRPM) (or log(tm)), log(xp,), log(T, 4iap/intakeT)

TABLE 1 Engine and route details for the different vehicle OBD datasets used for the ensemble learning regression models

Transit Bus
Dataset

Food Delivery Truck Yard Tractor

Drayage Truck Refuse Truck

Engine Model Cummins ISB6.7 PACCAR PX-7
Displacement 6.7L 6.7L
Stroke(mm)*

Bore(mm) 124*107 124*107
Drivetrain Hybrid Conventional
Attributes 92 11[0]

Data Entries 99505 81977

No. of Trips 17 207

Route Region Twin Cities, MN Denver, CO

Cummins QSB6.7 Cummins ISX15 Cummins ISL
6.7L 14.9L 8.9L

124*107 169*137 145*114
Conventional Conventional Conventional
133 105 143

54259 183865 147515

70 437 80

New York City, NY Long Beach, CA Columbus, OH
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m A sample base decision tree of random forest regression model on the transit bus dataset with nyees = 5,

maxDepth = 3, minSampleSplit = 300

log(T_adiab/intakeT) <= 1.578
mse = 0.287
samples = 100.0%
value = -8.073
log(t_res/engRPM) <= -1.568 “(log(x_02) <= -2.191
mse = 0.249 mse = 0.114
samples = 35.0% samples = 65.0%
value = -8.555 value = -7.813
-1/T_adiab <= -0.001 log(t_res/engRPM) <= -1.247 log(x_02) <= -2.319
mse = 0.293 mse = 0.159 mse = 0.101
samples = 14.0% samples = 21.0% samples = 32.9%
value = -8.79 value = -8.399 value = -7.97
mse = 0.639 mse = 0.204 mse = 0.095 mse = 0.245 mse = 0.098 mse = 0.091 mse = 0.263
samples = 2.4% samples = 11.5% samples = 13.3% samples = 7.7% samples = 14.6% samples = 18.3% samples = 1.1%
value = -9.04 value = -8.738 value = -8.469 value = -8.279 value = -8.06 value = -7.898 value = -8.057

(orlog (ZT,,,,,,-ah )), and 1/T,4,,- The target variable is log(xyo,). In
Figure 2, each node contains information about the feature
variable used for splitting, mean square error (mse) for samples
in the node, percentage of the samples present in the node
(sample), and the target variable value (value).

For the large vehicle datasets used here, more aggressively
chosen parameters are required for accurate prediction, hence
the RFR Model parameters chosen for NO, predictions are:
Nyrees = 25, maxDepth = 20, and minSampleSplit = 15. These
values are the result of tuning based on a drop-column sensi-
tivity analysis of the RFR Model, and were chosen as a tradeoft
between variance and bias.

Results

Prediction Results for
Different Datasets

An RFR model with the aforementioned parameters is used
to predict NO, emissions for the five OBD datasets under
consideration. The predictive accuracies of the five datasets,
transit bus (TB), food delivery truck (FDT), yard tractor (YT),
drayage truck (DT), and refuse truck (RT) are presented in
Table 2. A scatter plot of the NO, values prediction using the
RFR model for the TB dataset that contains measurements
obtained from on-board sensors on a real-world vehicle trip

TABLE 2 Predictive acccuracy metrics for NO, prediction for
different vehicle datasets using random forest regression

Dataset R? RMSE MAE

B 0.7930 68.83 45.38
FDT 0.7831 127.00 70.45
YT 0.6103 129.78 84.54
DT 0.5129 213.21 62.76
RT 0.8754 22317 130.18

is shown in Figure 3. The scatter plots for predictions of the
other datasets are provided in Appendix A.

K-Fold Cross Validation
Predictions

Cross Validation, or out-of-sample testing, is used to check
the effectiveness of machine learning models on data entries
it was not trained on. The random forest regression model is
trained on 80% of the dataset and uses the entire dataset to
obtain a prediction. To assess the generalization of the model
and whether it performs as well on the testing data as it has
on the training data, a K-Fold Cross Validation is used. Due
to the availability of relatively large datasets consisting of
different vehicle operating conditions, K=10 was chosen.

In a 10-fold cross validation prediction, the dataset is split
into 10 equal-sized sets with entries chosen in random, the
model is trained on 9 sets and tested on one. The process is

GRS Scatter plot of NO, prediction using Random
Forest Regression Model for the Transit Bus dataset
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TABLE 3 Predictive acccuracy metrics for 10-fold cross-
validated NO, prediction for different vehicle datasets using
random forest regression

Dataset R? RMSE MAE
B 0.6933 83.63 54.99
FDT 0.7278 141.72 79.21
YT 0.4510 153.25 99.14
DT 0.4489 222.49 66.91
RT 0.8565 238.41 139.21

then rotated until all 10 sets are used as testing data once. In
this way, the predicted value for each entry in the dataset is
computed using an estimator fitted on its corresponding
training set. This is a popular method to check for model
overfitting [27]. The accuracy metrics of the cross-validated
predictions for the five datasets are presented in Table 3.

By comparing predictive accuracies in Table 2 with the
accuracy metrics of the cross-validated predictions in Table 3,
we observed that the R?, RMSE, and MAE values do not
reduce significantly during the cross-validation analysis.
Hence, the RFR model used to predict NO, values from the
five datasets is not significantly overfitting for out-of-sample
data and hence is a mathematically appropriate method for
accurately predicting NO, emissions.

Comparison of Proposed
Model with Non-Linear
Regression and Deep Neural
Network

Ensemble machine learning models like Random Forest
Regression are shown to be effective for NO, prediction. The
predictive accuracy metrics of the RFR model for the five
datasets are compared with results from a physics-based non-
linear regression model and a deep neural network. These
comparisons are presented in Figure 4. The non-linear regres-
sion (NLR) model utilized the curve_fit function coupled with
Equation 2, and the deep neural network (DNN) utilized the
MLPRegressor function (multi-layer perceptron), both from
the Scikit-Learn python package. We observe that the RFR
model consistently produces better R, RMSE, and MAE
metrics for all the five vehicle datasets when compared to the
corresponding NLR and DNN model predictions. The RT
dataset has the highest R? score for the RFR model among all
the datasets, and also has the highest percentage increase in
R? score when compared to its corresponding NLR prediction,
while the TB dataset has lowest RMSE and MAE error among
all the datasets. The NLR model for the YT, DT, and RT
datasets is observed to be highly ineffective in predicting
NO, emissions.

Feature Importance Analysis

Different ensemble models such as random forest regres-
sion, AdaBoost Regression, bagging regression, extra trees
regression, gradient boost regression, and XGBoost regres-
sion from the Scikit-Learn Ensemble python package were

m Comparison of predictive accuracy metrics
between Random Forest Regression (RFR), Non-Linear

Regression (NLR), and Deep Neural Network (DNN) NO,
prediction models used on different vehicle datasets

B FDT YT DT RT

used to predict NO, values. A feature importance (FI) study
was performed to analyze how effective each of the feature
variables is in predicting the target variable. FI for regres-
sion trees and random forest models describes the sum of
decrease in the node impurity (in this case, the mean square
error) weighted by the probability of a sample reaching that
node (number of samples in a node divided by total number
of samples). It is calculated using the formula given in

Equation 3 [28].
nij = Wj* Cj = Wi j % Cies,j = Wrighe, j * Crighj

ni;
Zj:node j splits on feature i ! (3)

niy
k:all nodes

fi=

where ni; is the importance of node j, wj, Wieg, j, Wyigny, are
the weights or probability of samples ending in the node j, the
left child of node j, and right child of node j respectively. C;
are the impurities (in this case, MSE) of node j, the left child
of node j and right child of node j respectively. fi; is the feature
importance of a feature ’1’.

The FIs of the four terms in Equation 2 for the different
ensemble models and the TB dataset are plotted in Figure 5.
We note that the FIs are fairly consistent between the different
models for a given dataset. For the TB dataset, the combina-
tion of log|Taiw | and —1/T,4,, shows the highest
feature importance. R

Figure 6 shows the FIs for the three terms (here, log ( T adiab )
and —1/T,,,,, are combined for convenient interpretation) for
the five vehicle datasets used in this study. We notice that the
Fls vary significantly between the different vehicle datasets.
The differences between the datasets responsible for the varia-
tion include engine model, vehicle purpose/driving pattern,
engine duty cycle, and environmental factors (like humidity,
elevation, etc). The R* score for NO, prediction using RFR
model for the corresponding datasets are also plotted on
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m Feature Importance study for the Transit Bus
dataset for different ensemble learning models

M log(tres®) mlog(x02) log(T_adiab”?) m-1/Tadiab
XGBoost [N |
Gradient Boost [N |
Extra Trees [N I
Bagging I |
AdaBoost [ 1
Random Forest [ H
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Feature Importance

m Feature Importance variations and

corresponding R? score for the random forest regression NO,
prediction using the five vehicle datasets

m [og(tres”) mmmlog(x02) log(T_adiab?)-1/Tadiab =e=R2
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Figure 6. We notice that the R* score correlates inversely with
the the FI of the T, related terms. The lower the FI of
log|( T adiab ) —1/ T 4> higher is the R? score and vice versa.

Discussion

Physical Interpretation

From the results, we observe that ensemble learning models,
especially random forest regression, are highly effective at
accurately predicting NO, values given an on-board diagnos-
tics dataset. The four feature variables are computed and care-
fully selected to emulate the general kinetics equation of NO,
formation. Grey-box models are generally difficult to inter-
pret; however, RFR models combined with physics-based
calculated parameters are shown here to be an outlier among
models due to their advantageous trade-off between interpret-
ability and accuracy. We observed that the predictive accura-
cies of the RFR model were significantly better than the previ-
ously proposed NLR and DNN models (Figure 4), and
produced accurate results for the five diverse vehicle datasets
used (Table 1). Using a feature importance study (Figure 6

and Figure 5) and regression tree visualizations (Figure 2),
the model was also shown to be physically interpretable.

The effectiveness of the RFR model predictions further
strengthens the stated assumption that NO, emissions forma-
tion in a compression-ignition engine in real-world conditions
is highly dependent on the operating conditions of the specific
engine. Thanks to the vastly different vehicle datasets used in
this study, the predictive accuracies of the RFR model changed
with the duty cycles of the engine. For example, datasets with
the highest and lowest R? score among the five datasets were
the refuse truck (RT) and drayage truck (DT), respectively.
The refuse truck had duty cycles with very limited vehicle
operating conditions: short acceleration events between
frequent stops on the road, short braking events, and frequent
reverse driving events (which are equivalent to short accelera-
tion events for the engine). A random forest regression model
is able to effectively sample data entries into leaf nodes that
denote the non-linear relationship between the four feature
variables describing the variations of NO, formation in an
engine. Hence, high R? values are observed for the RT dataset.
The RMSE and MAE values are high due to the fact that the
magnitude of NO, emissions from the refuse truck are gener-
ally higher than the other vehicles. While the RT and DT
operating conditions are somewhat uniform, the DT has a
more diverse duty cycle. Here, many vehicle operating condi-
tions are encountered as the vehicle is driven on the busy
roadways of Long Beach, CA. The vehicle also transports
goods from the coast to facilities 50 miles away on state
highways. This justifies the comparatively weak R? score for
the NO, prediction using the RFR model, which is still higher
than for predictions using the NLR model.

Comparing with DWC Pattern
Detection

While vehicle operating conditions are an important factor
in the predictive effectiveness of the random forest regression
models in NO, prediction, it is also worthwhile to consider
anomalous driving events that could be driving inaccuracy
in the model. The Divergent Window Co-occurrence (DWC)
Pattern Detection algorithm used previously by the authors
[22] is a method to identify repetitive temporal events with
high prediction error (or divergence) from the physics-based
non-linear regression (NLR) model (given by Equation 2). The
algorithm analyzes these divergent data entries with their
corresponding raw attributes present in the OBD dataset like
engine speed, fuel mass flow rate, etc., and outputs statistically
significant co-occurrence patterns of these attributes. The
resultant DWC patterns provide insights into vehicle oper-
ating conditions or driving patterns that are inadequately
described by the physics-based NO, prediction model.
Similarities can be found between these DWC patterns and
the leaf nodes in decision trees of the RFR model. Each leaf
node represents a specific range of values for a subset of the
four terms in Equation 2, similar to that of DWC patterns that
look at discretized attribute magnitudes over moving time
windows. However, the RFR model uses the four terms
directly from the Equation 2, whereas the DWC Pattern-based
framework analyzes OBD dataset attributes like engine speed,
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exhaust gas recirculation mass flow rate, fuel mass flow rate,
etc that are used to calculate these four terms. Another differ-
ence is that the RFR model explores all operating conditions
whereas the DWC Pattern-based framework focuses only at
events that are responsible for high prediction error. Hence,
both these methods are effective ways to look at driving
patterns from a vehicle dataset.

Future Work

Future work related to ensemble learning approaches for NO,
emissions prediction could include developing a framework
to stochastically analyze the regression function at all leaf
nodes. Examining random forest regression using different
sets of raw attributes from the OBD datasets is also of interest,
including comparison of the predictive accuracies and physical
interpretation with the model using the four physics-based
feature variables. Using each of the attribute sets, it would also
be interesting to look at the corresponding DWC Patterns and
correlate them with the leaf node functions from the RFR
Model. Duty cycle parameters like average power, average
engine speed, kinetic intensity, etc could be introduced to
quantitatively explain the variation in predictive accuracies
among the five vehicle datasets using the RFR model.
Furthermore, the ensemble models could be trained on entire
trips instead of a random test-train split, to evaluate the effec-
tiveness of the model in predicting NO, emissions for entirely
unseen trips in real-time. Future work will also include
predicting vehicle performance parameters other than NO,
emissions such as Fuel economy and vehicle driving range.
Predictive analytics like fault diagnostics for different subsys-
tems in the vehicles may also be explored.

Conclusion

In this work, a linearized form of a physics-based NO, forma-
tion equation was used to accurately predict compression-
ignition engine-out NO, emissions values from five vehicle
on-board diagnostics (OBD) datasets. Ensemble machine
learning models, with focus on random forest regression
(RFR), were observed to provide high predictive accuracies.
Using OBD datasets from five different compression-ignition
engine powered vehicles, the RFR model was independently
evaluated to predict NO, emissions after training the model
on 80% of the datasets. Prediction using the RFR model
provides on an average around 53% better R? score, 27% lower
RMSE, and 42% lower MAE error compared to predictions
using non-linear regression. The performance and interpret-
ability of the RFR model was validated through several experi-
ments and analyses. A K-fold cross-validation was used to
perform out-of-sample testing to prove that the model is not
significantly overfitting for the testing dataset. The RFR model
predictions were compared with that from non-linear regres-
sion and deep neural network models for the five vehicle
datasets. A feature importance test was also performed to
evaluate the effectiveness of each feature variable for different
ensemble learning models like random forest, AdaBoost,

Gradient Boost, etc. The variation in feature importances for
different datasets were studied, and the R? score was observed
to be inversely proportionaly to the feature importance of
T.4iap terms in the linearized physics-based NO,
formation equation.

Although the RFR model is generally a grey-box model,
it becomes partially physically interpretable through the use
of physics-based terms, and analyses of their feature impor-
tance distributions. The high effectiveness of the model
further strengthens the assumption that NO, emissions
formation in a diesel engine is a complex set of processes that
varies with vehicle operating conditions. These operating
conditions can be represented by the leaf nodes of individual
regression trees in the RFR model. Furthermore, the non-
linear leaf-node functions were identified to be similar in
many ways to the divergent window co-occurrence patterns
that were used to analyze driving features where the general
physics-based non-linear regression model becomes inade-
quate in explaining NO, emissions values. It is generally
concluded that ensemble learning models such as RFR are
more effective than black-box models like neural networks
for accurately predicting vehicle emissions from large sparse
datasets, while also providing the physical interpretability
that non-linear regression models possess.
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DNN - Deep Neural Network Definitions
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