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Abstract

On-board diagnostics (OBD) data contain valuable 
information including real-world measurements of 
vehicle powertrain parameters. These data can 

be used to gain a richer data-driven understanding of complex 
physical phenomena like emissions formation during combus-
tion. In this study, we  develop a physics-based machine 
learning framework to predict and analyze trends in engine-
out NOx emissions from diesel and diesel-hybrid heavy-duty 
vehicles. This model differs from black-box machine learning 
models presented in previous literature because it incorporates 
engine combustion parameters that allow physical interpreta-
tion of the results. Based on chemical kinetics and the char-
acteristics of diffusive combustion, NOx emissions from 
compression ignition engines primarily depend non-linearly 
on three parameters: adiabatic flame temperature, the oxygen 
concentration in the cylinder when the intake valves are 
closed, and combustion time duration. Here these parameters 
were calculated from available OBD data. Linearizing a 

physics-based NOx emissions prediction model provides an 
opportunity to evaluate several machine learning regression 
techniques. The results show that an ensemble learning 
bagging-type model like random forest regression (RFR) is 
highly effective in predicting engine out NOx emissions 
measured by the on-board NOx sensor. We also show that 
real-world OBD data has high heterogeneity with clustered 
co-occurrences of vehicle parameters. In terms of accuracy, 
the developed model provides an average R2 value of 0.72 and 
mean absolute error (MAE) of 78 ppm for different vehicle 
OBD datasets, an improvement of 53% and 42% respectively 
when compared to non-linear regression models, and provides 
the opportunity to interpret the results because of its linkage 
to physical parameters. We also perform drop-column feature 
sensitivity analysis for the RFR Model and compare prediction 
results with black-box deep neural network and non-linear 
regression models. Based on its high accuracy and interpret-
ability, the developed RFR model has potential for use in 
on-board NOx prediction in engines of varying displacement 
and design.

Introduction

Air pollution from combustion sources is implicated 
in more than 100,000 deaths annually in the U.S. 
alone. A major component of combustion-generated 

pollution emitted from vehicles, nitrogen oxides (collectively 
called NOx) are important to study because they can react in 
the atmosphere to produce Ozone and acid rain, which in turn 
causes eutrophication in water-based ecosystems. NOx emis-
sions are heavily regulated by the U.S. Environmental 
Protection Agency (EPA) and more than half of all NOx 
present in the air originate from automotive sources, mainly 
diesel-powered vehicles. NO is primarily formed during the 
diffusion burning portion of combustion in compression 
ignition engines due to high temperature (above 1800K) and 
lean fuel-air ratios. NO2 is then formed through equilibrium 
processes in the combustion chamber and in the atmosphere.

In modern diesel vehicles, NOx is controlled through the 
use of selective catalytic reduction (SCR) aftertreatment; 
however, its effective reduction and the required flow rate of 
diesel exhaust f luid (DEF) highly depends on the NOx 

concentration produced by the engine. Predicting and 
measuring engine-out NOx is of keen interest to researchers 
and engine manufacturers alike. Electrochemical NOx sensors 
are commonly used in production engines both upstream and 
downstream of the SCR. Though effective, sensors are expen-
sive and can result in errors, especially at low exhaust tempera-
tures [1]. Predictive models could be an effective way to elimi-
nate the upstream sensor to save cost or for use in validating 
sensor performance.

Emissions prediction using data-driven methods has been 
of increasing interest due to the availability of high quality 
data, the emergence of advanced machine learning models, 
and faster computational speeds. Data can be obtained either 
from laboratory engine testing or from instrumented vehicles 
under real-world driving conditions. Non-linear regression 
[2], support vector machine [3], adaptive regression splines 
[4], and decision trees [5] are some of the machine learning 
regression techniques that are used to predict NOx emissions 
using both sources of data. However, these techniques rely on 
high time resolution (i.e. > 1 Hz) data for accurate predictions 
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and are seldom capable of handling sparse data that is gener-
ally obtained from low-cost loggers used by telematics 
providers. Furthermore, the lack of a physics basis for these 
black-box techniques means that each data entry is treated as 
part of an identical and independent distribution (i.i.d) and 
they also fail to interpret why a prediction model behaves a 
certain way for specific types of engines or vehicles.

Black-box neural network models have also been used 
recently to accurately and conveniently predict emissions from 
vehicle data. Techniques in this category include artificial 
neural networks [6], deep neural networks with Bayesian 
parameter optimization [7], and long short-term memory 
(LSTM) neural networks [8, 9]. In particular, convolutional 
neural networks [10] have been used to study emissions based 
on imagery from computational fluid dynamic simulations 
and experimental data. In the trade-off between accuracy and 
interpretability of artificial intelligence models [11], black-box 
models such as these rank lowest in terms of interpretability 
while having generally high accuracy. In other words, these 
techniques, while accurate, cannot explain how NOx forms 
inside a compression-ignition engine or be used to diagnose 
why emissions are elevated under given engine conditions.

Ensemble learning models are a grey-box intermediate 
between black-box models and physics-based regression 
models. They have been shown to have better predictive 
accuracy than popular machine learning models while 
resulting in better interpretability compared to neural 
networks. Ensemble learning models such as random forest, 
XGBoost, GradientBoost, etc, have been successfully employed 
for regression problems [12] in domains dealing with real-
world data. These include areas like chemoinformatics [13], 
electricity load prediction [14], building energy prediction 
[15], and vehicle fuel consumption [16, 17]. Random forest 
models, which are employed in this study, have been explored 
for applications closely related to vehicle emissions predictions 
like forecasting combustion profiles for spark ignition engines 
[18]. Other uses of random forest models include predicting 
street-level particulate matter and NOx concentrations [19] 
and electric vehicle energy consumption [20]. For complex 
real-world applications, physics-informed models (like [21]) 
would be imperative in order to understand the physical and 
chemical causes of observed data. Though ensemble learning 
models produce good predictive accuracy, physical interpreta-
tion is required to understand variations in NOx formation 
due to different engine operating conditions observed in 
on-board diagnostics datasets. Selecting carefully constructed 
physics-based feature variables based on physical phenomena 
has potential to result in more effective and efficient predic-
tions when used in random forest models compared to 
selecting raw attributes. The physics-based features also help 
handle sparse datasets often obtained through OBD sampling.

In this study, a physics-based random forest regression 
model is presented that accurately predicts engine-out NOx 
emissions from on-board diagnostics datasets collected from 
different compression-ignition engine powered vehicles. 
Validation experiments are conducted to compare the 
proposed model’s predictions with that of non-linear regres-
sion and deep neural network models, and also to physically 
interpret the results of the random forest regression model 
over a range of vehicle operating conditions and duty cycles. 

A feature importance study is performed to understand varia-
tions in the effectiveness of physics-based feature variables 
for predicting NOx, and to analyze the variations between 
different vehicle datasets.

Methodology

Chemical Kinetics-Based NOx 
Formation Model
Engine NOx is mostly formed at high temperature (> 1800 K) 
in combustion following the well known Extended Zel’dovich 
Mechanism. Based on previous work [22] and the mechanism 
[23], engine-out NOx from a compression-ignition engine is 
assumed to depend on three main parameters - Adiabatic 
flame temperature (Tadiab), the oxygen concentration in the 
cylinder with closed intake valves(xO2), and combustion time 
duration (tcomb). To emulate the chemical kinetics equation for 
the high temperature NOx formation mechanism, a chemical 
kinetics-based NOx formation model is developed where NOx 
emission values depend on the four terms, t̂ comb, xO2, T̂adiab and 
1/Tadiab with a time delay of 1 second, as shown in Equation 1. 
The ground truth data or observed values for engine-out NOx 
are obtained from on-board sensors in the Selectic Calatylic 
Reduction (SCR) system.
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where, xNOx, theory is the predicted mole fraction of NOx 
formed with a delay of 1 second (since a time delay was 
observed during initial data analysis), t̂ comb is the dimension-
less form of combustion time duration (tcomb in seconds) which 
is obtained by multiplying tcomb by engine speed (engRPM), 
xO2 is the concentration in mole fraction of oxygen in the 
cylinder when intake valves are closed, T̂adiab is the dimension-
less adiabatic flame temperature of the combustion products 
obtained by dividing Tadiab by intake manifold temperature 
(intakeT), a, b, c, d, e are the coefficients to be obtained through 
a regression analysis. and NOx, theoryppm is the predicted NOx 
emission value in parts per million.

Taking a natural logarithm of the proposed physics-based 
NOx Prediction Model given by Equation 1, Equation 2 is 
obtained. This provides an interesting opportunity to experi-
ment with different machine learning algorithms like random 
forest regression (RFR) that are more appropriate for linear 
equations than on highly non-linear ones like the physics-
based NOx model given in Equation 1.
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Datasets and Predictive 
Accuracy Metrics
The on-board diagnostics (OBD) datasets used in this study 
contain 1Hz time resolution data of various engine and vehicle 
parameters for five different heavy-duty compression-ignition 
engine-powered vehicles, with either a hybrid or a conven-
tional drivetrain. Since NOx emissions are formed inside the 
engine cylinder and feature variables are not dependent on 
the battery of a hybrid vehicle, the drivetrain of the vehicles 
is assumed to have negligible impact on the effectiveness of 
our proposed prediction model. The transit bus (TB) dataset 
is obtained from Metro Transit, a local public transportation 
agency in Minneapolis, whereas the remaining four are 
obtained from the FleetDNA database managed by the 
National Renewable Energy Laboratory, Colorado [24]. Details 
of the five datasets are presented in Table 1. The data have been 
pre-processed to filter out highly erroneous, noisy measure-
ments as well as data files where vehicles have been stationary 
for prolonged periods of time. However, all the important 
vehicle operating conditions such as engine idling, accelera-
tion, etc., are represented in the filtered datasets. The terms 
in Equation 2 were calculated in a similar way for each of these 
datasets and different ensemble learning models. Their use as 
part of the random forest regression model, the primary 
method in this work, is explained in the following sections.

Since there is a need to statistically compare the accuracy 
of NOx prediction from different models to ground-truth data, 
three predictive accuracy metrics are used in the study: 
Coefficient of determination (R2 value), root mean square 
error (RMSE), and mean absolute error (MAE). Adjusted R2 
value, which is generally used to account for overfitting in 
regression problems, is not required owing to the low number 
of feature variables used in the model.

Physics-Based Random Forest 
Regression
Random forest regression (RFR) [25] is a type of ensemble 
learning model that consists of a set of decision trees (also 
known as regression trees). The RFR model was chosen 
because it showed better predictive accuracies than the other 
ensemble models such as XGBoost and Gradient Boost for 
predicting NOx from the obtained datasets. Decision trees, 

which are binary trees (each parent node splits into two 
children nodes), help predict a target value using feature vari-
ables. Ensemble learning models like random forest involve 
using multiple low-strength machine learning models in place 
of a single, one-size-fits-all, high-strength one to obtain 
accurate predictions in highly heterogenous datasets. An RFR 
model consists of several such decision trees and predicts 
values based on a voting procedure. In each decision tree of 
the RFR model, every data entry or sample is assigned to nodes 
that are created based on the values of the feature variables. 
This sampling of entries into nodes is based on finding the 
minimum sum of square residuals, which is also called 
variance reduction, to split a parent node. A least-square 
regression on each leaf node gives the predicted value for the 
corresponding target variable values.

A sample decision tree of the RFR Model from the scikit-
learn python package [26] for predicting NOx from the TB 
dataset is visualized in Figure 2. Parameters that can be tuned 
for this RFR model are ntrees (number of decision trees), 
maxDepth (maximum depth of the tree or a threshold for 
length of the longest branch), and minSampleSplit (minimum 
number of samples in a node that cannot be divided further). 
As shown in Figure 2, the four feature variables used are: 
log(tres/engRPM) (or log tres( )), log(xO2), log(Tadiab/intakeT) 

TABLE 1 Engine and route details for the different vehicle OBD datasets used for the ensemble learning regression models

Dataset
Transit Bus Food Delivery Truck Yard Tractor Drayage Truck Refuse Truck
(TB) (FDT) (YT) (DT) (RT)

Engine Model Cummins ISB6.7 PACCAR PX-7 Cummins QSB6.7 Cummins ISX15 Cummins ISL

Displacement 6.7L 6.7L 6.7L 14.9L 8.9L

Stroke(mm)*

Bore(mm) 124*107 124*107 124*107 169*137 145*114

Drivetrain Hybrid Conventional Conventional Conventional Conventional

Attributes 92 110 133 105 143

Data Entries 99505 81977 54259 183865 147515

No. of Trips 17 207 70 437 80

Route Region Twin Cities, MN Denver, CO New York City, NY Long Beach, CA Columbus, OH

 FIGURE 1  Map plot of different trips (represented by 
different colors) of the vehicle in the transit bus Dataset
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(or log Tadiab( )), and 1/Tadiab. The target variable is log(xNOx). In 
Figure 2, each node contains information about the feature 
variable used for splitting, mean square error (mse) for samples 
in the node, percentage of the samples present in the node 
(sample), and the target variable value (value).

For the large vehicle datasets used here, more aggressively 
chosen parameters are required for accurate prediction, hence 
the RFR Model parameters chosen for NOx predictions are: 
ntrees = 25, maxDepth = 20, and minSampleSplit = 15. These 
values are the result of tuning based on a drop-column sensi-
tivity analysis of the RFR Model, and were chosen as a tradeoff 
between variance and bias.

Results

Prediction Results for 
Different Datasets
An RFR model with the aforementioned parameters is used 
to predict NOx emissions for the five OBD datasets under 
consideration. The predictive accuracies of the five datasets, 
transit bus (TB), food delivery truck (FDT), yard tractor (YT), 
drayage truck (DT), and refuse truck (RT) are presented in 
Table 2. A scatter plot of the NOx values prediction using the 
RFR model for the TB dataset that contains measurements 
obtained from on-board sensors on a real-world vehicle trip 

is shown in Figure 3. The scatter plots for predictions of the 
other datasets are provided in Appendix A.

K-Fold Cross Validation 
Predictions
Cross Validation, or out-of-sample testing, is used to check 
the effectiveness of machine learning models on data entries 
it was not trained on. The random forest regression model is 
trained on 80% of the dataset and uses the entire dataset to 
obtain a prediction. To assess the generalization of the model 
and whether it performs as well on the testing data as it has 
on the training data, a K-Fold Cross Validation is used. Due 
to the availability of relatively large datasets consisting of 
different vehicle operating conditions, K=10 was chosen.

In a 10-fold cross validation prediction, the dataset is split 
into 10 equal-sized sets with entries chosen in random, the 
model is trained on 9 sets and tested on one. The process is 

 FIGURE 2  A sample base decision tree of random forest regression model on the transit bus dataset with ntrees = 5, 
maxDepth = 3, minSampleSplit = 300

TABLE 2 Predictive acccuracy metrics for NOx prediction for 
different vehicle datasets using random forest regression

Dataset R2 RMSE MAE
TB 0.7930 68.83 45.38

FDT 0.7831 127.00 70.45

YT 0.6103 129.78 84.54

DT 0.5129 213.21 62.76

RT 0.8754 223.17 130.18

 FIGURE 3  Scatter plot of NOx prediction using Random 
Forest Regression Model for the Transit Bus dataset
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then rotated until all 10 sets are used as testing data once. In 
this way, the predicted value for each entry in the dataset is 
computed using an estimator fitted on its corresponding 
training set. This is a popular method to check for model 
overfitting [27]. The accuracy metrics of the cross-validated 
predictions for the five datasets are presented in Table 3.

By comparing predictive accuracies in Table 2 with the 
accuracy metrics of the cross-validated predictions in Table 3, 
we observed that the R2, RMSE, and MAE values do not 
reduce significantly during the cross-validation analysis. 
Hence, the RFR model used to predict NOx values from the 
five datasets is not significantly overfitting for out-of-sample 
data and hence is a mathematically appropriate method for 
accurately predicting NOx emissions.

Comparison of Proposed 
Model with Non-Linear 
Regression and Deep Neural 
Network
Ensemble machine learning models like Random Forest 
Regression are shown to be effective for NOx prediction. The 
predictive accuracy metrics of the RFR model for the five 
datasets are compared with results from a physics-based non-
linear regression model and a deep neural network. These 
comparisons are presented in Figure 4. The non-linear regres-
sion (NLR) model utilized the curve_fit function coupled with 
Equation 2, and the deep neural network (DNN) utilized the 
MLPRegressor function (multi-layer perceptron), both from 
the Scikit-Learn python package. We observe that the RFR 
model consistently produces better R2, RMSE, and MAE 
metrics for all the five vehicle datasets when compared to the 
corresponding NLR and DNN model predictions. The RT 
dataset has the highest R2 score for the RFR model among all 
the datasets, and also has the highest percentage increase in 
R2 score when compared to its corresponding NLR prediction, 
while the TB dataset has lowest RMSE and MAE error among 
all the datasets. The NLR model for the YT, DT, and RT 
datasets is observed to be highly ineffective in predicting 
NOx emissions.

Feature Importance Analysis
Different ensemble models such as random forest regres-
sion, AdaBoost Regression, bagging regression, extra trees 
regression, gradient boost regression, and XGBoost regres-
sion from the Scikit-Learn Ensemble python package were 

used to predict NOx values. A feature importance (FI) study 
was performed to analyze how effective each of the feature 
variables is in predicting the target variable. FI for regres-
sion trees and random forest models describes the sum of 
decrease in the node impurity (in this case, the mean square 
error) weighted by the probability of a sample reaching that 
node (number of samples in a node divided by total number 
of samples). It is calculated using the formula given in 
Equation 3 [28].
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where nij is the importance of node j, wj, wleft, j, wright, j are 
the weights or probability of samples ending in the node j, the 
left child of node j, and right child of node j respectively. Cj 
are the impurities (in this case, MSE) of node j, the left child 
of node j and right child of node j respectively. fii is the feature 
importance of a feature ’i’.

The FIs of the four terms in Equation 2 for the different 
ensemble models and the TB dataset are plotted in Figure 5. 
We note that the FIs are fairly consistent between the different 
models for a given dataset. For the TB dataset, the combina-
tion of log T adiab

�( ) and −1/Tadiab shows the highest 
feature importance.

Figure 6 shows the FIs for the three terms (here, log T adiab
�( ) 

and −1/Tadiab are combined for convenient interpretation) for 
the five vehicle datasets used in this study. We notice that the 
FIs vary significantly between the different vehicle datasets. 
The differences between the datasets responsible for the varia-
tion include engine model, vehicle purpose/driving pattern, 
engine duty cycle, and environmental factors (like humidity, 
elevation, etc). The R2 score for NOx prediction using RFR 
model for the corresponding datasets are also plotted on 

TABLE 3 Predictive acccuracy metrics for 10-fold cross-
validated NOx prediction for different vehicle datasets using 
random forest regression

Dataset R2 RMSE MAE
TB 0.6933 83.63 54.99

FDT 0.7278 141.72 79.21

YT 0.4510 153.25 99.14

DT 0.4489 222.49 66.91

RT 0.8565 238.41 139.21

 FIGURE 4  Comparison of predictive accuracy metrics 
between Random Forest Regression (RFR), Non-Linear 
Regression (NLR), and Deep Neural Network (DNN) NOx 
prediction models used on different vehicle datasets
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Figure 6. We notice that the R2 score correlates inversely with 
the the FI of the Tadiab related terms. The lower the FI of 
log /T Tadiab adiab

�( ) −1 , higher is the R2 score and vice versa.

Discussion

Physical Interpretation
From the results, we observe that ensemble learning models, 
especially random forest regression, are highly effective at 
accurately predicting NOx values given an on-board diagnos-
tics dataset. The four feature variables are computed and care-
fully selected to emulate the general kinetics equation of NOx 
formation. Grey-box models are generally difficult to inter-
pret; however, RFR models combined with physics-based 
calculated parameters are shown here to be an outlier among 
models due to their advantageous trade-off between interpret-
ability and accuracy. We observed that the predictive accura-
cies of the RFR model were significantly better than the previ-
ously proposed NLR and DNN models (Figure 4), and 
produced accurate results for the five diverse vehicle datasets 
used (Table 1). Using a feature importance study (Figure 6 

and Figure 5) and regression tree visualizations (Figure 2), 
the model was also shown to be physically interpretable.

The effectiveness of the RFR model predictions further 
strengthens the stated assumption that NOx emissions forma-
tion in a compression-ignition engine in real-world conditions 
is highly dependent on the operating conditions of the specific 
engine. Thanks to the vastly different vehicle datasets used in 
this study, the predictive accuracies of the RFR model changed 
with the duty cycles of the engine. For example, datasets with 
the highest and lowest R2 score among the five datasets were 
the refuse truck (RT) and drayage truck (DT), respectively. 
The refuse truck had duty cycles with very limited vehicle 
operating conditions: short acceleration events between 
frequent stops on the road, short braking events, and frequent 
reverse driving events (which are equivalent to short accelera-
tion events for the engine). A random forest regression model 
is able to effectively sample data entries into leaf nodes that 
denote the non-linear relationship between the four feature 
variables describing the variations of NOx formation in an 
engine. Hence, high R2 values are observed for the RT dataset. 
The RMSE and MAE values are high due to the fact that the 
magnitude of NOx emissions from the refuse truck are gener-
ally higher than the other vehicles. While the RT and DT 
operating conditions are somewhat uniform, the DT has a 
more diverse duty cycle. Here, many vehicle operating condi-
tions are encountered as the vehicle is driven on the busy 
roadways of Long Beach, CA. The vehicle also transports 
goods from the coast to facilities 50 miles away on state 
highways. This justifies the comparatively weak R2 score for 
the NOx prediction using the RFR model, which is still higher 
than for predictions using the NLR model.

Comparing with DWC Pattern 
Detection
While vehicle operating conditions are an important factor 
in the predictive effectiveness of the random forest regression 
models in NOx prediction, it is also worthwhile to consider 
anomalous driving events that could be driving inaccuracy 
in the model. The Divergent Window Co-occurrence (DWC) 
Pattern Detection algorithm used previously by the authors 
[22] is a method to identify repetitive temporal events with 
high prediction error (or divergence) from the physics-based 
non-linear regression (NLR) model (given by Equation 2). The 
algorithm analyzes these divergent data entries with their 
corresponding raw attributes present in the OBD dataset like 
engine speed, fuel mass flow rate, etc., and outputs statistically 
significant co-occurrence patterns of these attributes. The 
resultant DWC patterns provide insights into vehicle oper-
ating conditions or driving patterns that are inadequately 
described by the physics-based NOx prediction model. 
Similarities can be found between these DWC patterns and 
the leaf nodes in decision trees of the RFR model. Each leaf 
node represents a specific range of values for a subset of the 
four terms in Equation 2, similar to that of DWC patterns that 
look at discretized attribute magnitudes over moving time 
windows. However, the RFR model uses the four terms 
directly from the Equation 2, whereas the DWC Pattern-based 
framework analyzes OBD dataset attributes like engine speed, 

 FIGURE 6  Feature Importance variations and 
corresponding R2 score for the random forest regression NOx 
prediction using the five vehicle datasets

 FIGURE 5  Feature Importance study for the Transit Bus 
dataset for different ensemble learning models
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exhaust gas recirculation mass flow rate, fuel mass flow rate, 
etc that are used to calculate these four terms. Another differ-
ence is that the RFR model explores all operating conditions 
whereas the DWC Pattern-based framework focuses only at 
events that are responsible for high prediction error. Hence, 
both these methods are effective ways to look at driving 
patterns from a vehicle dataset.

Future Work
Future work related to ensemble learning approaches for NOx 
emissions prediction could include developing a framework 
to stochastically analyze the regression function at all leaf 
nodes. Examining random forest regression using different 
sets of raw attributes from the OBD datasets is also of interest, 
including comparison of the predictive accuracies and physical 
interpretation with the model using the four physics-based 
feature variables. Using each of the attribute sets, it would also 
be interesting to look at the corresponding DWC Patterns and 
correlate them with the leaf node functions from the RFR 
Model. Duty cycle parameters like average power, average 
engine speed, kinetic intensity, etc could be introduced to 
quantitatively explain the variation in predictive accuracies 
among the five vehicle datasets using the RFR model. 
Furthermore, the ensemble models could be trained on entire 
trips instead of a random test-train split, to evaluate the effec-
tiveness of the model in predicting NOx emissions for entirely 
unseen trips in real-time. Future work will also include 
predicting vehicle performance parameters other than NOx 
emissions such as Fuel economy and vehicle driving range. 
Predictive analytics like fault diagnostics for different subsys-
tems in the vehicles may also be explored.

Conclusion
In this work, a linearized form of a physics-based NOx forma-
tion equation was used to accurately predict compression-
ignition engine-out NOx emissions values from five vehicle 
on-board diagnostics (OBD) datasets. Ensemble machine 
learning models, with focus on random forest regression 
(RFR), were observed to provide high predictive accuracies. 
Using OBD datasets from five different compression-ignition 
engine powered vehicles, the RFR model was independently 
evaluated to predict NOx emissions after training the model 
on 80% of the datasets. Prediction using the RFR model 
provides on an average around 53% better R2 score, 27% lower 
RMSE, and 42% lower MAE error compared to predictions 
using non-linear regression. The performance and interpret-
ability of the RFR model was validated through several experi-
ments and analyses. A K-fold cross-validation was used to 
perform out-of-sample testing to prove that the model is not 
significantly overfitting for the testing dataset. The RFR model 
predictions were compared with that from non-linear regres-
sion and deep neural network models for the five vehicle 
datasets. A feature importance test was also performed to 
evaluate the effectiveness of each feature variable for different 
ensemble learning models like random forest, AdaBoost, 

Gradient Boost, etc. The variation in feature importances for 
different datasets were studied, and the R2 score was observed 
to be inversely proportionaly to the feature importance of 
Tadiab terms in the linearized physics-based NOx 
formation equation.

Although the RFR model is generally a grey-box model, 
it becomes partially physically interpretable through the use 
of physics-based terms, and analyses of their feature impor-
tance distributions. The high effectiveness of the model 
further strengthens the assumption that NOx emissions 
formation in a diesel engine is a complex set of processes that 
varies with vehicle operating conditions. These operating 
conditions can be represented by the leaf nodes of individual 
regression trees in the RFR model. Furthermore, the non-
linear leaf-node functions were identified to be similar in 
many ways to the divergent window co-occurrence patterns 
that were used to analyze driving features where the general 
physics-based non-linear regression model becomes inade-
quate in explaining NOx emissions values. It is generally 
concluded that ensemble learning models such as RFR are 
more effective than black-box models like neural networks 
for accurately predicting vehicle emissions from large sparse 
datasets, while also providing the physical interpretability 
that non-linear regression models possess.
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DNN - Deep Neural Network
DT - Drayage truck
FDT - Food delivery truck
FI - Feature importance
MAE - Mean absolute error
NLR - Non-linear regression
OBD - On-board diagnostics
RFR - Random forest regression
RMSE - Root mean square error
RT - Refuse truck
TB - Transit bus
YT - Yard tractor

Definitions
T̂adiab - Dimensionless Adiabatic Flame Temperature
t̂ comb - Dimensionless combustion duration
a, b, c, d, e - Regression coefficients
Cj - Impurity or mean square error of node j
engRPM - Engine Speed RPM
fii - Feature importance of feature variable i
intakeT - Intake Manifold Temperature K
nij - Importance of a node j
NOx, theoryppm - Predicted NOx Emission Values ppm
Tadiab - Adiabatic Flame Temperature K
tcomb - Combustion duration s
wj - Weight of sample ending in node j
xNOx, theory - Predicted NOx mole fraction
xO2 - Mole fraction of oxygen in the cylinder when intake 
valves are closed

 FIGURE 7  Scatter plot of NOx prediction using the random forest regression model for the other four datasets


	10.4271/2021-24-0082: Abstract
	Introduction
	Methodology
	Chemical Kinetics-Based NO x Formation Model
	Datasets and Predictive Accuracy Metrics
	Physics-Based Random Forest Regression

	Results
	Prediction Results for Different Datasets
	K-Fold Cross Validation Predictions
	Comparison of Proposed Model with Non-Linear Regression and Deep Neural Network
	Feature Importance Analysis

	Discussion
	Physical Interpretation
	Comparing with DWC Pattern Detection
	Future Work

	Conclusion

	References
	Acknowledgments
	Definitions, Acronyms, Abbreviations

