
  

  

Abstract— Weld penetration determines the integrity of the weld 
produced and must be controlled in automated welding. Due to 
the dramatic development of the neural networks, research has 
been done to use convolutional neural network (CNN) as a deep-
learning model to automatically extract weld pool features from 
the weld pool image. However, for the deep learning to be 
effective, the raw information must contain such feature that 
correlate to the weld penetration. High dynamic range (HDR) 
cameras provide an effective to image the weld pool scene 
without being overshaded by the arc so that the rich information 
from the weld pool may be preserved. Unfortunately, limited 
studies have been done to extract possible rich information in 
HDR images and use the extracted relevant information/features 
to predict what are occurring underneath the work-piece, in 
particular when the weld pool is subject to dynamic change as 
during its feedback control. In this work, an HDR camera is used 
to capture the weld pool image from the topside. What occurs at 
the same time underneath the work-piece is captured by another 
camera aiming at the back-side surface of the weld pool forming 
the ground truth for training. A CNN network model is proposed 
to extract the relevant information from the rich information 
source/HDR top-side image and map to the label representing 
what occurs underneath the work-piece. To train the network, a 
series of experiments have been conducted with welding current 
and speed to change randomly, generating various weld pool 
images and backside bead widths/images in order to ensure the 
reliability and robustness of the trained network in a varying 
environment. With the analysis of the result, it is verified that 
the well-trained CNN network could improve the prediction 
result of the backside bead width. 

I. INTRODUCTION 

When two pieces of metals are joined, a heat source is applied 
to melt their interface. Upon the solidification of the melted 
metal, the two surfaces of the interface from two pieces of 
metals are joined. The depth of weld penetration refers to how 
deeply the interface has bene melted from the heating surface 
and the width of the back-side weld bead refers to how wide 
the metals around the interface has been melted on the 
opposite side of the heating surface if the entire thickness of 
the work-piece has been melted. They are both referred to as 
weld penetration, former for partial penetration and latter for 
full penetration. This work concerns accurate monitoring of 
the latter. It is important as it determines the weld integrity 
and is required by manufacturers.  

It is apparent that what is to be monitored is not visible from 
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the heating side where a robot can conveniently carry a 
sensor. We have to sense phenomena occurring on the heating 
side and then derive what occurs underneath. The most 
promising phenomena may be visual as a human welder can 
make quality weld by observing the weld pool while there are 
also other approaches [1]–[8]. However, the bright arc makes 
its visual observation challenging. A camera without special 
filter or other special techniques would result in an image as 
shown in Fig. 1. 

 

 
Fig. 1. A view of arc welding process using a standard camera from open 

source on the internet.  
 
To image the weld pool clearly, studies have been carried 

to image the weld pool area when the arc is extinguished [9], 
[10], which periodically occurs during short-circuiting 
transfer in gas metal arc welding (GMAW), or when the arc 
current is at the low, base level so that the arc brightness 
weakens [11], [12]. Denoising techniques have also been 
studied, either filtering raw images [13], [14] or inpainting 
images from strong process interferences [15].To clearly 
image the weld pool in the presence of a bright arc, a pulse 
laser was also projected to the weld pool area and the camera 
shutter was synchronized with this pulse with the peak power 
in nanoseconds [6], [16]. For an illumination laser with milli-
watt power, the peak power increased to tens of kilowatts. The 
laser became much brighter than the arc when the camera 
opened the shutter to image. As a result, clear weld pool 
images were acquired. However, the equipment is complex 
and a passive vision without an illumination laser is often 
preferred [17]. Recently, HDR cameras have been developed 
where the brightness is not proportional to the incident 
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radiation received but to its logarithm [18], [19]. As such, arc 
and weld pool can both be imaged without the weld pool be 
overshaded by the arc[20], [21]. As HDR cameras have been 
commercialized for welding applications, methods to 
effectively extract useful information should be developed. 

HDR cameras have made views close to that of human 
available to machines. It becomes interesting if useful 
welding process information, in particular the back-side bead 
width that is most challenging for welding robots to assure, 
can be effectively extracted from such views/images. 
Conventionally, features are proposed through hand-craft 
engineering approach from weld pool images and correlated 
to the welding process state to be monitored [16], [22] and 
this has been the case also for HDR images [21]. However, 
such a method may also not guarantee the hidden information 
be successfully extracted, while deep-learning networks that 
automatically extract hidden information may if the 
information is indeed contained [23]–[25]. Unfortunately, 
deep-learning models have not been adequately used to take 
advantage of the rich information in HDR images except for 
in [26] that used a CNN model to process HDR images for 
laser bed additive manufacturing where the most concerned 
arc is absent, and for in [27] that used an image segmentation 
network to process HDR images in order to obtain a clear 
weld pool boundary. 

This study aims at predicting the backside bead width from 
an HDR image using a CNN, that is known, and has been 
demonstrated [28]–[31], as a suitable deep-learning model to 
automatically extract information from images. The training 
data were collected from designed experiments by imaging 
the weld pool from both the top and back surfaces. The top 
weld pool image was directly fed into the network after simple 
cropping while the bottom bead image was processed by a 
specific algorithm to obtain the training ground truth. 

II. SYSTEM AND EXPERIMENTS 

A. Experimental System 
The experimental set-up used is shown in Fig. 2 (a). It has a 
welding, sensing, control and motion subsystem. The welding 
subsystem performs the gas tungsten arc welding (GTAW) 
using a Miller Maxstar 210 welding power source and a 
welding torch with a tungsten electrode of diameter 2.4 mm 
with pure argon at 99.99% purity as the shield gas. The 
sensing subsystem includes one Point Grey camera FL3-FW-
03S1C to capture images from the back surface of the work-
piece vertically and an HDR camera Xiris XVC-1100 to 
capture the top images of the weld pool at 60° angle with the 
torch from the leading position. After the backside images are 
captured, they will be binarized using a threshold to produce 
the labels and then paired with the topside images captured at 
the same time to build the dataset. In the motion subsystem, 
the workpiece was driven by a step motor to move in one 
direction on a rail and the motion was controlled in real time 
to change the travel speed. All these subsystems are 
controlled by a computer using a PCI-6229 National 
Instruments data acquisition card, which works and operates 

in the C++ environment to control the welding current and the 
time and speed to move the workpiece, and to operate the 
cameras to capture the weld pool images from both sides. Fig. 
3 shows example images captured, with (a) and (b) the 
original images and (c) the processed backside image using a 
pre-set threshold that will be detailed later.  
 

 
(a) Experimental platform 

 
(b) Flow chart 

Fig. 2.  Platform and Flow chart of the experiment system 
 

 
Fig. 3. Captured and processed images. From left to right: topside 

image, backside image, and threshold backside image. 

B. Procedure 
Fig. 2(b) illustrates the experimental process. When the 
welding process starts, the welding power source and the 
motion system will both receive a signal from the control 
system to determine the current waveform and the travel 
speed. During the welding process, the welding current and 
the workpiece travel speed vary randomly between 90 A to 
130 A and 1.4 mm/s to 2 mm/s every 2 seconds respectively 
to simulate dynamic environment under different heat input 
(Fig. 4) as typical during control. After the current is applied, 
the input heat will start to melt the workpiece. The weld pool 



  

begins to form and then grow as the input heat accumulates. 
Within a few seconds, the weld pool will penetrate the 
workpiece from the heating (top) to the opposite (back-side) 
surface forming a fully penetrated weld pool. The topside and 
backside cameras monitor this process and capture images 
from both sides of the weld pool simultaneously. The 
captured topside images are the inputs of the CNN model and 
the backside images are used to generate the labels. During 
the training process, the captured topside image will be paired 
with the label captured at the same time from the backside. 
The paired images were divided into three datasets to train, 
validate, and test the CNN model respectively.  
 

Fig. 4. Heat input 

C. Data Collection 
With the welding parameters listed in Table I, six experiments 
have been designed and conducted using GTAW process and 
totally 28560 image pairs have been collected. The 
parameters of the cameras such as the frame rate, sharpness, 
gamma, shutter, and gain are listed in Table II for both 
cameras. The material used to conduct the experiments is 
stainless steel 304L.  

TABLE I.  WELDING PARAMETERS 

Material Thickness Arc Length Gas Flow Rate 

Stainless 
Steel 304 L 1.85 (mm) 4.8 (mm) 7 (L/min) 

TABLE II.  CAMERA PARAMETERS 

Camera Sharpness Gamma Shutter 
Speed 

Frame 
Rate Gain 

Top 3000 2.0 5 (ms) 60 (fps) 10 dB 

Bottom 3000 2.5 0.2 (ms) 60 (fps) 0 dB 

 
As shown in Fig. 5 and Fig. 6, with the random welding 

current and welding speed, the heat input, i.e., IU/v where I,U, 
and v are the welding current, arc voltage and travel/welding 
speed respectively, at different time will be different during 
the welding process. (The arc voltage is generally considered 
a constant and does not change with the welding current and 

travel speed.) Therefore, different welding and arc conditions 
will be generated, as well as different state of the weld pool 
and backside bead width. Successful training and testing with 
this various state under dynamic change will make sure that 
the developed network has the needed reliability and 
robustness.  

To label the weld pool backside width, there were some 
previous methods introduced on how to convert image to the 
bead width value [32]. However, it was designed for spot 
welding where the arc is stationary and the resultant weld pool 
is round. In this work, the arc/torch moves in relation to the 
work-piece so that the weld pool becomes tear-drop shaped. 
To contest this issue, we developed an improved version from 
the previous ones [32].  

First, the backside image will be binarized into black and 
white to make sure the pool area distinct from the surrounding 
area. All contours in the binarized image were then detected 
and the contour with the largest area was used as the pool 
contour. The widths from all the rows in this contour were 
then counted, and the average of the top ten widths was 
calculated as the width of the back-side bead. The width in 
pixels can be converted to millimeters through calibration. 
The threshold in the binarized process was decided iteratively. 
An arbitrary value was first tried and the backside image was 
then processed. The binarized image was then compared with 
the actual back bead on the work-piece to check if it matched 
the trend. If binarized images showed full penetration but the 
work-piece did not, the threshold was then increased and vice 
versa. The finally chosen threshold was set at 172. The 
conversion ratio 0.06 mm/pixel was obtained through a 
calibration by comparing the image reading and actual size of 
a given shape. 

 

 
 

Fig. 5. Weld pool at different state 
 
. 



  

 
Fig. 6. Different backside bead width 

III. NETWORK MODEL 
Network’s performance and reliability are significantly 
influenced by its structure. After several attempts, the 
network architecture shown in Fig. 7 was chosen. The details 
are given in Table III. The input image of the network is fed 
into a typical convolution layer followed by a pooling layer. 
This convolution and pooling process repeats 4 times, with 
the parameters of convolution layers as (1, 32, 5, 2, 2), (32, 
64, 3, 2, 1), (64, 128, 3, 2, 1), (128, 256, 3, 2, 1) respectively. 
Batch normalization and ReLU activation were performed 
between each convolution and pooling layer. After the four 
convolution-pooling processes, the input image will be 
represented as a 1 by 256 feature vector. The feature vector 
will then be processed by two fully connected layers to predict 
the backside bead width. 
 

 

Fig. 7. CNN architecture. 

TABLE III.  CNN CONFIGURATION  

Layer 
Name  

Feature Map 
Size  

Kernel 
Size Stride Padding 

Input 256 * 256 * 1 - - - 

Conv 1 128 * 128 * 32 5 2 2 

MaxPool 64 * 64 * 32 2 - - 

Conv 2 32 * 32 * 64 3 2 1 

MaxPool 16 * 16 * 64 2 - - 

Conv 3 8 * 8 * 128 3 2 1 

MaxPool 4 * 4 * 128 2 - - 

Conv 4 2 * 2 * 256 3 2 1 

MaxPool 1 * 1 * 256 2 - - 

FC 1 256 - - - 

FC 2 128 - - - 

Output 1 - - - 

 
With such a network architecture, we gradually reduce the 

feature’s size but increase the channel. 

IV. TRAINING AND RESULTS 
We used a NVIDIA GTX 2080 to conduct the training and 
validation for 100 iterations having Pytorch library 
implementation under Python environment.  

With all the 28560 image pairs in our dataset, we divided 
them into three datasets for training, validation and testing 
with sizes of 19040, 4760 and 4760 respectively. The network 
was trained using an SGD optimizer with mean-square error 
loss, learning rate of 0.0001 and batch size of 16. The learning 
rate and batch size were decided from the best performance 
model which was obtained through multiple trainings with 
different learning rate as 0.01, 0.001, 0.0001 and different 
batch size as 16, 32, 64.  The training and validation loss over 
100 epochs are shown in Fig. 8. The model achieved its lowest 
validation loss at epoch 41.  

The model at the epoch 41 was thus selected to predict the 
test data. The result is shown in Fig. 9. Comparing the 
predicted with the ground truth label, it is obvious that the 
model is able to strongly correlate the topside HDR weld pool 
image with the backside bead width. The model did not 
perform well when the welding starts. This was probably 
because, before the welding starts, all the images captured 
were pure dark and significantly differ from images captured 
during welding. In addition, the pure dark images in the 
dataset are too small for the model to correlate to the labels. 
It is also obvious that, when the width experiences drastic 
changes the prediction lags behand. This is because the 
change in the current/heat input first directly reflects on the 
topside weld pool surface/image where it is imposed but takes 
time for it to transfer to the backside.   

 
Fig. 8.  Model training curve 

 



  

 
Fig. 9.  Performance on test data 

V. CONCLUSION AND FUTURE WORK 
This paper developed an effective approach to monitor the 
backside width of the weld bead from a topside weld pool 
image that can be conveniently obtained using a camera 
attached to the welding torch. The use of an HDR camera 
enables imaging the weld pool without being overshaded by 
the arc overwhelmingly. The resultant images contain 
complete, visual information about the process although it is 
complex and still noisy. However, while HDR imaging 
provides an effective method to preserve the rich information 
in the weld pool, it is not clear and straightforward what is 
crucial in the image that determines the backside bead width. 
While an active vision approach can see some features more 
clearly, some other features may have been lost 
unintentionally. A CNN model allows automatically 
extracting relevant crucial features from complex 
images/scenes. It has been shown that a carefully designed 
CNN model is capable of extracting the right 
information/features from the HDR images to strongly 
correlate them to what occur underneath the work-piece as 
represented by the backside bead width in this study.  
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