Monitoring of Backside Weld Bead Width from High Dynamic
Range Images Using CNN Network

Rui Yu, Joseph Kershaw, Peng Wang, Senior Member, IEEE, and YuMing Zhang", Senior Member,
IEEE

Abstract— Weld penetration determines the integrity of the weld
produced and must be controlled in automated welding. Due to
the dramatic development of the neural networks, research has
been done to use convolutional neural network (CNN) as a deep-
learning model to automatically extract weld pool features from
the weld pool image. However, for the deep learning to be
effective, the raw information must contain such feature that
correlate to the weld penetration. High dynamic range (HDR)
cameras provide an effective to image the weld pool scene
without being overshaded by the arc so that the rich information
from the weld pool may be preserved. Unfortunately, limited
studies have been done to extract possible rich information in
HDR images and use the extracted relevant information/features
to predict what are occurring underneath the work-piece, in
particular when the weld pool is subject to dynamic change as
during its feedback control. In this work, an HDR camera is used
to capture the weld pool image from the topside. What occurs at
the same time underneath the work-piece is captured by another
camera aiming at the back-side surface of the weld pool forming
the ground truth for training. A CNN network model is proposed
to extract the relevant information from the rich information
source/HDR top-side image and map to the label representing
what occurs underneath the work-piece. To train the network, a
series of experiments have been conducted with welding current
and speed to change randomly, generating various weld pool
images and backside bead widths/images in order to ensure the
reliability and robustness of the trained network in a varying
environment. With the analysis of the result, it is verified that
the well-trained CNN network could improve the prediction
result of the backside bead width.

I. INTRODUCTION

When two pieces of metals are joined, a heat source is applied
to melt their interface. Upon the solidification of the melted
metal, the two surfaces of the interface from two pieces of
metals are joined. The depth of weld penetration refers to how
deeply the interface has bene melted from the heating surface
and the width of the back-side weld bead refers to how wide
the metals around the interface has been melted on the
opposite side of the heating surface if the entire thickness of
the work-piece has been melted. They are both referred to as
weld penetration, former for partial penetration and latter for
full penetration. This work concerns accurate monitoring of
the latter. It is important as it determines the weld integrity
and is required by manufacturers.

It is apparent that what is to be monitored is not visible from
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the heating side where a robot can conveniently carry a
sensor. We have to sense phenomena occurring on the heating
side and then derive what occurs underneath. The most
promising phenomena may be visual as a human welder can
make quality weld by observing the weld pool while there are
also other approaches [1]-[8]. However, the bright arc makes
its visual observation challenging. A camera without special
filter or other special techniques would result in an image as
shown in Fig. 1.

Fig. 1. A view of arc welding process using a standard camera from open
source on the internet.

To image the weld pool clearly, studies have been carried
to image the weld pool area when the arc is extinguished [9],
[10], which periodically occurs during short-circuiting
transfer in gas metal arc welding (GMAW), or when the arc
current is at the low, base level so that the arc brightness
weakens [11], [12]. Denoising techniques have also been
studied, either filtering raw images [13], [14] or inpainting
images from strong process interferences [15].To clearly
image the weld pool in the presence of a bright arc, a pulse
laser was also projected to the weld pool area and the camera
shutter was synchronized with this pulse with the peak power
in nanoseconds [6], [16]. For an illumination laser with milli-
watt power, the peak power increased to tens of kilowatts. The
laser became much brighter than the arc when the camera
opened the shutter to image. As a result, clear weld pool
images were acquired. However, the equipment is complex
and a passive vision without an illumination laser is often
preferred [17]. Recently, HDR cameras have been developed
where the brightness is not proportional to the incident
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radiation received but to its logarithm [18], [19]. As such, arc
and weld pool can both be imaged without the weld pool be
overshaded by the arc[20], [21]. As HDR cameras have been
commercialized for welding applications, methods to
effectively extract useful information should be developed.

HDR cameras have made views close to that of human
available to machines. It becomes interesting if useful
welding process information, in particular the back-side bead
width that is most challenging for welding robots to assure,
can be effectively extracted from such views/images.
Conventionally, features are proposed through hand-craft
engineering approach from weld pool images and correlated
to the welding process state to be monitored [16], [22] and
this has been the case also for HDR images [21]. However,
such a method may also not guarantee the hidden information
be successfully extracted, while deep-learning networks that
automatically extract hidden information may if the
information is indeed contained [23]-[25]. Unfortunately,
deep-learning models have not been adequately used to take
advantage of the rich information in HDR images except for
in [26] that used a CNN model to process HDR images for
laser bed additive manufacturing where the most concerned
arc is absent, and for in [27] that used an image segmentation
network to process HDR images in order to obtain a clear
weld pool boundary.

This study aims at predicting the backside bead width from
an HDR image using a CNN, that is known, and has been
demonstrated [28]—[31], as a suitable deep-learning model to
automatically extract information from images. The training
data were collected from designed experiments by imaging
the weld pool from both the top and back surfaces. The top
weld pool image was directly fed into the network after simple
cropping while the bottom bead image was processed by a
specific algorithm to obtain the training ground truth.

II. SYSTEM AND EXPERIMENTS

A. Experimental System

The experimental set-up used is shown in Fig. 2 (a). It has a
welding, sensing, control and motion subsystem. The welding
subsystem performs the gas tungsten arc welding (GTAW)
using a Miller Maxstar 210 welding power source and a
welding torch with a tungsten electrode of diameter 2.4 mm
with pure argon at 99.99% purity as the shield gas. The
sensing subsystem includes one Point Grey camera FL3-FW-
03S1C to capture images from the back surface of the work-
piece vertically and an HDR camera Xiris XVC-1100 to
capture the top images of the weld pool at 60° angle with the
torch from the leading position. After the backside images are
captured, they will be binarized using a threshold to produce
the labels and then paired with the topside images captured at
the same time to build the dataset. In the motion subsystem,
the workpiece was driven by a step motor to move in one
direction on a rail and the motion was controlled in real time
to change the travel speed. All these subsystems are
controlled by a computer using a PCI-6229 National
Instruments data acquisition card, which works and operates

in the C++ environment to control the welding current and the
time and speed to move the workpiece, and to operate the
cameras to capture the weld pool images from both sides. Fig.
3 shows example images captured, with (a) and (b) the
original images and (c) the processed backside image using a
pre-set threshold that will be detailed later.
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Fig. 2. Platform and Flow chart of the experiment system

Fig. 3. Captured and processed images. From left to right: topside
image, backside image, and threshold backside image.

B. Procedure

Fig. 2(b) illustrates the experimental process. When the
welding process starts, the welding power source and the
motion system will both receive a signal from the control
system to determine the current waveform and the travel
speed. During the welding process, the welding current and
the workpiece travel speed vary randomly between 90 A to
130 A and 1.4 mm/s to 2 mm/s every 2 seconds respectively
to simulate dynamic environment under different heat input
(Fig. 4) as typical during control. After the current is applied,
the input heat will start to melt the workpiece. The weld pool



begins to form and then grow as the input heat accumulates.
Within a few seconds, the weld pool will penetrate the
workpiece from the heating (top) to the opposite (back-side)
surface forming a fully penetrated weld pool. The topside and
backside cameras monitor this process and capture images
from both sides of the weld pool simultaneously. The
captured topside images are the inputs of the CNN model and
the backside images are used to generate the labels. During
the training process, the captured topside image will be paired
with the label captured at the same time from the backside.
The paired images were divided into three datasets to train,
validate, and test the CNN model respectively.
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Fig. 4. Heat input

C. Data Collection

With the welding parameters listed in Table I, six experiments
have been designed and conducted using GTAW process and
totally 28560 image pairs have been collected. The
parameters of the cameras such as the frame rate, sharpness,
gamma, shutter, and gain are listed in Table II for both
cameras. The material used to conduct the experiments is
stainless steel 304L.

TABLE L. WELDING PARAMETERS
Material Thickness Arc Length Gas Flow Rate
Stainless 1.85 (mm) 4.8 (mm) 7 (L/min)
Steel 304 L -89 (. - i, mn
TABLE II. CAMERA PARAMETERS
Shutter Frame .
Camera | Sharpness | Gamma Speed Rate Gain
Top 3000 2.0 5 (ms) 60 (fps) 10 dB
Bottom 3000 2.5 0.2 (ms) 60 (fps) 0dB

As shown in Fig. 5 and Fig. 6, with the random welding
current and welding speed, the heat input, i.e., IU/v where I,U,
and v are the welding current, arc voltage and travel/welding
speed respectively, at different time will be different during
the welding process. (The arc voltage is generally considered
a constant and does not change with the welding current and

travel speed.) Therefore, different welding and arc conditions
will be generated, as well as different state of the weld pool
and backside bead width. Successful training and testing with
this various state under dynamic change will make sure that
the developed network has the needed reliability and
robustness.

To label the weld pool backside width, there were some
previous methods introduced on how to convert image to the
bead width value [32]. However, it was designed for spot
welding where the arc is stationary and the resultant weld pool
is round. In this work, the arc/torch moves in relation to the
work-piece so that the weld pool becomes tear-drop shaped.
To contest this issue, we developed an improved version from
the previous ones [32].

First, the backside image will be binarized into black and
white to make sure the pool area distinct from the surrounding
area. All contours in the binarized image were then detected
and the contour with the largest area was used as the pool
contour. The widths from all the rows in this contour were
then counted, and the average of the top ten widths was
calculated as the width of the back-side bead. The width in
pixels can be converted to millimeters through calibration.
The threshold in the binarized process was decided iteratively.
An arbitrary value was first tried and the backside image was
then processed. The binarized image was then compared with
the actual back bead on the work-piece to check if it matched
the trend. If binarized images showed full penetration but the
work-piece did not, the threshold was then increased and vice
versa. The finally chosen threshold was set at 172. The
conversion ratio 0.06 mm/pixel was obtained through a
calibration by comparing the image reading and actual size of
a given shape.

Fig. 5. Weld pool at different state
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Fig. 6. Different backside bead width

III. NETWORK MODEL

Network’s performance and reliability are significantly
influenced by its structure. After several attempts, the
network architecture shown in Fig. 7 was chosen. The details
are given in Table III. The input image of the network is fed
into a typical convolution layer followed by a pooling layer.
This convolution and pooling process repeats 4 times, with
the parameters of convolution layers as (1, 32, 5, 2, 2), (32,
64,3,2,1),(64, 128, 3, 2, 1), (128, 256, 3, 2, 1) respectively.
Batch normalization and ReLU activation were performed
between each convolution and pooling layer. After the four
convolution-pooling processes, the input image will be
represented as a 1 by 256 feature vector. The feature vector
will then be processed by two fully connected layers to predict
the backside bead width.
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Fig. 7. CNN architecture.
TABLE IIL. CNN CONFIGURATION
Layer Feature Map Kernel . .
Name Size Size Stride Padding
Input 256 *256 * 1 - - -
Conv 1 128 * 128 * 32 5 2 2
MaxPool 64 * 64 * 32 2 - -
Conv 2 32 %32 * 64 3 2 1
MaxPool 16 * 16 * 64 2 - -

Conv 3 8*8*128 3 2 1
MaxPool 4 %4 %128 2 - -
Conv 4 2 %2 %256 3 2 1
MaxPool 1*1*256 2 - -
FC1 256 - - -
FC2 128 - - -
Output 1 - - -

With such a network architecture, we gradually reduce the
feature’s size but increase the channel.

IV. TRAINING AND RESULTS

We used a NVIDIA GTX 2080 to conduct the training and
validation for 100 iterations having Pytorch library
implementation under Python environment.

With all the 28560 image pairs in our dataset, we divided
them into three datasets for training, validation and testing
with sizes of 19040, 4760 and 4760 respectively. The network
was trained using an SGD optimizer with mean-square error
loss, learning rate of 0.0001 and batch size of 16. The learning
rate and batch size were decided from the best performance
model which was obtained through multiple trainings with
different learning rate as 0.01, 0.001, 0.0001 and different
batch size as 16, 32, 64. The training and validation loss over
100 epochs are shown in Fig. 8. The model achieved its lowest
validation loss at epoch 41.

The model at the epoch 41 was thus selected to predict the
test data. The result is shown in Fig. 9. Comparing the
predicted with the ground truth label, it is obvious that the
model is able to strongly correlate the topside HDR weld pool
image with the backside bead width. The model did not
perform well when the welding starts. This was probably
because, before the welding starts, all the images captured
were pure dark and significantly differ from images captured
during welding. In addition, the pure dark images in the
dataset are too small for the model to correlate to the labels.
It is also obvious that, when the width experiences drastic
changes the prediction lags behand. This is because the
change in the current/heat input first directly reflects on the
topside weld pool surface/image where it is imposed but takes
time for it to transfer to the backside.
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V.CONCLUSION AND FUTURE WORK

This paper developed an effective approach to monitor the
backside width of the weld bead from a topside weld pool
image that can be conveniently obtained using a camera
attached to the welding torch. The use of an HDR camera
enables imaging the weld pool without being overshaded by
the arc overwhelmingly. The resultant images contain
complete, visual information about the process although it is
complex and still noisy. However, while HDR imaging
provides an effective method to preserve the rich information
in the weld pool, it is not clear and straightforward what is
crucial in the image that determines the backside bead width.
While an active vision approach can see some features more

clearly, some other features may have been lost
unintentionally. A CNN model allows automatically
extracting relevant crucial features from complex

images/scenes. It has been shown that a carefully designed
CNN model is capable of extracting the right
information/features from the HDR images to strongly
correlate them to what occur underneath the work-piece as
represented by the backside bead width in this study.

REFERENCES

[1] D. J. Kotecki, D. L. Cheever, and D. G. Howden,
“Mechanism of Ripple Formation During Weld
Solidification Ripples on GTA spot welds are
explained by pool sur-face oscillations during
solidification, as seen by high speed motion
pictures”.

[2] Y. H. Xiao and G. den Ouden, “Weld Pool
Oscillation during GTA Welding of Mild Steel The
oscillation behavior of the GTA weld pool depends
on the welding conditions and can be used for in-
process control of weld penetration”.

[3] Y. H. Xiao and G. den Ouden, “A Study of GTA
Weld Pool Oscillation Monitoring oscillation
frequency in the weld pool may offer a means of
controlling joint penetration”.

[4] L. A. Lott, J. A. Johnson, and H. B. Smartt, “Real-
time ultrasonic sensing of arc welding processes,”
Jan. 1983, doi: 10.2172/6810314.

[5] R. FENN, “ULTRASONIC MONITORING AND
CONTROL DURING ARC FUSION WELDING,”
http://dx.doi.org/10.1080/10589758508952913, vol.

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

2, no. 2, pp. 43-53, Jun. 2007, doi:
10.1080/10589758508952913.

Y. CHENG, Q. WANG, W. JIAO, J. XIAO, S.
CHEN, and Y. ZHANG, “Automated Recognition of
Weld Pool Characteristics from Active Vision
Sensing,” Welding Journal, vol. 100, no. 5, May
2021, doi: 10.29391/2021.100.015.

Y. M. Zhang, L. Li, and R. Kovacevic, “Dynamic
Estimation of Full Penetration Using Geometry of
Adjacent Weld Pools,” Journal of Manufacturing
Science and Engineering, vol. 119, no. 4A, pp. 631—
643, Nov. 1997, doi: 10.1115/1.2831197.
“US9604301B2 - Method to monitor and control
weld penetration in gas tungsten welding and full-
position pipe welding - Google Patents.”
https://patents.google.com/patent/US9604301
(accessed Feb. 20, 2022).

J. Huang, W. Pan, J. Chen, Y. Shao, M. Yang, and
Y. Zhang, “The transient behaviours of free surface
in a fully penetrated weld pool in gas tungsten arc
welding,” Journal of Manufacturing Processes, vol.
36, pp. 405-416, Dec. 2018, doi:
10.1016/J.JMAPRO.2018.10.024.

K. Yamazaki et al., “Measurement of surface
temperature of weld pools by infrared two colour
pyrometry,” Science and Technology of Welding and
Joining, vol. 15, no. 1, pp. 4047, Jan. 2010, doi:
10.1179/136217109X12537145658814.

T. Font Comas, C. Diao, J. Ding, S. Williams, and
Y. Zhao, “A Passive Imaging System for Geometry
Measurement for the Plasma Arc Welding Process,”
IEEFE Transactions on Industrial Electronics, vol.
64, no. 9, pp. 7201-7209, Sep. 2017, doi:
10.1109/TIE.2017.2686349.

P. K. Baghel and D. S. Nagesh, “INFLUENCING
AND ANALYSIS OF TIG WELDING PROCESS
ON MECHANICAL PROPERTIES OF
EXTRUDED ALUMINUM PARTS,” Transactions
of the Canadian Society for Mechanical
Engineering, vol. 41, no. 4, pp. 499-515, Nov. 2017,
doi: 10.1139/TCSME-2017-1035.

W. Yiquan, W. Hong, Y. Zhilong, and G. Tie,
“Noise reduction of welding defect image based on
NSCT and anisotropic diffusion,” Transactions of
Tianjin University 2014 20:1, vol. 20, no. 1, pp. 60—
65, Feb. 2014, doi: 10.1007/S12209-014-2124-Y.

F. Z. Boudani and N. Nacereddine, “Diffusion in the
Wavelet Domain for Denoising Radiographic
Images of Welding Defects,” 2019 International
Conference on Advanced Electrical Engineering,
ICAEE 2019, Nov. 2019, doi:
10.1109/ICAEE47123.2019.9015093.

Y. Zou, X. Wei, and J. Chen, “Conditional
generative adversarial network-based training image
inpainting for laser vision seam tracking,” Optics
and Lasers in Engineering, vol. 134, p. 106140,
Nov. 2020, doi:
10.1016/J.OPTLASENG.2020.106140.



[16]

[18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

(26]

(27]

C.LL Q. WANG, W. JIAO, M. JOHNSON, and Y.
M. ZHANG, “Deep Learning-Based Detection of
Penetration from Weld Pool Reflection Images,”
Welding Journal, vol. 99, no. 9, pp. 239s—245s, Sep.
2020, doi: 10.29391/2020.99.022.

J. Stavridis, A. Papacharalampopoulos, and P.
Stavropoulos, “Quality assessment in laser welding:
a critical review,” International Journal of Advanced
Manufacturing Technology, vol. 94, no. 5-8, pp.
1825-1847, Feb. 2018, doi: 10.1007/S00170-017-
0461-4.

F. Bouzaraa, “High Dynamic Range Imaging
Systems for Dynamic Scenes”.

S. Hajisharif, “Computational Photography : High
Dynamic Rangeand Light Fields,” vol. 2046, Feb.
2020, doi: 10.3384/DISS.DIVA-163693.

D. Bacioiu, G. Melton, M. Papacelias, and R. Shaw,
“Automated defect classification of Aluminium
5083 TIG welding using HDR camera and neural
networks,” Journal of Manufacturing Processes, vol.
45, pp. 603—613, Sep. 2019, doi:
10.1016/J.JMAPRO.2019.07.020.

B. Zhang, Y. Shi, Y. Cui, Z. Wang, and X. Chen, “A
high-dynamic-range visual sensing method for
feature extraction of welding pool based on adaptive
image fusion,” International Journal of Advanced
Manufacturing Technology, vol. 117, no. 5-6, pp.
1675-1687, Nov. 2021, doi: 10.1007/S00170-021-
07812-X.

J. S. Chen, J. Chen, K. Zhang, Z. Feng, and Y. M.
Zhang, “Dynamic reflection behaviors of weld pool
surface in pulsed GTAW,” Welding Journal, vol. 97,
no. 6, pp. 191s-206s, Jun. 2018, doi:
10.29391/2018.97.017.

“VGG16 - Convolutional Network for Classification
and Detection.” https://neurohive.io/en/popular-
networks/vggl6/ (accessed Jul. 27, 2021).

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” Proceedings of
the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol.
2016-December, pp. 770-778, Dec. 2015, Accessed:
Jul. 27, 2021. [Online]. Available:
https://arxiv.org/abs/1512.03385v1

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” in cvpr, 2016, pp.
770-778. Accessed: Nov. 12, 2020. [Online].
Available: http://image-
net.org/challenges/LSVRC/2015/

C. Knaak, L. Masseling, E. Duong, P. Abels, and A.
Gillner, “Improving Build Quality in Laser Powder
Bed Fusion Using High Dynamic Range Imaging
and Model-Based Reinforcement Learning,” /[EEE
Access, vol. 9, pp. 55214-55231, 2021,

doi: -10.1109/ACCESS.2021.3067302.

R. Yu, J. Kershaw, P. Wang, and Y. M. Zhang,
“Real-time recognition of arc weld pool using image
segmentation network,” Journal of Manufacturing

[29]

[30]

[31]

[32]

Processes, vol. 72, pp. 159-167, Dec. 2021, doi:
10.1016/J.JMAPRO.2021.10.019.

Y. Cheng, R. Yu, Q. Zhou, H. Chen, W. Yuan, and
Y. M. Zhang, “Real-time sensing of gas metal arc
welding process — A literature review and analysis,”
Journal of Manufacturing Processes, vol. 70, pp.
452-469, Oct. 2021, doi:
10.1016/J.JMAPRO.2021.08.058.

Y. Cheng et al., “Detecting dynamic development of
weld pool using machine learning from innovative
composite images for adaptive welding,” Journal of
Manufacturing Processes, vol. 56, pp. 908-915,
Aug. 2020, doi: 10.1016/J.JMAPRO.2020.04.059.
Q. Wang, W. Jiao, P. Wang, and Y. M. Zhang, “A
tutorial on deep learning-based data analytics in
manufacturing through a welding case study,”
Journal of Manufacturing Processes, vol. 63, pp. 2—
13, Mar. 2021, doi:
10.1016/J.JMAPRO.2020.04.044.

W. Jiao, Q. Wang, Y. Cheng, and Y. M. Zhang,
“End-to-end prediction of weld penetration: A deep
learning and transfer learning based method,”
Journal of Manufacturing Processes, vol. 63, pp.
191-197, Mar. 2021, doi:
10.1016/J.JMAPRO.2020.01.044.

J. Kershaw, R. Yu, Y. M. Zhang, and P. Wang,
“Hybrid machine learning-enabled adaptive welding
speed control,” Journal of Manufacturing Processes,
vol. 71, pp. 374-383, Nov. 2021, doi:
10.1016/J.JMAPRO.2021.09.023.



	I. INTRODUCTION
	II. System and experiments
	A. Experimental System
	B. Procedure
	C. Data Collection

	III. Network model
	IV. Training and results
	V. Conclusion and future work
	References

