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Considering Time-Varying Factors and Social
Vulnerabilities in Performance-Based Assessment of
Coastal Communities Exposed to Hurricanes

Catalina Gonzélez-Duefas' and Jamie E. Padgett, M.ASCE?

Abstract: Climate change, population dynamics, the aging of built infrastructure, and their growing complexity have gradually increased the
vulnerability of coastal communities around the world. Among the many critical coastal infrastructures, the residential coastal building stock
has exhibited significant vulnerabilities in past storm and hurricane events. Beyond the initial impact of these hurricane events on the built
environment, coastal communities struggle to recover even years after landfall. Moreover, the initial shock as well as the recovery phase do
not evenly affect all sectors of the population and frequently uncover social vulnerabilities and inequalities in the preparedness, response, and
recovery from disasters. This study explores and expands a performance-based coastal engineering (PBCE) framework that allows for con-
sideration of time-varying aspects of the hazard, depreciation, and aging or deterioration of coastal structures and infrastructure systems by
applying it to evaluate the future performance and recovery of a portfolio of residential structures subjected to surge and wave loads. Using the
residential building stock of Galveston, Texas as a case study, a Bayesian network framework is leveraged to evaluate the uncertain damage
and subsequent recovery of the portfolio for the years 2030 and 2050, and correlations with representative social vulnerability factors are
drawn. The correlation analysis between immediate damage and social vulnerability factors, as well as between the recovery index and social
vulnerability factors up to six years following the storm landfall, is pursued to expose potential disparities in the impact of the storm to
different sectors of the community in the short- and long-term. Results show that changing climate conditions exacerbate the probability of
failure of the building stock and associated housing recovery. Also, the correlations in the short- and long-terms show that the elderly and
women might be most at risk in future hurricane events. The incorporation of multi-structure systems and time-varying factors in the per-
formance assessment framework is of great importance to inform resilience and adaptation engineering models, in particular, when the effects
of chronic hazards, a growing population, and increases in asset values are expected to grow in the future. The methodology and case study
also provide useful tools to inform planning and decision-making, resilience assessment, and facilitate recovery efforts in coastal settings
while accounting for the impact of the hazard on vulnerable populations. DOI: 10.1061/(ASCE)ST.1943-541X.0003400. © 2022 American

Society of Civil Engineers.

Introduction

Coastal regions are not strangers to the seasonal impact of hurricane
hazards. However, during the last decades, the impact of storm and
hurricane events on coastal communities has been growing at a
significant pace and has exposed the high vulnerabilities and even
unpreparedness of our modern societies to cope with the changes in
storm frequency and intensity (Chu et al. 2021; Cui and Caracoglia
2016; Cutter 2020; Hallegatte et al. 2013; Pant and Jeong Cha
2019). As our societies thrive on the economic advancement and
opportunities that coastal areas offer (e.g., port and trade activity,
tourism, energy, and industrial sectors), the changing climate has
been paralleled by significant growth in assets, businesses, and
population. These rapid changes have not only increased the expo-
sure in coastal areas but also have had a significant effect on the
social systems and urban organization of these regions.
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Among the different infrastructure systems, the residential
building stock has particular importance in the well-being and dy-
namics of a community, being the primary unit of household ac-
tivity. Nevertheless, its performance in past hurricane events has
been far from ideal, as seen in Hurricane Ike (2008) and Hurricane
Michael (2018), where widespread damage was observed to the
residential building portfolio across communities (CNN 2018;
FEMA 2009; KFDM YouTube 2012; Siegal 2020). The loss of res-
idences not only has implications on the structure, development,
and economy of the region (Binder et al. 2015; Pais and Elliott
2008; Wasileski et al. 2011), but also has deep repercussions on
individuals’ and families’ lives, promoting migration (Curtis et al.
2015; Hori and Schafer 2010), homelessness (Chakraborty et al.
2021; Doran et al. 2016; Ramin and Svoboda 2009), and psycho-
logical stress, especially in children and adolescents (Goenjian
et al. 2001; Kim and Sutley 2021; Vernberg et al. 1996). It is well
documented and acknowledged in the literature that natural hazards
do not affect all sectors of the population uniformly, but rather high-
light disparities in the social structures of the community, dispro-
portionately affecting vulnerable populations immediately after the
event and in the years to follow (Markhvida et al. 2020; Pais and
Elliott 2008; Peacock et al. 2014; Sutley et al. 2017; van Zandt
et al. 2012).

Methodologies are required to assess how coastal communities
will perform in future hazard events while considering the dynamic
nature and vulnerabilities of the built, natural, and social systems of
these areas. Performance-based engineering strategies have been
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successfully used in the past to assess built environment perfor-
mance and have recently been expanded to evaluate post-hazard
performance by incorporating functional recovery, resilience,
and sustainability performance objectives (Cook 2021; Ellingwood
et al. 2018; Lin et al. 2016; Minsker et al. 2015). However, these
strategies generally fail to capture the temporal variation and dis-
parities in the impact of future hazards, which are of extreme im-
portance on coastal regions.

This study extends and expands a recently proposed performance-
based coastal engineering (PBCE) framework (Gonzalez-Dueiias and
Padgett 2021) to the community scale in support of evaluating resil-
ience and adaptation strategies. Beyond the conceptual and methodo-
logical advancement of PBCE, this paper offers new insights on the
spatial and temporal evolution of dynamic processes in this unique
coastal setting using residential structural portfolios and housing as a
focal point. Specifically, the PBCE framework allows for consider-
ation of time-varying aspects of the hazard under climate change, of
economic factors such as the discount rate or asset depreciation, and
of coastal structures and infrastructure systems related to aging and
deterioration. A Bayesian network approach is posed to assess the
performance of a portfolio of typical residential structures subjected
to surge and wave loads in the years 2030 and 2050, using the res-
idential building stock of Galveston, Texas. The damage assessment
is then used to inform a recovery model that follows the recovery
process of the community up until six years after the storm. More-
over, correlations between damage and recovery are drawn with
representative social vulnerability factors at the block group level,
which acts as the neighborhood unit in this study. The correlation
between the social vulnerability factors and the damage and recovery
of the community aim to shed light into the connections between the
short and long-term hurricane impacts and the social structure of the
area. This allows disasters to be evaluated as a dynamic process,
where the impact of the storm is assessed in different layers (natural,
built, and social environment) that interact with each other in space

House-Level (HL) Neighborhood-Level (NL) Community-Level (CL)

(hurricane impact on the region) and time (effects of damage in the
recovery and social dynamics of the community in the years follow-
ing the storm).

In the subsequent section of this paper, the methodological ap-
proach and extension of the PBCE framework are presented. Then,
the performance (i.e., damage and recovery) of the building port-
folio of Galveston Island is investigated for the years 2030 and
2050, leveraging the expanded PBCE framework. The impact of
the immediate damage and the recovery process in the community
is explored by computing their correlations with representative
social vulnerability factors at the block group level. Finally, a dis-
cussion of the study findings is presented followed by concluding
remarks. Table S1 presents a list of the abbreviations used in this
article.

Performance-Based Assessment of Coastal
Communities

The evaluation of the performance of structures under multi-
hazard conditions is a key component of the risk and resilience
analysis of coastal regions. When analyzing the impacts of hur-
ricane or storm events on the built environment, two stages can be
identified: the immediate effects and the recovery phase. The for-
mer refers to the initial damage undertaken by the structures due
to the effect of the loads acting upon them during the event, and
the latter describes the process of structural and functional resto-
ration. The immediate effects are mostly driven by the robustness
of the system, while the recovery is a complex process where
socio-demographic, political, structural, environmental, and eco-
nomic factors interact dynamically. This study leverages and ex-
tends the PBCE framework proposed by Gonzalez-Duefas and
Padgett (2021) to analyze the immediate and long-term effects
of hurricane and storm hazards at a regional scale. Fig. 1 presents
the proposed methodology.
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Fig. 1. Methodology proposed.
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The performance of the built environment at a portfolio level is
directly related to the individual building performance in the after-
math of a natural hazard event. Therefore, the first step of the meth-
odology consists of computing the individual house performance,
both in the short- and long-term, when subjected to surge and wave
loads. In this study, the performance metrics of the built environ-
ment are associated with the losses in the aftermath of the event,
and the building stock recovery in the years to follow.

Performance-based assessment of individual structures involves
detailed information related to the loading conditions, the mechani-
cal properties, the structural response, and damage sustained when
compared to performance-objective targets or decision variables. In
this study, the PBCE framework proposed by Gonzalez-Duefas
and Padgett (2021) is leveraged to define the parameters of interest
for the performance analysis of each house using a Bayesian net-
work (BN) approach. A Bayesian network is a probabilistic graphi-
cal model defined by nodes and links, which represent the random
variables of the system and their dependencies, respectively. This
study leverages a BN (Fig. 2) to compute the marginal probability
distribution of the loss and the recovery, the decision variables as-
sociated with the immediate and long-term effects of the storm. A
numerical simulation is pursued using Markov chain Monte Carlo
(MCMC) simulation, which allows estimation of the marginal dis-
tribution of any given random variable by generating samples from
a Markov chain, avoiding the explicit computation of the integrals
involved in the inversion of the joint probability density function of
the network. Time-varying factors related to the hazard and
mechanical properties of the structure are considered to compute
the house expected loss and recovery ratio, which represent the
two decision variables of the system, following a storm event in
the years 7, = 2030 and 7, = 2050.

The first component of the PBCE consists of the hazard analy-
sis, in which the intensity parameters are defined. As a proof of
concept, the hazard in both years (2030 and 2050) is defined using
a set of 19 synthetic variations of storm FEMA 33, which is a prob-
abilistic storm that provides inundation levels of a 100-year return
period storm in the Galveston, Texas region (Ebersole et al. 2017;
Melby et al. 2017). Local sea level projections and the forward
velocity of the storm are used to define the 19 storm combinations
(Ebad Sichani et al. 2020), and are considered herein as the hazard
parameters (i.e., parameters relevant to the numerical modeling of
the hazard). The intensity parameters at a time 7 (the significant
wave height H; and surge depth S;), are then defined using the
polynomial regression models [Eq. (18) in the referred study] pro-
posed by Gonzdlez-Duefias and Padgett (2021), which provide the
intensity parameters at the location of interest as a function of the
hazard parameters. To probabilistically characterize the hazard
parameters, a normal distribution is used to define the sea level rise
projections and a uniform distribution to define the forward veloc-
ity of the storm. Leveraging the local sea level projections for
Galveston provided by Kopp et al. (2014), a normal distribution is
fitted for each year. A noninformative prior is used to define the
forward velocity of the storm due to the high uncertainties on
the effects of climate change on this variable. The limits of the uni-
form distribution are set as 3 m/s and 12 m/s, per Liu and Irish
(2019).

The structural parameters for each house include the age (clas-
sified in age groups AG) and the elevation of the house with respect
to the ground Ey, which are used to define the free-board height
FBy, (distance between the wave crest and the lowest horizontal
structural member of the house). The probability of failure ij’
is assessed using Variant 5 of the fragility models proposed by
Tomiczek et al. (2014), which is parameterized on the intensity
parameters (H, and S;) and the structural parameters (AG and
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FBy,) of the house. The structural degradation is captured using
a reduction factor R (Bjarnadottir et al. 2011), which modifies
the value of the probability of failure obtained from the fragility
model in such a way that P, = ij’ - (100 — R)/100. Reduction
factors of —15% (Nakajima and Murakami 2010) and —25%
(Cavalli et al. 2016) are selected for 2030 and 2050, respectively
(Gonzélez-Duefias and Padgett 2021). The assessed value of the
structure in the year of analysis (2030 and 2050) is computed as
the future value of the house based on the appraised value of the
house in the year 2020 and the inflation rate per year, which is
assumed as 3% in this study (Li and Ellingwood 2009). Finally,
the replacement value of the structure UV, the housing character-
istics HC (e.g., area, housing type), and neighborhood character-
istics NC (e.g., income, race), inform the loss (DV;) and the
recovery ratio (DV,), respectively. The loss represents the prob-
able economic loss due to the structural failure of the house,
which is computed as the product of the probability of failure of
the house P and the replacement cost of the structure in the year
under analysis UV. The recovery ratio computation is explained
in the next section. More details on the model parameters and their
dependencies can be found in Gonzdlez-Duefias and Padgett
(2021).

The second step of the methodology consists of aggregating
individual building performance at the neighborhood scale. The
short- and long-term effects of the storm in the built environment
are neither uniform in space nor in time. For instance, neighborhoods
might differ in their housing typologies, construction practices, and
natural environment (e.g., presence of dunes, trees), which creates
differences in the loading conditions and, in consequence, in the ex-
pected damage. Moreover, sociodemographic characteristics also
vary across neighborhoods and these disparities lead to marked dif-
ferences in the response and recovery of the community in the after-
math of natural hazards. To capture these changes, the performance
of individual structures is aggregated at the block group level, which
in this study is considered as the neighborhood unit. In the short-term
(ty), the average loss of the neighborhood is computed using the
mean losses of the houses located in it. Moreover, the recovery
per neighborhood is estimated based on the number of houses reach-
ing a complete recovery state (i.e., recovery index) in the years fol-
lowing the event.

At a regional scale, the impacts of natural hazards are mostly
associated with the ability of its inhabitants to cope with the dis-
aster, which depends on factors such as income and their ability to
get loans (Hamideh et al. 2021; van Zandt et al. 2012). Therefore,
the last step of the methodology consists of computing the corre-
lation of the performance metrics of the built environment at the
neighborhood scale with relevant social vulnerability factors, to as-
sess differences in the storm impacts to different sectors of the pop-
ulation. As a proof of concept, the next section explores the
application of the proposed methodology to assess the impact of
storm events in the residential building stock of Galveston Island
for two future scenarios, 2030 and 2050, while considering time-
varying factors related to the hazard, system strength, and socio-
demographic variables.

Building Performance under Time-Varying
Conditions

Damage Evaluation

In this study, a database of approximately 14,000 housing units lo-
cated in Galveston Island was used to define the structural param-
eters (i.e., age group and elevation of the house with respect to the
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Fig. 2. Bayesian network of the system at time ¢ = 2030,2050.

ground) of the building stock (Fereshtehnejad et al. 2021). For sim-
plicity, the fragility model developed by Tomiczek et al. (2014) was
used to compute the probability of failure of all the 14,000 housing
units in the database since it is characteristic of the building stock of
Galveston Island, its construction practices, and is representative of a
hurricane event with predominantly storm surge and wave loads. It is
acknowledged that this fragility function was specifically developed
for elevated residential structures from a single storm event (Hurri-
cane Ike 2008); thus, future work may seek to address the range of
building archetypes and hazard conditions of interest since the PBCE
framework and BN analysis are flexible to accommodate different
fragility functions (Do et al. 2020; Hatzikyriakou and Lin 2017b;
Masoomi et al. 2019; Massarra et al. 2019; Nofal et al. 2020).
The python package PyMC3 (Salvatier et al. 2016) was used to ana-
lyze the Bayesian network model using an MCMC approach—an
approximate inference algorithm (Yildirim 2012). For each house,
five chains were used to obtain 50,000 samples after the tuning
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Fig. 3. Mean probability of failure of the building stock of Galveston
Island, TX for the year 2030. [Upper left base map from Esri, De-
Lorme, HERE, USGS, Intermap, iPC, NRCAN, Esri Japan, MET]I, Esri
China (Hong Kong), Esri (Thailand), MapmyIndia, TomTom; lower
base map from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA,
USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the
GIS User Community.]
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process (Gelman and Rubin 1992; Yildirim 2012), which discarded
5,000 initial samples from each chain.

Fig. 3 depicts the mean probabilities of failure obtained from the
BN analysis of the residential structures for the year 2030. More-
over, Fig. 4 shows the comparison by zones of the estimated mean
probability of failure of the building stock for the years 2030 and
2050. The houses located in the urban core of Galveston Island
(Section A) presented a higher probability of failure compared
to the southwest region (Section B), for both 2030 and 2050. This
is due to the fact that the houses in the urban core are older, and
therefore, were constructed with less stringent code requirements
(e.g., lower elevation above the ground). Moreover, given that
the mean probability of failure was mostly driven by the water level
reaching the structure, the higher levels of surge depth in 2050
caused an increase in the probability of failure between the two
years. For instance, the percentage of houses that do not suffer any
damage (P < 0.1) decreased from 54% in the year 2030 to 45% in
the year 2050. Similarly, the percentage of houses in intermediate
(0.15< Py <0.5) and extensive damage (P> 0.5) states in-
creased from 8% to 13%, and from 16% to 20%, respectively.

To analyze the impact of the event on the community, the spatial
distribution of the mean loss by the block group for the years 2030
and 2050 is presented in Fig. 5. The mean loss at the block group
level was computed from the mean loss of its individual houses
whose distribution was evaluated using the Bayesian network pre-
sented in Fig. 2. As expected, the losses by the block group were
higher for the year 2050, due to the observed increase in the prob-
ability of failure of the building stock. More specifically, the per-
centage change between 2030 and 2050 in average loss per block
group ranged from a minimum of an 86% increase to a maximum
of a 245% increase. In terms of the total loss for the region, the
mean average loss for Galveston Island increased from $0.51 billion
in the year 2030 to $1.18 billion in 2050, showing an increase of
approximately 57%. Fig. 6 shows the distribution of the total loss
for both years.

Recovery Phase

The recovery process of the community was explored based on the
gradual recovery of each house in the years following the event.
As a proof of concept, the recovery model proposed by Hamideh
et al. (2021) was used to compute the trajectory of recovery for
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Fig. 4. Comparison of the mean probability of failure of the building stock of Galveston Island, TX for the years 2030 and 2050 by zone. (Base maps
from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.)
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Fig. 5. Average loss per block group for the years (a) 2030; and (b) 2050. (Base maps from Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS,
AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.)

each house under analysis. This information was then used to Nevertheless, the proposed methodology can be easily adapted
compute a recovery index per block group, which allowed esti- to any model that provides a dynamic evaluation of the perfor-
mating the relative recovery of different neighborhoods up to mance and recovery trajectory of the built infrastructure in the
six years following the event for the years 2030 and 2050. aftermath of hurricane events.
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Fig. 6. Distribution of the total loss for the years 2030 and 2050.

This recovery model tracked the changes in improvement value
of more than 13,272 houses in Galveston County following Hur-
ricane Ike, from 2008 (base year) until 2015, using publicly avail-
able data from the tax appraisal district, to formulate a predictive
model of the house recovery rate. The multilevel linear regression
model [Eq. (1) of Hamideh et al. (2021)] provides the natural log-
arithm of the assessed value in the years following the event and is
parameterized on housing and neighborhood characteristics. The
coefficients of the predictive model are provided in Table 5 of
Hamideh et al. (2021). The housing characteristics include the
housing type (single-family, multi-family, or duplex), the age of
the house in each year, its size, the percentage damage, and housing
tenure status (i.e., owner-occupied or not).

The neighborhood characteristics consist of the median income
and the percentage of the non-Hispanic Black and Hispanic per
block group. Once the assessed values were estimated for the years
following the event, they were normalized using the base year as-
sessed value, or improvement value of the property (i.e., assessed
value not including the value of the land) in the year that the event
occurs, to compute a recovery ratio that ranges between 0 and 1.
Recovery was achieved once the recovery ratio reaches 1 again
(i.e., once the assessed value was equivalent to the assessed value
of the base year). In Hamideh et al. (2021), the recovery model
captured the drop in performance in the first year following the
event. However, in this study, it was assumed that the drop in price
in the year following the event was based on the damage suffered
by the house due to the hurricane event in the previous year. There-
fore, the base year and the first year were combined to characterize
the immediate effects of the storm (year 0) and represented the pre-
and post-event states of the house. The different states of damage
and recovery used in this study are presented in Fig. 7.

In this study, the housing characteristics of the model were as-
sumed to remain invariant for the years 2030 and 2050. Therefore,
the housing characteristics, besides the percentage damage, were
obtained based on tax appraisal data of Galveston County for the
year 2020 (Galveston Central Appraisal District 2020) and spatially
joined to the building stock database using ArcGIS—a geographic
information system (GIS) software. In order to couple the perfor-
mance model with the recovery model, the percentage of damage of
the house was assumed to be equal to the probability of failure (P)
of the house in the year of analysis (2030 or 2050). For houses that
experience extreme structural damage [P, > 0.5 per Hamideh et al.
(2021)], it was assumed that the drop in the assessed value could
not fall below 10% of its original value.
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The neighborhood characteristics, which are available at the
block group level, were estimated for both years of analysis, 2030
and 2050, based on county-level projections of gross domestic
product (GDP) and population characteristics (Gaffin et al. 2004;
Hauer 2019). Since all the houses inside a block group share the
same value of neighborhood characteristics, it was assumed that the
database of housing units was a representative sample to evaluate
the relative trajectory of damage at the block group level and that
the change in the number of houses did not need to be projected.
However, if data related to future construction developments, such
as building permits, is available, projections on changes in the
housing characteristics can be incorporated into the methodology.

The percent increase of non-Hispanic Black and Hispanic per
block group was approximated using the projections proposed
by Hauer (2019), which provides the framework, associated codes,
and complete output database of population projections by shared
socioeconomic pathway (SSP). The SSPs describe “alternative path-
ways for future society” (Hausfather 2018) considering how socio-
economic factors can affect future emissions and were designed to be
complementary to the representative concentration pathway (RCP)
scenarios, which consider different scenarios of future greenhouse
gas concentrations (Hausfather 2018). In this study, SSP2—the
“middle of the road” scenario—was selected, which represented a
future with medium challenges to mitigation and adaptation. The da-
tabase provided projections for the period 2020-2100 in five-year
intervals and was categorized by race (Black and Hispanic), age, and
sex at the county level for the United States. Using the data for the
SSP2, the percent increase of population by race was computed as
the change in the percentage of Black and Hispanic populations
from the year 2020 to the years 2030 and 2050, respectively. Since
the projections were at the county level, the percent increase of
non-Hispanic Black and Hispanic for the years 2030 and 2050
was applied uniformly to all the block groups of Galveston Island.
The percent change of Black population for the years 2030 and
2050, were —0.676% and —1.649%, respectively. In the case of
the Hispanic population, the percentages corresponded to 2.467%
for 2030 and 6.947% for 2050.

Following a similar methodology, the increase in median house-
hold income per block group was estimated using the projected
GDP percentage increase of the United States for the years 2030
and 2050 (Wear and Prestemon 2019). This was done using down-
scaled projections of GDP (CIESIN 2002; Gaffin et al. 2004) for
the B2 SRES scenario (a preceding version of the modern SSP sce-
narios), which was comparable to the SSP2 scenario (Hausfather
2018). The percent increase in median household income for the
years 2030 and 2050 were 11.12% and 37.99%, respectively.

Fig. 8 shows the recovery trajectory and associated uncertainty
for a typical coastal elevated house for the years 2030 and 2050.
The model uncertainty in the mean recovery ratio came from the
propagation of uncertainty in the probability of failure of the house
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Fig. 8. Recovery trajectory and associated uncertainty for a typical coastal elevated house, for the years (a) 2030; and (b) 2050.

and from the error terms in the recovery model proposed by Hamideh
etal. (2021). The house had an area of 124.86 m?(1,344 ft?), was a
single-family house, and was owner-occupied. For the year 2030, its
mean probability of failure was 32%, the median income was
$87,953.7, and the Hispanic and Black population percentages were
5.48% and 0%, respectively. For the year 2050, the mean probability
of failure increased to 68%, the median income to $109,221.8, and
the Hispanic population to approximately 10%.

In the year 2030, the house did not experience a large drop in the
recovery ratio in its post-event state and returned to pre-event levels
approximately at the end of two years. However, the higher prob-
ability of failure in the year 2050 added to a larger drop in the re-
covery ratio in the base year and lead to the house not reaching its
recovery target. Even though the driving factor on reaching target
recovery levels was seen to be the probability of failure of the
house, the model depended on many others that create differences
between different types of housing and neighborhoods (Hamideh
et al. 2021). For instance, in Hamideh et al. (2021), multi-family
and duplex housing types reached lower recovery rates than single-
family houses, and many of them did not recover even after 7 years
following the event.

The recovery process at the neighborhood level for the years
2030 and 2050 was assessed through a recovery index that followed
the ratio of houses recovered in the years following the storm event.
The recovery index at the year i, (RI;), was computed at the block

group level based on the immediate damage of the housing units
following the event and their recovery trajectory [Eq. (1)]

(Number of houses recovered);

RI; = , e |[1.6 1

" (Number of houses damaged), .6l (1)
where RI; = recovery index i years after the event;
(Number of houses recovered); = count of houses that have

reached a recovery ratio of 1 in the ith year following the storm;
and (Number of houses damaged), = number of houses in a
post-event state (i.e., count of houses that experience a drop in re-
covery ratio immediately after the storm). This definition of recovery
allowed representing the resilience of the building stock as a dynamic
process, where each time step (year) was a snapshot of the state of
the community after a hazard event. Therefore, the higher the recov-
ery index, the more resilient the neighborhood.

As an example, Fig. 9 depicts the state of recovery for 33
representative block groups at the end of the third year after a storm
event in the years 2030 and 2050. It is noteworthy to mention that
the recovery state between the years 2030 and 2050 is not directly
comparable since the recovery index depended on the number of
houses suffering damage in the aftermath of the storm, their specific
probability of failure and recovery trajectory, as well as their aggre-
gation at the neighborhood level. However, since the climate condi-
tions in the year 2050 were more severe than in the year 2030 and the

Recovery Index
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Fig. 9. Recovery index at the end of the third year following a storm occurring in 2030 and 2050. (Base maps from Esri, DigitalGlobe, GeoEye,
i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.)
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structural performance was affected by aging and deterioration, the
number of houses damaged was higher. This means that houses
fragile enough to experience damage in the year 2030 will experi-
ence the same or more severe damage in 2050, setting a lower bound
for the number of damaged houses for this year. Following the same
argument, the houses that did not experience any damage in the year
2030 were likely to suffer minor (P; < 15%) or moderate damage
(15% < P; < 50%) levels in the year 2050. Therefore, these houses
were more likely to recover and lead to higher recovery indices in
2050. Table S2 presents the information of the number of houses
damaged and recovered per block group at the end of 1, 2, 3,
and 6 years for both 2030 and 2050 events.

Consequence of Disasters in Vulnerable
Populations

To avoid the most adverse consequences of natural disasters, efforts
need to be focused on the neighborhoods and people most at risk,
which are oftentimes the vulnerable population. This issue encom-
passes a long history of urban planning discrimination, rapid and
unplanned urbanization, and inadequate socioeconomic policies
that have created spatial inequalities and marked differences in
the ability of individuals to cope with the impact of natural hazards
and climate change (Peacock et al. 2014; Witze 2021; Zurich
Insurance Group 2015). Therefore, the last step of the methodology
aims to expose underlying impacts of built environment perfor-
mance and recovery pace on coastal communities, to better under-
stand the possible consequences of future hurricane hazards on
vulnerable populations. Thus, the correlations of damage and rate
of recovery in the short- (immediate loss) and long-term (recovery
period) with representative social vulnerability factors are com-
puted and examined for potential trends or insights that may inform
risk mitigation and resilience planning efforts.

Social Vulnerability Factors

The uniqueness of coastal communities, in their natural and built
environments (e.g., the morphology of the coast, ecosystems, and
construction practices), as well as in their cultural and socioeco-
nomic aspects (e.g., economy and racial and ethnic composition),
results in varied disaster impacts across regions and the need to
analyze each community at a local scale (Liu et al. 2019; Pant and
Jeong Cha 2019; van Zandt et al. 2012). In this study, social vulner-
ability factors with a potential influence on the disaster impact on the
community were considered and computed at the block group level
using US Census data for Galveston County (US Census Bureau
2020). The set is composed of 15 factors: (1) single-parent house-
hold, (2) renter occupied units, (3) non-White population, house-
holds with (4) Black and (5) Hispanic householders, (6) occupied
housing units without a vehicle, (7) Black and (8) Hispanic popu-
lation, (9) households with less than the median income, (10) elderly
(above 65 years old), (11) female population, (12) presence of chil-
dren and adolescents, (13) population with educational attainment
less than high school, and with (14) no health insurance and (15) that
do not speak English well or not at all. In previous studies, these
factors have shown a relation with housing damage and restoration,
casualties, response, evacuation, and ability to access recovery re-
sources (Houston et al. 2021; van Zandt et al. 2012).

Short- and Long-Term Effects of Hurricane Hazard on
Coastal Communities

From the landfall of a hurricane to the reconstruction and recovery
phases, the social composition of the community plays an
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important role in the overall impact of the storm. For instance,
the damage undertaken by the structure is related to aspects such
as the spatial distribution of the building stock (e.g., proximity to
the coast) and the robustness of the houses (e.g., age or construction
type), which are dependent on urban planning policies, and on so-
cial aspects such as income, race, and ethnicity (Peacock et al.
2014; Sutley et al. 2017; van Zandt et al. 2012). Moreover, given
the limitations on the recovery budget, the reconstruction and re-
covery phases are affected by the individual’s income, their ability
to get loans, if their house has insurance, and their social networks
(Drakes et al. 2021; Houston et al. 2021; van Zandt et al. 2012).
Therefore, it is expected that different dimensions of social vulner-
ability will be highlighted during different phases of the disaster.

To investigate the impact of future hurricane hazards in the com-
munity in the short-term, the correlation of the mean loss, obtained
from the performance analysis of the building stock, with the set of
social vulnerability (SV) factors was computed. Further, the corre-
lation of the recovery index with the SV factors was calculated for
each year of the recovery phase, to analyze the long-term effects of
hurricane hazards on the community. To do this, 33 blocks out of
the 54 block groups in Galveston County were selected. The 33
block groups were selected based on the sufficiency of samples
to compute reliable results of correlations. Therefore, a block group
was selected if the number of houses analyzed was at least one-third
of the total number of houses surveyed in the US Census data (US
Census Bureau 2020) for that block group. Moreover, the two
southern-most block groups of Galveston Island were also disre-
garded from the analysis, given that these block groups were mostly
composed of rental and vacation homes (Hamideh et al. 2021; van
Zandt et al. 2012).

Tables 1 and 2 show Spearman’s rank correlation coefficients
for both short- and long-term, with the set of SV factors, respec-
tively. The significance of the correlation coefficients was assessed
using a p-value analysis with a 90% confidence level. When ana-
lyzing Table 1, it is seen that the SV factors of households with
Black householders, population without health insurance, occupied
housing units without a vehicle, and those receiving less than a
median income had a significant negative correlation with the

Table 1. Correlation coefficients of social vulnerability factors with the
average loss for 2030 and 2050

No. Social vulnerability factor 2030 2050

1 Single-parent household (SP) —0.060 —0.097

2 Renter occupied units (RT) —0.066 —0.087

3 Non-White population (NW) —-0.214 —0.235

4 Households with —0.362%* —0.370*
Black householders (BH)

5 Households with —0.075 0.217
Hispanic householders (HH)

6 Occupied housing units —0.435% —0.442%*
without a vehicle (NV)

7 Black population (BP) —0.200 —0.227

8 Hispanic population (HP) —0.170 —0.184

9 Households with less than —0.393%* —0.409%*
median income (LI)

10 Elderly (ED) —0.120 —0.080

11 Educational attainment —0.167 —0.165
less than high school (HS)

12 Female population (FP) 0.360* 0.345*

13 Presence of children and 0.102 0.088
adolescents (CA)

14 Does not speak English —0.125 —0.109
well or not at all (EN)

15 No health insurance (NH) —0.409* —0.426*

Note: *p < 0.10.
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average loss for both 2030 and 2050. Therefore, an increase in the
proportion of these factors would lead to a lesser neighborhood mean
loss, which has also been observed in previous studies (van Zandt
et al. 2012). This can be explained by the fact that vulnerable neigh-
borhoods generally have less expensive assets, which would lead to a
lower loss compared to more affluent neighborhoods. Nevertheless,
the proportion of the female population maintained a positive corre-
lation with the average loss, indicating that neighborhoods with a
larger proportion of women experience greater average loss.

Regarding social vulnerability correlations with the recovery in-
dex, the trend seemed to maintain, where the SV factors correlated
with higher rates of recovery, as seen by the significant positive
correlation coefficients in Table 2. Nevertheless, the elderly and
the female population showed a negative correlation with the recov-
ery index in the years 2030 and 2050. This suggests that women
and people over 65 years old might experience lesser rates of re-
covery throughout the recovery phase.

Although counterintuitive, the positive correlation of vulnerable
neighborhoods with recovery can attend to the social dynamics of
vulnerable neighborhoods in the aftermath of natural disasters. As
observed by Girard and Peacock (1997), Black householders often
decide to stay in their houses after a hurricane despite the damage
due to their limited options on alternative housing, their limited
mobility, and because they depended on their local job for their
livelihood. Therefore, is not surprising that the need itself to stay
helps vulnerable populations to work toward the recovery of their
houses (Hamideh et al. 2021).

These findings in positive correlation are also interesting
when the correlations among the SV factors are analyzed (Fig. 10).
For the year 2050, 7 SV factors showed a positive correlation:
non-White population, Black householders, occupied housing
units with no vehicle, Black population, low-income population,
adults with educational attainment less than high school, and pop-
ulation without health insurance. In Fig. 10 it is apparent that
households with Black householders and low-income populations
have a significant positive correlation with the remaining 5 SV fac-
tors. This might indicate that Black householders and low-income
populations might be driving the correlation in the recovery for the
year 2050. Nevertheless, as observed in Fig. 10, the female pop-
ulation is not correlated with any other SV factor. This highlights
the added importance of this negative correlation and suggests that
in neighborhoods with a large female population and any other sig-
nificant SV factor, the disaster impact might be exacerbated.

It is also noteworthy to mention the correlation trend in the re-
covery for 2030. Even when the Hispanic householders and the
elderly showed a significant correlation throughout the recovery
period, the SV factors related to single-parents (SP) and the presence
of children and adolescents (CA) only showed a significant correla-
tion for the second and last years of the recovery phase. By Fig. 10, it
is seen that the elderly SV factor is negatively correlated with all the
other 3 factors and that Hispanic householders are positively corre-
lated with CA and SP and negatively correlated with the elderly. This
might be the driving factor of the significant correlations in the year
2030, but also features the importance of assessing disasters as dy-
namic processes, following how they evolve.

Discussion

This study proposes to extend the PBCE framework to include not
only temporally evolving structure or infrastructure performance
during hurricane hazard events, but their dynamic interaction with
the recovery of coastal communities, including features such as
housing (value) recovery and its impact on vulnerable populations.
Results show that the incorporation of climate change effects and
degradation factors in the performance assessment of residential
houses increased their probability of failure and associated loss, as
observed in the differences between the 2030 and 2050 scenarios.
This not only affects the immediate impact of hurricane hazards
but has an important influence in the recovery phase, where it is seen
that the damage suffered by individual houses drives its potential
recovery in the years following the storm. Moreover, the correlations
between short- and long-term performance of the built environment
with sociodemographic variables exposed some of the underlying
effects of hurricane hazards on coastal communities and, more spe-
cifically, on vulnerable populations.

The findings of this study are limited by the characteristics of the
models used to assess the fragility of the houses, their restoration,
and data availability. As previously discussed, the house fragility
model is an empirical model developed based on the survival of
elevated residential structures during Hurricane Ike (Tomiczek et al.
2014). Therefore, the fragility model can only provide a collapse
limit state assessment and might have limitations when applied to
coastal houses with different foundation types. The recovery model
is also a data-driven model developed in the aftermath of Hurricane
Ike that uses assessed values of the houses to track damage and

Table 2. Correlation coefficients of social vulnerability factors (SVF) with recovery index for 2030 and 2050

Year 2030 Year 2050

No. SVF 1 2 3 6 SVF 1 2 3 6

1 Sp 0.279 0.299* 0.287 0.314* SP 0.126 0.126 0.126 0.136
2 RT 0.103 0.109 0.102 0.117 RT 0.247 0.247 0.247 0.229
3 NW 0.194 0.196 0.193 0.167 NW 0.469* 0.469* 0.469* 0.468%*
4 BH —0.036 —0.043 —0.041 —0.064 BH 0.577* 0.577* 0.577* 0.571%*
5 HH 0.320%* 0.331* 0.325% 0.328%* HH 0.210 0.210 0.210 0.208
6 NV 0.027 0.033 0.030 0.028 NV 0.440* 0.440%* 0.440%* 0.452%*
7 BP 0.061 0.052 0.056 0.039 BP 0.468* 0.468* 0.468* 0.490*
8 HP 0.223 0.233 0.227 0.223 HP 0.182 0.182 0.182 0.171
9 LI —0.168 —0.162 —0.167 —0.182 LI 0.415% 0.415% 0.415% 0.401%*
10 ED —0.423* —0.424* —0.420* —0.403* ED —0.211 —0.211 —0.211 —0.224
11 HS 0.094 0.093 0.090 0.070 HS 0.351%* 0.351%* 0.351%* 0.350*
12 FP 0.078 0.093 0.085 0.120 FP —0.302%* —0.302* —0.302%* —0.330*
13 CA 0.244 0.261 0.250 0.296* CA —0.076 —0.076 —0.076 —0.085
14 EN 0.130 0.141 0.131 0.117 EN 0.288 0.288 0.288 0.282
15 NH —0.054 —0.047 —0.050 —0.073 NH 0.328%* 0.328* 0.328%* 0.323%*
Note: *p < 0.10.
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structure (Gonzalez-Duefias and Padgett 2021), results might change

on minimum-elevation requirements of the houses at the time that
they were constructed (Fereshtehnejad et al. 2021), and since the
probability of failure is very sensitive to the water line reaching the
with more precise measurements. Moreover, in this study, the SV
factors used in the correlation analysis could not be projected due
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coincided with the recession of 2008, which might have affected the

prices of the residences in Galveston Island. Data constraints in
storm simulations, projections of sociodemographic variables, and

recovery. As noted in Hamideh et al. (2021), Hurricane Ike also
more precise building data might also affect the results of the model.
For example, the elevations of the building stock are estimated based
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to a lack of information. Even though recent efforts have been made
to estimate future projections of such SV factors at the country level
(Lee et al. 2016; Ortman and Shin 2011; Ro et al. 2021), projections
at a higher spatial resolution (Colby and Ortman 2015; Hauer 2019)
are required to evaluate their effect in the results and analysis of the
proposed study. These points highlight the need of more comprehen-
sive databases and platforms that provide the opportunity to share
and access data in the context of natural hazards research (Rathje
et al. 2017; Wartman et al. 2020).

Nevertheless, data-driven models have added advantages with
respect to physics-based models. For instance, data-driven models
can capture specific characteristics of the construction practices of
the region, the storm, and highlight important features of the built
and natural environments, such as the added protection of dunes
or the added increase in the probability of failure due to channel-
induced erosion on foundations (i.e., the velocity of the water
increases in the spaces between houses). On the recovery side,
data-driven (e.g., tax appraisal data or surveys) models can cap-
ture to a certain extent how the dynamics of the population affect
the way in which the community recovers after a storm (Hamideh
et al. 2021) and even identify region-specific factors that played
an important role in shaping the recovery process (van Zandt
et al. 2012).

Finally, a transition from an individual structure—wise analysis
to a system-level analysis needs to be promoted to identify cascad-
ing effects of damage in neighborhoods. For instance, the prices of
houses that did not suffer any damage might be affected if they are
located in a neighborhood where all the other houses collapsed (De
Silva et al. 2008). Damage correlations among structures should
also be considered in order to capture system-level dynamics in indi-
vidual building performance such as shielding effects and water-
borne debris impacts (Hatzikyriakou et al. 2016; Hatzikyriakou and
Lin 2017a). This is also important when assessing social networks;
if complete neighborhoods are dislocated due to the impact of the
storm, social bonds might be broken, which in many opportunities
are a core part of recovery and the livelihood of minorities and vul-
nerable populations (van Zandt et al. 2012).

From the insights of this study, some important issues are raised.
When considering the added stress on the built environment posed
by climate change and degradation and its increase with time (as
seen in the differences in performance between 2030 and 2050), it
is important to ask how are we going to mitigate the risk of struc-
tural and infrastructure systems imposed by the changing climate
conditions of this century? When do we need to put these mitiga-
tion strategies in place? And, considering an economy of limited
resources, how do we choose what systems need to be retrofitted
first? Regarding these questions, innovative solutions are required
that can not only effectively adapt our built environment to the new
climate, but that are also sustainable and economically viable
(Dong and Li 2017; Wang et al. 2020). The construction sector
is one of the big contributors to carbon emissions in the world
(Erlanger and Sengupta 2021), therefore, more sustainable con-
struction and design practices need to be promoted to fit into a
new adaptation engineering scheme. Also, life cycle methodologies
that can include the time-varying characteristics of structural and
infrastructure systems and that can incorporate more environmen-
tally friendly strategies as viable options to reduce long-term costs
and emissions (Angeles et al. 2021; Wei et al. 2016) need to be
developed. Life cycle and adaptation engineering strategies can in-
form practical and achievable goals of mitigation and retrofitting
strategies, considering both the available resources and the feasible
time frame. The potential increase in the landfall frequency of tropi-
cal cyclones over the century (Xi and Lin 2021) could mean that
coastal communities might not have enough time to recover from
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one event before another storm hits the area (Minsker et al. 2015).
This is of particular importance when evaluating the long-term im-
pacts of hurricanes events since the resilience of the community
might depend on the pace of recovery in the aftermath of the storm.
Finally, as could be observed from the correlation analysis of build-
ing performance and social vulnerability factors, disparities in dam-
age and recovery of the built environment exist among communities.
Hence, one of the most challenging questions is how the above-
mentioned strategies can be implemented without favoring the more
affluent sectors of the economy and the population. Vulnerable pop-
ulations are not only more exposed to the impacts of natural hazards,
but also generally do not have the resources to adapt to the new cli-
mate conditions (e.g., expenses of structural retrofitting, relocating).
Therefore, policies should aim for a fair transition into more sustain-
able practices, while protecting the most vulnerable sectors of the
population (Drakes et al. 2021; Witze 2021). It is also necessary
to propose adequate and practical metrics that can capture the social
disparities of disasters in the region and their influence on risk and
resilience assessments (Kim and Sutley 2021; Markhvida et al.
2020). For instance, metrics such as “household well-being losses”
(Markhvida et al. 2020) and “hot households” (Fereshtehnejad et al.
2021) have been proposed to assess the coupling between building
fragilities and social systems. This is not only important to perform
more unbiased risk analyses [e.g., losses might be biased by more
expensive assets (Markhvida et al. 2020) as discussed in the previous
section], but also leads to more efficient and transparent communi-
cation with stakeholders and communities.

Conclusions

This study explores the application of the PBCE framework to
support regional hurricane risk and resilience assessments while con-
sidering time-varying and social vulnerability factors. The method-
ology consists of three main steps: damage evaluation, recovery
assessment, and the evaluation of the consequences of the disaster
within vulnerable populations. First, the performance of the building
stock of Galveston Island under surge and wave loads was assessed
for future hurricane scenarios with changing forward velocity and
local sea level rise projections in the years 2030 and 2050 in terms
of damage and recovery. The average loss and the relative recovery
(i.e., recovery index) of the houses were used as performance metrics
to analyze the short- and long-term impacts at a neighborhood scale,
respectively. The introduction of the recovery phase analysis within a
PBCE framework allowed evaluating recovery as a dynamic process,
where the recovery trajectory of the neighborhood was analyzed up
to six years following the event. Finally, to assess the consequences
of the damage of the houses (short-term) and their recovery over time
(long-term), correlations were computed with a set of representative
social vulnerability factors. Results show and quantify the changes
in the probability of failure of the building stock and their recovery
due to the effects of a changing climate on the hazard conditions
(i.e., changes in the forward velocity of the storm and local sea lev-
els). The correlations in the short- and long-terms show that the eld-
erly and women might be most at risk in future hurricane events,
given the models and conditions assumed in this study. In this sce-
nario, resilience strategies and policies should be promoted to
mitigate the potential adverse consequences both in the long- and
short-term to these two population sectors. Moreover, correlations
among social vulnerability factors should be also considered while
interpreting results, since underlying hidden factors might be driving
the correlation with both damage and recovery.

This study has also shown the importance of considering
time-varying factors when assessing the performance of structural
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systems and how it correlates with the sociodemographic character-
istics of the region. The need to address disasters as dynamic proc-
esses becomes more evident when considering the cascading effects
of natural hazards in damage disparities across a region and its con-
sequences in the recovery process. Moreover, the added risk caused
by climate change and aging of structural and infrastructure systems
and the complex dynamics of socioeconomic systems call for cre-
ative adaptation strategies that consider sustainability, climate justice,
new policies in urban planning, and infrastructure investments that
consider social vulnerability, as well as changes in building design
codes that can ensure structural performance beyond collapse pre-
vention for future climate conditions.

While this paper presented a framework for extending notions of
PBCE to community-scale recovery and consideration of social
vulnerability, future work should address limitations and gaps such
as the differences in building archetypes when evaluating perfor-
mance at a regional scale, the incorporation of evidence to reduce
uncertainty in the estimates, the adoption of alternative decision
variables, such as carbon emissions or dislocation, as well as the
incorporation of a fully probabilistic hazard model. Opportunities for
improvement also include more accurate region-specific projections
of climate change effects on hurricane hazards, socioeconomic pro-
jections considering different climate scenarios, as well as future
built environment development. For instance, in this study the impact
of climate change in the hazard was only captured by two param-
eters, local projections of sea level rise and changes to the forward
translational speed of the storm in order to showcase the methodol-
ogy. In the future, the effects of climate change in other relevant
storm parameters (e.g., intensity, size, track) should be assessed to
perform a fully probabilistic hazard analysis and better predict the
effects of a changing climate in tropical cyclones and their impacts
on coastal communities. A future opportunity also relies on the use
of historical storms to leverage and test the proposed framework. To
this end, data collection and dissemination efforts in the aftermath of
hurricane events that assess not only the immediate damage but the
recovery process for individual houses in the years following the
landfall of the storm should be promoted.

Moreover, in this study the houses were considered as indepen-
dent units, therefore opportunities exist to model the interactions
between housing units leveraging deep probabilistic graphical
models to better capture their complex behavior in the aftermath
of natural hazards. This methodology can also be expanded to dif-
ferent testbeds, in order to analyze differences in performance de-
pending on the region and unveil the specific sociodemographic
interactions that are key for managing risks in the future. Oppor-
tunities also include the integration of the proposed methodology
with a life cycle analysis of the system, which can inform adapta-
tion strategies for coastal communities. Finally, the investigation of
the impact of different retrofitting measures and policies specifi-
cally designed for neighborhoods considering their characteristic
social vulnerabilities should also be explored.
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