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In this work, a carbon nanotube microelectrode set (CNT u-ES) was modified, in which three electrodes based on
highly densified carbon nanotube fiber (HD-CNTf) cross-sections (length ~40 um) were embedded in an inert
polymer matrix with exposed open-ended CNTs at the interface. An HD-CNTSf cross-section (~40 um diameter)

]élli?;::nalym electrochemically modified with copper nanoparticles (CuNPs) was used as the working electrode; a bare HD-
Nonenzymatic CNTf cross-section (~94 um diameter) was used as the counter electrode; and an HD-CNTf cross-section (~94 pm

diameter) electroplated with Ag/AgCl and then coated with Nafion™ was used as a quasi-reference electrode.
The electrochemical activity of the CuNPs/HD-CNTf microsensor for glucose electrooxidation was examined by
cyclic voltammetry and amperometry in 0.1 M NaOH solution. As shown by amperometry studies, the proposed
nonenzymatic CuNPs/HD-CNTf microsensor had a remarkably low limit of detection (28 nM) and a wide linear
quantification range with an excellent sensitivity (1942 nA-uM~'.cm~2). This sensitivity can be attributed to the
synergetic effect of electrocatalytic CuNPs and aligned HD-CNTf, which provide excellent conductivity. The
electrooxidation of glucose on the developed microsensor was free from chloride poisoning and independent of
the oxygen concentration. The developed microsensor demonstrated insignificant interference from the oxidation
of common interfering species and carbohydrate compounds at their physiological concentrations. Finally, the
CuNPs/ HD-CNTf microsensor was successfully applied for the quantification of glucose in normal human serum
and diabetic patient urine samples, demonstrating the applicability of this strategy for commercial nonenzymatic
glucose sensors.

rapid and accurate monitoring of blood glucose levels is required to
prevent and reduce the complications of diseases associated with dia-
betes mellitus.

1. Introduction

Glucose monitoring is of practical importance in many areas such as

biotechnology, the food industry, the textile industry, and medical di-
agnostics. Glucose concentrations in body fluids are used as a clinical
indicator of diabetes mellitus, a metabolic disorder and one of the main
factors of death and disability in the world. Diabetes originates from a
lack of insulin, which helps cells to adsorb glucose for energy, and re-
sults in a buildup of blood glucose levels that can damage organs
including blood vessels, eyes, kidneys, and nerves [1-6]. Therefore, the
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Much effort has been focused on developing inexpensive and reliable
glucose sensing techniques with excellent sensitivity and selectivity,
good precision, and fast response times [6,7]. In this context, various
approaches including colorimetry [8], chemiluminescence [9], fluores-
cence [10,11], surface-enhanced Raman scattering [12,13], mass spec-
trometry [14,15], and electrochemical methods [6,7] have been
intensely explored. Among the reported techniques, the electrochemical
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detection of glucose is considered the most convenient and promising
method due to its excellent selectivity and sensitivity, reliability, easy
operability, low cost, long-term stability, fast detection speed, and
continuous monitoring ability. Therefore, the development of electro-
chemical glucose sensors has received extensive interest over the past
few decades [6,16,17]. The use of glucose oxidase (GOx), an enzyme
that catalyzes the oxidation of glucose to gluconolactone, in the elec-
trochemical sensing of glucose has been widely explored to achieve high
sensitivity and selectivity; however, enzymatic glucose biosensors suffer
from poor stability, oxygen interference, complicated immobilization
procedures, and critical operating conditions. In particular, as the cat-
alytic activity of GOx is susceptible to environmental conditions such as
pH, temperature, humidity, and intrusive chemicals, reproducibility is
an important issue for quality control [7,18,19]. To avoid the issue of
enzyme degradation, enzyme-free glucose sensors have been explored.
In recent years, attempts have been made to develop nonenzymatic
glucose sensors by immobilizing various noble metal nanoparticles,
including platinum [20,21], gold [22-24], palladium [25-27], and their
alloys [19,28-32] on working electrode surfaces. However, reported
noble-metal-modified electrodes suffer from low sensitivity and speci-
ficity due to surface poisoning by chloride ions or the adsorption of in-
termediate species. Moreover, because of their high cost, noble metals
are not suitable candidates for the mass production of disposable
nonenzymatic electrodes [6,7,19].

Copper is a widely investigated metal catalyst and is of particular
interest for the fabrication of nonenzymatic glucose sensors owing to its
minimal cost, outstanding electrocatalytic activity, high electrical con-
ductivity, chloride poisoning resistance, and ready availability [33-37].
Due to the ability of copper to change valence states, copper-based
materials with a variety of dimensionalities and nano/microstructures
such as metallic copper [36,38-41], Cu,O [42-44], Cu(OH), [45-47],
and Cu,S [48-50] have been used to fabricate enzyme-free sensing in-
terfaces to catalyze glucose electrooxidation. Furthermore, to enhance
sensor performance for glucose detection, carbon nanotubes (CNTs)
have been exploited as conductive templates to support copper or cop-
per oxide nanomaterials, which greatly improves the dispersion and
loading amount of metal catalysts on electrode surfaces. For instance,
Male et al. fabricated a copper nanoparticles (CuNPs)/CNT-deposited
glassy carbon electrode (GCE) for nonenzymatic glucose detection,
which showed a four-fold increase in sensitivity compared with a bare
copper disk electrode [51]. Other reported glucose sensors based on
CuNPs/CNTs [2,52-55] also exhibited high sensitivity for the electro-
catalytic oxidation of glucose, which was attributed to the introduction
of CNTs. These studies used sonicated or randomly arranged CNTs
coupled with a copper metal catalyst for glucose electrocatalytic
oxidation. However, the best way to take advantage of the anisotropic
properties of individual CNTs is to align them in a fiber. Aligned and
highly densified CNT fibers are less influenced by solution resistance and
have high mass sensitivity, electrical conductivity, and signal-to-noise
ratios, which reduce the background charging current and result in
lower detection limits as compared to randomly arranged or dispersed
CNT electrodes [56-61]. Attempts have been made to fabricate nonen-
zymatic glucose sensors by depositing a copper metal catalyst using
either electrochemical or sputtering methods on vertically aligned or
as-grown CNTs produced by chemical vapor deposition (CVD) [62-65].
The copper-deposited CNT forests connected to a conductive support, i.
e., a GCE [62,63] or a copper electrode [65] exhibited high sensitivity
toward glucose electrooxidation. However, the preparation of these
macrosized sensors required expensive and complicated fabrication
processes, which are not suitable for mass production. Therefore, there
is a strong need to explore nano-/microsized CNT arrays for the fabri-
cation of inexpensive high-performance miniature or point-of-care
sensing devices for glucose monitoring.

Thus, our goal was to fabricate a miniature glucose sensing device
with the working electrode (WE), counter electrode (CE), and reference
electrode all based on CNTs and assembled on a single platform that can
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detect an analyte in a single droplet of solution. Herein, we report the
first nonenzymatic glucose sensor based on carbon nanotube micro-
electrode set (CNT p-ES), in which all three electrodes are made of a
highly densified, well-aligned multiwalled carbon nanotube fiber (HD-
CNTf). The HD-CNTf embedded in an inert polymer film was sectioned
into micrometer-length rods to obtain open-ended HD-CNTY. As a result,
the sidewalls of the CNTs were encapsulated with only the open ends of
the CNTs exposed at the interface, allowing the unparalleled sensitivity
of the open ends to be exploited. As the WE, a CNTf cross-section elec-
trochemically modified with CuNPs was used as the electrocatalyst for
glucose oxidation. Furthermore, a Ag/AgCl/Nafion™-coated CNTf
cross-section and a bare CNTf cross-section was used as the quasi-
reference electrode (QRE) and the CE, respectively. Owing to the
micrometer scale of these CNTf electrodes, the entire sensor could be
miniaturized onto a single platform. The novelty of this technology lies
in the p-ES detection capabilities, where all three CNTf electrodes were
individually connected to metallic wire leads for electronic circuit
communication on one side with the modified HD-CNTf open ends on
other side for glucose sensing. Owing to the excellent conductivity of the
densely packed edge plane sites of the CNT cross-section and the
outstanding catalytic ability of the CuNPs, the developed microsensor
exhibited a wide linear range for glucose detection with a very low limit
of detection (LOD). Notably, the glucose sensing performance of the
CuNPs/HD-CNTf microsensor was not affected by chloride poisoning or
oxygen interference. Importantly, the developed microsensor provided
satisfactory results for glucose detection in diabetic patient urine sam-
ples and normal human serum, demonstrating its applicability as a
practical glucose sensor.

2. Experimental section
2.1. Reagents and materials

Copper sulfate pentahydrate (CuSO4.5H20), sulfuric acid (H2SO4),
sodium hydroxide (NaOH), boric acid (H3BOs), Glucose, lactose, su-
crose, fructose, ascorbic acid, dopamine, uric acid, NaCl, human serum
(S1-100 mL) and urine were purchased from Sigma Aldrich. NaOH so-
lution of 0.1 M were used as supporting electrolyte. The urine samples of
diabetic patient were collected in sterile cups and used as received
without any filtration or purification. Institutional Review Board (IRB)
protocol was followed during human urine sample collection. For the
fabrication of CNT rods embedded polymer films, EMBed-812 embed-
ding kit consisting of monomers and cross linkers were purchased from
Electron Microscopy Sciences (PA, USA) and prepared according to
given instructions. CNT fiber was densified in acetone solvent for 96 h at
30 °C in an oven. CNT fiber was produced from CVD grown vertically
aligned CNT forests as reported by our group [66,67] before where
ethylene (Wright Brothers, USA) was used as the carbon source and
Fe/Co as the catalyst (Goodfellow, USA). All other chemicals and sol-
vents used in the study were of analytical grade, and Milli-Q ultrapure
deionized water (18 MQ cm) was used to prepare all the solutions.

2.2. Instrumentations

Cyclic voltammetry was performed with a computerized Bio-
analytical system Epsilon EClipse™ and amperometry experiments were
recorded using CHI 760E electrochemical workstation from CH in-
struments. The p-ES consists of three HD-CNTf rods of different diameter
where ~40 um diameter coated with CuNPs was used as the working
electrode (WE), ~94 um diameter HD-CNTf rod coated with Ag/AgCl/
Nafion™ used as quasi-reference electrode (QRE) and ~94 um diameter
bare HD-CNTfrod was used as counter electrode (CE). For comparison of
QRE, an Ag/AgCl (3 M NaCl) (ALS Co., Ltd, Model 012167 RE-1B) was
used as a standard reference electrode. Gamry Reference 600 potentio-
stat was used to record electrochemical impedance spectroscopy (EIS)
data. Surface characterization of CuNPs/u-ES were performed using
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field emission-scanning electron microscopy (FE-SEM) FEI XL30 oper-
ated at 10 kV acceleration voltage and Raman spectra were collected
using a Renishaw inVia Raman microscope, excited by a 633 nm Ar-ion
laser, Gloucestershire UK. Raman spectra are collected at 5 points for
each sample using ~ 10 s acquisition time with 10% power. The time
and power are kept constant during Raman studies.

2.3. CNT production and microsensor fabrication

CNT fibers with different diameters were produced from vertically
aligned CNT forest arrays synthesized by CVD, as reported earlier [66,
67]. The vertically aligned CNT forest array was drawn from one end
and twisted into a fiber using a spinning and pulling motor simulta-
neously. The produced fiber was held together by van der Waals
attraction and the packing density of CNTs within the fiber was poor. To
increase the packing density, the fiber was soaked in acetone under
optimized conditions (96 h at 30 °C in an oven). The densification
process improved the alignment of the CNTs within the fiber and has
also been shown to increase the conductivity of CNTf [66,68]. Field
emission scanning electron microscopy (FE-SEM) images of the
acetone-soaked HD-CNTf with different diameters (~40 and 94 um) are
shown in Fig. 1A and B. A schematic of the fabrication process for the
u-ES using HD-CNTS is shown in Fig. S1 (Supporting Information, page
S2). The mechanical process used to fabricate the p-ES using HD-CNTf is
similar to that reported in our recent studies [69,70]. Briefly, one 40 pm
and two 94 um diameter HD-CNTf of 1.5 cm in length were placed
parallel to each other, with a spacing of 2 mm, on a tape scaffold. The
HD-CNTf attached to the scaffold was placed vertically in a 2 mL
capsule-shaped plastic vial, which was then filled with an Embed-812
monomer mixture and cured at 90 °C in an oven for 24 h. The
HD-CNTf-embedded cured polymer capsule was removed from the
plastic vial and microtomed perpendicular to the embedded CNTf into
40 pm thick slices, which resulted in the open ends of 40 um long
HD-CNTf being exposed at both sides of the sliced film. Fig. 1C displays a
higher magnification image of the bare HD-CNTf cross-section, con-
firming the high-density packing of CNTs within the fiber. The exposed
open ends of each HD-CNTf (one 40 um and two 94 pm in diameter) on
one side (electrical contact side) of the sliced film were connected to a
conductive metal wire using silver paste and then encapsulated with
epoxy resin for electrical insulation. The other side of the film was used
as a u-ES with the ~40 pm diameter HD-CNTf as the WE and the ~94 um
diameter HD-CNTf as the reference electrode and CE. For glucose
determination, the bare HD-CNTf cross-section was used as the CE,
whereas the reference electrode was modified with Ag/AgCl and then
coated with Nafion™ to produce a QRE. Furthermore, for the WE, the
40 pm HD-CNTS cross-section was modified with CuNPs. The FE-SEM
image of the CuNPs-based CNT p-ES (Fig. 1D) shows the incorporation
of the CuNP-modified WE, Ag/AgCl/Nafion™-modified QRE, and bare
HD-CNTf CE (red circles).
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2.4. Fabrication of Ag/AgCl//Nafion™/HD-CNTf rod QRE

For the fabrication of QRE, first Ag nanoparticles (NPs) were elec-
troplated onto the cross section of one ~94 um HD-CNTf rod using
optimized 30 mM AgNOj3 in 1 M NHj3 solution with the help of a porous
junction Ag/AgCl (3M NaCl) and platinum wire as reference and
counter electrode, respectively. The electrochemical deposition was
carried out by applying an optimized reduction potential at —300 mV
for 30 s in stirred AgNOg solution, and then rinsed with DI water and
dried under ambient room temperature. To form a thin layer of AgCl, a
drop of 50 mM FeCls solution was casted onto the surface of AgNPs
coated HD-CNTf cross section for 90 s and further rinsed with DI water
and dried under ambient room temperature. The FE-SEM images of
AgNPs/HD-CNTf rod and Ag/AgCl/ HD-CNTf rod are shown in Fig. 1E
and F. The deposition of AgNPs and formation of AgCl layer was also
confirmed by EDAX as shown in the Fig. S2A and B (Supporting Infor-
mation), respectively. The direct exposure of Ag/AgCl/HD-CNTf to
electrolyte solution was found to alter the potential of QRE due to
possible degradation of Ag/AgCl layer in long term electrochemical
calibration studies. Therefore, to avoid the alteration or degradation of
the Ag/AgCl layer, a drop of 5% Nafion™ solution was casted onto the
Ag/AgCl coated HD-CNTf rod surface (Fig. 1G). The Nafion™ coated
surface was dried under ambient room temperature for 12 h and then
cured in an oven at 90 °C for 1 h. The Nafion™ coating was found to
provide a stable potential and maintains the integrity of the Ag/AgCl
surface for extensive electrochemical testing for several days [71]. The
EDAX data of Ag/AgCl/Nafion™ QRE is shown in Fig. S2C (Supporting
Information).

2.5. Fabrication of CuNPs/HD-CNTf rod WE

To modify the ~40 um diameter HD-CNTSf rod cross section with
CuNPs, the controlled potential electrolysis (CPE) was performed in an
optimized 1:0.5:0.5 solution mixture of 10 mM copper sulfate solution,
0.5 mM of boric acid and 0.5 mM of sulfuric acid, respectively. Initially
to optimize the CuNPs deposition on HD-CNTf surface different constant
potential ie., —150 mV, —250 mV, —350 mV and —450 mV were
applied for 180 s (optimized). After CuNPs deposition, electrodes were
rinsed with DI water and dried under ambient room temperature. The
FE-SEM images of CuNPs/HD-CNTf fabricated at different potentials are
presented in Fig. S3 (Supporting Information). The electrode prepared at
—350 mV showed highest peak current for glucose electrooxidation
compared to the other fabricated electrodes, therefore, an optimized
—350 mV potential was selected to study the glucose electrooxidation at
CuNPs/HD-CNT/. The micrograph of the resulting surface CuNPs/HD-
CNTf rod is shown in Fig. 1H. The EDAX characterization of the CuNPs
modified HD-CNTS cross section confirmed the electrochemical deposi-
tion of CuNPs on the open-ended or defective sites (sp> carbon) of the
CNTs. The EDAX details are shown in the Fig. S4 (Supporting
Information).

Fig. 1. FE-SEM images of (A) ~40 um and (B)
~94 ym HD-CNTf; (C) high-magnification FE-
SEM image of WE HD-CNTf cross-section,
which confirms the dense packing of CNTs
within the fiber; (D) polymer-embedded HD-
CNTSf cross-sections (red circles) used as the
WE, QRE, and CE; (E) AgNPs electroplated on a
HD-CNTf cross-section (~94 um); (F) Ag/AgCl
layer formed by drop-casting FeCl; on AgNPs;
and (G) 5% Nafion™ coating on Ag/AgCl-
modified HD-CNTf cross-section (QRE); (H)
WE consisting of a CuNP-modified HD-CNTf
cross-section (~40 um). (For interpretation of
the references to color in this figure legend, the
reader is referred to the web version of this
article.)
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2.6. Experimental procedure

The 0.1 M NaOH solution was used as supporting electrolyte in all
electrochemical studies. The stock solutions of glucose were prepared in
deionized (DI) water. The CV measurements were performed in the
potential window of —200 mV to +500 mV for calibration and scan rate
studies. Amperometric measurements were recorded at optimal
+400 mV potential by consecutive addition of glucose concentrations at
40 s interval time, with the current response being stable, into the stirred
0.1 M NaOH solution. The CuNPs/p-ES was applied in triplicate (n = 3)
for each electrochemical determination. Amperometric experiments
were repeated at three electrodes for the calibration study and real
samples assays. All experiments were carried out at room temperature.
The EIS measurements of CuNPs/u-ES were recorded in 5 mM K3[Fe
(CN)e] and KCI (0.1 M) solution. An alternating potential with 10 mV
amplitude was applied in the frequency range from 1 Hz to 10° Hz on
microelectrode. All the potentials are reported with respect to the Ag/
AgCl/Nafion™ electrode at an ambient temperature of 25 + 2 °C, unless
otherwise stated.

3. Results and discussion
3.1. Surface characterization of microsensor

The X-ray photoelectron spectroscopy (XPS) and Raman spectros-
copy studies of HD-CNTf have been reported in our recent study [69]
confirming the absence of detectable metal catalyst and showed signif-
icant increment in D/G ratio for cross section compared to sidewall of
HD-CNTYf, respectively.

Raman spectroscopy on metal nanoparticles (NPs) substrate shows
the enhancement in Raman intensity which is the result of localized
surface plasmon resonance (LSPR). Silver (Ag), Gold (Au) and Copper
(Cu) NPs are commonly used to study the surface enhanced Raman
spectroscopy (SERS) sensors. The reason being Ag, Au, and Cu NPs
exhibit LSPR in visible light due to excitation of the conduction electrons
after interaction of light with matter [72-74]. Generally, the enhance-
ment factor is expected to be 107-10% while few studies reported
10'-10' enhancement factor from single metal NP substrate [75].
Markin et al. reported that CuNPs possess a significant Raman
enhancement (~10°-107), which is comparable to Au and Ag NPs [76].
In this work, Raman spectroscopy was performed on bare HD-CNTf rod
cross-section and CuNPs/HD-CNTf rod cross-section using 633 nm
excitation wavelength irradiation. The different samples of
CuNPs/HD-CNTf rod cross-section were prepared using controlled po-
tential electrolysis (CPE) at different potentials i.e., —150, —250, —350
and —450 mV (FE-SEM shown in Fig. S3; Supporting Information).

In Fig. 2, the Raman spectra are shown for bare HD-CNTf rod cross-
section (black curve) and different CuNPs/HD-CNTf samples. It can be
seen that the Raman intensity of D, G and G’ band are enhanced for
CuNPs/HD-CNTf as compared to bare HD-CNTf cross-section. The
Raman relative intensities of the D, G and G’ peaks of bare HD-CNTf
cross-section are about 1035, 1025 and 1130 counts, while the highest
relative intensities of the D, G and G’ bands are observed 5835, 4800 and
4140 counts for CuNPs/HD-CNTf fabricated at —150 mV, which could
be explained by the electric field enhancement induced by localized
surface plasmon resonance [77]. At —150 mV potential, very low con-
centration of CuNPs were deposited at HD-CNTf and the deposition of
CuNPs at HD-CNTf cross-section surface increased with increasing the
reduction potential from —150 mV to —450 mV, which can be seen in
FE-SEM images of Fig. S3 (Supporting Information). The enhancement
factor or surface plasmon resonance (SPR) is dependent on the size,
shape and roughness of metal NPs [73]. Due to increasing number of
CuNPs at —350 mV, the CuNPs/HD-CNTf cross-section showed less in-
tensity of D, G, and G’ band compared to CuNPs/HD-CNTf observed at
—250 mV. At —450 mV, the CuNPs completely covered the HD-CNTf
surface, and due to high packed density of CuNPs, the incident light is
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Fig. 2. Raman spectra of bare HD-CNTf cross-section and CuNPs/HD-CNTf
cross-section. CuNPs were deposited at different constant potential i.e., —150,
—250, and —350 using CPE. Inset shows the Raman spectrum of CuNPs
deposited at —450 mV using CPE.

not able to interact with CNT surface and completely reflected from
metal surface, which resulted to the negligible intensities of the D, G,
and G’ band as shown in inset of Fig. 2. The enhancement factor for D
peak is about 5.6 which is higher than G peak at CuNPs/HD-CNTY, since
the enhancement in the D peak is caused by the CNTs cross-section
defects and electromagnetic enhancement of CuNPs, while the G peak
is merely caused by the electromagnetic enhancement of CuNPs [76].
The Electrochemical impedance spectroscopy (EIS) was performed to
analyze the charge transfer resistance of the bare and CuNPs modified
HD-CNTSf cross-section using Randles equivalent circuit. In high fre-
quency region, the EIS results showed the impedance values 55k ohm
and 20k ohm for bare and CuNPs/HD-CNTf surface, respectively as
shown in Fig. 3. The reduction in charge transfer resistance for CuNPs
modified CNTf cross-section can be attributed to CuNPs which increases
the active surface area as compared to bare CNTf cross-section. An
apparent difference is observed at low frequency, where the 45° sloped
region of the Nyquist plots, the so-called Warburg resistance, can be seen
for bare and CuNPs/HD-CNTf surface. The Warburg element typically is

L J
e Bare HD-CNTf
804 ¢ CuNPs/HD-CNTF .
Ca : ..
}—/| o o
—_— 60- Rs ch ZW .‘.
G W- ®e
= o® o
— o'. .
g’ 40- P |
N| ............
20 -
o 1 ) I ]
0 20 40 60 80

Z real (KQ)

Fig. 3. Nyquist plots of bare and CuNPs modified HD-CNTf rods cross-section
microelectrodes (inset is Randles equivalent circuit).
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used to represent linear diffusion under semi-infinite conditions. The
bare CNTf cross section surface has large number of oxygen functional
groups due to the defects or open-ended sites (sp3 carbon) [59]. The
high densification of CNTs with in fiber and presence of higher per-
centage of oxygen functional groups will hinder, to some extent, the
transport of ions into pores which increases the Warburg impedance.
The Warburg impedance slop approaches a vertical line with increasing
the oxygen functional groups, which indicates an increase of ionic
diffusion impedance in the pores [78]. The deposition of a porous CuNPs
layer onto CNTf cross-section surface increases the ion diffusion and
corresponding formation of the diffusion layer at electrode surface
which leads to a straight line of Nyquist plot, which appears at 45° angle
[78,79].

3.2. Cyclic voltammetric characterization

3.2.1. Ag/AgCl//Nafion™/HD-CNTf rod QRE

Initially, the fabricated Ag/AgCl/Nafion™ coated HD-CNTf rod
electrode was examined as a quasi-reference electrode compared to the
standard Ag/AgCl (3 M NaCl) commercial reference electrode. For ex-
amination, cyclic voltammograms were recorded in redox analyte i.e.
5 mM [Ru(NH3)6]3Jr and 50 mM KCl (1:1 ratio) at a scan rate of
100 mVs ™!, using p-ES where bare HD-CNTf rods were used as working
(~40 um diameter) and counter electrode (~94 um diameter). As shown
in Fig. 4A, the redox potential of the voltammogram recorded using Ag/
AgCl/Nafion™ coated HD-CNTf rod QRE shifted negatively by around
~100 mV compared to the commercial standard Ag/AgCl (3 M NaCl)
RE. The difference in the redox potential attributed to the significant
difference in the Cl~ ion concentration present in the internal filling
solution (3 M NaCl) of commercial standard RE. Further, experiments
were also performed with increased concentration of KCl supporting
electrolyte solution but the redox potential of Ag/AgCl/Nafion™ coated
HD-CNTfrod QRE was not affected (graph not shown), which can be the
result of the Nafion coating (negatively charged) on Ag/AgCl nano-
particles which screened the Cl™ anions.

3.2.2. CuNPs/HD-CNTf rod WE

In order to confirm the impact of CuNPs modification on the HD-
CNTf rod, further CVs were recorded on bare and CuNPs modified
working electrode (~40 ym diameter) in 5 mM [Ru(NH3)6]3+ and
50 mM KCI at a scan rate of 100 mV-s* using p-ES where Ag/AgCl//
Nafion™/HD-CNTf rods were used as QRE (~94 pm diameter) and bare
HD-CNTf rods used as counter electrode (~94 ym diameter). A com-
parison of CVs at bare and CuNPs modified HD-CNTSf rods is shown in
Fig. 4B. The reduction peak current of [Ru(NH3)g] 3t at CuNPs/HD-CNTf
was found to increase by ~10.5 nA magnitude compared to the bare HD-
CNTf which can be assigned to the increment in the surface area after
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CuNPs deposition at the cross section of HD-CNT/ rod.

The effect of the scan rate (5-200 mVs_l) on the CV behavior of bare
p-ES and CuNPs/p-ES in redox analyte 5 mM Ru(NHg)G]3+ and 50 mM
KCl (1:1 ratio) was also investigated. The observed voltammetric mea-
surements for the reduction of [Ru(NH3)63+/ 241 showed sigmoidal
steady state cyclic voltammograms with a magnitude of several nano-
amperes at lower scan rate (5 mVs™ 1) (Fig. 5A and B) that is the char-
acteristic of hemispherical diffusion at microelectrodes. For a disk-
shaped microelectrode, the steady state i, value is given by the
following Eq. (1):

ilim = 4nFDaC )

where n refers to the number of electrons transferred per redox event, F
is the Faraday constant 96,485 C mol’l, diffusion coefficient (D) of
8.2 x 10 %cm?s7! [80,81], radius (a) for the cross-section of 20 ym and
C is the concentration 2.5 mM for [Ru(NH3)g]Cls. From Eq. (1), the
calculated limiting current is ~16 nA, which is the same magnitude
observed for the reduction of redox analyte at bare HD-CNTf
cross-section (inset; Fig. 5A). In case of CuNPs/HD-CNTf, the observed
limiting current is ~28 nA (inset; Fig. 5B) which is near to double of the
limiting current observed at bare HD-CNTf cross section. The increment
in the limiting current can be assigned to the deposition of CuNPs at the
cross section of HD-CNTf which significantly increases the active surface
area of the working microelectrode. Further increment in the scan rates
(25-200 mVs~!) shows small gentle peaks rather than steady-state
current for both the forward and reverse scans. At higher scan rates
the diffusion layer becomes smaller and mass transport is likely to have
an increased contribution from planner diffusion. The CuNPs modified
CNTf cross section (Fig. 5B) shows slightly higher capacitive background
with hysteresis in the reverse scan but faradic current is also larger
compared to bare CNTf cross section (Fig. 5A) which is due to increase in
the surface area after CuNPs deposition. The observed hysteresis may be
due to the adsorption of redox analyte decomposed product on
CuNPs/HD-CNTSf and its slight effect also can be seen in reverse scan
where the oxidation peak cannot be defined as identical to the reduction
peak, whereas bare CNTf cross section showed identical redox peak
current for forward and reverse scan [69]. The AE,, values for bare and
CuNPs modified HD-CNTf were calculated by using halfwave form as the
observed redox response cannot be considered as transient. In such a
condition, the half-peak potential is a convenient indicator to examine
the charge transfer rates. The AE,, for both bare HD-CNTf rod and
CuNPs/HD-CNTf rod, is comparable with a difference in the 1/4-wave
and 3/4-wave potential, E;/4~E3/4, in the range 55-59 mV, indicating
reversible electrochemical reaction process with fast electron transfer
kinetics at bare open ends and CuNPs modified HD-CNTf cross section.
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Fig. 4. CVs recorded in 5 mM [Ru(NHs3)6]3* in 50 mM KCl (A) for a comparative evaluation of the commercial Ag/AgCl reference electrode (3 M NaCl) and Ag/
AgCl/Nafion™/HD-CNTf rod quasi-reference electrode using bare HD-CNTf rod cross sections as the working and counter electrodes and (B) at bare and CuNPs/HD-
CNTf rod working electrode using Ag/AgCl/Nafion™/HD-CNTSf rod quasi-reference electrode and bare HD-CNTS rod counter electrode. Scan rate of 100 mVs ™’
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Fig. 5. Cyclic voltammetry of 5 mM [Ru(NHg)G]er in 50 mM KCl with increasing scan rates in a range of 5-200 mV/s at (A) bare p-ES and (B) CuNPs/p-ES. Inset of

both graphs show the CV recorded at a scan rate of 5 mV/s.

3.3. NaOH concentration optimization

The NaOH concentration is one of the key factors which affect the
sensitivity of glucose oxidation on non-enzymatic electrode surfaces
which can be explained by the formation of hydroxyl radicals at high
potentials. Therefore, the effect of the NaOH concentration in the range
of 10-500 mM on the current response for 0.5 M glucose was examined
by CV at a scan rate of 50 mV-s~ . In the absence of NaOH, no current
response for glucose oxidation was observed. With the increase of NaOH
concentration until 0.5 M NaOH, the peak potential shifts more positive.
The anodic peak current for glucose oxidation was increased with a
maximum current at 0.1 M NaOH and then decreased slowly upon in-
crease of the NaOH concentration. Therefore, 0.1 M NaOH was selected
as the supporting electrolyte for electrochemical experiments of glucose
detection.

3.4. Electrooxidation of glucose on CuNPs/ HD-CNTf microsensor

Before implementing the CuNPs/HD-CNTf microsensor for glucose
sensing, its electrochemical behavior was investigated in alkaline solu-
tion using CV. Fig. 6A shows successive cyclic voltammograms recorded
on the CuNP-modified HD-CNTf microsensor in 0.1 M NaOH at a scan
rate of 50 mV-s~!. The current-potential curve became stable after six
cycles (Fig. 6A) and seven peaks were observed, in good agreement with
the electrochemical processes reported in the literature [82,83]. In the
anodic wave, peak 1 was assigned to the adsorption of oxygen [84],
whereas peak 2 was attributed to the transition of Cu(0)/Cu(l) (i.e.,
Cuy0). Peak 3 was associated with the formation of Cu(II), which in-
volves two transition processes (i.e., Cu(0)/Cu(Il) and Cu(I)/Cu(Il)).
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Peak 4 corresponded to the broad peaks observed in the first few scans
that merged upon scanning and was due to the formation of soluble
species (i.e., HCuO? ") through the redox reactions of copper-based solid
(s) and hydroxide ions [82]. Further anodic scanning above 250 mV (vs
Ag/AgCl/Nafion™/HD-CNTf) led to the formation of Cu(Ill), which
could only be detected at high hydroxide concentrations [83,84]. In the
anodic potential region, the oxidation peak of Cu(II)/Cu(Ill) was not
clearly observed. The formation of Cu(III) could be overlapped by the
oxidative tail of water-splitting, observed as an increase in the current at
350-600 mV. In the cathodic scan, one small (peak 5) and two large
reduction peaks (peaks 6 and 7) were observed, which were assigned to
the conversion of Cu(Ill)/Cu(ll), Cu(Il)/Cu(), and Cu(I)/Cu(0),
respectively.

Fig. 6B displays the cyclic voltammograms obtained for the CuNPs/
HD-CNTf microsensor in the absence and presence of glucose in 0.1 M
NaOH recorded at 50 mV-s~!. Some notable differences were observed
between the cyclic voltammograms obtained in the presence and
absence of glucose. First, oxidation peak 2 for the formation of Cu(0)/Cu
() was identical in the absence and presence of glucose, which indicates
that there was no interaction between glucose and Cu(0) [82]. Second,
peak 3, which corresponds to two transition processes (i.e., Cu(0)/Cu(IL)
and Cu(I)/Cu(Il)) showed a sharp decrease in peak current in the pres-
ence of glucose, indicating a transition majorly from Cu(0) to Cu(II) due
to the formation of a Cu(I)-glucose complex [82]. Third, the absence of
peak 4 in the presence of glucose resulted from the absorption of glucose
on the electrode catalytic sites, which prevented the further formation of
soluble species by blocking the interactions between Cu-based solid(s)
and hydroxide ions. Fourth, the dramatic increase in the anodic current
signal at 230-500 mV in the presence of glucose indicated the
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Fig. 6. (A) Consecutive cyclic voltammograms recorded on the CuNPs/ HD-CNTf microsensor in 0.1 M NaOH solution. (B) Cyclic voltammograms recorded on the
CuNPs/ HD-CNTf microsensor in the absence (dotted line) and presence (solid line) of 1 mM glucose in 0.1 M NaOH. Scan rate of 50 mV-s~ L.
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desorption of glucose from Cu(I) and the instantaneous electrocatalytic
oxidation of glucose, which likely involved Cu(III) and hydroxyl radicals
[82,84]. Another study suggested that this anodic signal could also be
attributable to a shift in peak 4 for the conversion of Cu(I)/Cu(II) [83].
Fifth, in the cathodic scan, the absence of peak 5 in the presence of
glucose provided evidence for the consumption of Cu(Ill) during the
electrooxidation of glucose. Finally, tiny decreases in the currents of
peaks 6 and 7, which correspond to the conversion of Cu(II)/Cu(I) and
Cu(I)/Cu(0), respectively, were attributed to the formation of a Cu(I)-
glucose complex during the anodic scan, which affects the formation of
Cu(1D) [82].

Although an accurate mechanism for glucose electrooxidation on
copper-based electrodes in alkaline media has not been firmly estab-
lished, the most detailed and confirmed work has been reported by
Marioli et al. [82]. According to this study, glucose oxidation is activated
by the deprotonation of glucose and isomerization to its enediol form
followed by the formation of an intermediate by complexation or che-
lation with the electrode surface and oxidation by Cu(I), Cu(II), and Cu
(II1). Among the oxidation states of copper hydroxides, the Cu(IIl) form
plays a major role in glucose oxidation. The conversion of Cu(II)/Cu(III)
occurs at 250-600 mV. Thus, the glucose oxidation current signal was
observed in this potential range because this reaction was strongly
catalyzed by Cu(Ill) species, which acted as the main electron transfer
mediator [36]. This behavior was further confirmed by the absence of
the Cu(III) reduction peak (peak 5, Fig. 6B) in the cathodic scan, as the
Cu(III) species were consumed in the oxidation of glucose. The entire
process for the electrooxidation of glucose on the CuNPs/HD-CNTf
surface can be summarized as follows:

Cu + 20H —Cu(OH),+2e~ (2)
Cu(OH),2Cu0 + H,0 3)
Cu(OH),+0OH™ 2CuOOH + H,0 + ¢~ @
or

CuO + OH™—»CuOOH + e~ 5)
CuOOH + Glucose + ¢~ —=CuO + OH™ + Gluconolactone (6)
Gluconolactone <2 Gluconic acid 7)

To investigate the applicability of the proposed CuNPs/ HD-CNTf
microsensor for nonenzymatic glucose sensing, CV measurements were
performed at various glucose concentrations in 0.1 M NaOH at a scan
rate of 50 mV-s~!. In this experiment, a potential range of —200 to
+500 mV (vs Ag/AgCl/Nafion™/HD-CNT/) was used, which is suitable
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for the amperometric study of glucose. As shown in Fig. 7A, the oxida-
tion peak current increased linearly as the glucose concentration
increased from 10 M to 1 mM. No anodic current was observed in the
absence of glucose, as shown by the dotted line. The linear relationship
between the peak current and glucose concentration can be expressed by
the following equation:

ip (NA) = 0.0586[ Cgrycose(10-1000 puM)]—0.3023 (R = 0.998) 8)

where i, is the peak current and Cgycose is the concentration of glucose.
The wide linear range observed in the CV experiment indicates that
CuNPs/HD-CNTf microsensor has excellent electrocatalytic activity to-
ward the direct oxidation of glucose.

To elucidate the nature of the electron transfer kinetics, the elec-
trooxidation of 0.5 mM glucose in 0.1 M NaOH was investigated at
different scan rates (5-200 mV-s~!). As shown in Fig. 7B, the anodic
peak current for the oxidation of glucose increased linearly with the
increasing scan rate. Linear relationships were observed for both i, vs
scan rate (v) and log i, vs log v, as represented by Eqgs. (9) and (10),
respectively:

ip (MA) = (0-0994 + 0.0012)(v (mV-s ")) + (0-7795 + 0.1370) R* = 0.998(9)

log iy (nA) = (0-7896 % 0.0266)(log v (mV-s™))—(0-5438 % 0.0462) R* =
0.993 (10)

The linearity of the i, vs v plot (inset, Fig. 7B) and the slope value of
~0.789 (> 0.5) for the log ij, vs log v plot indicate that the oxidation of
glucose on CuNPs/HD-CNTf was a surface-controlled process [85].

Further, the electrooxidation of glucose was studied in a phosphate
buffer solution of pH 7.4. The glucose oxidation did not show significant
electrocatalytic activity on the surface of CuNPs/HD-CNTf in the phos-
phate buffer solution as compared to the NaOH solution.

3.5. Amperometry study

3.5.1. Applied potential optimization

The applied potential had a significant influence on the sensitivity,
selectivity, and stability of the amperometric current of the developed
sensor, therefore experiments were performed to first optimize the
applied potential for glucose oxidation on CuNPs/HD-CNTY/. For poten-
tial optimization, the amperometric experiments were performed at
various potentials ranging from +250 mV to +450 mV (vs. Ag/AgCl/
Nafion™/HD-CNTf) with the stepwise addition of 20 uM glucose in
0.1 M NaOH solution under stirring.

Fig. 8 shows the observed amperometric response of the CuNPs/HD-
CNTf and it can be seen when the potential was increased from +250 to
+400 mV, the electrode produces steady state current with gradual
increment upon every addition of glucose. However, the highest
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Fig. 7. (A) Cyclic voltammograms recorded on CuNPs/HD-CNTf microsensor in the presence of glucose at various concentrations: (a) 0, (b) 10, (c) 50, (d) 100, (e)
200, (f) 300, (g) 400, (h) 500, (i) 600, (j) 700, (k) 800, (1) 900, and (m) 1000 uM in 0.1 M NaOH at a scan rate of 50 mV-s~L. (B) Cyclic voltammograms for 0.5 mM
glucose recorded on the CuNPs/HD-CNTf microsensor in 0.1 M NaOH at scan rates of 5-200 mV-s .
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Fig. 8. Amperometric current responses of CuNPs/HD-CNTf at different po-
tentials from +250 mV to +450 mV with successive addition of 20 uM glucose
into 0.1 M NaOH solution.

oxidative current response was achieved at an applied potential of
+400 mV and above that potential, current response was diminished,
and one can see the significant difference between the current responses
of 400 mV and 450 mV. This observation can be related to the proba-
bility of oxidation of other interfering species at higher applied poten-
tials. Therefore, 400 mV was selected as an optimum applied potential
for subsequent experiments.

3.5.2. Amperometric detection of glucose

The real-time amperometric detection of glucose on the CuNPs/HD-
CNTf microsensor was carried out at a constant potential of +400 mV
with the successive addition of various glucose concentrations (100 nM
to 1 mM) into a stirred 0.1 M NaOH solution at 40 s intervals over
multiple steps (Fig. 9A). After the addition of glucose, the current
reached a steady state within 5 s, indicating that the microsensor had a
fast electrocatalytic current response toward glucose electrooxidation.
The observation of a significant current enhancement, even with the
addition of only 0.1 uM glucose, confirmed the excellent electrocatalytic
activity of CuNPs/HD-CNTf. As shown in Fig. 9B, the amperometric
current response increased with increasing glucose concentration and
the dependence of the oxidation current on the glucose concentration
was found to have two linear ranges, which can be represented by FEqgs.
(11) and (12), respectively:

ip (MA) = 0.076[Cgycose(0-1-1450 uM)] + 0.992 (R2 =0.997) 11
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ip (MA) = 0.040[ Clucose(1450-4450 pM)] + 58:915 (R* = 0.982) 12)

where i, is the current response and Cgjycose is the glucose concentration
in uM. The LOD was found to be 28 nM with a signal-to-noise ratio of 3.
Based on the geometrical area of the electrode, the CuNPs/p-ES dis-
played sensitivities of approximately 1942 and 1022 nA-uM~!.cm™2 in
the lower and higher concentration ranges, respectively. The decrease in
sensitivity at higher concentrations can be attributed to intermediates
formed during glucose electrooxidation being adsorbed on the electrode
surface [35,36,65]. The CuNPs greatly enhanced the electrocatalytic
activity and promoted electron transfer during glucose oxidation.
Furthermore, the micrometer diameter and length of the highly densi-
fied well-aligned CNTf led to an increase in conductivity and a decrease
in the non-faradic charging current compared to randomly dispersed
carbon nanomaterials on macroelectrode surfaces or composites. This
behavior was confirmed by the 30 pA current obtained after spiking with
100 nM glucose (inset, Fig. 9A), which is only observable at a micro-
electrode surface with an extremely low non-faradic charging current.
The synergetic effect of electrocatalytic CuNPs and HD-CNTf provided a
suitable detection limit, good sensitivity, and a rapid response time for
glucose electrooxidation. The observed results showed that the proposed
sensor has excellent electrocatalytic properties for nonenzymatic
glucose sensing in minute sample volumes or even a single drop of
testing fluid.

3.6. Study of anti-interference and selectivity

The enzymatic glucose determination relies on the oxygen which can
be considered a major disadvantage. The oxygen limitation may result in
the error of glucose quantification [6,7] Therefore, the anti-interference
properties of the proposed CuNPs/HD-CNTf microsensor was examined
against oxygen in 0.1 M NaOH solution at an applied potential of
400 mV. As can be seen in Fig. 10, neither the presence nor the removal
of oxygen affects the glucose sensing performance. The observed results
reveal the oxygen-independent behavior of proposed CuNPs/HD-CNTf
based glucose microsensor.

One of the major concerns in nonenzymatic glucose sensing is the
electrochemical oxidation signals from interfering species. The electro-
active interfering species such as ascorbic acid (AA), dopamine (DA),
uric acid (UA), other carbohydrate compounds such as fructose, lactose
and sucrose and common ions like Na* and CI~, normally coexist with
glucose in human blood, and can affect the glucose quantification.
Another concern common with noble metal-based nonenzymatic
glucose sensors is the poisoning by chloride ions, causing them to lose
their sensing activity. The poisoning is caused by the coordination of C1™~
ions with metal/metallic oxides. Therefore, it is necessary to examine
the electrochemical response of potential interfering species at CuNPs/
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Fig. 9. (A) Amperometric response of CuNPs/HD-CNTf microsensor in 0.1 M NaOH solution to successive additions of glucose at concentrations from 100 nM to
1 mM at an applied voltage of 400 mV. (B) Corresponding calibration plot for the amperometric response of CuNPs/HD-CNTf.
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Fig. 10. Amperometric response of the CuNPs/ HD-CNTf to 50 uM glucose in
air-saturated 0.1 M NaOH, (red graph) and nitrogen-purged 0.1 M NaOH (blue
graph) at an applied potential of +400 mV. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of
this article.)

HD-CNTf. Considering the normal glucose concentration in human
blood sample is at least 30 times higher than physiological interferences
[35], the amperometric experiments were performed at +400 mV in
stirred 0.1 M NaOH, by adding 100 uM glucose, followed with succes-
sive addition of 10 uM interfering species (AA, DA, UA, NaCl, and
fructose, lactose, and sucrose). As shown in Fig. 11A, a well-defined
current response was observed towards glucose addition, whereas the
sensor shows insignificant response to the addition of AA, DA, UA and
NaCl interfering species compared to the response from glucose, indi-
cating the good selectivity of the sensor. This selectivity might be
attributed to isoelectric point 9.5, CuO on the surface of CuNPs in 0.1 M
NaOH solution (pH 12.5) would carry some negative charge (Cu-O’) and
negatively charged ions such as AA and UA would be repelled by
partially negatively charged metal oxide layer, thus resulting in good
selectivity. The AA, DA and UA concentrations are known to be less than
1/30 that of glucose in blood. Therefore, the proposed microsensor can
be used to detect glucose in blood with negligible interference from AA,
DA and UA. The interference from other co-existing carbohydrates i.e.,
lactose, sucrose and fructose also did not show any significant changes in
current response, Fig. 11B. Considering the fact that the presence of
commonly co-existing sugars in serum i.e., 8.1 uM for fructose [86] and
74 uM for sucrose [87] are significantly lower than glucose i.e. 4-7 mM
in healthy human serum [88] and as both sugars would not introduce

Sensors and Actuators: B. Chemical 348 (2021) 130688

any significant signal in glucose detection, therefore, the blood sucrose
and fructose is not anymore major concern for the proposed micro-
sensor. Thus, it can be concluded that the CuNPs/u-ES can be used for
glucose detection in blood without being affected by potential inter-
fering species.

3.7. Stability and reproducibility

To evaluate the stability of the proposed sensor, amperometric cur-
rent response was recorded for stepwise addition of 0.2 mM glucose for
10 times in 0.1 M NaOH solution in a uniform time interval over a period
of 15 days using five electrodes. The amperometric experiment was
recorded daily up to 15 days and microsensors were stored under room
temperature. The observed results reveal that the amperometric current
response of glucose for all tested sensors remained unchanged for the
first 7 days with relative standard deviation (RSD) under + 2.6%. After 7
days, deviation in peak current with gradual variation or increase in RSD
value was observed for all five electrodes. For repeatability, the
amperometric current response was recoded for stepwise addition of
0.2 mM glucose concentration. The amperometric experiment was
recorded repetitively five times on proposed microsensor at an interval
of one hour. From the calculation, the observed RSD of the current
response was + 1.4%. Furthermore, the inter-electrode reproducibility
was examined on five different microsensors under similar experimental
conditions. The amperometric current response of glucose between five
p-ES varied only by a RSD of + 2.2%. The observed results confirm that
the proposed sensor has excellent stability and reproducibility and can
be used for practical applications.

3.8. Real sample assays

To confirm the practical utility of the developed CuNP/u-ES, glucose
was determined in biological fluids (i.e., serum and urine samples). A
50 pL sample of serum was spiked into 25 mL of stirred 0.1 M NaOH
solution and the current response was recorded at a constant potential of
+400 mV. The observed amperogram showed a sharp increase in the
amperometric peak current (Fig. 12A). Subsequently, this solution was
spiked with a 50 uM standard glucose solution three times at 40 s in-
tervals and the amperometric current response was recorded (Fig. 12A).
The concentration of glucose in the spiked serum sample, as calculated
using the calibration equation Eq. (11), was 9.31 uM, which agrees with
the reported concentration in the serum sample (i.e., 4.55 mM, which
gives a final concentration of 9.1 uM for 50 uL added to 25 mL NaOH
solution). The measured concentrations of glucose in the spiked serum
sample showed good reproducibility with a relative standard deviation
(RSD) of + 3% (n = 3). For exogenous spiking with a standard glucose
solution at 10 pM, 50 pM and 100 pM concentrations, recovery values of
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Fig. 11. Amperometric response of the CuNPs/ HD-CNTf to sequential injection of glucose (100 uM) and interfering species (A) 10 uM of AA, DA, UA, NaCl and (B)
10 uM lactose, sucrose and fructose in 0.1 M NaOH at an applied potential of +400 mV.
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Fig. 12. Amperometric current responses of CuNPs/HD-CNTf microsensor in 0.1 M NaOH solution at 400 mV for initial injections of (A) serum with subsequent
injections of 50 uM standard glucose solution and (B) urine sample with subsequent injections of 50 uM (Morning) and 100 uM (Day time) standard glucose solution.

102.36%, 99.3%, and 101.3% were obtained, respectively. Although the
serum sample was reported to contain significant amounts of other
compounds, including uric acid (205 pM), proteins (albumin and glob-
ulin, 305.55 mM), sodium (146 mM), potassium (4 mM), chloride
(101 mM), calcium (0.34 mM), and phosphorus (0.20 mM), no inter-
ference with the glucose oxidation peak current was observed.

Further, the applicability of developed microsensor for the analysis
of diabetic patient urine samples was evaluated. The urine samples were
collected in the early morning and in the afternoon. The afternoon urine
sample was collected 3 h after measuring the blood glucose concentra-
tion (208 mg/dL, as measured using Dexcom G6). At a constant poten-
tial of +400 mV, 50 L of urine sample was spiked into 25 mL of stirred
0.1 M NaOH solution, followed by the addition of a 50 uM and 100 uM
standard glucose solution in morning and daytime urine samples,
respectively. As shown by the amperograms in Fig. 12B, the peak current
for glucose oxidation was higher in the early morning urine sample than
in the afternoon urine sample, which might be due to the overnight
accumulation of glucose in urine. The glucose concentrations in the
urine samples, as calculated using the calibration equation, were 5.8 and
17.43 mM in the afternoon and early morning urine samples, respec-
tively. The glucose recovery was in the range of 97.92-101.60% with an
RSD of + 3%. The high accuracy and precision of the recovery results
confirmed the reliability of the proposed CuNP/p-ES for nonenzymatic
glucose sensing in human biological samples.

4. Conclusion

In summary, a p-ES was modified and employed for glucose detec-
tion. The p-ES has three electrodes consisting of HD-CNTf cross-sections
(~40 pum length), namely, a CuNP-deposited CNTf cross-section WE, a
Ag/AgCl/Nafion™-coated CNTf cross-section QRE, and a bare CNTf
cross-section CE. The p-ES showed fast electron transfer kinetics in a
redox analyte and the Ag/AgCl/Nafion™-coated CNTf QRE provided a
sufficiently stable potential. The CuNP-deposited HD-CNTf WE showed
excellent catalytic activity toward the electrooxidation of glucose in
aqueous NaOH solution. The applicability of the developed CuNPs/HD-
CNTf microsensor to nonenzymatic glucose detection was examined by
CV and real-time amperometric measurements. These measurements
revealed that the microsensor exhibits a low detection limit, wide
quantification range, good precision, excellent selectivity, and a rapid
response time. The performance of this microsensor can be attributed to
the synergetic effect of electrocatalytic CuNPs and well-aligned HD-
CNTf, which increases the conductivity with an extremely low non-
faradic charging current. The developed microsensor was also free
from chloride poisoning and the current response was independent of
the oxygen concentration. Finally, the reported microsensor showed
good accuracy and high precision for the analysis of healthy human
serum and diabetic patient urine samples. Thus, the developed
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nonenzymatic CuNPs/p-ES is suitable for the routine analysis of glucose
in human biofluids, potentially even for single-droplet samples. The
developed p-ES, which can be used multiple times, also represents an
advancement toward the development of microelectrode arrays using
nonconventional and less-expensive techniques than lithography.

Supporting information

Schematic of CuNPs/u-ES fabrication, EDX and FE-SEM of
microsensor.
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