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Abstract

We present mechanoChemML, a machine learning software library for computational materials
physics. mechanoChemML is designed to function as an interface between platforms that are widely
used for machine learning on one hand, and others for solution of partial differential equations-based
models of physics. Of special interest here, and the focus of mechanoChemML, are applications to
computational materials physics. These typically feature the coupled solution of material transport,
reaction, phase transformation, mechanics, heat transport and electrochemistry. Central to the orga-
nization of mechanoChemML are machine learning workflows that arise in the context of data-driven
computational materials physics. The mechanoChemML code structure is described, the machine
learning workflows are laid out and their application to the solution of several problems in materials
physics is outlined.

Keywords machine learning software library ·machine learning workflows · computational materials physics · partial
differential equation solvers · scientific software

1 Introduction

Until roughly a decade ago, the dominant theme in computational materials physics was the forward solution of a
very wide array of problems by using methods that ranged from electronic structure calculations, through molecular
and statistical mechanics computations, to partial differential equations (PDEs) describing continuum phenomena.
Data, while used, was rarely a part of the computational workflow. Much has changed since then with the rise of of
data-driven modeling and machine learning (ML) in particular. It is now routine for computations with each of the
above classes of methods to ingest data, produce and employ them as the packets of communication with other simula-
tions, or experimental platforms. Thus, Density Functional Theory (DFT), long the workhorse of electronic structure
calculations for materials applications, may now be based on full field ab initio solutions from Configuration Inter-
action methods to inform or learn the exchange correlation functional [1]. Formation energy data computed by DFT
parameterize interatomic potentials for molecular dynamics [2] or, through cluster Hamiltonians, drive Monte Carlo
(MC)-based statistical mechanics simulations [3]. And, all of these methods generate data for continuum scale PDEs
[4, 5, 6]. The data and information flow also travels down the scales as, for example, strain fields drive deformation
potentials in DFT.

Notably, the interaction between the model formalisms at different levels in this outline of scale bridging in mate-
rials physics is not a trivial matter. Efficient representations are needed, often in the form of high-dimensional, or
conversely, reduced dimensionality functions or functionals. For instance, MC simulations of phase or order-disorder
transitions yield millions of configurations from which an O(10)-dimensional free energy surface needs to be pa-
rameterized for continuum phase field or elasticity computations [6, 7]. This is an obvious entry point for neural
network-based ML methods. The continuum simulations now commonly entail billions of degrees of freedom evolv-
ing over time scales ranging from microseconds to hours. The imperative of high-throughput design and material
optimization problems needs reduced-order models ranging from homogenization methods through neural networks
of various flavors [8, 9, 10, 11] and modern optimization methods to graph theoretic representations [12]. Also of very
recent interest are physics-constrained machine learning techniques that ensure fidelity of fast solutions of continuum
PDEs [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].
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The reliance on data ingestion, transfer, high-dimensional as well as reduced-order function representations naturally
rests upon the impressive, robust and rapidly growing ecosystem for machine learning, and more broadly artificial
intelligence and even all of data science. However, there are aspects specific to data-driven computational materials
physics that have led to a sub-ecosystem of mathematical techniques, algorithms and frameworks. This sub-ecosystem
is now spawning software that interfaces platforms such as TensorFlow [26], Keras [27], PyTorch [28] and their ilk
with the foundational software for scientific computing such as PETSc [29], Trilinos [30] and yet others built on top
of them such as deal.ii [31], FEniCS [32] and even their derivatives. The mechanoChemML library belongs in this
sub-ecosystem.

2 Background to the methods

mechanoChemML leverages PDE solver libraries such as deal.ii, FEniCS [31, 32] [33] and others built on them,
such as mechanoChem, also developed by the authors. These libraries present frameworks with varying degrees of
abstraction for the solution of PDEs. They exploit the range of high-performance computing methods including
geometry and mesh generation, vectorization, automatic differentiation, linear and nonlinear solvers, threading and
parallelism, among others. With the availability of cluster computing resources, both fixed and in the cloud, this
has made the large scale solution of multiphysics problems commonplace and widely accessible. As one natural
next step, this ability to compute PDE solutions, almost at will, has led to thinking about enhancing the fidelity and
speed of modeling as well as further exploiting the solutions. We introduce examples of such thinking that has led to
mechanoChemML.

Phase field modeling is centered on a parabolic PDE for the evolution of a scalar or vector variable that parameterizes
a free energy density function. The dissipative dynamics is governed by minimization of the free energy. In many
situations, the final (near-)equilibrium state is of greater interest than the dynamics itself. This leads to alternate views
of the problem as one of non-convex optimization over the free energy density landscape. Since the optimization
entails computation of feasible solutions in large numbers, it suggests neural network surrogates for the free energy
density in terms of reduced-order representations. Multi-fidelity learning, sensitivity analysis and a wrapper of active
learning help improve the efficiency of the surrogate optimization [4].

Scale bridging computational frameworks have long been of interest in materials physics. A peculiarity of this problem
is that the model description changes in a fundamental manner across scales: from electronic structure computations,
typically DFT, to a variety of Monte Carlo simulations of molecular configurations to recreate the statistical mechanics,
through continuum PDEs of elastic or inelastic behavior. Central quantities across these scales are the free energy, or
its density and derivatives (e.g., chemical potentials and stresses). Their fundamental parameterization comes from
sparse DFT computations. Their upscaling through Monte Carlo is dependent on surrogate representations via machine
learning methods. The next step in bridging scales–up to the continuum–brings special considerations of integrability
as well as high-dimensional representation, both of which we have found convenient to satisfy with a breed of specially
developed neural networks. Monte Carlo sampling in regions of interest also naturally has invoked active learning
techniques [5, 6].

At the continuum scale, a class of PDE models that combine phase field and non-convex elasticity underlies a wide
range of problems that develop finely detailed microstructure. The effective mechanical response of these microstruc-
tures is obtained by homogenization methods, which are reduced-order models of a type. It has been natural to turn to
deep and convolutional neural networks (DNNs and CNNs) for this problem. While the former require the insightful
selection of features with the proper invariances, CNNs with an auto encoder-decoder structure afford the flexibility of
learning from microstructures as images. This is the first example in which the imposition of physical constraints–of
invariances and simpler symmetries–has arisen in our work [11].

The high-throughput solution of PDEs for inverse modeling, design and optimization leads to requirements of very
fast solutions that are largely beyond the capability of traditional PDE solver libraries, such as those introduced at the
beginning of this section. The development of PDE solvers is one of the most rapidly advancing fields in scientific
machine learning. Neural networks have been a natural choice, with the added imperative of embedding the physics
of the PDE as constraints. With field solutions regarded as images, CNNs in auto encoder-decoder structures are a
natural choice, and the extension to uncertainty quantification made possible by Bayesian neural networks. This is the
first instance in which learning from label-free data has arisen in our work [13].

Inference of PDEs from data–inverse modeling of not just parameters but of the entire set of algebraic and differential
operators is feasible with the availability of extensive data, regression, and more generally, nonlinear optimization
methods. Along with the development of neural network PDE solvers, system inference enjoys advantages when the
variational setting of the weak form, as well as discretization structures such as finite elements and finite differences
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Figure 1: A schematic illustrating the range of ML methods comprising mechanoChemML for data-driven computa-
tional material physics.
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Figure 2: Illustration of the structure and components of the mechanoChemML library and the provided examples.

are exploited. A number of supporting methods become of relevance for this problem, including those for sparse and
noisy data, and gradient optimization [34, 35, 36, 37, 38].

Finally, reduced-order modeling on a physical systems scale is feasible with large datasets of computed solution states.
We have exploited a correspondence between the properties dictated by PDEs on solution states of physical systems
and graph theory [39]. In addition to representation and analysis on the systems scale by exploiting the machinery
of graph theory, this opens the door to reduced-order modeling by exploiting a nonlocal calculus [12]. It leverages
methods developed for system inference, mainly stepwise regression to choose the reduced-order model.

mechanoChemML addresses the above ecosystem of machine learning techniques, as illustrated in Fig. 1. Section 3
discusses the structure of the library. Some of the above scientific applications are presented as examples using the
mechanoChemML library in Section 4. These two sections are the mainstay of the paper. Installation, documentation,
and contributing is discussed in Section 5, and closing remarks appear in Section 6.

3 Structure of the mechanoChemML library

The mechanoChemML library can be divided into two parts: the machine learning (ML) class library and example
workflows (see Figure 2). Scientific examples using the mechanoChemML library are discussed in Section 4.

3.1 The machine learning (ML) class library

The ML class library is a collection of classes and functions that are related to neural networks or other machine
learning methods and are useful in data-driven modeling of mechanochemistry but do not already exist in well-used
machine learning libraries. These classes and functions are in most cases, however, built on existing libraries. A list
of the neural network architectures/layers and machine learning related algorithms appears in Figure 2 and examples
of their use in select applications are given in section 3.2.

3.1.1 Integrable deep neural network

Integrable deep neural networks (IDNNs) [5, 6] are a type of neural network structure that allows training to derivative
data and analytic integration to recover a neural network representation of the antiderivative. A schematic is shown
in Figure 3. The IDNN is constructed as the derivative of a standard DNN so that after an IDNN is trained to the
derivative data, its antiderivative is simply the standard DNN with the IDNN’s trained weights and bias.

A standard DNN with n hidden layers, where W`, b` are the weight matrix and bias vector of hidden layer `, g is the
activation function, a` and z` are intermediate vector values at each layer, and Y is the DNN output, can be represented
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Figure 3: A schematic of an IDNN, which is trained to derivative data and can be analytically integrated to recover the
antiderivative function.

with the following:

z` = b` +W`a`−1

a` = g(z`)

Y = bn+1 +Wn+1an

(1)

Differentiation of Y leads to the following additional equations that describe the IDNN, which is represented by
∂Y/∂Xk:

∂a`
∂Xk

= g′(z`)�
(
W`

∂a`−1

∂Xk

)
∂Y

∂Xk
= Wn+1

∂an
∂Xk

(2)

where the operator� denotes element-wise multiplication. Note that both the activation function and its derivative are
used in the IDNN.

Instead of directly implementing Eq. (2) to train an IDNN, however, we take advantage of the ability of deep learning
libraries to apply a gradient operator to a standard neural network structure. To illustrate this approach, we consider a
standard DNN to be represented as a function Y (X,W , b) of inputsX , weightsW , and biases b. Then, the training
of an IDNN to a set of first derivative data {(X̂θ, ŷkθ )} is the minimization of the mean square error of the gradient
of a standard DNN (i.e. the IDNN) and the derivative data over the space of weights and biases:

Ŵ , b̂ = arg min
W ,b

n∑
k=1

MSE

(
∂Y (X,W , b)

∂Xk

∣∣∣
X̂θ

, ŷkθ

)
(3)

The mechanoChemML library provides an idnn module that returns an IDNN implemented in Keras and capable of
being trained on first derivative (gradient) data, second derivative (Hessian) data, and/or data from the function itself,
provided at
mechanoChemML.src.idnn.IDNN

The following example code shows how an IDNN with four inputs and two hidden layers of 20 neurons each would
be initialized and trained to first derivative data:
idnn = IDNN (4 ,[20 ,20])

idnn.compile(loss=[None ,’mse’,None],
optimizer=keras.optimizers.RMSprop(lr =0.01))

idnn.fit(c_train ,
mu_train ,
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epochs =1000 ,
batch_size =20)

A test function for the IDNN model is included in the test for one of the utility functions and is briefly described in
Section 3.1.2. The IDNN is used in an example active learning workflow in Section 4.1.1 to train a free energy density
function where the training data are derivatives of the free energy.

3.1.2 IDNN convexity

Since the IDNN was created to represent energy data, it is useful to determine if a point or set of points lies in a well
(i.e., convex region) of the IDNN. The library includes functions that report the convexity of one or more points by
checking if the Hessian, returned by the IDNN model, is positive definite. These functions are included at
mechanoChemML.src.idnn

An example using the IDNN convexity functions is shown in Figure 5 of Section 3.2.1, which describes active learning
workflows. If desired, additional characteristics of the IDNN could also be evaluated for use in an active learning or
other workflow.

A test function was written to confirm that the convexity functions and the IDNN are performing the differentiation
and positive definiteness check correctly. This is done by comparing the code’s result on an IDNN with known weights
to the correct results. The test is located at
mechanoChemML.testing.idnn_convexity_test

3.1.3 Transform layer

Sometimes it is desirable to apply a transform to the inputs of a neural network. In addition to the relatively simple tasks
of shifting and scaling data, this is one way to enforce some types of symmetry. For example, if a neural network should
be symmetric about an input x, the network can use the transform x2 as the input instead of x itself. Higher dimensional
symmetries, such as rotational symmetries, would include symmetry preserving functions of multiple input variables.
We provide a custom transform layer using Keras that allows the user to specify a function, transforms, that takes
an input array x and returns a list of the transformed outputs, as in the following example snippet:
def transforms(x):
return [x[0],x[1]**2]

y = Transform(transforms)(x)

In this example, the first variable is taken as is, but the second variable is squared to enforce a symmetry about x1 = 0.
The transform layer is used in the construction of the IDNN model (see Section 3.1.1) to allow symmetry enforcement
and is provided at the following location:
mechanoChemML.src.transform_layer.Transform

3.1.4 General neural network creation

Data-driven modeling research often requires a hyperparameter study, which involves the exploration of different NN
architectures. To facilitate it, a collection of general NN classes, such as NN_user_general, BNN_user_general,
and BNN_user_weak_pde_general, are provided in mechanoChemML.src.nn_models to construct NNs based on
inputs from a configuration file. Such classes offer the flexibility to explore different NN architectures, particularly
complex ones. They also allow non-expert users to quickly setup different NNs. For example, the following input will
construct a deterministic NN with an encoder-decoder structure.
N N A r c h i t e c t u r e =
t y p e =PDERandom ;
t y p e =Conv2D | f i l t e r s =8 | k e r n e l _ s i z e =5 | a c t i v a t i o n = r e l u | padd ing =same ;
t y p e =MaxPooling2D | p o o l _ s i z e = ( 2 , 2 ) | padd ing =same ;
t y p e =Conv2D | f i l t e r s =8 | k e r n e l _ s i z e =5 | a c t i v a t i o n = r e l u | padd ing =same ;
t y p e =MaxPooling2D | p o o l _ s i z e = ( 2 , 2 ) | padd ing =same ;
t y p e = F l a t t e n ;
t y p e =Dense | u n i t s =64 | a c t i v a t i o n = r e l u ;
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t y p e =Reshape | t a r g e t _ s h a p e = [ 4 , 4 , 4 ] ;
t y p e =Conv2D | f i l t e r s =8 | k e r n e l _ s i z e =5 | a c t i v a t i o n = r e l u | padd ing =same ;
t y p e =UpSampling2D | s i z e = ( 2 , 2 ) ;
t y p e =Conv2D | f i l t e r s =8 | k e r n e l _ s i z e =5 | a c t i v a t i o n = r e l u | padd ing =same ;
t y p e =Conv2D | f i l t e r s =1 | k e r n e l _ s i z e =5 | a c t i v a t i o n = l i n e a r | padd ing =same ;

One can also easily change the layer types in the configuration file to names of their corresponding probabilistic
implementation in the TensorFlow Probability library to construct a probabilistic NN with identical architecture.

3.1.5 Weak PDE enforcing layers

NN Sol.+D.BC (i) (ii) (iii) (iv)

1 0

1

1

1

0 0

0
0 0

0
0

0

0 0
0

Rbulk

Figure 4: Illustration of steps to compute the bulk residual Rbulk based on the NN inputs (BC info) and NN outputs
through different convolutional operator-based, and vectorized calculations.

A major thrust in using machine learning techniques of interest in the computational mechanics, materials, and physics
communities is to solve PDEs with little or no pre-labeled data. In the mechanoChemML library, a collection of classes,
layers, and functions, such as,

mechanoChemML.src.pde_layers.GetElementResidualMask
mechanoChemML.src.pde_layers.ComputeBoundaryMaskNodalData
mechanoChemML.src.pde_layers.ComputeNeumannBoundaryResidualNodalData
mechanoChemML.src.pde_layers.Get1DGaussPointInfo
mechanoChemML.src.pde_layers.Get2DGaussPointInfo
mechanoChemML.src.pde_layers.GetNodalInfoFromElementInfo
mechanoChemML.src.pde_layers.LayerBulkResidual

are provided in mechanoChemML.src.pde_layers to compute the discretized residual, as illustrated in Fig. 4,
through an efficient, convolutional operator-based, and vectorized residual calculation implementation based on the
framework proposed in [13]. The listed classes, layers, and functions will be used in the workflow related to the
NN-based PDE solver that is discussed in Section 3.2.4.

3.1.6 Non-local calculus on graphs

Graph-based representation methods have shown great success in reduced-order modeling for a range of physical
phenomena [40], that often lend themselves to a PDE form. Non-local calculus on graphs (see [41]) provide a math-
ematical framework for defining and evaluating these PDE models. A graph intrinsically allows representation of
unstructured data, making it suitable for data-driven system identification when the data is sparse and non-uniformly
distributed. For this reason, it has been applied to a variety of problems [41, 42, 43].

A graph, denoted by G = (V,E), consists of a set of vertices, i ∈ V , with |V | = n. The vertices are con-
nected by a set of edges, e ∈ E, where each edge e = (i, j) is a pair of vertices. A data set provided in the
form, {(x1, u1), · · · , (xn, un)}, with independent variables, x ≡ [x1, · · ·xp] ∈ Ω ⊂ Rp, and dependent variables,
u : Ω → R, can be represented as a graph, (V,E) by placing a vertex of the graph at xi for each data point. Further-
more, the function(al) values, ui ≡ u(xi) are treated as the states of the of the vertex. The edges on the graph can then
be formed between points that lie in each other’s local neighborhoods, N (x).

The graph can also have global and local attributes on the vertices and edges, as we describe below. Of importance
are edge weights w, that are generally functions of the local vertex attributes, and admit a notion of distance between
states on the graph. Scalars, u(xi) correspond to function(al)s at the ith vertex. Vectors v(xi,xj) are functions on
vertex pairs i, j or the edge e = (i, j). Gilboa et al. define a discrete calculus, consisting of non-local operators, based
on differences between states of vertices i, j ∈ V , and an edge weight w(xi,xj) [41];
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δu

δxµ
(x̃) =

∑
x∈N (x̃)

u(x)− u(x̃)

zµ
w(x, x̃), z = x− x̃ (4)

We recently developed a methodology to choose an optimal set of edges, E and corresponding weights, w, to achieve
arbitrary accuracy in the computation of these derivatives. The theoretical grounds for understanding the convergence
of derivatives in non-local calculus to the standard definitions of local derivatives in terms of hp-convergence in grid-
based graphs are presented in Ref. [12]. The non-local derivatives are computed in the mechanoChemML library’s
graph module. The user can access the main functionality of the class by calling the following function, that executes
the various functions involved in the library.
mechanoChemML.src.graph_main.main

The library handles Input/Output using comma-separated values (CSV) files. The main function takes only one argu-
ment: the settings dictionary, where the user defines the paths to input/output files, the model settings (e.g. dimension,
p, of Ω) and the set of operations on data (e.g. calculation of partial derivatives). The user can manipulate the accuracy
and the neighborhood selection strategy for derivatives using nested dictionaries in settings.

The following example code shows how to read data, (x1, x2, x3, u1, u2), formatted with column names
[’x_1’,’x_2’,’x_3’,’u_1’,’u_2’] located in the file, ’./data/func_val.csv’. First, the code demonstrates
computation of an algebraic term, u3 = x1 +x2 +x3. Then estimation of a partial derivative δu3/δx1 is demonstrated.
After the main function is executed, the new data is saved in ’./result/data.csv’.
settings = {
#Path s e t t i n g s
’cwd’: ’.’,
’directories_load ’:’data’,
’directories_dump ’:’result ’,
’data_filename ’:’func_val.csv’,

#Model s e t t i n g s
’model_order ’:2,
’model_p ’:3,

# Opera t ions s e t t i n g s
’algebraic_operations ’: [[
{’func’:lambda df: df[’x_1’] + df[’x_2’] + df[’x_3’], ’labels ’:’u_3’} ]],

’differential_operations ’:[[
{’function ’:’u_3’,
’variable ’: [’x_1’],
’weight ’:[’stencil ’],
’adjacency ’:[’nearest ’],
’manifold ’:[[’x_1’, ’x_2’, ’x_3’]],
’accuracy ’: [2],
’dimension ’:[0],
’order ’:1,
’operation ’:[’partial ’]}]]}
mechanoChemML.src.graph_main.main(settings = settings)

3.2 ML workflows

The bulk of the library consists of several example workflows for specific applications. Each of these workflows
combines various elements of the ML class library with additional algorithms and methods to solve a problem of
interest in computational materials physics. Introductory descriptions of the physics and the library components used
in the workflows are presented in the following section.

3.2.1 Active learning

Deep learning can be used to create surrogate models for accurate-yet-expensive simulations. In these cases, the data
used for training comes from computations. This provides a challenge and an opportunity: the challenge is that we
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Figure 5: Flowchart describing the active learning process with hypothetical 1D data.

must first compute the data we use to train, and the opportunity is that we can choose what data to compute. Since it
would be infeasible, particularly in the case of a high-dimensional input space, to densely sample data uniformly across
the entire feature space, we turn to active learning. Active learning methods interweave machine learning training with
data sampling in a way that lets the machine learning model choose the data that will be most informative [44]. This
allows us to reduce the amount of data needed to train a sufficiently representative surrogate model.

The active learning workflows in the mechanoChemML library follow a general cycle of global sampling or exploration,
training, and local sampling or exploitation. These are defined in the following functions

• global_sampling

• surrogate_training

• local_sampling

from the active learning examples provided at
mechanoChemML.workflows.active_learning

Global sampling or exploration allows data to be found in potentially interesting yet unexplored regions of the feature
space, and it is also necessary to generate an initial training set. Training is performed using data sampled up to that
point in the workflow, potentially down-selected based on a desired criterion. Active learning takes place during local
sampling or exploitation, in which the currently trained network is queried to determine regions of interest where more
data could be useful. This might simply determine areas where there is still a high pointwise error between the data and
the neural network prediction. Local sampling might also be guided by the landscape of the DNN, such as convexity
or high gradients. Other criteria can be used for local sampling, based on the important physics in the application. A
flowchart describing the active learning process is shown in Figure 5.

The active learning workflow is demonstrated through an example scientific application in Section 4.1.1, which de-
scribes learning a high-dimensional free energy density function from first-principles data.

Testing Since an active learning workflow is largely application specific, there is no generic test function for the
workflow as a whole. However, it is recommended that the user confirm that a modified workflow is running correctly
by using a set of smaller workflow parameters (e.g., fewer training iterations, reduced data generation, etc.) before
running the full workflow.

3.2.2 Stepwise regression for system identification

We have developed a class of inverse modeling techniques, referred as as Variational System Identification (VSI) to
allow the identification of physics from data [34, 35, 45]. It aims to infer the physics governing observed phenomena
by identifying the minimal set of operators whose combination into PDEs completely describes the data. VSI has
been applied to various real-world problems such as discovering physics from dynamical systems[34, 35], identify-
ing constitutive models of biological tissues[38], and inferring governing mechanisms in developmental biology and
disease propagation[36, 37, 46]. VSI leverages the weak form unlike most other methods that use the strong form for
identification of governing equations [1, 47, 48, 49, 50, 51, 52, 53]. It inherits many advantages from the weak form,

9



A PREPRINT - MAY 3, 2022

including (a) the natural identification of boundary conditions, (b) introduction of basis functions to interpolate the
data, which can be chosen to have high regularity, (c) transfer of derivatives to variations, thus lowering the regularity
required in the data, and (d) isolating operators on the data by judicious choice of variations.

As a first step of data collection, users can import from their own data set. However, the mechanoChemML library also
provides an example DNS interface mechanoChemML.third_party.dns_wrapper which can be extended to link
with PDE solver packages such as deal.ii and FEniCS. With this interface, users can build a full pipeline of data
generation to system identification. An example of the forward model to generate the patterns in Figure 12 can be
found at
mechanoChemML.workflows.systemID.forward_model

The mechanoChemML library provides an operator construction module for constructing operators in weak form with
the basis function from two families: polynomial basis functions traditional to finite element analysis (FEA), and the
Non-Uniform Rational B-Splines (NURBS) used widely in Isogeomeric Analysis (IGA). A example of constructing
operators in weak form as shown in Equations (24) and (25) can be found at
mechanoChemML.workflows.systemID.generate_basis

The approach to inference combines system identification by stepwise regression [34, 45] with a statistical criterion
called the F -test for eliminating basis terms. This forms the main component in the stepwise regression module:
mechanoChemML.src.stepwiseRegression.stepwiseR

The stepwise regression module provides two basis elimination strategies and a variety of regularization schemes for
regression. Users may adopt the stepwise regression module and build their own system identification framework.
However we have found that in most cases, users can set up their inference problems using a higher level module for
system identification:
mechanoChemML.workflows.systemID.systemID

using the minimal coding as follows:
problem = systemID ()
problem.identifying(data)

The benefit of this approach is that users can easily set up problems with minimal coding, and control them with a
configuration file. A typical configuration file contains two part: controls for VSI such as “identify_strategy" and
controls for stepwise regression such as using ridge regression, setting “F_criteria" and others. A representative
configuration file is presented below.
Example of configuration file
[VSI]
data_dir=N/A
identify_strategy= specified_target
target_index= 0

[StepwiseRegression]
basis_drop_strategy = most_inignificant
regression_method = ridge
alpha_ridge = 1.0e-5
F_criteria =1

We refer readers to our previous work [34, 35, 38] and online documentation for the detailed explanations.

The full script for discovering the pattern forming physics problem described in Section 4.4.1 is then presented as
following:
mechanoChemML.examples.systemID.Example1_pattern_forming.main

The VSI workflow is also illustrated in Figure 6.
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Figure 6: Flowchart of Variational System Identification as a workflow.

pre-trained embedded NN

master neural network

Figure 7: Illustration of the NN architecture used for multi-resolution learning.

3.2.3 Multi-resolution learning

In materials physics problems, it is not uncommon to encounter data that possesses a hierarchical structure. For exam-
ple, when studying the homogenized stress-strain response of a family of multi-component crystalline microstructures,
the free energy of each microstructure has a multi-resolution structure with a dominant trajectory arising from phase
transformations that drive evolution of the microstructure, and small-scale fluctuations from strains that explore the
effective elastic response of a given microstructure [11]. The dominant trajectory strongly depends on the microstruc-
tural information, such as the volume fraction, the location and orientation of each crystalline phase, and the interfaces,
whereas the small-scale fluctuations are related to the applied loading. Multi-resolution learning, as illustrated in Fig.
7, can be used to capture the details in the data, which are not well-delineated by the pre-trained model. Taking the
homogenization of microstrutures problem presented in Section 4.2.1 as an example, a multi-resolution neural net-
work (MRNN) can be built upon pre-trained fully connected NNs or convolutional NNs, which describe the dominant
part of the free energy, to learn the small-scale fluctuations of free energy and predict homogenized stresses. The loss
function for such a problem therefore is written as

MSE =
1

m

∑
i

(Y − Z)
2
i with Y = Ψmech −Ψ0

mech,NN (5)

where Y is the label, Z is the MRNN predicted value, Ψmech is the hierarchical quantity to be learned, and Ψ0
mech,NN

is the pre-trained NN learned dominant information in the data. If additional physics-based constraints need to be
applied, the loss function could be updated as

MSE =
1

m

∑
i

[
(Y − Z)

2
i + β ‖PMRNN − P DNS‖2i

]
with Y = Ψmech −Ψ0

mech,NN (6)

where β is a parameter to penalize the constraints expressed in terms of the Frobenius norm ‖•‖. Multi-resolution
learning is a two-step learning process, which can be constructed based on classes and functions provided in the
mechanoChemML library, such as
mechanoChemML.workflows.mr_learning.mrnn_models
mechanoChemML.workflows.mr_learning.mrnn_utility.

See the homogenization of microstrutures problem presented in Section 4.2.1 for details of constructing a MRNN.

11
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3.2.4 NN-based solver for PDEs
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solution
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red

Image representation to FEM representation

Figure 8: Illustration of the NN architecture and steps in the residual calculation for a NN-based PDE solver.

We have developed NN-based PDE solvers that compute full field solutions orders of magnitude faster than the
traditional PDE solvers [13]. These solvers work for both small datasets, which only contain a few boundary
value problems (BVPs), and large datasets, which could contain hundreds of thousands of BVPs. The work-
flow to construct a NN-based PDE solver consists of (i) implementing the discretized residual of PDEs (ii)
building PDE constrained NNs, (iii) preparing BCs-encoded NN input data, (iv) training NNs, and (v) testing
NNs. The NN inputs are multi-dimensional numpy arrays, which can be easily generated. One can use the
mechanoChemML.workflows.pde_solver.geometry to generate BCs-encoded NN inputs for arbitrary polygons.
The PDE constrained NNs are constructed as subclasses of the tf.keras.Model. This allows us to use methods such
as train_on_batch and test_on_batch from the Keras model to train and test the PDE constrained NNs.

To construct NNs to solve PDEs, we use mechanoChemML.src.nn_models.BNN_user_weak_pde_general, whose
output also contains the NN input information, including the BCs and domain, to construct the PDE constrained loss.

A templated workflow for solving general elliptic PDEs is provided at
mechanoChemML.workflows.pde_solver.pde_workflow_steady_state ,

which utilizes classes and functions provided at
mechanoChemML.src.pde_layers
mechanoChemML.src.nn_models ,

with the detailed steps to compute the discretized residual being provided at
mechanoChemML.workflows.pde_solver.pde_workflow_steady_state._compute_residual.

The discretized residual can then be used to construct either the loss for deterministic NNs or the likelihood function
that is used in the total loss of probabilistic NNs. Ref. [13] has details on the theoretical background to the construction
of different loss functions.

For BNNs, the model parameters Θ are stochastic and sampled from a posterior distribution P (Θ|D), which is
computed based on Bayes’ theorem

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)
, (7)

where D denotes the i.i.d. observations (training data) and P represents the probability density function. In (7),
P (D|Θ) is the likelihood, P (Θ) is the prior probability, and P (D) is the evidence, respectively. The likelihood is the
probability of the observed data D given parameters Θ.
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To compute the posterior distributions of Θ, we use variational inference, which approximates the exact posterior
distribution P (Θ|D) with a more tractable surrogate distribution Q(Θ) by minimizing the Kullback-Leibler (KL)
divergence

Q∗ = arg min DKL(Q(Θ)||P (Θ|D)). (8)
with the KL divergence being computed as

DKL(Q(Θ)||P (Θ|D)) = EQ[logQ(Θ)]− EQ[logP (Θ,D)] + logP (D). (9)
Since the evidence P (D) is very expensive to compute, and in general challenging to obtain, we optimize the so-called
evidence lower bound (ELBO), which is equivalent to the KL-divergence up to an added constant, with

ELBO(Q) = EQ[logP (D|Θ)]−DKL (Q(Θ)||P (Θ)) . (10)
The loss function for the BNN is written as

L = DKL (Q(Θ)||P (Θ))− EQ[logP (D|Θ)], (11)
which consists of a prior-dependent part and a data-dependent part, with the former being the KL-divergence of
the surrogate posterior distribution Q(Θ) and the prior P (Θ), and the latter being the negative log-likelihood
cost, which is related to the discretized residual of a specific PDE system. In the mechanoChemML library,
one can provide the detailed implementation of a specific PDE system in the method _bulk_residual. The
bulk residual for the specific PDE system can be constructed by utilizing the methods defined in the class
mechanoChemML.src.pde_layers.LayerBulkResidual. An example of the use of the NN-based PDE solver
for steady-state diffusion is provided in Section 4.3.1.

4 Scientific application examples

4.1 Active learning

4.1.1 Learning free energy density functions for scale bridging

The formation and evolution of material microstructures can be simulated at the continuum scale using phase field
modeling. These techniques rely on a free energy density function for the material, which, among other physics,
encapsulates a description of the stable phases of the materials. Atomistic models, including DFT and statistical
mechanics calculations, can be used to obtain the gradient of the free energy, i.e. the chemical potential, for discrete
values of chemical composition and/or other parameters describing the ordered/disordered state of the atomic structure,
in terms of order parameters. Learning a free energy density function from these data that can be used in phase field
models is a powerful tool in bridging scales.

Since the chemical potential training data that are produced are gradients of the free energy, we employ IDNNs, which
were described in Section 3.1.1, to train to the data. With order parameters ηk and chemical potentials µk := ∂f/∂ηk,
k = 1, . . . , n, the IDNN training involves the following optimization:

Ŵ , b̂ = arg min
W ,b

n∑
k=1

MSE

(
∂f(η;W , b)

∂Xk

∣∣∣
η̂θ
, µ̂kθ

)
(12)

This results in the following representation of the free energy density, f̂ as a function of the order parameters:

f̂(η) = f(η; Ŵ , b̂) (13)
where f has the form of a standard, fully connected deep neural network.

Additionally, in some situations the number of order parameters may increase the dimensionality of the input space
to the point where it is unfeasible to uniformly and densely sample the entire space. In these cases, it is helpful to
employ active learning, as described in Section 3.2.1, to guide the sampling of data. An example is the Ni-Al system,
described by us in previous work [6]. Ni1−xAlx forms an ordered structure a x = 1/4, while a disordered structure
is formed for lower values of x. Additionally, four different translational variants of the x = 1/4 ordering exist,
which affect the formation of precipitates in the Ni-Al system. By defining the input space of the free energy using
composition, η0 and three additional order parameters, η1, η2, η3, it is possible to model the order-disorder transition
and track the formation of variants. The stable disordered phase at low x and each of the four ordered variants at
x = 1/4 correspond to wells in the free energy density. Because of the importance is capturing these energy wells, we
used pointwise error and local convexity as criteria to guide the local sampling.

As implemented in the mechanochemML library, the IDNN was considered sufficiently converged after twelve itera-
tions of the active learning workflow. The evolution of a two-dimensional slice of the free energy is shown in Figure 9,
including energy wells corresponding to the disordered phase and one of the ordered variants. The following function
from the Active_learning class encapsulates the active learning workflow:
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Figure 9: Plots of the free energy density (i.e., the integrated IDNN) in a two-dimensional subspace at various iterations
of the active learning workflow. (A linear function of η0 has been added to each free energy surface to “rotate” the
surface and enhance visualization of the convex regions.)

def main_workflow(self):
for rnd in range(self.N_rnds):
self.global_sampling (2* rnd)

if rnd ==1:
self.hyperparameter_search(rnd)
custom_objects = {’Transform ’: Transform(self.IDNN_transforms ())}

unique_inputs = self.idnn.unique_inputs
self.idnn = keras.models.load_model(’idnn_1 ’,
custom_objects=custom_objects)
self.idnn.unique_inputs = unique_inputs

self.surrogate_training(rnd)
self.local_sampling (2* rnd+1)

4.2 Multi-resolution learning

In this section, we illustrate how to use mechanoChemML library to perform multi-resolution learning to study the
homogenized behavior of microstructures. Readers are referred to [11] for more details.

4.2.1 Microstructure homogenization

In this example, we illustrate how to use multi-resolution NNs provided in the mechanoChemML library to construct
surrogate NN models to predict the homogenized, macroscopic, mechanical free energy and stress fields arising in a
family of multi-component crystalline solids that develop microstructure. The physics is driven by a non-convex free
energy density function ψ,

ψ(c, e,∇c,∇e) = F (c, e) + G (∇c,∇e), (14)

with

F (c, e) = 16dcc
4 − 32dcc

3 + 16dcc
2︸ ︷︷ ︸

chemical

+
2de
s2
e

(e2
1 + e2

3) +
de
s4
e

e4
2︸ ︷︷ ︸

mechanical

+ (1− 2c)
2de
s2
e

e2
2︸ ︷︷ ︸

mechanochemical

(15a)

G (∇c,∇e) =
1

2
∇c · κ∇c︸ ︷︷ ︸

chemical

+
1

2
∇e2 · λe∇e2︸ ︷︷ ︸

mechanical

(15b)

where c is the compositional parameter, e is the mechanical strain vector with e1, e2, and e3 as its components, and
{dc, de, se, κ, λe} are material parameters. Here, F represents a homogeneous contribution from both composition
and strain, and G being a gradient-dependent, inhomogeneous contribution to regularize the free energy density.
The resulting microstructure, driven by this free energy with its perturbation, has a hierarchical–or multi-resolution–
structure, which can be resolved by an MRNN. The main steps to build the surrogate homogenization model workflow
include: (i) synthetic training data generation, (ii) training NNs to describe the dominant characteristic of the data with
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Figure 10: Illustration of the NN predicted solutions. (a) NN predicted base mechanical free energy Ψ0
mech vs. DNS

solutions. (b) the MRNN predicted ∆Ψmech vs. DNS solutions. (c-d) the components of PMRNN vs. DNS solutions,
where the MRNN learns a reasonable derivative representation for P11 and P22.

a hyper-parameter search, (iii) constructing the MRNN to fully represent the hierarchically evolving free energy with
a hyper-parameter search. To setup the workflow, we use the following classes in the mechanoChemML library
mechanoChemML.src.kfold_train
mechanoChemML.src.hparameters_cnn_grid
mechanoChemML.src.hparameters_dnn_grid
mechanoChemML.workflows.mr_learning.mrnn_models
mechanoChemML.workflows.mr_learning.mrnn_utility
mechanoChemML.third_party.dns_wrapper.dns_wrapper

Synthetic data generation is a tedious process and is not the focus of the mechanoChemMl li-
brary, although a user could potentially use the example Python DNS interface class provided at
mechanoChemML.third_party.dns_wrapper.dns_wrapper to run, the spinodal-decomposition initial boundary
value problem (IBVP) that generated the data for the example in this section. A small fraction of preprocessed data
that was thus generated and used in Ref. [11] is provided with this example in mechanoChemML to allow readers to
skip the data generation process and directly learn the workflow.

As discussed in [11], both DNNs and CNNs can be used to learn the dominant characteristic of the data. In this
example, we focus on DNNs in the interest of simplicity. Furthermore, we only focus on predicting the free energy
for microstructures generated from one DNS, and the homogenized stress for a single microstructure. However, more
complex examples studied in [11] are also included in the mechanoChemML library. Readers may refer to the code
documentation for more details. The MRNN constructed based on DNNs for microstructures from one DNS resides
at
examples/mr_learning/Example1_single_microstructure_dnn

with four steps
step1_hp_search_main
step2_final_dnn_main
step3_hp_search_mrnn_detail
step4_final_mrnn_no_penalize_P.

The first two steps perform a hyper-parameter search to identify the best DNN structure and subsequently train the
best model to capture the dominant characteristic of the data. The MRNN is constructed by subtracting the dominant
characteristic predicted by the pre-trained DNNs from the data. The third step performs another hyper-parameter
search to identify the best MRNN structure to capture the detailed characteristic, and the fourth step trains the best
found model. The resulting solutions from both the DNN and MRNN are presented in Fig. 10. See Ref. [11] for
detailed interpretation of the results.

4.3 NN-based PDE solver

In this section, we provide an example to illustrate the use of the mechanoChemML library to solve PDEs with NNs.
See Ref. [13] for further details.
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(a) setup (b) results (32× 32)

(c) UQ horizontal (32× 32) (d) UQ vertical (32× 32)

Figure 11: Steady-state diffusion BVP on an octagonal domain with mixed BCs. (a) Simulation setup, red: zero
Dirichlet BC, green: non-zero Dirichlet BC, blue: non-zero Neumann BC. (b) Solutions from DNS, deterministic
(det) NNs, and BNNs (Mean, Std.) for an output resolution of 32× 32. (c-d) Quantitative comparison of the solution
distribution between DNS and BNNs along the horizontal and vertical dashed lines in (b).

4.3.1 Solving steady-state diffusion

Here, we construct the NN-based solver to solve single species steady-state diffusion, whose strong form is written as

∇ ·H = 0 on Ω,

c(X) = c̄(X) on Γc,

H = H̄(X) on ΓH ,

(16)

In (16), c represents the compositional order parameter,H is the diffusive flux term defined as

H = −D∇c, (17)

with D as the diffusivity, and H is the outward surface flux in the normal direction. The discretized residual function
for steady-state diffusion is written as

R =

nelem∑
e=1

{∫
Ωe
BTHdV −

∫
Γe,H

NT H̄ dS

}
. (18)

We consider a diffusivity of D = 1.0. The detailed Python implementation of this discretized residual of this PDE
system is provided in the tutorial example in the library documentation. We use the NN-based PDE solver to solve a
boundary value problem (BVP) on an octagonal domain with mixed applied BCs. The BVP setup and the associated
results are illustrated in Fig. 11. The details of this example, including the uncertainty quantification, can be found in
Ref. [13].

In the mechanoChemML library, we have provided implementations of steady-state diffusion, linear elasticity, and
nonlinear elasticity at
mechanoChemML.workflows.pde_solver.pde_system_diffusion_steady_state
mechanoChemML.workflows.pde_solver.pde_system_elasticity_linear
mechanoChemML.workflows.pde_solver.pde_system_elasticity_nonlinear

For the steady-state diffusion example, input data and configuration files are provided at
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(a) c1 (b) c2

Figure 12: c1 and c2 at steady state, simulated using the pre-defined Schnakenberg kinetics model.

examples/pde_solver/Example1_diffusion_steady_state

To generate DNS solutions for comparison, users can follow an example Python DNS interface class provided at
mechanoChemML.third_party.dns_wrapper.dns_wrapper to run the steady-sate diffusion boundary value prob-
lem (BVP) by specifying the corresponding BVP name via the command line as:
python mechanoChemML/third_party/dns_wrapper/dns_wrapper.py -e ↘

steady_state_diffusion

We note that the Python DNS wrapper only provides an interface to interact with different physics-based simula-
tion tools. Users need to install the actual software in order to run the physics-based simulation. Furthermore, the
physics-based simulation tools need to be compiled to a Python dynamic library. In this example, the installation of
mechanoChemFEM is needed. The results from the NN-based PDE solver are presented in Fig. 11.

4.4 System identification

In this section, we demonstrate system inference in the mechanoChemML library with an example of pattern formation
in material microstructures using stepwise regression introduced in Section 3.2.2 within the VSI framework.

4.4.1 Pattern formation of material microstructures

In the case of dynamic pattern formation in materials, the physics is governed by first-order (in time) PDEs–a class that
includes the time-dependent reaction-diffusion and phase field equations. For demonstration, consider the following
model form in [0, T ]× Ω:

∂c1
∂t

= D11∇2c1 +D12∇2c2 +R10 +R11c1 +R12c2 +R13c
2
1c2 (19)

∂c2
∂t

= D21∇2c1 +D22∇2c2 +R20 +R21c1 +R22c2 +R23c
2
1c2 (20)

with ∇c1 · n = 0, ∇c2 · n = 0 on Γ = ∂Ω (21)
and c1x, 0) = c10

(x), c2(x, 0) = c20
(x). (22)

Here, c1(x, t) and c2(x, t) are the compositions, with diffusivities D11, . . . , D22 and reaction rates R10, . . . , R23 as-
sumed constant in space and time. This model represents the coupled diffusion-reaction equations for two species fol-
lowing Schnakenberg kinetics [54]. For an activator-inhibitor species pair having auto-inhibition with cross-activation
of a short range species, and auto-activation with cross-inhibition of a long range species these equations form so-
called Turing patterns [55]. See Fig. 12.

For infinite-dimensional problems with Dirichlet boundary conditions on Γc, the weak form corresponding to the
strong form in Equation (19) or (20) is, ∀w ∈ V = {w| w = 0 on Γc}, find c such that∫

Ω

w
∂c

∂t
dv = ω · χ (23)
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where Ω is the domain, χ is the vector containing all possible independent operators in weak form:

χ =

[
−
∫

Ω

∇w · ∇c1dv,−
∫

Ω

∇w · ∇c2dv,
∫

Ω

wdv,
∫

Ω

wc1dv,
∫

Ω

wc2dv,
∫

Ω

wc2
1c2dv

]
(24)

and ω is the vector of operator prefactors. Using this notation, ω = [D11, . . . , R13] for Equation (19) and ω =
[D21, . . . , R23] for Equation (20). Upon integration by parts, application of appropriate boundary conditions, and
accounting for the arbitrariness of w, the finite-dimensionality leads to a vector system of residual equations: R =
y − χω,

where y is the time derivative term and may be represented via a backward difference approximation

yi =

∫
Ω

N i
nb∑
a=1

can − can−1

∆t
Nadv (25)

with N i denoting the basis function corresponding to degree of freedom (DOF) i, and ∆t = tn − tn−1 the time step.
The other operators in χ are constructed similarly and grouped together into the matrix χ. Minimizing the residual
norm towards ||R|| = 0 then yields the linear regression problem

y = χω. (26)

Solving Equation (26) via standard regression, especially with noisy data, will lead to a non-sparse ω. Such a result
will not sharply delineate the relevant bases for parsimonious identification of the governing system. We therefore
use stepwise regression coupled with the statistical F -test for parsimonious inference of a minimal set of operators
[34, 35]. Performing stepwise regression with the F -test also is a key step in the workflow of system identification
(Fig. 6).

In another scenario, steady state, or near-steady state data with high spatial resolution may be obtained from modern
microscopy methods. In fact the data satisfying the steady state equation:

χ · θ = 0, (27)

already provide rich information about the spatial operators (that is, other than time derivatives) in the system. How-
ever, in the absence of prior knowledge about the system, it may be challenging to choose a proper "target" operator,
e.g. the left hand side of Equation (26). The confirmation test developed in [35] can provide a sharp condition for
acceptance of the inferred operators. The confirmation test also has been used in the example of pattern formation in
material microstructures demonstrated in this section.

4.5 Graph-theoretic system identification

In this section, we provide an example to illustrate the use of the graph theory based non-local calculus in the
mechanoChemML library to generate operators for Variational System Identification problems. Specifically, a 1D phase
separation problem is introduced via the Allen-Cahn equations for generation of high-dimensional data. These data are
used to train a reduced order model. The readers are directed to Ref. [12] for an in-depth discussion on this example.

4.5.1 Allen-Cahn dynamics

Consider a field φ = φ(x, t) : Ω× [0, T ] 7→ R, governed by first order dynamics driven by gradient flow:

∂φ

∂t
= −Mφ

δψ

δφ
, in Ω× [0, T ] (28)

∇φ · n = 0, on ∂Ω (29)
φ(x, 0) = φ0(x) (30)

with the free energy density, ψ including f , an algebraic Landau energy density of the form

ψ = f(φ) +
λ

2
|∇φ|2, f(φ) = (φ2 − 1)2 (31)

and f having wells at φ = ±1. The gradient energy λ|∇φ|2, with λ > 0 penalizes sharp transitions between the
positive and negative phases Ω± ⊂ Ω, which are defined by

x ∈
{

Ω+ if φ(x) ≥ 0

Ω− if φ(x) < 0
(32)

18



A PREPRINT - MAY 3, 2022

0.00 0.25 0.50 0.75 1.00
x

−1.0

−0.5

0.0

0.5

1.0

φ
(x
,t

) ϕ

ϕ̄

t = 0

(a) Initial condition.

0.00 0.25 0.50 0.75 1.00
x

−1.0

−0.5

0.0

0.5

1.0

φ
(x
,t

) ϕ

ϕ̄

t = 150

(b) Solution at intermediate t.

0.00 0.25 0.50 0.75 1.00
x

−1.0

−0.5

0.0

0.5

1.0

φ
(x
,t

) ϕ

ϕ̄

t = 300

(c) Near equilibrium solution.

Figure 13: Field evolution of 1D Allen-Cahn dynamics with Mφ = 1e − 3, λ = 1 at 0, 150, and 300 time steps. A
Backward-Euler scheme is used with a time step of ∆t = 0.01

.

The kinetics are controlled by the local mobility, Mφ ≥ 0. The Eqs (28) and (31) together constitute the Allen-Cahn
equation [56]. An example of the system dynamics in 1D appears in Fig 13.

The local variations in the field, φ, can be studied in terms of global observables, for instance, the total energy of the
system, Ψ:

Ψ [φ] =

∫
Ω

ψ(x, t)dΩ (33)

A rich set of global observables can be constructed by computing phase average quantities as different functions of φ
as:

ϕg(φ)± =
1

|Ω|

∫
Ω

g(φ)I(±φ)dΩ, I(φ) =

{
1 if φ ≥ 0

0 if φ < 0,

The following functions, g(φ) are chosen in this study:

g(φ) ∈ G =
{
φ, φ2, φ3, φ4, φ5, f(φ), f ′(φ),∆φ, |∇φ|2

}
Similarly, the total energy of the system in the positive phase, Ψ+ can be estimated as:

Ψ+ [φ] =

∫
Ω

ψ(x, t)I(φ)dΩ (34)

A code to simulate Allen-Cahn dynamics and estimate the global observables is provided in
examples.non_local_calculus.Example2_Allen_Cahn.dns

4.5.2 Reduced order model for Global observables

We are interested in developing a parsimonious reduced order model for ϕφ+
. We consider a model for first order

kinetics of the observable as follows:
dϕφ+

dt
=
∑
α

γαvα, vα ∈ B (35)

Here, B is the basis set of operators. For demonstration, we choose the following 3 successively expanded basis sets:

B1 =

{
δΨ+

δϕg(φ)+

∪ δΨ+

δϕg(φ)−

|g(φ) ∈ G
}

(36)

B2 = B1 ∪
{

δΨ

δϕg(φ)+

∪ δΨ

δϕg(φ)−

|g(φ) ∈ G
}

(37)

B3 = B2 ∪
{
ϕg(φ)+

∪ ϕg(φ)− |g(φ) ∈ G
}

(38)
Our choice of basis sets, B1 and B2, is guided by the gradient flow form of the field (Eq.(28)). The derived quantities
like δΨ

δϕφ+
are estimated using the non-local calculus via the code:
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Basis Iteration Loss Model coefficients

γ
δΨ+
δϕφ+ γ

δΨ+
δϕφ− γ

δΨ+
δϕf(φ)− γ

δΨ+
δϕ
φ3
− γ

δΨ+
δϕ
φ4
−

B1

14 1.56e-4 -2.81e-1 3.01e-1 -5.84e-2 1.39e-2 4.45e-4
15 1.82e-4 -2.66e-1 2.48e-1 -3.54e-2 4.62e-3 0
16 2.48e-4 -2.68e-1 1.68e-1 -1.18e-2 0 0
17 3.32e-4 -2.90e-1 1.04e-1 0 0 0
18 8.94e-4 -4.36e-1 0 0 0 0

γ
δΨ+
δϕφ+ γ

δΨ
δϕ
φ2
− γ

δΨ+
δϕf(φ)+ γ

δΨ+
δϕ
φ2
− γ

δΨ+
δϕf(φ)−

B2

32 9.79e-5 -4.99e-1 -4.48e-1 -2.40e-1 8.49e-1 2.02e-1
33 5.39e-4 -5.61e-1 -6.14e-2 -6.33e-2 4.34e-2 0
34 5.54e-4 -5.51e-1 -2.15e-2 -5.04e-2 0 0
35 6.83e-4 -3.80e-1 -1.79e-2 0 0 0
36 8.94e-4 -4.36e-1 0 0 0 0

ϕf ′(φ)+
ϕ∆φ− ϕφ− ϕφ3

+
γ

δΨ+
δϕ∆φ−

B3

50 6.33e-10 -1.00e+0 -9.90e-4 1.67e-4 -2.10e-4 -1.04e-3
51 6.52e-10 -1.00e+0 -9.90e-4 1.28e-4 -1.50e-4 0
52 8.32e-10 -1.00e+0 -9.90e-4 5.31e-5 0 0
53 8.94e-10 -1.00e+0 -9.90e-4 0 0 0
54 1.05e-4 -9.51e-1 0 0 0 0

Table 1: The last 5 iterations of stepwise regression in system identfication of Allen Cahn dynamics.

examples.non_local_calculus.Example2_Allen_Cahn.estimate_derivative.py

Basis set B3 is further expanded to include the global observables. For each choice of basis set, a parsimonious model
is identified using the stepwise regression strategy via the code:
examples.non_local_calculus.Example2_Allen_Cahn.train_model.py

The training data is provided in terms of 100 trajectories, each estimated with respect to a different initial condition
with parameters, Mφ = 1e − 3, and λ = 1. The resulting coefficients of the trained model are presented in Table 1
with the loss curves provided in Fig. 14. We observe that a familiar gradient flow model is recovered as a 1-term
model in the case of basis sets, B1 and B2. However, in the case of B3, the loss is considerably lower for models with
2 and more terms. It is also observed that the 2-term model, in case of B3, approximates an analytical model for this
global variable given as [12]:

dϕφ+

dt
= −Mφϕf ′(φ)+

± λMφϕ∆φ± ≡ 4Mφϕφ+ − 4Mφϕφ3
+
± λMφϕ∆φ± (39)

5 Installation, documentation, and contributing

In this section, we briefly discuss the installation steps and documentation, as well as suggest how users may contribute
to the library. Users can refer to specific pages of our online documentation for detailed instructions.

5.1 Installation

mechanoChemML is publicly available on GitHub [57] and is hosted on the Python Package Index (PyPI,
https://pypi.org/). To install mechanoChemML, we recommend the use of Anaconda. One Can create a virtual
Python package installation environment that is isolated from the Python environment of the operating system with
Anaconda.
$(base) conda create --name mechanochemml python ==3.7
$(base) conda activate mechanochemml

One can use the following command to install mechanoChemML and its required libraries.
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Figure 14: Loss during stepwise regression in system identfication of Allen Cahn dynamics.

$(mechanochemml) pip install mechanoChemML

To install the proper TensorFlow and TensorFlow Probability version that is compatible with the CUDA version
on the user’s system, one needs to download the examples provided by the mechanoChemML library via
$(mechanochemml) svn export https :// github.com/mechanoChem/mechanoChemML/trunk/↘

examples ./ examples

or download the whole library from GitHub via
$(mechanochemml) git clone https :// github.com/mechanoChem/mechanoChemML.git ↘

mechanoChemML -master

and run the TensorFlow installation script as
$(mechanochemml) python3 examples/install_tensorflow.py

For developers, one can compile the mechanoChemML library and install it locally to reflect the latest GitHub changes
that are not available in the released version on the PyPI by the following commands
$(mechanochemml) git clone https :// github.com/mechanoChem/mechanoChemML.git ↘

mechanoChemML -master
$(mechanochemml) cd mechanoChemML -master/
$(mechanochemml) python3 setup.py bdist_wheel sdist
$(mechanochemml) pip3 install -e .

The newly compiled mechanoChemML library will overwrite the old installed version.

5.2 Documentation

The detailed documentation of the mechanoChemML library is provided at https://mechanochemml.readthedocs.
io/en/latest/index.html. One can use the following commands to further compile a local copy of the documen-
tation files.
$(mechanochemml) cd mechanoChemML -master/docs
$(mechanochemml) make html
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5.3 Contributing

Instructions for contributing to the mechanoChemML library, such as bug reports, code contribution, documentation
contribution, workflow contribution, etc., is discussed at https://mechanochemml.readthedocs.io/en/latest/
contribute.html.

6 Conclusion

Our goal with this communication is to motivate the niche that exists for scientific software between traditional PDE
solver libraries and machine learning platforms, and to describe, with an appropriate degree of detail, how the frame-
work of mechanoChemML occupies this position. In addition to code for the machine learning classes, an important
idea here is that of machine learning workflows. Laid out with the proper abstraction, these workflows can accommo-
date a reasonable range of applications in computational materials physics. Moving forward, this library structure will
undergo continuous development driven by both: the applications and the evolving understanding of machine learning
workflows.
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