
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, XXX 2021 1

Budget-Aware Online Control of Edge Federated

Learning on Streaming Data with Stochastic Inputs

Yibo Jin, Student Member, IEEE, Lei Jiao, Member, IEEE, Zhuzhong Qian, Member, IEEE,
Sheng Zhang, Member, IEEE, and Sanglu Lu, Member, IEEE

Abstract—Performing federated learning continuously in edge
networks while training data are dynamically and unpredictably
streamed to the devices faces critical challenges, including the
global model convergence, the long-term resource budget, and
the uncertain stochastic network and execution environment. We
formulate an integer program to capture all these challenges,
which minimizes the cumulative total latency of stream learning
on device and federated learning between devices and the edge
server. We then decouple the problem, design an online learning
algorithm for controlling the number of local model updates
via a convex-concave reformulation and rectified gradient-descent
steps, and design a bandit learning algorithm for selecting the
edge server for global model aggregations by incorporating the
budget information to strike the exploit-explore balance. We
rigorously prove the sub-linear regret regarding the optimization
objective and the sub-linear constraint violation regarding the
maximal on-device load, while guaranteeing the convergence of
the global model trained. Extensive evaluations with real-world
training data and input traces confirm the empirical superiority
of our approach over multiple state-of-the-art algorithms.

Index Terms—Federated Learning, Streaming Data, Budget.

I. INTRODUCTION

Federated learning trains machine learning models via itera-
tively updating local models on local devices and aggregating
the local models from multiple devices to compose the global
model on a remote server. This paradigm keeps the training
data within each local device and does not upload them to
the server [1], thus protecting the users’ privacy [2]. However,
federated learning often requires all the data samples to be
prepared in prior, and then starts the training process which
can continuously incur heavy workload (i.e., high CPU load)
during the training time period, causing extra waiting time and
impacting the use of the devices even with multiplexing.

One approach to avoid such “load congestion” for the local
devices is to spread the training load over time, that is, to
conduct federated learning as the training data gradually arrive

Manuscript received February 28, 2021; revised July 25, 2021 and Septem-
ber 13, 2021; accepted September 22, 2021. Date of publication XXX XX,
2021; date of current version XXX XX, 2021. This work was supported
in part by the National Key R&D Program of China under Grant No.
2017YFB1001801, in part by the National Natural Science Foundation of
China under Grant No. 61832005 and No. 61872175, in part by the Natural
Science Foundation of Jiangsu Province under Grant No. BK20181252, and
in part by the U.S. National Science Foundation under Grant CNS-2047719.
(Corresponding authors: Lei Jiao; Zhuzhong Qian; Sheng Zhang.)

Y. Jin, Z. Qian, S. Zhang, and S. Lu are with the State Key Labo-
ratory for Novel Software Technology, the Department of Computer Sci-
ence and Technology, Nanjing University, Nanjing 210023, China (e-mail:
yibo.jin@smail.nju.edu.cn, {qzz, sheng, sanglu}@nju.edu.cn).

L. Jiao is with the Department of Computer and Information Science, Uni-
versity of Oregon, Eugene, OR 97403, USA (e-mail: jiao@cs.uoregon.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier xx.xxxx/JSAC.2021.xxxxxxx

Time

D
ev

ic
es

Federated Learning

Edge Off

Edge On

Model
Global Model
Aggregation

Streaming Data
Local Model Updates

Edge Network

Fig. 1: Edge Federated Learning on Streaming Data

at each local device dynamically. This way, federated learning
just runs along with other applications, and therefore does no
harm to the normal use of these applications. Unfortunately,
this vision of federated learning upon streaming data is non-
trivial, especially in edge networks where we need to control
both the stream learning on each single device and the edge
server selection in a dynamic network environment, as shown
in Fig. 1. In fact, we face multiple challenges as follows:

First, learning from streaming data, rather than from static
data, in the framework of federated learning complicates the
training of the global model. The approach of the Stochastic
Gradient Descent (SGD) might be used to dynamically process
the streaming data, but it is often hard to converge because
not every iteration in SGD can reduce the total loss. So, we
would desire a better approach to conduct on-device training
upon streaming data, which should consume less computation
and avoid continuous high load, and more importantly, we also
want to guarantee the global model convergence explicitly.

Second, one may often have a restrictive long-term budget
and therefore need to use such budget wisely for renting and
using the edge resources for federated learning executions [3].
Inappropriate spending may result in the budget shortage in the
future or the unexpected termination of the federated learning
process, which can affect the overall training time and the
global model convergence. Since we often have no knowledge
about the amount of the incoming training data [4], the prices
of the edge resources, and other inputs for the future, it is hard
to strategically manage the spend of the budget on the fly.

Third, the edge network and execution environment can be
intrinsically uncertain and stochastic [5], escalating the diffi-
culty for controlling federated learning in an online manner.
For any edge, as the server of the global aggregation, both the
network delay of transferring models and the execution delay
of performing the aggregations can vary as time goes [6]—we

2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, XXX 2021

need to dynamically strike the balance between exploiting the
best edge so far for which we have the historical observations
of its performance and exploring a new but possibly better
edge for which we have no information yet. While the inputs
can come from unknown stochastic distributions and are not
observable beforehand, we seek to make irrevocable decisions
online to optimize the expected performance in the long run.

Existing research falls insufficient for addressing the afore-
mentioned challenges. Some focus on training over streaming
data [7–11], but none of them are for distributed federated
learning. Others have considered the optimization of federated
learning [12–16] at network edges, but they largely neglect
the dynamic and unpredictable arrivals of training data. It is
desired that the features of streaming data and the convergence
of federated learning are jointly considered and well addressed.

We firstly model the target scenario of controlling federated
learning upon streaming data in a long-term scope, as shown
in Fig. 1. Our model considers the overall latency incurred by
both computation and communication of local model updates
in on-device stream learning and global aggregations at the
edge server in federated learning over the entire time horizon.
Our model features edge resource restrictions, global model
convergence, and the long-term budget under unpredictable
data arrivals, dynamic resource prices, and heterogeneous and
stochastic edge performance. Upon the models, we formulate
our control problem for optimization correspondingly.

We then propose and design an online approach to solve
this problem through decomposing it into two subproblems
and solving them separately in every time epoch. The key
of this decomposition is to separate the intertwined control
decisions and related delays they incur using the estimate of
the lower bound of the number of time epochs for which
federated learning can be conducted under the given budget.
For the first subproblem of determining the number of local
model updates in stream learning, we design an online learning
algorithm via a convex-concave reformulation and rectified
gradient-decent-based steps without relying on further future
inputs. For the second subproblem of selecting the edge server
for model aggregation, we design a bandit learning algorithm
via carefully incorporating the budget information into the
upper confidence bound for each edge and using this bound
to maintain the exploit-explore balance across different edges.

Further, we perform rigorous theoretical analysis of our pro-
posed online algorithms. We prove that, for our optimization
objective of the cumulative total latency, the “regret” in terms
of the expected difference between the latency incurred by
our online control decisions and that incurred by the offline
optimal control decisions has a sub-linear upper bound in
terms of the stopping time for a given budget. We also prove
that, for our constraints, the maximal on-device load incurred
by stream learning is upper-bounded sub-linearly with regards
to the stopping time, while the global model convergence is
ensured. Note that such results are non-trivial, which require
all our proposed algorithms to work together and differ our
work from most existing analysis for online algorithms.

Finally, we conduct extensive experiments using real-world
training data and input traces, including the training datasets of
a9a [17], rcv [18], movielens100k [19], and movielens1m [19],

Fig. 2: Comparison of Different Training Algorithms

TABLE I: Cumulative Training Delay (s)
Dataset Mini-batch SGD Streaming Loss Difference
a9a [17] 30.49 14.08 0.00
rcv [18] 74.35 49.18 0.05

movielens100k [19] 33.78 27.72 0.06
movielens1m [19] 324.41 277.82 0.07

the location and the bandwidth data of edges [20], the round-
trip times between the users and edges [21], as well as the
dynamic prices regarding renting the edges [3]. We compare
our approach to multiple alternative approaches under a variety
of settings, and find the following results: i) for different
training datasets streamed, our proposed approach reduces the
peak latency across training epochs to no more than 3 seconds,
and cumulatively consumes only several minutes on training
over the 74-minute-long time horizon of data streaming, with
a very moderate 0.07 total loss degradation; ii) compared
to alternative approaches with different combinations of on-
device local training algorithms and edge selection strategies,
our approach consistently performs the best in terms of cumu-
lative latency and training loss; iii) our approach scales well in
latency and loss, and grows slowly as the budget becomes less,
the training data arrive faster, the number of devices becomes
larger, the size of the trained model becomes larger, and the
computing power of devices becomes weaker.

II. MOTIVATION, MODELING, AND FORMULATION

A. Background and Motivation

We first show our preliminary case studies on the difference
between learning on static data and learning on streaming data.

Learning upon Static Data: Conventionally, model train-
ing requires all the data samples to be ready in prior. Many
gradient-based approaches [9], such as Batch Gradient Decent
(BGD) and Stochastic Gradient Decent (SGD), are adopted in
this case. Regarding using the gradient to iteratively update the
model parameters, BGD calculates the gradient over the entire
dataset in each iteration (i.e., upon the average of the gradients
over all data samples), while SGD calculates the gradient over
a single data sample in each iteration. Therefore, BGD uses the
“real” gradient of the total loss to be minimized, while SGD
can be regarded as using an approximation of the real gradient

JIN et al.: BUDGET-AWARE ONLINE CONTROL OF EDGE FEDERATED LEARNING ON STREAMING DATA WITH STOCHASTIC INPUTS 3

TABLE II: Summary of Major Notations
Inputs Descriptions
nit

1Volume of data arrived at device i in epoch t
hijt Delay incurred by local model update per iteration,

which is relevant to arrived data volume, hit =
!

j hijt

aiet
1Round-trip time from device i to edge e in epoch t

biet
1Bandwidth from device i to edge e in epoch t

cet 1Execution time of edge e for model aggregation in epoch t
ret Renting cost of edge e in epoch t
ε Desired loss achieved by federated learning
π Maximal resource used on devices in an epoch
τB Time stamp of the stopping time, with respect to budget B

Decisions2 Descriptions
ρt Local iterations for local model updates
xet Whether edge e is decided to be the location

for global model aggregation at epoch t or not
1. Those inputs are posterior; {aiet}, {biet}, {cet} are further stochastic.

2. {ρ̄t} and {x̄et} are the results produced by our designed algorithm.

but often consumes less time for related gradient computation.
As a trade-off, the mini-batch SGD approach [1, 22] splits
the training data into multiple subsets, and then calculates the
gradient over a subset in each iteration.

Learning upon Streaming Data: Different from the pre-
vious setting, where all training data are available before the
training process starts, learning over streaming data refers to
the new setting, where the training data arrive dynamically on
the fly, as the training process goes. The training approaches
in this category include SAGA [9] and strSAGA [11]. These
approaches are derived by adapting SGD, where within each
iteration, the gradient is firstly calculated upon the new data
samples that have just arrived and then revised by the data
that arrived previously before the current data samples. Specif-
ically, such a revision of the gradient per iteration is calculated
upon the computation of a well-designed weighted sum [14],
whose weights are maintained for all those data samples that
have arrived. Unlike BGD and mini-batch SGD, this approach
amortizes the computation for the online scenario, and related
calculation of the designated weighted sum upon the weights
of the data samples actually controls the decent steps of the
gradients, leading to a faster model convergence.

Case Study: As in Fig. 2, we compare multiple approaches:
SGD upon static data (denoted as SGD1), mini-batch SGD
upon static data, BGD upon static data, SGD upon streaming
data (denoted as SGD2), and strSAGA upon streaming data.

For static data, all the data are prepared in prior, and related
SGD approach (SGD1) processes all data samples one after
another; because all the data are ready in this case, the SGD
approach can pass all the data multiple times (e.g., from the
first data sample to the last one and then from the first to the
last again) to reduce the loss for convergence. In Fig. 2, SGD1

passes all the data 20 times. In contrast, for streaming data,
each data sample dynamically arrives, and the SGD approach
(SGD2) passes each data sample once and only once.

As data are streamed, the first three approaches wait for 300s
until all the data arrive before starting to train the model, and
the last two approaches directly starts as data begin to arrive.
Regarding the loss, we find that, to reduce the total loss to
approximately the same level, strSAGA finishes earliest; SGD1

is efficient, and it completes with the shortest time duration
after all data become available; BGD reaches the best loss,

Time

Global Model Aggregation

Device

Epoch

TimeTime
Stamp

Streaming Data Arrivals

Local Model Updates
௧ߩ Iterations for Updates

Transmission

Fig. 3: Illustration of Federated Learning upon Streaming Data

but takes 38s to complete; and the loss of SGD2 fluctuates,
since the decent step of the gradient calculated only takes one
data sample into consideration. Regarding CPU usage, the first
three approaches continuously and fully occupy one CPU core
in our multi-core system; strSAGA distributes the workload
over time and keeps pretty low CPU usage most of the time.

The data samples dynamically and continuously arrive one
after another per time slot, and the stream training algorithm is
executed in real time—this does not mean the stream training
algorithm uses up all the 3s of each time slot for execution;
instead, it only uses hundreds of milliseconds in a time slot
for execution, because after processing the model updates, it
“suspends” and waits until the trigger of the next time slot and
then “resumes” to process the new data samples. Therefore, the
total amount of time for training algorithm execution, rather
than waiting, across all of the 100 time slots is 14.08s. This
is also verified in the bottom figure of Fig. 2: only when the
training is actually conducted, the CPU usage becomes high
(implied by the red cross signs) in the streaming case.

The settings of our experiments are as follows. Data arrivals
obey a Poisson process, lasting for 5 minutes. The dataset [17]
used is a9a. Additional results on various datasets [18, 19] are
shown in TABLE I. Mini-batch SGD processes 50 data sam-
ples per batch, and 20 local rounds used for these approaches
except for strSAGA according to the previous work [1]. Each
local round passes all the batches once. The step size used for
the gradient updates is 2e-1. We implement and conduct our
experiments based on the previous work [11], via Python 2.7
upon Ubuntu 16.04 with 4 CPU cores and 8 GB memory.

These results motivate us to study stream learning. In this
paper, we consider a more comprehensive setting of distributed
federated learning over streaming data upon strSAGA, opti-
mizing training time while ensuring model convergence.

B. System Settings and Models

We summarize all the major notations in TABLE II.
Edge Infrastructure: We study the system over a series

of epochs. Within each epoch t ∈ T , the volume of data that
arrive on device i at time stamp j ∈ Mt is vijt, where i ∈ N
is the index of the device and Mt is the set of time stamps
in epoch t. We denote by nit =

!
j∈Mt

vijt the total volume
of all streaming data that arrive at device i in epoch t. We
then consider a service provider that rents a set of distributed
edges E , where an “edge” here refers to a micro data center or
a server cluster, co-located at a WiFi access point or a cellular

4 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, XXX 2021

Arrivedݒ௜௝௧
Buffer

௧ߩ

Set ࣭ with Maintained Weights

Sample
Averaged Weight A
Sample Randomly

Update
Local
ModelUpdate Weight for

① ②

③

Fig. 4: Illustration of Local Training for Streaming Data

base station. Within each epoch t, the bandwidth and round-
trip time between device i and edge e are represented as biet
and aiet, respectively; and the cost for renting edge e is ret.

We study the system over a time horizon which consists of
a series of consecutive “epochs”, shown in Fig. 3. During each
epoch, the training data arrive sequentially in mini-batches at
different time stamps. For each of such mini-batches, we run
ρt iterations to update the local model on the device, where in
each iteration we pick up one data sample randomly, calculate
the gradient and related average weights, and update the local
model and the weight of the selected data sample. Only when
finishing processing the last mini-batch of data in the epoch,
we do an aggregation (i.e., sending the local model of each
device to a common selected edge to produce the global model
following the conventional federated learning paradigm), and
then we enter the next epoch and send the latest global model
back to each device as the local model to be updated.

We are minimizing the overall latency (i.e., the computation
time (for local model training and global model aggregation)
on all the devices plus the transmission time (for sending the
local models and retrieving the global model) between the
devices and the edge). We consider such time consumption as
the computation and communication overhead of the system.

Different from traditional federated learning, we do one and
only one aggregation at (the end of) each epoch (before the
stopping epoch subject to the budget constraint).

Stream Learning on Device: We adopt strSAGA (shown in
detail in the algorithm) to train the local model on each device
which has a separate stream of arriving data. On device i in
epoch t, strSAGA consists of multiple local iterations, where
each iteration z further consists of three steps, shown in Fig. 4:

i) The data that have just arrived are maintained by a buffer.
Then, randomly move a data sample ℵ′ from the buffer (if the
buffer has data samples) to a set S with initialized “weight” 0
(the weight is actually a vector, denoted by δ(ℵ′) = 0); When
a data sample with initialized weight is moved to S, we use
a vector A to measure the latest averaged weight of S as

A =
"

s∈S
δ(s)/|S|, (0a)

where the set S maintains the data that have arrived and are the
candidates for model updates; Here, |S| indicates the number
of the elements maintained by S; The total number of the data
samples that arrive at time stamp j is vijt;

ii) Randomly choose one data sample ℵ from S, where such
data sample is sampled from the whole set, and may not be the
data sample ℵ′ just moved from the buffer in previous step;

iii) Compute the gradient σ for ℵ upon the loss function L,
and the model w̃z−1 obtained from previous iteration:

σ = ∇L(ℵ, w̃z−1), (0b)

where ∇ is the notation of the gradient of L with respect to
ℵ; Note that the index of current iteration is z; Then, update
the model upon σ just calculated as follows:

w̃z = w̃z−1 − η(σ − δ(ℵ) +A), (0c)

where w̃z is the latest model; Note that, when updating the
model, the “old” weight of ℵ maintained by S is used (i.e.,
δ(ℵ)); After the model update, the weight of ℵ is updated (i.e.,
δ(ℵ) ← σ). η is a step size and ℵ is still maintained by S.

In Step 1, we move one data sample into the set S; in Step 2,
we randomly sample one data sample from the set S. Thus, the
data sample that is moved in Step 1 is indeed not necessarily
the data sample that is sampled in Step 2. We use different
symbols for Step 1 (ℵ′) and Step 2 (ℵ). Regarding Step 3, we
calculate the gradient and also use this gradient to update the
model. These three steps are a skeleton of Algorithm 2.

This algorithm (details shown in algorithm section) achieves
the following model convergence mentioned in [11]:

E[lUit − l∗it] ≤ u ·max{1, (2nit

Mtρt
)α} · Hit(nit), (0d)

where lUit is the loss incurred by the model updated, following
the above iterative algorithm; l∗it is the best loss (which is often
unknown) achieved by the oracle; ρit is the number of local
iterations; Hit(nit) is the loss obtained by the “empirical risk
minimizer”; and u and α are constants, where 1/2 < α < 1.
While E[lUit − l∗it] refers to the difference of the loss over the
entire data distribution (assumed independent and identically
distributed), Hit(nit) here refers to the empirical minimum
loss over the data samples that actually arrive in the system.

lUit =
1

nit

"

ℵ∈Dit

L(ℵ, w̃U
it), l∗it =

1

nit

"

ℵ∈Dit

L(ℵ, w̃∗
it), (0e)

where Dit is the set of all data arriving in epoch t on device i;
nit = |Dit|; w̃U

it is the model obtained via the stream training
at the end of epoch t; w̃∗

it is the optimal model in epoch t on
device i, which is defined as argminw̃

1
nit

!
ℵ∈Dit

L(ℵ, w̃).
“vijt < ρt” does not prevent the execution. ρt refers to the

number of data samples sampled from the “base” (i.e., the set
S). Note that we do not require the set S to contain more than
ρt data samples; if S contains fewer than ρt data samples, we
can still do the sampling for ρt times even if in this case some
data samples will be selected more than once. We indeed allow
taking repeated data samples. Also, our theoretical analysis
does not assume “vijt < ρt” or “vijt ≥ ρt”. Therefore, our
current analysis still works when “vijt < ρt”.

Federated Learning across Device and Edge: In federated
learning, in each epoch the local model on each device is firstly
updated by the local model updates using the streaming data,
and then at the end of the epoch, each local model is sent to
the edge for aggregation in order to generate the global model
[1]. The global model is then sent back to every participating
device for the local model updates in the next epoch.

JIN et al.: BUDGET-AWARE ONLINE CONTROL OF EDGE FEDERATED LEARNING ON STREAMING DATA WITH STOCHASTIC INPUTS 5

We focus on the overall latency incurred by the federated
learning. We denote by hijt the computation time consumed
by the local model updates on device i over data arriving
at time stamp j in epoch t. As the amount of computation
is proportional to the data volume and the number of local
iterations, the overall computation time over the streaming data
on device i in epoch t is hitρt, where hit =

!
j hijt.

The amount of computation is proportional to the number of
“iterations” ρt. Since we only process one single data sample
per iteration, the amount of computation can also be viewed
as proportional to the size of the data that we process.

When conducting the global model aggregation, we consider
the transmission delay and the propagation delay as

βiet = 2w/biet + aiet, (0f)

where βiet is the overall transmission delay from device i to
edge e in epoch t; biet is the bandwidth; w is the model size;
aiet is the propagation time. 2w/biet covers both trips from
device to edge and from edge to device. We are also aware
that the available bandwidth could be asymmetric (i.e., the
bandwidth from edge to device is different from the bandwidth
from device to edge). In this case, our notation biet can refer
to the bottleneck bandwidth between the two values during
the transmissions. The execution time consumed by the global
model aggregation at edge e in epoch t is cet.

We emphasize that {aiet}, {biet}, and {cet} are all stochas-
tic inputs (i.e., in every epoch t, we only observe a sample of
each of these three inputs for each device and selected edge).

The transmission time is not always a stable value and could
vary dynamically from time to time in reality. Such dynamism
and uncertainty is a norm and very typical, especially when the
device is connecting to the edge via cellular wireless networks.
In order to capture this dynamism and uncertainty, we model
both the (available) bandwidth and the propagation delay as
inputs sampled from stochastic distributions, which aligns with
lots of existing research, including [6, 23, 24]. By “stochastic”,
we mean that the transmission time between a device and an
edge in the current epoch would likely be different from the
transmission time between this same device and this same edge
in a future epoch; in each of these two epochs, we could
only observe a sample value of the transmission time from
the underlying distribution, and the two sample values of the
transmission time for the two epochs could be different.
aiet is the value observed and sampled at the epoch t from

the stochastic distribution of the round-trip propagation time
between the device i and the edge e; biet is the value observed
or sampled at the epoch t from the stochastic distribution of
the (available) bandwidth between the device i and the edge e;
cet is the value observed and sampled at the epoch t from the
stochastic distribution of the computation time for executing
the global aggregation performed on the edge e.

Control Decisions: We make two types of control decisions.
The first is ρt (i.e., the (integral) number of iterations for the
local model updates on each device within epoch t). Although
the streaming learning on device calculates the gradient using
one data sample per time, such local model update may have
multiple iterations. The next is xet (i.e., the (binary) decision
of whether or not edge e is used as the location for the model

Time

Global Model Aggregations T th Epoch

Budget Drained, ߬஻
Fig. 5: Illustration of Stopping Time

aggregation within epoch t). After completing the local model
updates on each device, we have the flexibility to select one
edge for executing the global model aggregation.

C. Problem Formulation and Algorithmic Challenges

Control Problem P: With the system models shown above,
we formulate the following optimization problem to control
the federated learning process over the streaming data:

min P =
"

t≤τB

#"

i

{hitρt +
"

e

xetβiet}+
"

e

cetxet}

s.t. max
j

{ρthijt} ≤ ρthit ≤ π, ∀t ≤ τB , ∀i, (1)
"

e

xet = 1, ∀t ≤ τB ,
"

t≤τB

"

e

retxet ≤ B, (2)

"

t≤τB

"

e

xet ≥ O(
"

t≤τB

ρ−α
t /ε), (3)

var. xet ∈ {1, 0}, ρt ∈ Z+. (4)

The objective is to minimize the overall latency of the whole
lifecycle of federated learning upon streaming data, including
local training time, model transmission and propagation time,
and global aggregation time, where τB is the time stamp
of stopping, as the entire training process terminates due to
the budget B. Here, Constraint (1) ensures that the maximal
training load incurred on devices by the streaming data is
controlled within an acceptable threshold π. Constraint (2)
ensures that within each epoch, only one edge is selected as the
location for global model aggregation and the cumulative cost
of renting the edges cannot exceed the budget B. Constraint
(3) ensures global model convergence according to the lemma
shown later. Constraint (4) specifies the variables’ domains.

The value of
!

t≤τB ,e xet is actually τB , and therefore the
entire left-hand side of the Constraint (3) can then become τB ;
however, xet indeed has the impact, because actually we have
τB = maxτ{τ |

!
t≤τ

!
e retxet ≤ B}, where

!
e xet = 1.

We believe there are two ways to interpret this. First, we
say xet is a decision variable, and τB is then a function of the
decision variable xet (as it is a function, τB is not a decision
variable). Second, we say xet is a decision variable and τB is
another decision variable; besides, in this case, we need to add
the equation τB = maxτ{τ |

!
t≤τ

!
e retxet ≤ B} as a new

constraint to our current problem formulation. Both the first
approach and the second approach here can have τB in the
objection function and make sense. As illustrated in Fig. 5,
the physical meaning of τB is the “stopping time”, and the
optimization objective considers the time scope of t ≤ τB ,
where τB ≤ |T |, rather than considering the time scope of
t ≤ |T |, where T is the set of all (possible) epochs.

All the devices under our consideration need to participate
in global model aggregation in this paper. We have adopted the
overall transmission delay as part of the optimization objective

6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, XXX 2021

(i.e.,
!

t≤τB

!
e xetβiet) in this paper. Using the maximum

transmission delay to replace the overall transmission delay
is a valid alternative—both approaches have been adopted in
various existing research. As we intended to use transmission
delay to reflect the communication overhead, we chose to use
the total delay (i.e., the total overhead) instead of the maximum
delay (i.e., the maximum overhead) in the objective.

The term used in O of Constraint (3) is shown in Lemma 1:

Lemma 1. If the number of global aggregations
!

t≤τB ,e xet

reaches τB ≥ O(
!

t≤τB
ρ−α
t /ε), the global model conver-

gence is ensured (i.e., the following inequality holds):

E[

!
t lt

τB
− lopt] ≤

!
i,t umax{1, (2nit

Mtρt
)α}Hmax

NτB
≤ ε,

where Hmax = max{Hit}; ε is the desired global loss; N is

the number of devices (i.e., |N |); lt is the loss of the global

model that is produced by federated learning with strSAGA;

and lopt is the optimal loss of the global model.

Proof. See Appendix A. Based on Inequality (0d).

ε here, as the desired (upper bound of the) global loss to
be achieved, needs to be set to make sense. For instance, we
expect it to be a small value. Aligned with previous works [11],
we set ε upon the loss obtained in the case of static data and
non-distributed training (e.g., 0.01 ∼ 0.001 for “a9a”).
lopt is the loss over all data via the optimum model from

federated learning: lopt = 1
NτB

!
i,t

1
nit

!
ℵ∈Dit

L(ℵ, w̃∗
FL),

where Dit is the set of all data arrived in epoch t on device
i, and nit = |Dit|; w̃∗

FL is the optimum model obtained by
federated learning; L is the loss function; N is the number of
devices; and τB is the stopping time in Fig. 5.

Algorithmic Goal: In this paper, our goal is to design an

algorithm which, in an online manner, produces ρ̄t and x̄et

to solve the problem P while upper-bounding the regret as

Eξ∼D [P̄ξ − P∗
ξ] ≤ C. Here, denoting ξ = {aiet, biet, cet} as

the specific inputs sampled from the unknown distribution D ,
we define P̄ξ = Pξ(ρ̄t, x̄et) and thus use Eξ∼D [P̄ξ] to refer
to the expected objective (i.e., latency) using the decisions ρ̄t
and x̄et generated by our approach to be designed; we also
define P∗

ξ = Pξ(ρ
∗
t , x

∗
et), where ρ∗t and x∗

et are the optimal
decisions under ξ, and thus use Eξ∼D [P∗

ξ] to represent the
expected optimum; finally, we define Eξ∼D [P̄ξ − P∗

ξ] as the
“regret”, and C is a constant in terms of the given budget.

Algorithmic Challenges: Solving this problem to achieve
the above goal is non-trivial, due to the following challenges:

Stochastic Uncertainty: The inputs {aiet}, {biet}, and {cet}
are stochastic. In every epoch t, we only observe the samples
of these inputs from their unknown distribution and need to
make the control decisions online based on such sampled in-
puts. Note that the regret is defined in the sense of expectation.
Thus, the control algorithm we design needs to work well not
only for the observed samples of the inputs but also for those
samples that are not observable—it needs to work well for the
entire distribution which is yet unknown. Even though other
inputs such as {vijt, nit} are not stochastic, these stochastic
inputs have escalated the difficulty for the algorithm design.

For the edge we select, the observed values of a, b, and c are
sample values from their corresponding stochastic distributions
which are unknown to us. If we choose the same edge again
in a future time epoch, the values of a, b, and c will likely be
different, because they can be different sample values. Yet, we
highlight that our job in this paper is to design algorithms that
work well in the expectation sense for these stochastic inputs
based on those specific sample values of these inputs that we
observe as we run our algorithms on the fly.

Long-Term Budget: The problem is equipped with the long-
term constraints (2) and (3), and the length of the entire time
horizon (i.e., total number of epochs) depends on the budget
B. Even with all the inputs observed as time goes, it is hard
to manage the use of the constrained budget on the fly while
pursuing the minimization of our proposed objective.

Intractability: The proposed problem has a linear objective,
with non-linear terms, such as the maximal load and the model
convergence, in the constraints. Even making such non-linear
terms linear and removing the stochasticity, proposed problem
is still hard to solve in an offline setting, not to mention that
we desire to solve it in an online manner.

III. ONLINE ALGORITHM DESIGN

In order to solve the problem proposed in an online manner.
We try to decouple the problem into two subproblems. Unfor-
tunately, the subproblems decoupled are still challengeable due
to long-term guarantee, integer domain and stochastic inputs.

The first subproblem is further split into a series of one-shot
minimization problems for each epoch, in order to decide the
local iterations based on novel online learning technique. The
second subproblem is then solved by using bandit technique
per epoch, to decide the edge location for model aggregation.
The relationships of these subproblems are shown in Fig. 6.

More specifically, Algorithm 1 is used as the structure of our
proposed online schema. Algorithm 2 is used for controlling
the local model updates on streaming data while Algorithm 3
is used for controlling the global model aggregations.

A. Problem Decomposition

To facilitate the design of our online algorithm, we introduce
some additional notations and auxiliary subproblems:

min
"

t≤τB

ft(ρt) ≜
"

t≤τB

"

i

hitρt [P1]

s.t.
"

t≤τB
g1t(ρt) ≜

"
t≤τB

{ρthit − π} ≤ 0, (5)

"
t≤τB

g2t(ρt) ≜
"

t≤τB

{ϖtρ
−α
t

ε
− Ξ1(B)

Ξ2(B)
} ≤ 0, (6)

var. ρt ∈ Z+,

where all of these terms regarding ρt is decomposed from P,
and Constraint (5) and Constraint (6) are the long-term version
of Constraint (1) and (3), respectively. Within Constraint (6),
Ξ1(B) and Ξ2(B) are defined as follows upon [25]:

Ξ1(B) ≜ *0B − *2 − *3log(*1 + *0B),

Ξ2(B) ≜ 2*0B + *1, (7)

JIN et al.: BUDGET-AWARE ONLINE CONTROL OF EDGE FEDERATED LEARNING ON STREAMING DATA WITH STOCHASTIC INPUTS 7

s.t. s.t.

Decouple

Fig. 6: Relationship between Proposed Problems

where *0 to *3 and ϖt are all constants. When decoupling P
into subproblems and making further transformations to solve
P1, we have actually replaced big-O with specific parameters.
ϖt =

!
iumax{1, (2nit

Mt
)αHmax}/N . Here, *0 ∼ *3 are

all positive constants that actually depend on the settings of
the target bandit scenario. More details can be found in [25].

We do not “get Constraint (6) from Constraint (3)”; instead,
in order to satisfy Constraint (3), we define a new constraint,
(i.e., Constraint (6)), to replace Constraint (3), because we can
prove that satisfying Constraint (6) will lead to the satisfaction
of Constraint (3). We choose to construct Constraint (6) using
the specific constants Ξ1(B) and Ξ2(B) for two reasons as

First, as stated above, our current form of Constraint (6)
based on Ξ1(B) and Ξ2(B) can provably make Constraint (6)
a sufficient condition for Constraint (3), which is illustrated in
Theorem 1. Constraint (3) is O(

!
t≤τB

ρ−α
t /ε) ≤ τB , and if

we use ϖt to concisely represent the parameters in the big-O,
Constraint (3) can be rewritten as

!
t≤τB

{ϖtρ
−α
t /ε−1} ≤ 0.

Because Ξ1(B) ≤ τB ≤ Ξ2(B), we can then define Constraint
(6) as

!
t≤τB

{ϖtρ
−α
t /ε − Ξ1(B)/Ξ2(B)} ≤ 0. Obviously,

satisfying it makes us satisfy Constraint (3).
Second, one approach to satisfying the Constraint (3) is to

ensure ϖtρ
−α
t /ε− 1 ≤ 0 for each one of the epoch ∀t ≤ τB .

However, the decision ρt is made at the beginning of each
epoch t (i.e., before ϖt is revealed). That is, after firstly
determining ρt and then seeing ϖt, it could turn out that the
instantaneous constraint ϖtρ

−α
t /ε− 1 ≤ 0 could be then vio-

lated. To ensure ϖtρ
−α
t /ε− 1 ≤ 0 “as much as possible”, we

would like to adopt a more strict substitute (i.e., ϖtρ
−α
t /ε−

Ξ1(B)/Ξ2(B) ≤ 0). Although ϖtρ
−α
t /ε−Ξ1(B)/Ξ2(B) ≤ 0

may still be violated, 1−Ξ1(B)/Ξ2(B) could be regarded as
a run-off gap to maintain ϖtρ

−α
t /ε − 1 ≤ 0 not violated.

While there may exist other different approaches to satisfying
Constraint (3), we have rigorously exhibited that our specific
approach of using the current form of Constraint (6) with
Ξ1(B) and Ξ2(B) to replace Constraint (3) works indeed.

Shown in the previous work [25], given budget B and bandit
mechanism, the stopping time has a range (i.e., Ξ1(B) ≤ τB ≤
Ξ2(B)), which guides us for decoupling the rest of P as

min
"

t≤τB

"

e

xet{
"

i

βiet + cet} [P2]

s.t.
"

e

xet = 1, ∀t ≤ τB ,
"

t≤τB ,e

retxet ≤ B, (8)

var. xet ∈ {1, 0},

Algorithm 1 Structure of Online Schema

1: Initialize t = 0; Try all edges once, {pe = 1, qe = 0};
2: Initialize λ1 = 0, and proper ρ̄1, γ1, γ2;
3: while B ≥ 0 do

4: t = t+ 1;
5: Call Algorithm 2; //Control of Local Updates
6: Call Algorithm 3; //Control of Global Aggregations
7: Update B = B − rēt; //Update Cost for Renting Edges
8: end while

9: τB = t; //Stamp of Stopping Time

where all of these terms regarding xet is decomposed from P
under all other decisions fixed. For simplicity, if ∀e is selected,

ψet ≜
"

i
βiet + cet, ∀t ≤ τB . (9)

Although the original problem is split into two parts, the
blindness of the inputs on the fly hampers us from efficient
solution, especially when the decisions of P2 are integers.

The decomposition is performed the following way. Before
decomposition, P contains Constraints (1), (2), (3), and (4).
After the decomposition, both the objective function of P and
the domains Constraint (4) are naturally split into P1 and P2.
Further, P1 contains Constraints (5) and (6), where Constraint
(5) is from Constraint (1) of P and Constraint (6) is from
Constraint (3) of P; P2 contains Constraint (8) which is from
Constraint (2) of P. This process is shown in detail in Fig. 6.

We have also made changes to some constraints during this
decomposition. In order to compose Constraint (5), we have
relaxed Constraint (1) to a “long-term” format by applying the
summation over time until τB to both sides of the inequality.
To compose Constraint (6), we have introduced Ξ1(B) and
Ξ2(B) into Constraint (3), where we observe Ξ1(B) ≤ τB ≤
Ξ2(B). We highlight that both the lower bound Ξ1(B) and the
upper bound Ξ2(B) depend on B Such transformations from
Constraints (1) and (3) to Constraints (5) and (6) all serve the
purpose of our algorithm and theoretical analysis.

Our original purpose is to ensure all of the constraints C1 ∼
C3, where Constraint (3) (i.e., C3 : τB ≥ O(

!
t≤τB

ρ−α
t /ε))

is derived from Lemma 1. Lemma 1 implies that as long as
C3 is ensured, the global model convergence is then ensured.
However, P is a mixed integer program and is hard to be
tackled efficiently to obtain the optimum. Then, we decouple
the original problem P into two subproblems P1 and P2, as
shown in Fig. 6. Such decoupling is intuitive and it ensures
that both of these two subproblems contain only one decision
variable, respectively, and are relatively easy to be tackled.

B. Control of Local Model Updates

Within each epoch, Algorithm 2 first decides the number of
local iterations trained on streaming data and then conduct the
local model updates. We show these two parts as follows:

Iteration Numbers: When considering the problem of P1,
these uncertain values {nit} hamper us from the optimum
solution. Note that the number of local training iterations needs
to be decided at the beginning of each epoch, which is used
to control the local model updates on streaming data, and the

8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, XXX 2021

changes of nit may violate Constraint (5). If all of the inputs
are given beforehand, P1 is considered to be solved as follows:

min
ρ̃t∈R+

max
λt

"
t≤τB

$
ft(ρ̃t) + λ⊤

t gt(ρ̃t)
%
, (10)

where the form is derived from the equivalent convex-concave
problem by introducing the Lagrange multiplier λt ≽ 0.

In minρ̃t∈R+ maxλt

!
t≤τB

$
ft(ρ̃t) + λ⊤

t gt(ρ̃t)
%
, ft is our

concise representation of the objective function of P1 and gt is
our concise and aggregated representation of the constraints.
Therefore, every symbol, except the decision variables ρ̃t and
λt, represents the input. We use the concise representations
for the ease of presentation. The issue here might be “when”
we can have access to such inputs. The min-max formulation
and concise representation here is for our original problem
formulation P1. In the online setting, we make control deci-
sions on the fly as the inputs reveal themselves gradually. For
each epoch t when making decisions, only ft and gt can be
observed and anything beyond the epoch t cannot be observed.

Note that both ft(·) and gt(·) = [g1t, g2t]
⊤ here are convex

functions with respect to ρ̃t ∈ R+. To solve it in an online
manner, the gradient incurred from the previous epoch can be
used as a guidance intuitively. Thus, we can alternate between
minimizing the objective with respect to the primal decision
ρ̃t+1 via a modified descent step and maximizing the objective
with respect to the lagrange multiplier via a dual ascent step.
More specifically, the modified primal step is conducted as

minρ̃t+1∈R+ P1,t [P1,t]

P1,t = ∇ft(ρ̃t)(ρ̃t+1 − ρ̃t) + λ⊤
t+1gt(ρ̃t+1) +

||ρ̃t+1−ρ̃t||2
γ1

,

while the Lagrange multiplier λt+1 is updated as follows:

λt+1 = [λt + γ2gt(ρ̃t)]
+, (11)

where γ1 and γ2 are both the step sizes of the online learning
schema, and [·]+ refers to the term max{·, 0} for each dimen-
sion. Actually, the gradient based approach mentioned before
in the primal step is the approximation of ft+1 by linking two
consecutive epochs. In each epoch, the prediction regarding ρ
for next epoch is illustrated in Line 15 of Algorithm 2.

Since the results solved from P1,t are reals, we need extra
round step to obtain integer decisions, as shown in Line 16.
More specifically, any round strategy could be applied as long
as E[ρ̄t+1] = ρ̃t+1. For example, ρ̄t+1 equals ⌊ρ̃t+1⌋ with the
probability of ⌈ρ̃t+1⌉ − ρ̃t+1, otherwise equals ⌈ρ̃t+1⌉.

Training on Streaming Data: The parameters initialized
are illustrated in Line 2 of Algorithm 1. The choice of proper
step sizes are discussed in theoretical analysis later. Note that
the initial value of ρ̄1 could be any feasible one. Based on the
prediction from previous epoch and the parameters initialized,
the training on streaming data for each device is illustrated in
Lines 1 to 14 of Algorithm 2. We should mention here that
Algorithm 2 needs to be called for each device along with the
arrivals of the data within each epoch, and the pseudo code
only shows the behaviour of ∀ device i and ∀ epoch t ≤ tB .

For those data that are not selected by sampling, such data
do not contribute to related gradient calculation in Algorithm
2. The strategy of not using every single data sample for the
gradient calculation is “sufficient” in the sense that we can

Algorithm 2 Local Model Updates, ∀ Device i, ∀ Epoch t

// Training on Streaming Data given ρ̄t
1: Download latest global model w0, S = ∅, Buf ← ∅;
2: for j from 1 to |Mt| do

3: w̃0 ← wj−1; Buf ← Arrived vijt data samples;
4: for z from 1 to ρ̄t do

5: if (Buf is non-empty) AND (z is even) then

6: Move a data sample ℵ′ from Buf to S; δ(ℵ′) = 0;
7: A ←

!
s∈S δ(s)/|S|;

8: end if

9: Sample one piece of data ℵ uniformly from S;
10: Compute gradient σ upon L, w̃z−1 and ℵ;
11: w̃z ← w̃z−1 − η(σ − δ(ℵ) +A);

δ(ℵ) ← σ;
12: end for

13: wj ← w̃ρ̄t ;
14: end for

// Update ρ̄t+1

15: λt+1, ρ̃t+1 are updated by (11) and P1,t, respectively;
16: ρ̄t+1 ← Round(ρ̃t+1);

already use this approach to design our algorithms and prove
the corresponding theoretical performance guarantees. Using
every single data sample may lead to a quite different design
of related algorithms, which is out of the scope of our paper.

At any time stamp j in epoch t, the mini-batch of vijt data
samples arrive at the buffer of the device i, as in Line 3 of
Algorithm 2, and we use such data to do the random sampling,
gradient calculation, and model update. And, at the next time
stamp j+1, the mini-batch of vij+1t data samples will arrive
at the buffer of the device i and will override the entire buffer
which held the mini-batch of the vijt data samples just now.

For all of the data arrived, Algorithm 2 only chooses one
data sample to calculate the gradient per local iteration, as
shown in Line 10, where the gradient σ is calculated based on
the loss function L, data sample ℵ and currently maintained
model w̃. After that, the gradient is used to update w̃, as
shown in Line 11 of Algorithm 2. Such update uses both of
the data sampled (i.e., the gradient σ just calculated), and all
data maintained by S (i.e., the averaged weight vector A).

Line 11 of Algorithm 2 has two “assignment” equations.
In the first equation (i.e., the model update equation), σ is
the “current” gradient which is calculated in Line 10 with the
newly-sampled data sample from Line 9, and δ(ℵ) records the
“previous” gradient which was calculated before the newly-
sampled data sample (note that δ(ℵ) can also be zero if the
newly-sampled data sample happens to be the same one that
has just been moved into the set S as in Line 6). The second
equation in Line 11 of Algorithm 2 records the current gradient
σ in δ(ℵ), so that δ(ℵ) can be used in future iterations of the
loop. Therefore, in the model update equation, there is no
guarantee that σ and δ(ℵ) are always equal.
z is an index, or a counter (i.e., integer), from 1 to ρ̄t. Thus,

z is not always even; it becomes odd and even alternately, and
only when it is even (i.e., Line 5 of Algorithm 2), we execute
Line 6 of Algorithm 2. We use the self-incremental counter z

JIN et al.: BUDGET-AWARE ONLINE CONTROL OF EDGE FEDERATED LEARNING ON STREAMING DATA WITH STOCHASTIC INPUTS 9

Algorithm 3 Global Model Aggregations

1: Find edge ē with maximal −µ(ψe1, ...,ψet−1) + qe;
2: pē ← pē + 1;
3: qē ← {

&
2 log t/pē(1+1/rmin)}/{rmin−

&
2 log t/pē};

4: Choose edge ē for global model aggregation;
5: Transfer the latest model to each device;
6: Return rēt to Algorithm 1;

to control the move of the arriving data to the set S. Because
we only move a data sample when z is even, we at most move
ρ̄t/2 data samples to the set S. One can change the condition
in Line 5 of Algorithm 2 in order to change the number of data
samples moved, which will directly impact the local model
convergence (i.e., the constant “2” as in Inequality (0d)).

Remarks: We should mention here that all of the weight
vectors maintained only for those data samples arrived and
kept in the set S. And the data samples arrived are chosen
from the buffer Buf to S. Such process actually decreases the
volume of data updated and maintained simultaneously. The
whole training part for streaming data on a device is derived
from strSAGA, which ensures the local model convergence
after ρ̄t local iterations, shown in Inequality (0d).

C. Control of Global Model Aggregation

This part involves the collaboration between Algorithm 1
and Algorithm 3. Algorithm 3 conducts the bandit plays per
epoch for the location regarding the global model aggregation,
considering both of exploration and exploitation. Algorithm 1
then updates the left budget to control the stopping time.

Requirement on Constrained Budget: The value in terms
of the constrained budget needs to be large enough to support
sufficient global model aggregations while the value of budget
should be as small as possible to decrease the overall cost.

Lemma 2. Given budget B, the relationship between stoping

time τB , its lower bound Ξ1(B) and upper bound Ξ2(B) is

"

t≤τB

Ξ1(B)

Ξ2(B)
= τB

Ξ1(B)

Ξ2(B)
≤ τB =

"

t≤τB

1,

where Ξ1(B)/Ξ2(B) is the substitute we use to construct

Constraint (6), as the sufficient condition of Constraint (3).

Proof. See Appendix B, using the definition of Ξ1 and Ξ2.

Replacing Constraint (3) by its sufficient condition: Con-
straint (6), one of the results in our theoretical analysis (based
on Lemma 2, shown later) is that, from the perspective of the
expectation, the violation of Constraint (3) is ensured (i.e., the
time-average violation will vanish as time goes to infinity).

UCB based Plays: If we know all of the inputs before-
hand, we can choose the best edge for conducting all of the
global aggregations. However, the variables are stochastic, the
dynamic changes hamper us from precisely estimating the
confidential interval of the inputs. Then, we propose to use the
upper confidence bound as a substitute to estimate such inputs
(i.e., the following inequality holds with high probability):

µ(ψe1, ...,ψet−1)− µ(ψe1, ...,ψeτB) ≤ qe, (12)

where µ(·) is the average function to obtain the corresponding
average value. Here, ∀e, ∀t ≤ τB : µ(ψe1, ...,ψet) is

µ(ψe1, ...,ψet) =
1

|Tet|
"

j∈Tet

ψej , (13)

where Tet denotes the set of epochs less than or equal to t that
select edge e to conduct the global model aggregation. | · | is
the number of the elements in Tet (i.e., selected epochs).

Actually, the average value of µ(ψe1, ...,ψeτB) is unavail-
able beforehand. Then, we use µ(ψe1, ...,ψet−1) − qe as the
guidance, where qe here is the bias. qe = {

&
2 log t/pe(1 +

1/rmin)}/{rmin−
&
2 log t/pe}, where t is the current epoch;

pe is a counter to indicate the number of times that the edge
e has been selected so far; and rmin is a lower bound of the
minimal renting cost over edges, assumed known in prior.

Considering the objective is to obtain the minimum, we have
the following inequality that holds with high probability:

−µ(ψe1, ...,ψeτB) ≤ −µ(ψe1, ...,ψet−1) + qe, (14)

where −µ(ψe1, ...,ψet−1)+qe actually leads to an upper bound
of −µ(ψe1, ...,ψeτB) with high probability. Such inequality
guides Algorithm 3 to choose the most suitable edge for the
global aggregation in epoch t, as shown in Line 1 of Algorithm
3 (i.e., the edge with the maximal upper bound):

ē = argmaxe{−µ(ψe1, ...,ψet−1) + qe}, i.e., x̄ēt = 1. (15)

The update of the bias qe relies on the trade-off between
exploration and exploitation, where it takes the number of be-
ing selected into consideration. The number of edge selections
is recorded by using pe, which is updated shown in Line 2
of Algorithm 3. With the increase of the selection number pe,
Algorithm 3 has more confidence to choose it, since it has tried
multiple times and obtained adequate information. Thus, with
the increase of the selection number pe, the bias decreases.

We consider the devices, the edges, and the system admin-
istrator (which could be the cloud or one fixed edge) in our
system. After completing the last time stamp in the epoch t,
each device notifies the system administrator in order to start
the global model aggregation. Then, the system administrator
decides a specific edge ē, and sends this selection result back
to all the devices for the global model aggregation for t. After-
wards, every device i sends aiēt and biēt, and the edge ē sends
cēt to the administrator. That is, after conducting the global
aggregation for t, the system administrator will have received
{aie1, aie2, ..., aiet}, {bie1, bie2, ..., biet}, {ce1, ce2, ..., cet} for
all e that have been selected for at least once up until t.
Based on this, the system administrator itself maintains the
corresponding pe and qe, which will be used to select the edge
at the next epoch t+1. We highlight that these communications
themselves are fixed control flows, which we do not optimize.

IV. THEORETICAL ANALYSIS

We first study the theoretical results by using online learning
and bandit play, respectively. After that, we combine them
together in order to obtain the main theorems, which show
the guarantee of the global model convergence and the regret
compared with the optimum. And the assumptions used are

10 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, XXX 2021

Assumption 1: All loss functions {L} are convex.
Assumption 2: The domain is bounded by value Gd and the
gradients are bounded by ∇ft ≤ Gf and ||∇gt|| ≤ Gg, ∀t.
Assumption 3: There exists a constant ς > 0, and an interior
point ρ̂t such that gt(ρ̂t) ≼ −ς1 and ς > V̂ (g), where

V̂ (g) ≜ maxt maxρ̃t ||[gt+1(ρ̃t)− gt(ρ̃t)]
+||.

Assumption 1 and 2 are very common and are widely used.
Assumption 3 actually ensures the existence of the optimum
and the feasible region defined by gt(ρ̃t) ≼ 0 is large enough
or the trajectory is smooth enough across time.

Lemma 3. By using the prediction on {ρ̄t} over time upon

online learning, the following regret and fit hold:

rego = E[
!

t≤τB
ft(ρ̄t)]−

!
t≤τB

f∗
t ≤ Ω1,

fito = ||[E[
!

t≤τB
gt(ρ̄t)]]

+|| ≤ Ω2,

where Ω1 and Ω2 are sub-linear growth with respect to B.

Proof. See Appendix C, with the help of Lemma 2.

“Fit” measures the violation of the constraints. If the fit
is positive, then the constraints are violated (the larger the
fit is, the more the constraints are violated). If the fit is less
than or equal to zero, then the constraints are respected. Our
theoretical analysis in this paper shows that the fit grows only
sub-linearly as time goes, which means the increase of the
fit is much slower than the progress of time; in other words,
the time-average fit will become zero (i.e., the violation will
vanish in time-average sense) if time goes to positive infinity.

Lemma 4. By using the bandit plays in terms of {x̄et} over

time, the following regret holds (ψet contains aiet, biet, cet):

regb = Eξ∼D [
"

t≤τB

"

e

x̄etψet −
"

t≤τB

ψe∗t] ≤ Ω3,

where e∗ is the optimum edge and Ω3 is sub-linear growth.

Proof. See Appendix D, with the help of Lemma 2.

In Lemma 3: Ω1 equals Ξ2(B)ν1 where ν1 < 1. Via Equa-
tion (7), Ω1 = (2*0B+*1)

ν1 . In Lemma 3: Ω2 = Ξ2(B)ν2+Γ,
where ν2 < 1; Γ is a constant. Also, Ω2 = (2*0B+*1)

ν2 +Γ.
In Lemma 4: Ω3 = *0B − Ξ1(B) = *2 + *3log(*1 + *0B).
Here, Ω1 ∼ Ω3 are all sub-linear growth with respect to B.

Theorem 1. The global model convergence is ensured as

E[

!
t≤τB

lt

τB
− lopt] ≤ ε.

Proof. See Appendix E, using Lemma 1 to Lemma 3.

Theorem 2. The regret in terms of the objective value obtained

by using our online schema and the optimum one is

regret = Eξ∼D [P̄ξ − P∗
ξ] ≤ O(τν1

B + logτB),

where ν1 is less than 1 as shown later and the two terms on

the right are both sub-linear respect to stopping time τB .

Proof. See Appendix F, using Lemma 2 to Lemma 4.

To derive the regret, we do not need to access the optimum
solution; rather, we use the lower and the upper bounds of the

Online
Learning

One-Shot
Optimization

per EpochԶଵ

Decisions
per Epoch

Time

Decide ഥ࢚࣋ for t Decide ഥ࢚࣋ା૚ for t+1Decide ഥ࢚࢞ࢋ for t

Զ

Զଶ

Decouple

Զଵǡ௧ǡ ݐ׊ ෥࢚࣋ǡ ࢚׊

UCB based
Bandit Play ሼഥ࢚࢞ࢋሽǡ ࢚׊

t - 1 Epoch t

ഥ࢚࣋ǡ ࢚׊
Round

Fig. 7: RoadMap for Theoretical Analysis

optimum as the substitutes to facilitate and complete the proof.
We can often derive such lower and upper bounds even if we
cannot access the optimum solution itself, which is a pretty
common practice in lots of online learning and bandit learning
research. If we were to be able to access the optimum, then
there would be no need to derive the regret because we would
be already “optimum”. We elaborate some details below.

(i) For local model updates for each epoch, the optimum ρ∗t
under integers is substituted by the optimum 'ρ∗t under reals,
as shown in Lemma 3. Note that the real domain contains the
integral domain, and for a minimization problem, the optimum
objective in a larger domain is actually no greater than the
optimum objective obtained in a smaller domain.

(ii) For global model aggregations at edge, the regret regard-
ing the cumulative renting costs and its optimum is obtained
by the Upper Confidence Bound (UCB) based analysis, similar
to a typical Multi-Armed Bandit (MAB) setting. Essentially,
in this analysis, the gap between a selected non-optimum edge
and the optimum edge per epoch is upper bounded.

(iii) Combining the previous two regrets together, we com-
plete the proof of Theorem 2, which implies the overall regret
is bounded. This proof is further completed by introducing
multiple complementary terms, whose sum is 0. These comple-
mentary terms split the target regret into multiple sub-regrets
that are exactly the ones used in the local model updates and
the global model aggregations, respectively.

V. EXPERIMENTAL EVALUATIONS

A. Data and Settings

Streaming Data: We use the four commonly used datasets:
a9a [17], rcv [18], movielens100k [19], and movielens1m [19].
More specifically, a9a refers to a binary classification of the
UCI adult dataset, which actually contains 32561 samples and
123 features; rcv refers to the binary classification of Reuters
articles by topics, which contains 20242 samples and 47236
features; movielens100k refers to the matrix factorization of
100K movie ratings from 943 users on 1682 movies (i.e., 1682
features); movielens1m refers to the matrix factorization of 1M
movie ratings from 6040 users on 3952 movies. We convert
these training data into the streams, which obey the Poisson
distribution. To mimic the realistic generation of data samples,
these datasets are also shuffled randomly for different epochs.
The training data arrive over 50 time steps within each epoch,
where an epoch lasts at least 20 seconds or more.

JIN et al.: BUDGET-AWARE ONLINE CONTROL OF EDGE FEDERATED LEARNING ON STREAMING DATA WITH STOCHASTIC INPUTS 11

(a) Loss and Latency (b) Latency Details (c) Update of ρ̄t (d) Bandit Plays
Fig. 8: Runtime Details of Our Proposed Online Approach (a9a)

(a) Loss and Latency (rcv) (b) Summary of Details (rcv) (c) movielens100k (d) movielens1m
Fig. 9: Runtime Details of Our Proposed Online Approach (Other Datasets)

Local Training: We adopt two widely-used loss functions
for model training: logistic regression (convex) and matrix fac-
torization (non-convex). The number of the participant mobile
devices varies as 2∼32. The parameters used for streaming
data learning are derived as α = 0.75 and H = 0.001 [11].

Global Aggregations: We set the locations and the time-
varying bandwidths of 28 edges [20] by tracing file downloads
between the AliCloud and those nearby edges, ranging from
155KB/s to 3939KB/s. The Round-Trip Times (RTTs) between
the users and those edges are set as 81∼1413 ms [21], while
the average costs for renting edges are derived from Ama-
zon [3], ranging from 10.45%∼1320% of the normal price.
The corresponding dynamic changes over time are derived
from Microsoft [26], ranging from 0.025∼0.999.

We set the loss gap of federated learning as 0.005 [11]. Dur-
ing the global model aggregations, FedAvg is used [22], where
the parameters of the model being trained are aggregated and
averaged. All the inputs, including the bandwidths, the RTTs,
and the aggregation executions, are fed to the problem on the
fly and remain unknown before revealed. Note that all of the
variations over time are directly derived from real-world traces.

Implementation: We have implemented all the algorithms
in about 4000 lines of Python codes on top of an existing
implementation [11]. The experiments are conducted upon a
Dell desktop, a Dell PowerEdge R740 server, and an Inspur
SN5160M4 server. The latter two are used for the large-scale
experiments. The optimization subproblems in our proposed
approach are solved using standard tools of AMPL and IPOPT.

Algorithms for Comparison: We consider the loss and the
latency for training as the two primary performance metrics,
and compare multiple combinations of different algorithms.

First, for local model updates, we consider the following:

• BGD calculates the gradient for model updates per time
by thoroughly processing the entire dataset.

• SGD calculates the gradient for model updates per time

by only processing a single data sample.
• mini-batch SGD calculates the gradient for model updates

per time by processing a subset (i.e., a batch) of the whole
dataset. Within each local round, mini-batch SGD makes
one pass of all of the batches. The number of local rounds
used for batch training approaches ranges from 1∼30 [1].

Second, for deciding the number of local iterations during
local model updates (i.e., ρt), we consider two approaches:

• Fixd value uses multiple ρt candidates, which are fixed
at the very beginning and are used during the training of
local model updates, ranging in 1∼20.

• strSAGA [11] exactly uses the settings used in previous
state-of-the-art work, where the number of local iterations
for local model updates is hundreds or even more.

Third, for selecting edges for global aggregations, we have
• minTrans chooses the edge that has the minimal trans-

mission cost in terms of the posterior average.
• minCost chooses the edge that has the minimum renting

cost in terms of the posterior average.
• ran chooses the edge randomly from all the candidates.
• E chooses an edge for all epochs from the edge set that

has already been determined by our proposed approach.

B. Evaluation Results

Effectiveness of Our Approach: Fig. 8 shows the loss and
the latency of our approach upon the a9a dataset. During the
arrivals of the streaming data, our approach through using local
model updates with global model aggregations reaches the
convergence of the global model, as in Fig. 8(a). Furthermore,
the cumulative latency incurred in total is about 200 seconds,
which is acceptable and is amortized over the time. The peak
latency incurred spends at most 1.3 seconds. Fig. 8(b) further
shows the detailed latency for local model updates and global
model aggregations, respectively. During the execution of local

12 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, XXX 2021

(a) Batch Training Algorithms (b) Algorithms for {ρt} (c) Algorithms for Aggregations (d) Impact of Budget
Fig. 10: Empirical Superiority over Other Algorithms

(a) Impact of Arrivals (b) Impact of Devices (c) Impact of Model Sizes (d) Impact of Computation

Fig. 11: Impact of Various Configurations

model updates over time, the number of local iterations is
dynamically adjusted to capture the changes on the volume
of streaming data. Note that the real values of ρ̃t calculated
in Fig. 8(c) use the information of the data volume revealed
from the previous epoch (i.e., P1,t). During the global model
aggregations, our approach also chooses the most suitable edge
based on maintained upper confidence bound, as in Fig. 8(d).

Fig. 9 shows the performance of our approach when applied
to other datasets. It confirms the global model convergence,
even for one million data samples. The latencies incurred for
all of these datasets are acceptable (i.e., only several seconds
within each epoch). Although the computation is proportional
to the data volume in each epoch, it only involves the sum of
average and the calculation of the gradient on each single data
sample. Thus, the peak load is light, and the cumulative latency
is only several minutes, much less than the whole time horizon
(i.e., 74 minutes in total (at least 20 seconds per epoch)).

Advantages of Our Approach over Alternatives: Fig. 10
exhibits the empirical superiority of our approach over other
state-of-the-art approaches. Fig. 10(a) shows the loss and the
latency incurred by these batch training approaches. Note that
the latency has already included the delay of calculating the
loss over test data samples after each model update. BGD and
SGD can be summarized into the scope of mini-batch SGD
when the batch size is set as the size of the whole dataset
and as 1, respectively. Note that the numbers in the labels
of the legend refer to the number of rounds, and each round
processes all of the batches. Those batch training approaches
have to wait for the preparation of the entire dataset and hence
waste time. These approaches also spend much time on local
training. To reduce the loss to the desired level, hundreds of
seconds, or even tens of hundreds of seconds are needed.

Fig. 10(b) visualizes the comparison between the multiple
choices of the local iteration ρt. The red curve indicates our
approach, and ρ (NIPS) refers to the one from strSAGA. If the

number of local iterations is small (i.e., 1 iteration), the loss of
0.339 is achieved. For our approach, by using at most 1 second
on the local model updates per epoch, the loss improvement
is desirable. With the increase of ρt, in order to achieve the
same improvement on the loss, the latency involved is doubled
compared to our proposed approach. Even for the ρt designed
by strSAGA, whose value is hundreds or more, the maximal
improvement on the loss is limited (i.e., at most 0.005).

Fig. 10(c) illustrates the comparison between multiple ap-
proaches regarding the selection of edges for the global model
aggregations. The red curve shows the results of our bandit
plays, and E1 and E2 choose two edges during the whole
training lifecycle from the set that are determined by our bandit
plays. When those edges are selected based on the minimal
transmission cost or the minimal renting cost, the number of
global aggregations could be insufficient for the global model
to converge. When the edges are selected from the decisions
made by our bandit plays, if the decisions are not switched to
adapt to the variations of transmission cost and renting cost,
the overall latency incurred is much higher than that of ours.

Fig. 10(d) further shows various choices of the constrained
budget. With the increase of such budget, the global loss
decreases dramatically. However, when the budget reaches to
1000 or more, the improvement becomes slight. According to
the lower bound of τB for sufficient global model convergence
and sufficient bandit plays, the desired budget is about 1300
based on argminBΞ1(B), which is suitable for both of the
global model convergence and the resource saving.

Scalability of Our Approach: Fig. 11 illustrates the scal-
ability of our approach. Fig. 11(a) varies the data arrivals by
adjusting the “acceleration” of the streams. With the growth of
the acceleration, more data arrive within an epoch, resulting in
more stable loss and higher latency for local model updates.
When the acceleration is small, the data volume is insufficient
for reaching the desired loss. Note that the latency upon the

JIN et al.: BUDGET-AWARE ONLINE CONTROL OF EDGE FEDERATED LEARNING ON STREAMING DATA WITH STOCHASTIC INPUTS 13

movielens1m data is high due to the tens of millions of data
samples, and we use the log scale for illustration. Although
the data volume is high, the overall latency is still controlled
within one hundred seconds, which is acceptable.

Fig. 11(b) changes the number of those mobile devices
participating in the training. With the growth of the participant
number, the overall latency is increased. Note that we calculate
the overall latency including both local model updates and
global model aggregations. All of the data samples are ran-
domly shuffled over these devices. As a result, with the growth
of devices, data samples are distributed more unevenly over
devices. Further, the loss of the global model being trained
also increases a little due to the skewed data distribution.

Fig. 11(c) shows the influence regarding the transmission
scalability. We also vary the model size to mimic the scenario
where large models are used. With the growth of the model
size, the overall latency in terms of transmission increases, but
the overall delay within an epoch is also controlled within a
hundred seconds on average. For the scenario where an epoch
is of tens of minutes or more, the overall latency for the whole
training process is also lightweight for the devices.

Fig. 11(d) shows the influence regarding the computation
scalability. We vary the computation capability for both the
mobile devices and the edges. Here, the computation capability
is considered as the speed of processing data samples within
one unit time, and the scalability refers to the degradation
of computation capability. When the degradation is high, the
overall latency increases for both local model updates and
global model aggregations. However, the overall latency is
still suitable since local updates only calculate the gradient
upon one data sample per iteration and other computations
only incur weighted sums on both mobile devices and edges.

VI. RELATED WORKS

We summarize prior research in two categories, and high-
light their drawbacks compared to our work, respectively.

Streaming Learning: Some works focused on the incre-
mental methods regarding the gradient updates [27]. For differ-
ent kinds of loss functions, SAG [28], SDCA [7], SVRG [8],
etc., were proposed to achieve fast linear convergence rates in
an incremental way. SAGA [9] supported non-strongly convex
problems and was adaptive to inherent strong convexity of
the problem. ETH [10] proposed an algorithm for dynami-
cally increasing the effective sample size under the scenario,
where making multiple passes through the full dataset was
prohibitive. Upon SAGA, strSAGA [11] presented an approach
for maintaining the model over samples that arrived over time.

Although those works have studied the learning over stream-
ing data, distributed learning across multiple devices is not
considered. They also do not jointly investigate the problem
with federated learning, for which the model updates, model
aggregations and model convergence need to be explored.

Federated Learning at Edges: Many works studied both of
the optimization for local training and the efficiency for global
aggregations. Google [29] analyzed multiple local minimizers
for model convergence. Wang et al. [22] controlled the fre-
quency of global model aggregations given a resource budget

of edges. Tu et al. [12] designed the network-aware optimiza-
tion of federated learning. Jin [13] and Luo [14] focused on
cost-effective federated learning design, through controlling
both participants and aggregations. Other works [15, 16] fur-
ther proposed algorithms for federated learning over wireless
or edge networks, improving the efficiency during the training.

Those works usually start the training process on the data
only after the preparation of the entire dataset. Specifically,
no algorithms of federated learning have been designed for
training the model along with the dynamic arrivals of the data.

VII. CONCLUSION

In order to avoid the training load congestion after the
preparation of the entire training data, model training should
be amortized along with the dynamic arrivals of the streaming
data. In this paper, we formulate the problem by considering
both local model updates on streaming data and global model
aggregations of federated learning over edge networks. We
build a non-linear mixed integer program for minimizing the
long-term cumulative latency while guaranteeing the maximal
training load and global model convergence. We design an
online approach to control these two components via online
learning and bandit play techniques. We rigorously prove the
regret regarding the objective and the global model conver-
gence. Our trace-driven experiments confirm the advantages
of our approach over other approaches in practice.

APPENDIX

In this section, we show all necessary proofs in detail.
A. Proof of Lemma 1

Proof. We study the relationship between the global optimum
loss lopt and the local optimum. Since the global optimum
is revealed under the scenario where the model is given and
fixed for all loss functions, we can replace it with those local
optimum models to obtain a better loss. That is

lopt ≥
!

i,t l
∗
it

τBN
.

Then, the upper bound of the left part in Lemma 1 is

E[

!
t lt

τB
− lopt] ≤ E[

!
t lt

τB
−

!
t,i l

∗
it

τBN
],

which means we only need to focus on the term lt − l∗it/N .
Since the loss function is convex and the aggregated model

is the average sum of all local models trained on devices, then

lt ≤
!

i l
U
it

N
, ∀t ≤ τB .

Then, we only need to focus on the term lUit − l∗it. Note that
according to preliminary theoretical results [11], the following
inequality holds by using local model updates (i.e., strSAGA):

E[lUit − l∗it] ≤ u ·max{1, (2nit

Mtρ̄t
)α} · Hit(nit) ≜ AitHit(nit),

where lUit is the loss incurred by the local model updates on
device i in epoch t; l∗it is the best loss achieved by the oracle;
and Hit is the loss obtained by the empirical risk minimizer.

14 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, XXX 2021

After combing previous inequalities together, we have

E[

!
t lt

τB
− lopt] ≤ E[

!
i,t(l

U
it − l∗it)

NτB
] ≤

Hmax

!
i,t Ait

NτB
≤ ε,

where Hmax = maxi,t{Hit(nit)}. Via solving the minimum
τ required in training to hold previous inequality, we have

τB ≥
Hmax

!
i,t Ait

εN
=

uHmax

!
i,t max{1, (2nit

Mtρ̄t
)α}

εN
,

where the right part O(
!

t≤τB
ρ̄ −α
t /ε) is for ease of presen-

tation. And the parameters ϖt are actually used.

B. Proof of Lemma 2

Proof. Preliminary works [25] have revealed that given budget
B, the following inequality holds regarding the stopping time:

Ξ1(B) ≤ τB ≤ Ξ2(B),

where Ξ1(B) ≜ *0B−*2−*3log(*1+*0B), Ξ2(B) ≜ 2*0B+
*1, and *0 to *3 here are all constants. Thus, we have

τB ≥ Ξ1(B) ≥ τB
Ξ2(B)

Ξ1(B) ≥
!

t≤τB
Ξ1(B)

Ξ2(B)
.

C. Proof of Lemma 3

Proof. We first study the fit fito, which measures the violation
of the constraints. We have the following inequality:

||[E[
"

t≤τB

gt(ρ̄t)]]
+|| ≤ ||E[

"

t≤τB

gt(ρ̄t)]||,

since adopting [·]+ for each dimension would only decrease
the absolute value (e.g., a negative value is converted to be
0 after applying [·]+). Then we use the linear property of the
expectation and have the following inequality:

fito ≤ ||E[
"

t≤τB

gt(ρ̄t)]|| ≤ ||
"

t≤τB

E[gt(ρ̄t)]||.

Note that gt is convex for each of its dimension (i.e., g1t(·)
is linear with respect to its input under reals; g2t(·) is convex
with respect to its input under reals). We should mention here
that the function (·)−α under reals is convex. We have

E[gt(ρ̄t)] ≤ gt(E[ρ̄t]) + Γ,

where Γ is a constant, by adopting the Jensen Gap mentioned
in [30]. Combining previous two inequalities together, we have

||
"

t≤τB

E[gt(ρ̄t)]|| ≤ ||
"

t≤τB

gt(E[ρ̄t])||+ Γ,

where the inequality holds after adopting the Triangle Inequal-
ity over the 2-norm. Note that, the rounding part regarding ρ̃t
in Algorithm 2 ensures E[ρ̄t] = ρ̃t. We further have

fito ≤ ||
"

t≤τB

gt(E[ρ̄t])||+ Γ ≤ ||
"

t≤τB

gt(ρ̃t)||+ Γ.

Since the regret rego is a linear function with respect to its
input under reals, we have the following equation:

rego = E[
"

t≤τB

ft(ρ̄t)]−
"

t≤τB

f∗
t =

"

t≤τB

ft(E[ρ̄t])−
"

t≤τB

f∗
t .

After applying E[ρ̄t] = ρ̃t again, we have

rego =
"

t≤τB

ft(E[ρ̄t])−
"

t≤τB

f∗
t =

"

t≤τB

ft(ρ̃t)−
"

t≤τB

f∗
t .

For any τB , the following terms could be bounded according
to the propositions proved in Appendix G and H using online
learning (i.e., both regret and fit are bounded sub-linearly):

"

t≤τB

ft(ρ̃t)−
"

t≤τB

f∗
t ≤ τν1

B ,

||
"

t≤τB

gt(ρ̃t)|| ≤ τν2

B ,

where both of ν1 and ν2 are constants and are less than 1. We
then apply such results to fit and regret and have

rego =
"

t≤τB

ft(ρ̃t)−
"

t≤τB

f∗
t ≤ τν1

B ≤ Ξ2(B)ν1 ≜ Ω1,

fito ≤ ||
"

t≤τB

gt(ρ̃t)||+ Γ ≤ τν2

B + Γ ≤ Ξ2(B)ν2 + Γ ≜ Ω2,

where Ω1 and Ω2 are constants. Note that both Ω1 and Ω2 are
at most sub-linear growth with respect to budget B.

D. Proof of Lemma 4

Proof. According to the research [25], the regret is ensured
based on UCB plays (i.e., the following inequality holds):

regb ≜ Eξ∼D [
"

t≤τB

qe∗t −
"

t≤τB ,e

x̄etqet]

≤ *2 + *3log(*1 + *0B),

where all of the * are constants and qet is the reward obtained
by choosing edge e. Note that the objective of theirs is to max-
imize the overall reward obtained. As a result, the optimum
is the subtrahend (i.e., the term

!
t≤τB

qe∗t). However, in this
paper, our objective is to minimize the overall latency. The
relationship between the latency we concerned and the reward
is illustrated as follows, by introducing a constant:

qet = χ− ψet, ∀t ≤ τB , ∀e,

where χ is a positive constant to ensure the positive property
of all rewards. Then, we have the following inequality:

Eξ∼D [
"

t≤τB

(χ− ψe∗t)−
"

t≤τB ,e

x̄et(χ− ψet)] ≤ *0B − Ξ1(B).

Note that we only need to choose one edge for global model
aggregation per epoch. Thus, we have

"

t≤τB

χ =
"

t≤τB

χ ∗ 1 =
"

t≤τB

χ ∗
"

e

x̄et =
"

t≤τB

"

e

x̄etχ.

After combing previous two inequalities together, we have

Eξ∼D [
"

t≤τB

"

e

x̄etψet −
"

t≤τB

ψe∗t] ≤ *0B − Ξ1(B) ≜ Ω3,

which exactly matches the regret of our objective for bandit
plays (i.e., the following inequality holds):

regb = Eξ∼D [
"

t≤τB

"

e

x̄etψet −
"

t≤τB

ψe∗t] ≤ Ω3.

JIN et al.: BUDGET-AWARE ONLINE CONTROL OF EDGE FEDERATED LEARNING ON STREAMING DATA WITH STOCHASTIC INPUTS 15

E. Proof of Theorem 1

Proof. Lemma 1 confirms that if the global model aggrega-
tions reach to a desired value (i.e., τB ≥ O(

!
t≤τB

ρ̄ −α
t /ε)),

we have the following inequality in terms of the global loss:

E[

!
t lt

τB
− lopt] ≤

!
i,t umax{1, (2nit

Mtρ̄t
)α}Hmax

NτB
≤ ε.

After that, Lemma 2 confirms the lower bound and the upper
bound of the stopping time τB given the budget B, i.e.,

τB ≥ Ξ1(B) ≥
"

t≤τB

Ξ1(B)

Ξ2(B)
.

Then, we try to link the stopping time τB given the B and
the desired global model aggregations O(

!
t≤τB

ρ̄ −α
t /ε). By

using Lemma 3 and the definition of g, we have

[E[
"

t≤τB

{ϖtρ̄
−α
t

ε
− Ξ1(B)

Ξ2(B)
}]]+ ≤ Ξ2(B)ν2 + Γ = Ω2,

since g2t is also a dimension of constraint gt. It equals to

E[
"

t≤τB

ϖtρ̄
−α
t

ε
]− Ω2 ≤

"

t≤τB

Ξ1(B)

Ξ2(B)
,

since [·]+ = max{·, 0} ≥ (·). We then apply the results from
Lemma 2 into previous inequality and we have

E[
"

t≤τB

ϖtρ̄
−α
t

ε
]− Ω2 ≤

"

t≤τB

Ξ1(B)

Ξ2(B)
≤ Ξ1(B) ≤ τB .

Thus, from the perspective of the expectation, we have

τB ≥ O(
"

t≤τB

ρ̄ −α
t /ε),

which implies the ensured the global model aggregations.

F. Proof of Theorem 2

Proof. The objective of our problem P contains two decisions
{ρt} and {xet} (note that {ρ̄t} and {x̄et} are produced by our
algorithm), and the input B. Its regret is

regret = Eξ∼D [P̄ξ − P∗
ξ] = Eξ∼D [Pξ(ρ̄t, x̄et)− P∗

ξ],

where ρ̄t, x̄et are the decisions obtained from our designed
algorithm and ρ∗t , x

∗
et are the optimum of P. Note that the

stopping time for such decisions is τ∗B . We should also mention
here that given B, τ∗B ≤ τB . Otherwise, the first τB terms of
{x∗

et} are the better choice, which results in the contradictory,
since {x∗

et} is actually the optimum. We show its upper bound
through two steps. We first consider

R1 ≜ Eξ∼D [Pξ(ρ̄t, x̄et)]− Eξ∼D [Pξ(ρ̄t, x̂
∗
et)],

where x̂∗
et is the optimum under ρ̄t and stopping time τ∗B . This

form can be re-written into the sum of following terms:

R1 = Eξ∼D [Pξ(ρ̄t, x̄et)]− Eξ∼D [Pξ(ρ̄t, ẍ
∗
et)]

+Eξ∼D [Pξ(ρ̄t, ẍ
∗
et)]− Eξ∼D [Pξ(ρ̄t, x̂

∗
et)],

where ẍ∗
et is the optimum given ρ̄t and stopping time τB .

The first two terms in R1 actually obey the results directly
from preliminary works [25] (i.e., given budget B, we have)

Eξ∼D [Pξ(ρ̄t, x̄et)− Pξ(ρ̄t, ẍ
∗
et)] ≤ O(logB),

which obeys the same form mentioned in Lemma 4.
For the next two terms, since τ∗B ≤ τB , we can split the

first term Eξ∼D [Pξ(ρ̄t, ẍ
∗
et)] further into two parts (i.e., in the

scope of [1, τ∗B] and in the scope of (τ∗B , τB]). In the scope of
[1, τ∗B], ẍ

∗
et = x̂∗

et, otherwise, we can use the better one from
{ẍ∗

et} and {x̂∗
et} to construct a more better choice. Thus, the

last two terms in R1 is upper-bounded as follows:

Eξ∼D [Pξ(ρ̄t, ẍ
∗
et)− Pξ(ρ̄t, x̂

∗
et)] ≤ (τB − τ∗B) max

e,ξ∼D
{ψet}.

Also according to the previous work [25], we have

τB − τ∗B ≤ O(log τB).

Then, R1 can be upper-bounded as follows:

R1 ≤ O(logB) +O(log τB) ≤ O(logB) +O(log τB).

After that, we consider the desired form needed as follows:

R2 ≜ Eξ∼D [Pξ(ρ̄t, x̄et)]− Eξ∼D [Pξ(ρ
∗
t , x

∗
et)],

which can be also split into three parts (i.e., we have):

R2 = Eξ∼D [Pξ(ρ̄t, x̄et)]− Eξ∼D [Pξ(ρ̄t, x̂
∗
et)]

+Eξ∼D [Pξ(ρ̄t, x̂
∗
et)]− Eξ∼D [Pξ(ρ

∗
t , x̂

∗
et)]

+Eξ∼D [Pξ(ρ
∗
t , x̂

∗
et)]− Eξ∼D [Pξ(ρ

∗
t , x

∗
et)].

The first two terms in R2 is the result just mentioned (i.e.,
R1). The next two terms imply the difference on the objective
under various ρt. Note that the difference on ρt is exactly the
objective of our proposed subproblem P1. And Lemma 3 just
proves the regret on the objective of P1 (i.e., we have):

Eξ∼D

(
E[

"

t≤τB

ft(ρ̄t)]−
"

t≤τB

f∗
t

)
≤ Eξ∼D [τν1

B] = τν1

B ,

which implies the following inequality holds:

Eξ∼D [Pξ(ρ̄t, x̂
∗
et, B̂

∗)− Pξ(ρ
∗
t , x̂

∗
et, B̂

∗)] ≤ τν1

B .

And the last two terms in R2 are all considered in the scope
of τ∗B , given B and ρ∗t . Actually, it equals to

Eξ∼D [Pξ(ρ
∗
t , x̂

∗
et)− Pξ(ρ

∗
t , x

∗
et)] =

"

t≤τ∗
B

(x̂∗
et − x∗

et)ψet.

Since the terms regarding {ρ∗t } from these two objectives
are the same, we can make a substitute within [1, τ∗B] as

Pξ(ρ
∗
t , x̂

∗
et)− Pξ(ρ

∗
t , x

∗
et) = Pξ(ρ̄t, x̂

∗
et)− Pξ(ρ̄t, x

∗
et).

Similarly, upon the results mentioned before, we have

Eξ∼D [Pξ(ρ̄t, x̂
∗
et)− Pξ(ρ̄t, x

∗
et)] ≤ O(logB),

where the scope considered is τ∗B instead of τB .
Finally, combing all of these three results together, we have

R2 ≤ O(logB) +O(log τB) +O(τν1

B) +O(logB),

where ν1 < 1. We should mention here that logB is upper-
bounded by O(log τB) by using the relationship between τB
and Ξ1. Thus, it implies that the overall regret is

regret = Eξ∼D [P̄ξ − P∗
ξ] ≤ O(τν1

B + log τB),

where all of these two terms are sub-linear respect to τB .

16 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, XXX 2021

G. Proof of Proposition 1

In this subsection, we show the detailed analysis on

||
"

t≤τB

gt(ρ̃t)|| ≤ τν2

B ,

where ν2 is a constant and it is actually less than 1.

Proof. According to the update of λ, we have

||λt+1||2 = ||[λt + γ2gt(ρ̃)]
+||2 ≤ ||λt + γ2gt(ρ̃)||2,

where such function [·]+ used for each dimension essentially
decreases the absolute value. Expanding the terms, we have

∆(λt) ≜
(||λt+1||2 − ||λt||2)

2
≤ γ2λ

⊤
t gt(ρ̃t) +

γ2
2

2
||gt(ρ̃t)||2.

Since ρ̃t+1 is the optimum of P1,t, by using the interior
point ρ̂t mentioned in Assumption 3, we have

∇ft(ρ̃t)(ρ̃t+1 − ρ̃t) + λ⊤
t+1gt(ρ̃t+1) +

||ρ̃t+1 − ρ̃t||2
2γ1

≤ ∇ft(ρ̃t)(ρ̂t − ρ̃t) + λ⊤
t+1gt(ρ̂t) +

||ρ̂t − ρ̃t||2
2γ1

≤ ∇ft(ρ̃t)(ρ̂t − ρ̃t)− ςλ⊤
t+11+

||ρ̂t − ρ̃t||2
2γ1

≤ ∇ft(ρ̃t)(ρ̂t − ρ̃t)− ς||λt+1||+
||ρ̂t − ρ̃t||2

2γ1
,

where the second inequality sign holds due to Assumption 3
and the third inequality sign holds because ||λt+1|| is less or
equal to λ⊤

t+11 for all any non-negative vectors λt+1. Then,
we re-arrange all of these terms as follows:

λ⊤
t+1gt(ρ̃t+1) ≤ ∇ft(ρ̃t)(ρ̃t+1 − ρ̃t)−∇ft(ρ̃t)(ρ̂t − ρ̃t)

−ς||λt+1||+
||ρ̂t − ρ̃t||2 − ||ρ̃t+1 − ρ̃t||2

2γ1

≤ ∇ft(ρ̃t)(ρ̃t+1 − ρ̃t)−∇ft(ρ̃t)(ρ̂t − ρ̃t)− ς||λt+1||+
G2

d

2γ1

≤ ∇ft(ρ̃t){(ρ̃t+1 − ρ̃t) + (ρ̂t − ρ̃t)}− ς||λt+1||+
G2

d

2γ1

≤ 2GfGd − ς||λt+1||+
G2

d

2γ1
≜ Φt+1,

where the second inequality sign holds due to bounded domain
and the fact that ||ρ̃t+1 − ρ̃t||2 ≥ 0; the third inequality sign
holds due to the Cauchy-Schwartz Inequality; and the fourth
inequality sign holds due to bounded gradient and domain.
Next, we plug the previous inequality into the one regarding
the relationship between two consecutive λ and have

∆(λt+1) ≤ γ2λ
⊤
t+1gt+1(ρ̃t+1) +

γ2
2

2
||gt+1(ρ̃t+1)||2

≤ γ2λ
⊤
t+1(gt+1(ρ̃t+1)− gt(ρ̃t+1)) + Φt+1 +

γ2
2G

2
g

2

≤ γ2λ
⊤
t+1[gt+1(ρ̃t+1)− gt(ρ̃t+1)]

+ + Φt+1 +
γ2
2G

2
g

2

≤ γ2||λt+1||V̂ (g) + Φt+1 +
γ2
2G

2
g

2
,

where the second inequality sign holds because we add two
complementary terms (i.e., ∓γ2λ

⊤
t+1gt(ρ̃t+1)); the third in-

equality sign holds due to the property of [·]+ and the non-
negative property of λ; the fourth inequality sign holds due to
Assumption 3. After that, we show the following fact:

∀t, ||λt|| ≤ ||λ̄|| ≜ γ2Gg +
2GfGd +G2

d/(2γ1) + γ2G
2
g/2

ς − V̂ (g)
.

We show the correctness of it by using the contradiction.
Without loss of generality, we denote by t + 2 the first time
index that breaks the previous inequality, i.e.,

||λt+1|| ≤ ||λ̄|| ≤ ||λt+2||.

By using the update on λt+1, we have

||λt+1|| ≥ ||λt+2||− ||λt+2 − λt+1||
= ||λt+2||− ||[λt+1 + γ2gt+1(ρ̃t+1)]

+ − λt+1||
≥ ||λt+2||− ||λt+1 + γ2gt+1(ρ̃t+1)− λt+1||
≥ ||λt+2||− ||γ2gt+1(ρ̃t+1)|| > ||λ̄||− γ2Gg,

where the first inequality holds due to the Triangle Inequality;
the first equation sign holds due to the definition; the second
inequality sign holds due to the property of [·]+; and the fourth
inequality sign holds due to the hypothesis. After plugging the
previous inequality into the inequality regarding ∆(λt+1), we
have ∆(λt+1) is less than 0, leading to ||λt+2|| < ||λt+1||,
which contradicts the hypothesis. Thus, the fact is proved.

We further use the update on λ and have

[λτ + γ2gτB (ρ̃τB)]
+ ≥ ... ≥ λ1 +

"
t≤τB

γ2gt(ρ̃t).

Since λ1 = 0, re-arranging the previous inequality, we have
"

t≤τB

gt(ρ̃t) ≤
λτB+1

γ2
− λ1

γ2
≤ λτB+1

γ2
.

Thus, for the fit, we have the following inequality:

||
"

t≤τB

gt(ρ̃t)|| ≤ ||λτB+1

γ2
|| ≤ ||λ̄||

γ2
.

H. Proof of Proposition 2

In this subsection, we show the detailed analysis on
"

t≤τB

ft(ρ̃t)−
"

t≤τB

f∗
t ≤ τν1

B ,

where ν1 is a constant and it is also less than 1.

Proof. The objective of P1,t implies that it is a 1/γ1-strongly
convex function with respect to the variable ρ̃ (i.e., ∀ζ1, ζ2):

P1,t(ζ1) ≥ P1,t(ζ2)(ζ2 − ζ1) +
||ζ2 − ζ1||2

2γ1
.

Note that ρ̃t+1 solved is exactly the optimum for P1,t, and
it also holds the optimality condition as follows:

∇P1,t(ρ̃t+1)(ρ̃
∗
t − ρ̃t+1) ≥ 0,

where ρ̃∗t is the optimum for the objective of P1 per time (i.e.,
ft). By setting ζ1 = ρ̃t+1, ζ2 = ρ̃∗t , we have

P1,t(ρ̃
∗
t) ≥ P1,t(ρ̃t+1) +

1

2γ1
||ρ̃∗t − ρ̃t+1||2.

JIN et al.: BUDGET-AWARE ONLINE CONTROL OF EDGE FEDERATED LEARNING ON STREAMING DATA WITH STOCHASTIC INPUTS 17

After adding ft(ρ̃t) on both of two sides for the previous
inequality, expanding related objective according to its defini-
tion and using the property of a convex function ft(·) (i.e.,
ft(ρ̃

∗
t) ≥ ft(ρ̃t) +∇ft(ρ̃t)(ρ̃

∗
t − ρ̃t)), we have

ft(ρ̃t) +∇ft(ρ̃t)(ρ̃t+1 − ρ̃t) + λ⊤
t+1gt(ρ̃t+1) +

||ρ̃t+1 − ρ̃t||2
2γ1

≤ ft(ρ̃
∗
t) + λ⊤

t+1gt(ρ̃
∗
t) +

||ρ̃∗t − ρ̃t||2
2γ1

− ||ρ̃∗t − ρ̃t+1||2
2γ1

≤ ft(ρ̃
∗
t) +

||ρ̃∗t − ρ̃t||2
2γ1

− ||ρ̃∗t − ρ̃t+1||2
2γ1

,

where the second inequality holds due to the fact gt(ρ̃∗t) ≼ 0.
Note that the optimum is also a feasible solution and it makes
the value of g negative. We then study the gradient term:

−∇ft(ρ̃t)(ρ̃t+1 − ρ̃t) ≤ ||∇ft(ρ̃t)|| ||ρ̃t+1 − ρ̃t||

≤ ||∇ft(ρ̃t)||2
2ζ

+
ζ

2
||ρ̃t+1 − ρ̃t|| ≤

G2
f

2ζ
+

ζ

2
||ρ̃t+1 − ρ̃t||,

where ζ is an arbitrary positive constant, the first inequality
sign holds due to the property of norms; the second inequality
sign holds due to basic algebra formula; and the third inequal-
ity holds due to bounded gradient. We then have

ft(ρ̃t) + λ⊤
t+1gt(ρ̃t+1) ≤ ft(ρ̃

∗
t) + (

ζ

2
− 1

2γ1
)||ρ̃t+1 − ρ̃t||2

+
1

2γ1
(||ρ̃∗t − ρ̃t||2 − ||ρ̃∗t − ρ̃t+1||2) +

G2
f

2ζ

= ft(ρ̃
∗
t) +

1

2γ1
(||ρ̃∗t − ρ̃t||2 − ||ρ̃∗t − ρ̃t+1||2) +

γ1G
2
f

2
,

where the first equation sign holds because we set ζ = 1/γ1.
Next, by using the results from previous proposition, we have

∆(λt+1)

γ2
+ ft(ρ̃t) ≤ λ⊤

t+1gt+1(ρ̃t+1) +
γ2
2
||gt+1(ρ̃t+1)||2

+ft(ρ̃t) + λ⊤
t+1gt(ρ̃t+1)− λ⊤

t+1gt(ρ̃t+1)

= ft(ρ̃t) + λ⊤
t+1gt+1(ρ̃t+1)

+
γ2
2
||gt+1(ρ̃t+1)||2 + λ⊤

t+1(gt(ρ̃t+1)− gt(ρ̃t+1))

≤ ft(ρ̃
∗
t) +

1

2γ1
(||ρ̃∗t − ρ̃t||2 − ||ρ̃∗t − ρ̃t+1||2) + γ1G

2
f/2

+γ2G
2
g/2 + ||λt+1|| [gt(ρ̃t+1)− gt(ρ̃t+1)]

+,

where the first inequality sign holds due to previous proved
results and two complementary terms (i.e., ±λ⊤

t+1gt(ρ̃t+1));
the first equation sign holds due to re-arrangement of terms;
and the second inequality sign holds also due to already proved
results, bounded gradient and the property of [·]+. After that,
we study those intermediate terms as follows:

||ρ̃∗t − ρ̃t||2 = ||ρ̃∗t − ρ̃t||2 − ||ρ̃t − ρ̃∗t−1||2 + ||ρ̃t − ρ̃∗t−1||2

= ||ρ̃∗t − ρ̃∗t−1|| ||ρ̃∗t − 2ρ̃t + ρ̃∗t−1||+ ||ρ̃t − ρ̃∗t−1||2

≤ 2Gd||ρ̃∗t − ρ̃∗t−1||+ ||ρ̃t − ρ̃∗t−1||2,

where the first equation sign holds due to two complementary
terms (i.e., ∓||ρ̃t−ρ̃∗t−1||2); the second equation sign holds due
to the difference of two squares; and the first inequality sign

holds due to the Triangle Inequality and the bounded domain.
Combing previous two inequalities together, we have

∆(λt+1)

γ2
+ ft(ρ̃t) ≤ ft(ρ̃

∗
t) + ||λt+1|| V̂ (gt) +

γ2G
2
g

2
+

γ1G
2
f

2

+
1

2γ1
(2Gd||ρ̃∗t − ρ̃∗t−1||+ ||ρ̃t − ρ̃∗t−1||2 − ||ρ̃∗t − ρ̃t+1||2),

where V̂ (gt) ≜ [gt(ρ̃t+1)− gt(ρ̃t+1)]
+, similar to V̂ (g). We

sum up all of these terms from t = 1 to τB , we have
"

t≤τB

{∆(λt+1)

γ2
+ ft(ρ̃t)} ≤

"

t≤τB

ft(ρ̃
∗
t) +

γ2G
2
gτB

2
+

γ1G
2
fτB

2

+
"

t≤τB

||λt+1|| V̂ (gt) +
"

t≤τB

Gd

γ1
||ρ̃∗t − ρ̃∗t−1||

+
"

t≤τB

1

2γ1
(||ρ̃t − ρ̃∗t−1||2 − ||ρ̃∗t − ρ̃t+1||2).

For simplicity, we define V̂1 ≜
!

t≤τB
||ρ̃∗t − ρ̃∗t−1|| as well

as V̂2 ≜
!

t≤τB
maxt V̂ (gt). Then, we have

"

t≤τB

{∆(λt+1)

γ2
+ ft(ρ̃t)} ≤

"

t≤τB

ft(ρ̃
∗
t) +

γ2G
2
gτB

2
+

γ1G
2
fτB

2

+||λ̄||V̂2 +
Gd

γ1
V̂1 +

1

2γ1
(||ρ̃1 − ρ̃∗0||2 − ||ρ̃∗τB − ρ̃τB+1||2).

At last, we focus on the regret, i.e.,
"

t≤τB

ft(ρ̃t)−
"

t≤τB

f∗
t ≤

γ2G
2
gτB

2
+

γ1G
2
fτB

2
+ ||λ̄||V̂2

+
Gd

γ1
V̂1 +

||ρ̃1 − ρ̃∗0||2
2γ1

− ||λt+2||2
2γ2

+
||λ2||2
2γ2

.

Note that ||ρ̃1 − ρ̃∗0||2 is bounded by G2
d, ||λt+2||2 ≥ 0 and

||λ2||2 ≤ γ2
2G

2
g if λ1 = 0. Thus, we have the regret:

≤
γ2G

2
g(τB + 1)

2
+

γ1G
2
fτB

2
+ ||λ̄||V̂2 +

Gd

γ1
V̂1 +

G2
d

2γ2
.

We choose proper step sizes as follows:

γ1 = γ2 = max{
*

V̂1/τB ,

*
V̂2/τB},

which balances the parts considered in the objective of P1,t.
As a result, the regret is re-written under proper step sizes:

"

t≤τB

ft(ρ̃t)−
"

t≤τB

f∗
t ≤ O(max{

*
V̂1τB ,

*
V̂2τB}).

Following this corollary, if the step sizes obey

γ1 = γ2 = O(τ
−1/3
B),

the regret is further bounded by the following inequality:
"

t≤τB

ft(ρ̃t)−
"

t≤τB

f∗
t ≤ O(max{V̂1τ

1/3
B , V̂2τ

1/3
B , τ

2/3
B }).

Since V̂1 and V̂2 are fixed for given system, the regret is
actually sub-linearly growth as time goes, i.e.,

"

t≤τB

ft(ρ̃t)−
"

t≤τB

f∗
t ≤ O(τν1

B),

where ν1 is a constant and is less than 1.

18 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, XXX 2021

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y
Arcas, “Communication-efficient learning of deep networks from de-
centralized data,” in PMLR International Conference on Artificial Intel-
ligence and Statistics, 2017, pp. 1273–1282.

[2] W. House, “Consumer data privacy in a networked world: A framework
for protecting privacy and promoting innovation in the global digital
economy,” White House, Washington, DC, pp. 1–62, 2012.

[3] “AWS Spot Instance,” https://www.cloudomatic.com/awsspot-instance-
price-analysis-for-last-3-months-sydney-region/, 2017.

[4] C.-C. Hung, G. Ananthanarayanan, L. Golubchik, M. Yu, and M. Zhang,
“Wide-area analytics with multiple resources,” in ACM 13th EuroSys
Conference, 2018, pp. 1–16.

[5] E. Kurdoglu, Y. Liu, Y. Wang, Y. Shi, C. Gu, and J. Lyu, “Real-time
bandwidth prediction and rate adaptation for video calls over cellular
networks,” in ACM 7th International Conference on Multimedia Systems,
2016, pp. 1–11.

[6] K. Cai, X. Liu, Y.-Z. J. Chen, and J. C. Lui, “An online learning approach
to network application optimization with guarantee,” in IEEE Conference
on Computer Communications, 2018, pp. 2006–2014.

[7] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent
methods for regularized loss minimization,” Journal of Machine Learn-
ing Research, vol. 14, pp. 567–599, 2013.

[8] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” 27th Annual Conference on Neural
Information Processing Systems, vol. 26, pp. 315–323, 2013.

[9] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental
gradient method with support for non-strongly convex composite ob-
jectives,” 28th Annual Conference on Neural Information Processing
Systems, vol. 27, pp. 1646–1654, 2014.

[10] H. Daneshmand, A. Lucchi, and T. Hofmann, “Starting small-learning
with adaptive sample sizes,” in 33rd International Conference on Ma-
chine Learning, 2016, pp. 1463–1471.

[11] E. Jothimurugesan, A. Tahmasbi, P. Gibbons, and S. Tirthapura,
“Variance-reduced stochastic gradient descent on streaming data,” in
32nd Annual Conference on Neural Information Processing Systems,
2018, pp. 9906–9915.

[12] Y. Tu, Y. Ruan, S. Wang, S. Wagle, C. G. Brinton, and C. Joe-Wang,
“Network-aware optimization of distributed learning for fog computing,”
in IEEE Conference on Computer Communications, 2020, pp. 2509–
2518.

[13] Y. Jin, L. Jiao, Z. Qian, S. Zhang, S. Lu, and X. Wang, “Resource-
efficient and convergence-preserving online participant selection in fed-
erated learning,” in 40th IEEE International Conference on Distributed
Computing Systems, 2020, pp. 606–616.

[14] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective
federated learning design,” arXiv:2012.08336, pp. 1–10, 2020.

[15] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
pp. 2031–2063, 2020.

[16] N. H. Tran, W. Bao, A. Zomaya, N. M. NH, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in IEEE Conference on Computer Communications, 2019,
pp. 1387–1395.

[17] A. Asuncion and D. Newman, “Uci machine learning repository,”
https://archive.ics.uci.edu/ml/index.php, 2007.

[18] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv1: A new benchmark
collection for text categorization research,” Journal of Machine Learning
Research, vol. 5, pp. 361–397, 2004.

[19] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Transactions on Interactive Intelligent Systems, vol. 5,
no. 4, pp. 1–19, 2015.

[20] Y. Jin, Z. Qian, S. Guo, S. Zhang, X. Wang, and S. Lu, “Ran-GJS:
Orchestrating data analytics for heterogeneous geo-distributed edges,”
in ACM 47th International Conference on Parallel Processing, 2018,
pp. 1–10.

[21] Y. Xu, C. Yu, J. Li, and Y. Liu, “Video telephony for end-consumers:
measurement study of google+, ichat and skype,” IEEE/ACM Transac-
tions on Networking, vol. 22, no. 3, pp. 826–839, 2014.

[22] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in IEEE Conference on Com-
puter Communications, 2018, pp. 63–71.

[23] M. Curran, M. S. Rahman, H. Gupta, and V. Sekar, “Rethinking virtual
network embedding in reconfigurable networks,” in 15th Annual IEEE

International Conference on Sensing, Communication, and Networking,
2018, pp. 1–9.

[24] A. Saha, N. Ganguly, S. Chakraborty, and A. De, “Learning network
traffic dynamics using temporal point process,” in IEEE Conference on
Computer Communications, 2019, pp. 1927–1935.

[25] D. Zhou and C. Tomlin, “Budget-constrained multi-armed bandits with
multiple plays,” in 32nd AAAI Conference on Artificial Intelligence,
vol. 32, no. 1, 2018, pp. 4572–4579.

[26] V. Jalaparti, I. Bliznets, S. Kandula, B. Lucier, and I. Menache,
“Dynamic pricing and traffic engineering for timely inter-datacenter
transfers,” in ACM SIGCOMM Conference, 2016, pp. 73–86.

[27] D. P. Bertsekas, “Incremental gradient, subgradient, and proximal meth-
ods for convex optimization: A survey,” Optimization for Machine
Learning, vol. 2010, no. 3, pp. 1–38, 2011.

[28] N. Roux, M. Schmidt, and F. Bach, “A stochastic gradient method with
an exponential convergence rate for finite training sets,” 26th Annual
Conference on Neural Information Processing Systems, vol. 25, pp.
2663–2671, 2012.

[29] C. Ma, J. Konečnỳ, M. Jaggi, V. Smith, M. I. Jordan, P. Richtárik, and
M. Takáč, “Distributed optimization with arbitrary local solvers,” Taylor
& Francis Optimization Methods and Software, vol. 32, no. 4, pp. 813–
848, 2017.

[30] X. Gao, M. Sitharam, and A. E. Roitberg, “Bounds on the
jensen gap, and implications for mean-concentrated distributions,”
arXiv:1712.05267, pp. 1–16, 2017.

Yibo Jin received the BS degree from the Depart-
ment of Computer Science and Technology, Nanjing
University in 2017, where he is currently pursuing
the PhD degree under the supervision of Professor
Sanglu Lu. He was a visiting student with the Hong
Kong Polytechnic University, Hong Kong in 2017.
To date, he has already published over 15 papers,
including in journals such as TPDS, and in confer-
ences such as INFOCOM, ICDCS, ICPP, SECON
and IWQoS. He received the Best Paper Candidates
from WoWMoM 2021. His research interests include

big data analytics and edge computing. He is a student member of the IEEE.

Lei Jiao received the Ph.D. degree in computer sci-
ence from the University of Göttingen, Germany. He
is currently an assistant professor at the Department
of Computer and Information Science, University of
Oregon, USA. Previously he worked as a member
of technical staff at Alcatel-Lucent/Nokia Bell Labs
in Dublin, Ireland and also as a researcher at IBM
Research in Beijing, China. He is interested in
the mathematics of optimization, control, learning,
and mechanism design applied to computer and
telecommunication systems, networks, and services.

He publishes papers in journals such as JSAC, ToN, TPDS, TMC, and TDSC,
and in conferences such as INFOCOM, MOBIHOC, ICNP, ICDCS, SECON,
and IPDPS. He is a recipient of the NSF CAREER Award. He also received
the Best Paper Awards of IEEE LANMAN 2013 and IEEE CNS 2019,
and the 2016 Alcatel-Lucent Bell Labs UK and Ireland Recognition Award.
He was on the program committees of conferences including INFOCOM,
MOBIHOC, ICDCS, IWQoS, and ICC, and was also the program chair of
multiple workshops with INFOCOM and ICDCS.

Zhuzhong Qian is a professor at the Department
of Computer Science and Technology, and member
of National Key Laboratory for Novel Software
Technology, Nanjing University, P. R. China. He
received his PhD. Degree in computer science at
Nanjing University in 2007. Currently, his research
interests include cloud computing, edge computing,
and distributed machine learning. He is the chief
member of several national research projects on
cloud computing and edge computing. His research
has been published in journals such as TPDS, TON,

TC, and TMC, and in conferences such as INFOCOM, ICDCS, SECON, and
IPDPS. He received best paper awards from ICA3PP 2014 and APNet 2018,
and best paper candidates from WoWMoM 2021.

JIN et al.: BUDGET-AWARE ONLINE CONTROL OF EDGE FEDERATED LEARNING ON STREAMING DATA WITH STOCHASTIC INPUTS 19

Sheng Zhang is an associate professor at the Depart-
ment of Computer Science and Technology, Nanjing
University. He is also a member of the State Key
Lab. for Novel Software Technology. He received
the BS and PhD degrees from Nanjing University in
2008 and 2014, respectively. His research interests
include cloud computing and edge computing. To
date, he has published more than 80 papers, in-
cluding those appeared in TMC, TON, TPDS, TC,
MobiHoc, ICDCS, INFOCOM, SECON, IWQoS
and ICPP. He received the Best Paper Award of IEEE

ICCCN 2020 and the Best Paper Runner-Up Award of IEEE MASS 2012.
He is the recipient of the 2015 ACM China Doctoral Dissertation Nomination
Award. He is a member of the IEEE and a senior member of the CCF.

Sanglu Lu received her BS, MS and PhD degrees
from Nanjing University in 1992, 1995, and 1997,
respectively, all in computer science. She is currently
a professor in the Department of Computer Science
and Technology and the State Key Laboratory for
Novel Software Technology. Her research interests
include distributed computing, wireless networks,
and pervasive computing. She has published over
80 papers in referred journals and conferences in
the above areas. She is a member of the IEEE.

