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Incentivizing Federated Learning under Long-Term
Energy Constraint via Online Randomized Auctions
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Abstract—Mobile users are often reluctant to participate in
federated learning to train models, due to the excessive con-
sumption of the limited resources such as the mobile devices’
energy. We propose an auction-based online incentive mechanism,
FLORA, which allows users to submit bids dynamically and
repetitively and compensates such bids subject to each user’s
long-term battery capacity. We formulate a nonlinear mixed-
integer program to capture the social cost minimization in the
federated learning system. Then we design multiple polynomial-
time online algorithms, including a fractional online algorithm
and a randomized rounding algorithm to select winning bids
and control training accuracy, as well as a payment allocation
algorithm to calculate the remuneration based on the bid-winning
probabilities. Maintaining the satisfiable quality of the global
model that is trained, our approach works on the fly without
relying on the unknown future inputs, and achieves provably a
sublinear regret and a sublinear fit over time while attaining the
economic properties of truthfulness and individual rationality in
expectation. Extensive trace-driven evaluations have confirmed
the practical superiority of FLORA over existing alternatives.

I. INTRODUCTION

FEDERATED learning [1], [2] is a novel distributed ma-
chine learning paradigm that allows mobile devices (e.g.,

smart phones, vehicular computing platforms [3], [4]) to hold
raw training data on premises, train the target model locally,
and only communicate the model update to a logically central-
ized server (e.g., a cloud or edge data center) for aggregation in
an iterative manner. Unlike conventional distributed machine
learning, federated learning has the core benefit of protecting
user’s privacy since no raw data need to be uploaded to
the server [5], [6], and receives increasing interests in the
forthcoming era of 5G, Internet of Things, and Artificial
Intelligence. However, mobile users are often reluctant to
participate in federated learning due to the excessive resource
consumption [7], [8], especially given the limited battery
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Fig. 1: Auction model for federated learning

energy of today’s mobile devices, which motivates the need
of designing a mechanism to incentivize users’ participation
[9], [10]. “Auction” can be an approach to fulfill this goal,
i.e., letting the server be the auctioneer and conduct multiple
rounds of auctions to select and purchase the bids offered by
the mobile devices which can be the bidders. The server thus
performs federated learning with the winning bids and makes
the corresponding payments. Compared to an alternative of
letting the mobile devices directly pricing their data, the
auction approach is agile to dynamic markets and can better
reflect the real-time demand-supply [11].

Unfortunately, designing an appropriate auction mechanism
for federated learning is never an easy task, and faces multiple
fundamental challenges as follows.

• Challenge 1: Long-term constrained online setting.

The mechanism is intrinsically not a static one-time
transaction [6], but needs to handle repetitive auctions on
the fly subject to each mobile device’s long-term battery
capacity. Each mobile device may generate a varying
amount of raw training data and offer different bids as
time elapses [2], [12]. If some bids are selected currently
and the corresponding devices consume battery to execute
federated learning (shown in Fig. 1), then such devices
may not be able to be selected again in the future even
when they have more training data, due to insufficient
battery. As the server and each mobile device often have
no knowledge about the future inputs, such as training
data volumes and network conditions, it is nontrivial to
decide the winning bids in an online manner.

• Challenge 2: Intractability. Pursuing resource efficiency
of the mobile devices should not be at the cost of
sacrificing the quality of the model being trained and
delivered in the federated learning process [6]. The total
resource consumption, including the computation and
communication energy and the bandwidth for calculating
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and transferring the model updates [7], [10], [13], often
relates nonlinearly to the quality of the model in terms of
the total loss over all the training data. Intertwined with
bid selection, the problem can often be NP-hard, making
it difficult to control the system and to strike the bal-
ance between model training and resource consumption,
especially with heterogenous mobile devices.

• Challenge 3: Economic properties. Our auction mech-
anism is also expected to achieve the desired economic
properties of truthfulness and individual rationality. The
former means no bid can achieve a higher utility by
cheating on the bidding price and the latter means every
bid achieves a non-negative utility, where the utility of a
bid refers to the difference between the received payment
and the bidding price (i.e., asking price). Conventionally,
Vickrey-Clarke-Groves (VCG) mechanisms or their frac-
tional variants can achieve such properties, but they are
inapplicable here. VCG requires to solve the underlying
problem optimally, yet our problem is intractable [11];
fractional VCG, which is often jointly used with a primal-
dual algorithm, is hampered by the long-term constraint
and the nonlinearity of our problem.

Existing studies cannot address the aforementioned chal-
lenges. There exists a substantial body of work on optimizing
federated learning systems in terms of various performance
objectives including energy, convergence rate, and communi-
cation rounds [1], [6], [14]–[18], but they are not for incen-
tivization, which marks an essential difference. Yet, those few
that are on federated learning incentives still fall insufficient,
as they are either from contract or game theoretic perspectives
[4], [9], [19] with a different focus, or adopt auctions but
only consider one-time scenarios and overlook quality of the
models being trained [10], [20], not to mention the dynamic
online setting and the long-term constraints which escalate the
difficulty fundamentally for the mechanism design.

In this paper, we formulate the online optimization problem
of minimizing the long-term social cost of all involved parties
in the federated learning system as a nonlinear mixed-integer
program. Our formulation controls the total resource consump-
tion and the quality of the global model being trained through
selecting bids and adjusting the convergence parameter of the
loss over the local training data. Enforcing no assumption on
how the dynamic inputs may vary over time, our problem
captures transmission power, wireless channel gain, dynamic
training data volume [1], [16], etc, while conforming to the
long-term energy constraint of every single bidder.

We propose a novel mechanism, which we name FLORA

(Federated Learning Online Randomized Auctions), for in-
centivizing the mobile devices via auctions and selecting the
appropriate bids to participate in federated learning by solving
the underlying social cost minimization problem. To this end,
we design three polynomial-time algorithms. First, we relax
the problem to the real domain and overcome the long-term
constraints by designing an alternating ascent-descent online
algorithm through reformulating the problem via Lagrange
multipliers and introducing a carefully-designed regularization
term [21], [22], which does not rely on future inputs. Next,
we design a randomized rounding algorithm [23] to convert

fractional solutions from our relaxed problem into integers by
rounding pairs of fractions in opposite directions for compen-
sation, without violating instantaneous constraints. Finally, we
design the payment allocation algorithm which uses fractional
decisions as bid-winning probabilities and composes payments
in each auction via the marginal cost of the bidding prices.

We rigorously prove the performance guarantees of our pro-
posed algorithms. We show that our fractional online algorithm
and randomized rounding algorithm jointly lead to a sublinear
“regret” [22], [24], i.e., the time-average difference between
the long-term social cost incurred by our online approach with
no knowledge of future inputs and that of the offline optimum
with full knowledge of all the inputs will vanish as time
elapses, and a sublinear “fit” [25], i.e., the time-average vi-
olation of the long-term constraints will also vanish gradually.
We show that our payment allocation achieves truthfulness and
individual rationality by satisfying the corresponding sufficient
and necessary conditions for randomized auctions.

We evaluate the practical performance of our approach
extensively, via training Multi-Layer Perception (MLP), Con-
volutional Neural Network (CNN), and Multinomial Logistic
Regression (MLR) models with real-world datasets and feder-
ated learning settings. We find the results in multiple aspects,
including the following: (1) Achieving the same target con-
vergence of the global model, FLORA performs significantly
better than other bid-selection methods such as Random_FL,
Fixed_FL and Greedy_FL, saving up to 38.9%, 29.0% and
42.1% social cost on average, respectively, and is close to the
performance of the Offline optimum; (2) FLORA achieves
truthfulness and individual rationality for every single auction,
with the regret and the fit growing very slowly in the long run;
(3) FLORA produces machine learning models with satisfiable
inference accuracy and loss across different training tasks; (4)
FLORA always uses a smaller number of global iterations for
federated learning, consuming moderate training time.

The rest of this paper is structured as follows. Section
II summarizes the related literatures and points out how
this paper is different and advantageous. Section III presents
system models, problem formulation, algorithmic challenges,
and an overview of proposed mechanism. Section IV designs
a fractional online algorithm and a randomized rounding al-
gorithm for winning-bid selections, and theoretically analyzes
the dynamic regret and the dynamic fit. Section V presents
the payment allocation algorithm and analyzes the truthfulness
and the individual rationality. Section VI conducts trace-driven
experiments to evaluate our approach and compares it to
multiple alternatives. Section VII concludes the paper.

II. RELATED WORK

We categorize and discuss related work in different groups,
and then point out how our work differs from each group.

Optimization of Federated Learning Systems: Yang et. al.
[1] designed an iterative algorithm to optimize federated learn-
ing over wireless networks while considering energy-efficient
transmission and computation. Wang et. al. [2] and Nguyen et.
al. [15] studied federated learning in edge computing systems
with limited computation and communication resources. Mills
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TABLE I: Comparison of existing work on federated learning incentives to this work

Reference Mechanism Problem
Online /
Offline

Optimization Objective Constraints
Performance
Guarantees

[26] Stackelberg
Game

Convex,
nonlinear Offline Utility maximization

(energy and communication) Instantaneous Nash Equilibrium

[9] Stackelberg
Game Mixed-boolean Offline

Utility maximization
(model quality in local and global accuracy,

communication, and computation)
Instantaneous Nash Equilibrium

[27] Stackelberg
Game Quasi-concave Offline

Social welfare maximization
(model quality in data size and accuracy,

communication, and computation)
Instantaneous Nash Equilibrium

[28] Contract
Theory

Non-convex,
nonlinear Offline

Social cost minimization
(model quality in accuracy loss,

energy, and time)
Instantaneous Individual Rationality

[19] Contract
Theory

Non-convex,
nonlinear Offline

Utility maximization
(model quality in local and global accuracy,

and energy)
Instantaneous Incentive Compatibility

Individual Rationality

[4] Contract
Theory

Non-convex,
nonlinear Offline

Utility maximization
(loss decay, global loss,
communication time)

Instantaneous Incentive Compatibility
Individual Rationality

[10] Auction Mixed integer,
linear Offline

Social welfare maximization
(model quality in local and global accuracy,

communication, and computation)
Instantaneous Truthfulness

Individual Rationality

[20] Auction Combinatorial,
linear Offline

Social welfare maximization
(model quality in weights divergence,

communication, and computation)
Instantaneous Truthfulness

Individual Rationality

[12] Auction Quasi-concave Offline
Utility maximization

(model quality in data size and data category,
and resource quality)

Instantaneous Nash Equilibrium

This work Auction Mixed integer,
nonlinear Online

Social cost minimization
(model quality in global and local accuracy,

communication, and computation )

Long-term
Instantaneous

Truthfulness
Individual Rationality

et. al. [29] proposed the communication-efficient FedAvg ap-
proach based on ADAM optimization for reducing the number
of rounds to convergence. Zhou et. al. [30] designed a cost-
efficient optimization framework to coordinate the edge and
the cloud for reducing both computation and communication
cost. Wang et. al. [31] proposed a communication-mitigated
federated learning approach which mitigated the communica-
tion overhead. Li et. al. [32] designed a multi-layer online
coordination framework for high-performance energy-efficient
federated learning. Dinh et. al. [33] proposed a federated
learning algorithm which can capture the trade-off between the
convergence time and the energy consumption with heteroge-
neous computing and power resources. Liu et. al. [34] studied
adaptive power allocation with the aim of minimizing the
learning optimality gap under privacy and power constraints.
Prakash et. al. [35] injected structured coding redundancy
into federated learning for mitigating stragglers and speeding
up the training procedure. Jin et. al. [6] selected participant
devices to optimize resource consumption of federated learn-
ing. Lu et. al. [3] combined deep reinforcement learning with
federated learning to build a hybrid blockchain architecture.

Incentive Mechanisms for Federated Learning: Kang
et. al. [19] adopted the contract theory to incentivize mobile
devices to support federated learning. Ye et. al. [4] facilitated
the interactions between the server and the vehicular clients by
employing the two-dimensional contract theory. Shashi et. al.
[9] formulated a two-stage Stackelberg game to tackle the util-
ity maximization problem for guaranteeing the communication
efficiency. Zeng et. al. [12] designed an incentive mechanism
to encourage edge nodes with high quality but low cost to
participate in federated learning. Jiao et. al. [20] designed
an auction mechanism for the trading between the federated
learning platform and the data owners. T. H. T. Le et. al. [10]
proposed an auction mechanism for the base station and the

mobile users to collaboratively train models. Feng et. al. [26]
used the Stackelberg game approach to investigate the inter-
actions among the mobile devices and the model owner. Ding
et. al. [28] considered a multi-dimensional contract-theoretic
approach for summarizing users’ multi-dimensional private
information into a one-dimensional criterion and minimizing
the cost of the server. Zhan et. al. [27] proposed a novel
incentive mechanism based on Stackelberg games for federated
learning in IoT applications.

Our research in this paper differs from both of the above
two groups of research. Those [1], [3], [14], [15], [29], [33],
[35] that focus on optimizing the federated learning systems in
wireless networks, edge computing environments, and vehic-
ular or other platforms largely investigate the problems from
an offline perspective, and cannot actually be directly adapted
to address the online setting with provable performance guar-
antees as in our work characterized by unpredictable time-
varying inputs and long-term constraints.

Some works [2], [6], [30]–[32], [34] have taken into ac-
count the dynamic system and the unpredictable information,
but have not approached the problem from the incentive
perspective. Regarding the incentive mechanism design for
federated learning, some [9], [26], [27] adopt the game-
theoretic approach but are not able to provide any guarantee
for truthfulness or individual rationality as in our work. Others
[4], [19], [28] adopt the contract theory and prove incentive
rationality, but they lack the consideration of the long-term
energy constraints of the mobile devices, which fundamentally
changes the nature of the problem.

They [4], [9], [10], [20] often only consider static one-time
transactions, without long-term effects, or consider repetitive
auctions [12] but focus on Nash equilibrium instead of eco-
nomic properties, different from our work in essence. For the
optimization objectives, they [4], [26] focus on the energy
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TABLE II: NOTATIONS

Input Description

θ(t)
i , ε(t)g Local accuracy of device i and global accuracy at the time slot t

D(t)
i Set of data samples of device i at the time slot t

Kl(t), Kg(t) Number of local iterations and global iterations at the time slot t
w(t) Global model trained at the time slot t
F (t)(·) Loss of all participants at the time slot t

F (t)
i (·) Loss of device i and all participants at the time slot t

Em(t)
i Communication energy consumed per global iteration

Ep(t)
i Computation energy consumed per global iteration

c(t)i Bidding price of bidder i at the time slot t
Ωi Energy limit of device i for auctions
Decision Description

x(t)
i Whether device i wins the auction at the time slot t

δ(t) Maximum local accuracy at the time slot t

and communication and lack the assurance of the model
quality. To sum up, none of the existing research, to the best
of our knowledge, have studied federated learning incentives
from an online perspective with guaranteed model quality and
provable truthfulness and individual rationality under long-
term constraints.

III. MODEL AND PROBLEM FORMULATION

In this section, we present system models, problem formula-
tion, algorithmic challenges and an overview of our proposed
mechanism. We summarize the major notations in Table II.

A. System Modeling

Server, Mobile Devices, and Training Data: We consider
a system that consists of a federated learning server and a set
of mobile devices, represented as I = {1, 2, ..., I}, which can
communicate with the server via (cellular) wireless networks.
Considering that the system is dynamic, we study it over a
series of time slots T = {1, 2, ..., T}. Each mobile device
i is equipped with built-in sensors, storage, and a processor
for participating in federated learning, powered by the local
battery. At the time slot t ∈ T , every device i ∈ I has a
collection of data samples D(t)

i . A data sample n ∈ D(t)
i is

{xn, yn}, where xn refers to the features with corresponding
values and yn refers to the ground-truth label.

Federated Learning: Federated learning contains multiple
“global iterations”, where each global iteration further consists
of the “local training” followed by the “global aggregation”.
To train the global model w(t) at the time slot t, we minimize
the total loss at t. We define the loss at the mobile device

i as F (t)
i (w(t)) =

∑
n∈D

(t)
i

f(t)
n (w(t))

|D(t)
i |

, where f (t)
n (w(t)) is the

loss incurred by the single data sample n (calculated based on
comparing its ground-truth label to the inferred label produced
by w(t) using its feature values), and define the total loss as

F (t)(w(t)) =
∑

i∈W (t){
|D(t)

i |
∑

i∈W (t) |D(t)
i |

F (t)
i (w(t))} [10], where

W (t) ⊆ I denotes the set of all the participating mobile
devices at t. To solve the problem minw(t) F (t)(w(t)) in an
iterative manner, we adopt the federated learning algorithm
[13], [15] exhibited below.

We explain the above algorithm further. At the time slot
t, in the k-th global iteration, the device i seeks the optimal
solution, i.e., w(t)

i,k = argminwJ
(t)
i,k (w|w

(t)
k−1,∇F (t)(w(t)

k−1)), by

Federated Learning Algorithm, ∀t

initialize w(t)
0 and ∇F (t)(w(t)

0 ); ! Initialization on server

for k = 1, ...,Kg do

! Local training on each device i ∈ W (t):

download w(t)
k−1 and ∇F (t)(w(t)

k−1) from server;
for k2 = 1, ...,Kl do

w(t)
i,k,k2

= w(t)
i,k,k2−1 − υ∇J (t)

i,k (w
(t)
i,k,k2−1);

upload w(t)
i,k = wt

i,k,Kl and ∇F (t)
i (w(t)

i,k) to server;
! Global aggregation on server:

w(t)
k = 1

|W (t)|

∑
i∈W (t) w

(t)
i,k

∇F (t)(w(t)
k ) = 1

|W (t)|

∑
i∈W (t) ∇F (t)

i (w(t)
i,k).

executing the gradient-based process of w(t)
i,k,k2

= w(t)
i,k,k2−1−

υ∇J (t)
i,k (w

(t)
i,k,k2−1). Here, υ is a constant step size, w(t)

i,k,0 =

w(t)
k−1, and J (t)

i,k (w) is a dedicated function defined as

J (t)
i,k (w) = F (t)

i (w)− [∇F (t)
i (w(t)

k−1)−β1∇F (t)(w(t)
k−1)]

T(w−

w(t)
k−1) +

β2

2 ||w − w(t)
k−1||

2 [15], where β1,β2 ≥ 0 are param-
eters. The problem argminwJ

(t)
i,k (w|w

(t)
k−1,∇F (t)(w(t)

k−1)) is

solved in Kl iterations locally on the device i to achieve a θ(t)i -
approximation solution w(t)

i,k,Kl satisfying ‖∇J (t)
i,k (w

(t)
i,k,Kl)‖ ≤

θ(t)i ‖∇J (t)
i,k (w

(t)
k−1)‖, where θ(t)i ∈ (0, 1) is a parameter that

can be called “local accuracy”. To make this inequality hold,
we need to conduct the following number of local iterations,
where V is a constant [1]:

Kl(θ(t)i ) = V log2(
1

θ(t)
i

).

After Kg global iterations, the global model aggregated on the
server is w(t)

Kg . We would desire F (t)(w(t)
Kg) − F (t)(w(t)%) ≤

ε(t)g (F (t)(w(t)
0 ) − F (t)(w(t)%)), where w(t)% is the optimal

solution to the problem minw(t) F (t)(w(t)) and ε(t)g ∈ (0, 1) is
a parameter that can be called “global accuracy”. To make this
inequality hold, we conduct the following number of global
iterations [15]:

Kg(δ(t)) =
O(log(1/ε(t)g ))

1−δ(t)
,

where δ(t) = maxi∈W(t){θ
(t)
i } is the maximum local accuracy

across all the participating devices.
Auction: The server, as the auctioneer, conducts an auction

at every time slot t in the following four steps as shown
in Fig. 1. First, the server solicits bids, and each device i,
as the bidder, submits a bid in the format of {c(t)i ,B(t)

i }.
While c(t)i refers to the “bidding price”, i.e., the price the
bid would want to charge, B(t)

i contains a set of information:
the preferred local accuracy θ(t)i , the size of the local raw
data |D(t)

i | as aforementioned, Ep(t)i , i.e., the computation
energy consumed per global iteration, and Em(t)

i , i.e., the
communication energy consumed per global iteration. Second,
receiving all the bids, the server then determines the winning
bids by solving the social cost minimization problem via
our proposed algorithm. Third, the server performs the actual
federated learning process with the devices corresponding to
the selected bids. Fourth, after federated learning finishes,
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the server calculates and makes payments to the participant
devices through our proposed algorithm. In this paper, to
continuously benefit from the auctions in the long run, each
device i is also required to submit the “battery capacity” Ωi to
the server. Note that Ωi is specified by the user, which is no
greater than the real amount of the remaining battery energy,
and is the amount of energy that the device i is willing to
devote at maximum to the federated learning tasks.

We emphasize that conducting such an auction for incen-
tivizing federated learning always keeps the private data D(t)

i
at local device i, which adheres the principle of federated
learning. However, it is inevitable to exchange other data
during the whole process [10]. Consider the information
{c(t)i ,B(t)

i } transferred in the auction, we adopt the technique
of sealed-bid auction, indicating that only the auctioneer and
device i knows this bid [12]. There are related technologies,
such as differential privacy [34], which can enhance the
privacy protection by introducing noise into data, but this is
beyond the scope of this research.

Decision Variables: We focus on making two types of
decisions: x(t)

i ∈ {1, 0}, indicating whether or not the mobile
device i wins the auction and is thus chosen to participate in
the federated learning process at the time slot t; δ(t) ∈ (0, 1),
indicating the maximum local accuracy across all the partici-
pant devices which determines the number of global iterations
that need to be performed at the time slot t. Particularly, given
the global accuracy ε(t)g , we control δ(t) in order to control
the cost that is taken to achieve ε(t)g for the global model, as
elaborated below.

Cost of Mobile Devices: The total cost incurred at the
mobile devices at the time slot t is the cost that the bids want
to charge, minus any payment received from the server:

∑
t

∑
i x

(t)
i (c(t)i − r(t)i ). (1)

During federated learning, each mobile device consumes bat-
tery energy for updating the model and also sharing the model
with the server. We represent the energy consumption of
computation and communication [20] for the mobile device
i in each global iteration as

Ep(t)i = K(t)
l (θ(t)i )γi|D

(t)
i |M

and

Em(t)
i =

Mp(t)
i

B log2(1+
p
(t)
i

ph
(t)
i

N0B )

respectively, where γi is the energy consumption per unit
computation in each local iteration; M is the size of the model;
p(t)i is the required transmission power; B is the allocated
bandwidth; hp(t)i is the wireless channel gain; and N0 is the
background noise of the wireless channel.

Cost of Server: The total cost incurred at the server at the
time slot t contains the computation cost of model aggregation
K(t)

g (δ(t)) ·M · ζ(t)1 , where ζ(t)1 denotes the computation cost
per unit size of the model in a single global iteration, and the
payment to the bidders r(t)i :

∑
t

∑
i x

(t)
i

(
K(t)

g (δ(t)) ·M · ζ(t)1 + r(t)i

)
. (2)

B. Problem Formulation and Algorithmic Challenges

Formulation: We formulate the social cost minimization
problem. The “social” cost refers to the total cost of the
entire system over the entire time horizon, i.e., the sum of
(1) and (2), where the payments are canceled (but still need
to be determined based on the solution of the social cost
minimization problem, as shown later). Our formulation is

Min
∑

t

∑
i x

(t)
i

(
c(t)i +K(t)

g (δ(t)) ·M · ζ(t)1

)
(3)

s.t.
∑

t x
(t)
i K(t)

g (δ(t))(Ep(t)i + Em(t)
i ) ≤ Ωi, ∀i ∈ W (t),

(3a)

θ(t)i x(t)
i ≤ δ(t), ∀i ∈ I, ∀t ∈ T , (3b)

∑
i x

(t)
i |D(t)

i | ≥ D(t), ∀t ∈ T . (3c)

Var. x(t)
i ∈ {0, 1}, δ(t) ∈ (0, 1) , ∀i ∈ I, ∀t ∈ T .

The objective (3) minimizes the social cost. Constraint (3a)
ensures that the total energy consumption at every mobile
device over the entire time horizon respects the battery ca-
pacity. Constraint (3b) captures the definition of δ(t), i.e.,
the maximum of the local accuracy θ(t)i , ∀i. Constraint (3c)
guarantees that sufficient training data are used in the federated
learning process at each time slot, where D(t) is a pre-specified
threshold on the data volume, which can be designated by the
server or system operator based on expected quality of the
model to be trained, previous empirical experience, etc.

Challenges: Solving the formulated problem online is non-
trivial. First, the long-term constraint, i.e., Constraint (3a),
makes a major obstacle. At each time slot, it is hard to
determine whether to select a given bid, since selecting a bid
and executing federated learning can prematurely run out of
the battery of a device so that a better bid which may come
from that device in the future cannot be selected. Second,
the problem is a nonlinear mixed-integer program and NP-
hard (we omit the proof, given that the problem contains an
existing NP-hard problem, i.e., the covering problem, as a
special case), making it intractable even in the offline setting
(i.e., all the inputs over the entire time horizon are revealed in
advance), not to mention that we want to solve it in the online
setting (i.e., the inputs at a time slot is only revealed as that
time slot arrives). Third, we need to determine the payment
for each winner and guarantee truthfulness and individual
rationality, as defined later, requiring our algorithms to be
designed strategically.

C. Overview of the Proposed Mechanism

Our goal is to solve the social cost minimization problem
in polynomial time and in an online manner in order to select
the winning bids and determine the payments in each auction,
and to control and conduct the federated learning process
over time. To that end, we propose FLORA demonstrated as
Algorithm 1. FLORA invokes Algorithms 2, 3, and 4, where
the former two algorithms are described in Section IV and the
last one algorithm is described in Section V.

Algorithm 1 is the overall control algorithm and is primarily
executed at the federated learning server (except Line 6 which
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Algorithm 1: The FLORA Algorithm

1 for t+ 1, where t = 0, 1, 2, ..., |T |− 1 do

2 ! Winner Selection:

3 Invoke Algorithm 2 to get the fractional solutions;
4 Invoke Algorithm 3 to get the integral solutions;
5 ! Federated Learning:

6 Invoke the Federated Learning Algorithm (Sec. III);
7 ! Payment Allocation:

8 Invoke Algorithm 4 to calculate the payments;

is performed at both the server and the mobile devices). Al-
gorithms 2 and 3 are the Online Fractional Algorithm and the
Randomized Rounding Algorithm, as in Lines 3 and 4 of Algo-
rithm 1, respectively, jointly determine the winning bids, while
overcoming the challenges of the long-term constraint and
the intractability. The Online Fractional Algorithm outputs the
fractional results which provably guarantee the vanishing time-
average violation of the long-term constraint. The Randomized
Rounding Algorithm takes the fractional results as inputs and
rounds them into integers with provably no violation of other
instantaneous constraints. These two algorithms also lead to
a vanishing time-average difference between the social cost
incurred by our produced online solutions and that incurred
by the offline optimum. Algorithm 4 allocates the payment
in Line 8, leveraging the randomization and the outputs of
Algorithm 3, and can be proven to achieve the properties of
both truthfulness and individual rationality.

IV. ONLINE SOCIAL COST MINIMIZATION

For solving our formulated problem, we design an online
algorithm to obtain the fractional solutions and then a random-
ized rounding algorithm to convert the fractional bid-selection
decisions to integers. For analyzing the performance of our
proposed algorithms, we define two performance metrics,
i.e., the dynamic regret and the dynamic fit, and finally we
rigorously prove their sublinearity.

A. Online Fractional Algorithm

We relax the bid-selection variables to the real domain and
adopt a concise representation for our problem formulation.
First, we normalize O(log(1/ε(t)g )) to 1, as the global accuracy
ε(t)g is a constant at t, so that Kg(δ(t)) = 1

1−δ(t)
. We de-

note the decision variables as X(t) = [x(t)
1 , ..., x(t)

I ,Kg(δ(t))]
(δ(t) can be derived from Kg(δ(t)), as we solve Kg(δ(t))),
and we can express the objective function as f (t)(X(t)) =∑

i∈I x(t)
i

(
c(t)i +Kg(δ(t)) ·M · ζ(t)1

)
. We also introduce

some new notations: g(t)i = x(t)
i Kg(δ(t))E

(t)
i − Ωi

T , where
E
(t)
i = Ep(t)i +Em(t)

i ; g(t)I+i = θ(t)i x(t)
i Kg(δ(t))−Kg(δ(t))+1,

∀i ∈ {1, ..., I}; g(t)(X(t)) = [g(t)1 , ..., g(t)I , g(t)I+1, ..., g
(t)
2I ]

#;
h(t)(X(t)) =

∑
i∈I x(t)

i |D(t)
i | − D(t). Then, we reformulate

the relaxed problem as follows:

Min
∑

t∈T f (t)(X(t)) (4)

s.t.
∑

t∈T g(t)(X(t)) ) 0 (4a)

h(t)(X(t)) ≥ 0 (4b)

Var. X(t) ∈ X = {X(t)|x(t)
i ∈ [0, 1], ∀i;Kg(δ(t)) > 1}.

Solving the above problem (4) is equivalent to solving its
min-max version of the problem, which can be expressed as

MinX(t)Maxλ(t)

∑
t(f

(t)(X(t)) + λ(t)#g(t)(X(t))) (5)

s.t. h(t)(X(t)) ≥ 0,X(t) ∈ X .

We denote L(t)(X,λ) := f (t)(X)+λ(t)#g(t)(X), where λ(t)

is the corresponding Lagrange multiplier at t.
We design our online algorithm for the problem (5) now

by adopting a standard dual ascent step at t + 1 to update
the dual variable λ(t+1), and a modified descent step to
minimize L(t)(X,λ(t+1)) with respect to the primal variable
X. With X̃(t), where X̃(t) = [x̃(t)

1 , ..., x̃(t)
I ,Kg(δ(t))] denotes

the (fractional) primal solution solved at t, the dual solution
can be calculated as follows at t+ 1:

λ(t+1) = [λ(t) + µg(t)(X̃(t))]+, (6)

where µ is the (positive) step size, g(t)(X̃(t)) =
∇λL(t)(X̃(t),λ(t)) is the gradient of L(t)(X̃,λ) given λ =
λ(t). Afterwards, we can obtain the (fractional) primal solution
X̃(t+1) by solving the following problem at t + 1 (note that
this problem is in the real domain):

Min ∇f (t)(X̃(t))#(X− X̃(t)) + λ(t+1)#g(t)(X) +
‖X−X̃(t)‖2

2α

s.t. h(t)(X) ≥ 0,X ∈ X̃ , (7)

where α is a predefined constant and ∇f (t)(X̃(t)) is the
gradient of f (t)(X) at X = X̃(t). Through such ascent-
descent steps, the primal variable and the dual variable, X(t+1)

and λ(t+1), can be solved at each time slot t + 1 using
only the information known so far (and we do not even
require f (t+1) when solving for X̃(t+1)), rather than the
unknown future information. We approximate L(t)(X,λ(t+1))
by ∇f (t)(X̃(t))#(X − X̃(t)) plus λ(t+1)#g(t)(X), and the
regularization term 1

2α‖X−X̃(t)‖2 is a proximal term. The for-
mulation of the problem (7) is not conventional, which is the
key enabler for our performance analysis later. This algorithm
is shown as Algorithm 2. Algorithm 2 is polynomial-time,
since the problem (7) can be solved using optimization tool
which finds the ε-accurate optimal solution in O(I2 log(1/ε))
iterations [36] by the interior point method.

Algorithm 2: Online Fractional Algorithm

Input: Fractional solution X̃(t); dual solution λ(t)

Output: Fractional solution X̃(t+1)

1 Calculate λ(t+1) according to (6);
2 Calculate X̃(t+1) by solving the problem (7) optimally.

B. Randomized Rounding Algorithm

We design Algorithm 3 to convert the fractional solutions
[x̃(t)

1 , ..., x̃(t)
I ] from Algorithm 2 into integers [x̄(t)

1 , ..., x̄(t)
I ]

in a “randomized” manner (Kg(δ(t)) is real and does not
need to be rounded), ensuring the following aims: (1) every
fraction x̃(t)

i rounded to an integer x̄(t)
i ; (2) no violation of

constraints after rounding, i.e.,
∑

i∈I x̄(t)
i |D(t)

i | ≥ D(t); (3)
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the expectation preserved after rounding, i.e., E(x̄(t)
i ) = x̃(t)

i .
Preserving the expectation is the key to designing randomized
auctions. Algorithm 3 is composed of the two components
of fractions scaling, which adjusts the current value of every
fraction, and fractions rounding, which picks up a pair of
fractions in each iteration and rounds them to the opposite
directions (i.e., rounding up vs. rounding down) so that their
(weighted) sum stays unchanged. We introduce some auxiliary

notations: X̃′
(t)

= [x̃′
(t)

1 , ..., x̃′
(t)

I ] refers to the intermediate

results after fractions scaling; X̃′′
(t)

= [x̃′′
(t)

1 , ..., x̃′′
(t)

I ] refers
to the intermediate results during fractions rounding.

Algorithm 3: Randomized Rounding Algorithm

Input: Fractions [x̃(t)
1 , ..., x̃(t)

I ]

Output: Integers [x̄(t)
1 , ..., x̄(t)

I ]
1 ! Fractions scaling
2 Define W̃(t) = [x̃(t)

1 · |D(t)
1 |, ..., x̃(t)

I · |D(t)
I |],

η = 1#W̃(t);
3 ω1 = %η&

η ,ω2 = 'η(
η ;

4 With probability η − *η+, set

X̃′
(t)

= [ω1 · x̃
(t)
1 , ...,ω1 · x̃

(t)
I ];

5 With probability ,η- − η, set

X̃′
(t)

= [ω2 · x̃
(t)
1 , ...,ω2 · x̃

(t)
I ];

6 Define I ′ = I\{i|x̃′
(t)

i ∈ {0, 1}};
7 ! Fractions rounding
8 while I ′ .= ∅ do

9 Select i1, i2 ∈ I ′, i1 .= i2, define k =
|D(t)

i1
|

|D(t)
i2

|
;

10 ρ1 = min{1− x̃′
(t)

i1 , 1
k x̃

′
(t)

i2 },

ρ2 = min{ 1
k (1− x̃′

(t)

i2 ), x̃′
(t)

i1 };
11 With probability ρ2

ρ1+ρ2
,

12 set x̃′′
(t)

i1 = x̃′
(t)

i1 + ρ1, x̃′′
(t)

i2 = x̃′
(t)

i2 − kρ1;
13 With probability ρ1

ρ1+ρ2
,

14 set x̃′′
(t)

i1 = x̃′
(t)

i1 − ρ2, x̃′′
(t)

i2 = x̃′
(t)

i2 + kρ2;

15 if x̃′′
(t)

i1 ∈ {0, 1}, then set

x̄(t)
i1

= x̃′′
(t)

i1 , I ′ = I ′\{i1};

16 else set x̃′
(t)

i1 = x̃′′
(t)

i1 ;

17 if x̃′′
(t)

i2 ∈ {0, 1}, then set

x̄(t)
i2

= x̃′′
(t)

i2 , I ′ = I ′\{i2};

18 else set x̃′
(t)

i2 = x̃′′
(t)

i2 ;

We explain Algorithm 3 with some details as follows. ω1

and ω2 in Line 3 are the amplification factor and the reduction
factor, respectively, resulting in either increasing each fraction
x̃(t)
i in Line 4 or decreasing it in Line 5. For Line 4, because

of x̃′
(t)

i ≥ x̃(t)
i , we have

∑
i∈I x̃′

(t)

i |D(t)
i | ≥ D(t). For Line

5, because of ω2 = 'η(
η ,

∑
i∈I ω2x̃

(t)
i |D(t)

i | = *η+ ≥ D(t),

and x̃′
(t)

i = ω2x̃
(t)
i , we have

∑
i∈I x̃′

(t)

i |D(t)
i | ≥ D(t).

Consequently, we can have E(x̃′
(t)

i ) = (η − *η+)ω1x̃
(t)
i +

(,η- − η)ω2x̃
(t)
i = ,η-x̃(t)

i − *η+x̃(t)
i . If η is an integer, then

E(x̃′
(t)

i ) = 0; otherwise, E(x̃′
(t)

i ) = ,η-x̃(t)
i − *η+x̃(t)

i =
x̃(t)
i . In Line 8 through 18, we select a pair of fractions

and round them in either Line 11-12 or Line 13-14. To
guarantee no constraint violation, note that we have, for

example, x̃′′
(t)

i1 |D(t)
i1

| + x̃′′
(t)

i2 |D(t)
i2

| = (x̃′
(t)

i1 + ρ1)|D
(t)
i1

| +

(x̃′
(t)

i2 − kρ1)|D
(t)
i2

| = x̃′
(t)

i1 |D(t)
i1

| + x̃′
(t)

i2 |D(t)
i2

|. To preserve

the expectation, we have, for every i, that E(x̃′′
(t)

i ) = (η −
*η+) ρ2

ρ1+ρ2
(ω1x̃

(t)
i +ρ1)+(η−*η+) ρ1

ρ1+ρ2
(ω1x̃

(t)
i −ρ2)+(,η-−

η) ρ′

2
ρ′
1+ρ′

2
(ω2x̃

(t)
i + ρ′1) + (,η- − η) ρ′

1
ρ′
1+ρ′

2
(ω2x̃

(t)
i − ρ′2) = x̃(t)

i ,

and it is the same for the other case (i.e., x̃′′
(t)

i changes to

x̃′′
(t)

i −kρ1 and x̃′′
(t)

i +kρ2). ρ′1 and ρ′2 are computed similarly
as ρ1 and ρ2. Algorithm 3 has the time complexity of O(I).
We need I iterations for the loop at most, because at least one
fraction is rounded in each iteration and there are I fractions
to be rounded at most.

C. Regret and Fit Analysis

Dynamic Regret and Dynamic Fit: We introduce “dynamic
regret” and “dynamic fit” [22], [25] as the performance metrics
for our algorithms.

The dynamic regret measures the cumulative difference
between the objective evaluated with the online solutions and
the offline optimum. The dynamic regrets with regards to our
original problem and its relaxed problem are as follows:

Dreg(T ) := E[
∑T

t=1 f
(t)(X̄(t))]−

∑T
t=1 f

(t)(X(t)∗),

D̃reg
(T )

:=
∑T

t=1 f
(t)(X̃(t))−

∑T
t=1 f

(t)(X̃(t)∗),

where X(t)∗ is the mixed-integer optimal solution, X(t)∗ ∈
argminX(t)∈X (t) f (t)(X(t)), and X̃(t)∗ is the fractional opti-
mal solution, X̃(t)∗ ∈ argminX(t)∈X̃ (t) f (t)(X(t)). Their cor-
responding domains are X (t) := {X|g(t)(X) ) 0, h(t)(X) ≥
0;x(t)

i ∈ {0, 1}, ∀i;Kg(δ(t)) > 1}; X̃ (t) := {X|g(t)(X) )
0, h(t)(X) ≥ 0;x(t)

i ∈ [0, 1], ∀i;Kg(δ(t)) > 1}.
The dynamic fit measures the cumulative violation of the

long-term constraints evaluated with the online solutions. The
dynamic fit with regards to our original problem and its relaxed
problem are as follows, where [·]+ = max{·, 0}:

Dfit(T ) := ‖[E[
∑T

t=1 g
(t)(X̄(t))]]+‖,

D̃fit
(T )

:= ‖[
∑T

t=1 g
(t)(X̃(t))]+‖.

Regret and Fit Analysis: Our analysis is to rigorously show
that both the dynamic regret and the dynamic fit evaluated with
the online solutions from Algorithm 3 (which takes the output
of Algorithm 2 as input) with regards to our original problem
grow only sublinearly along with the length of the entire time
horizon T . Towards that end, we make some assumptions that
are also often made for a wide range of similar problems in
general [6], [21], [22], [25]: (1) the functions f (t)(X̃) have
bounded gradients on X̃ , i.e., ‖∇f (t)(X̃)‖ ≤ G, and g(t)(X̃)
is also bounded on X̃ , i.e., ‖g(t)(X̃)‖ ≤ D, ∀t; (2) the radius
of the convex feasible set X̃ is bounded, i.e., ‖X̃1 − X̃2‖ ≤
R, ∀X̃1, X̃2 ∈ X̃ ; (3) there exists a constant ε > 0 and an
interior point X̂ ∈ X̃ , such that g(t)(X̂) ) −ε1, ∀t; (4) the
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slack constant ε is larger than the point-wise maximal variation
of the consecutive constraints, i.e., ε > V̄(g), where V̄(g) =
maxt Vg(t) and Vg(t) = maxX̃∈X̃ ‖[g(t+1)(X̃) − g(t)(X̃)]+‖.
Based on all these assumptions, we derive the following results
to quantify the dynamic regret and the dynamic fit:

Theorem 1. We have Dreg(T ) ≤ D̃reg
(T )

and Dfit(T ) ≤

D̃fit
(T )

+Nσβ
β , where N and σβ

β are constants from Jensen

Gap [37].

Proof. See Appendix A.

Theorem 2. The dynamic regret can be yielded as Dreg(T ) ≤

D̃reg
(T )

≤
R2+RVT

x̃(t)∗

α + TµD2

2 + 2αG2T + 2α[(D2 −
(Ωmax

T )2)4]VT
λ(t) , where VT

λ(t) =
∑T

t ‖λ(t)‖2 and VT
X̃(t)∗

=
∑T

t=2 ‖X̃
(t−1)∗ − X̃(t)∗‖. The dynamic fit can be yielded as

Dfit(T ) ≤ D̃fit
(T )

+ Nσβ
β ≤ ‖λ‖

µ + Nσβ
β , where ‖λ‖ =

µD +
2GR+R2/(2α)+(µD2)/2

ε−V̄(g)
.

Proof. See Appendix B.

Corollary 1. The dynamic regret and the dynamic fit can be

written as follows, for α = µ = max{

√
VT

X̃(t)∗

T ,

√
VT

λ(t)

T }:

Dreg(T ) ≤ O(max{
√
VT
X̃(t)∗

T ,
√
VT
λ(t)T}),Dfit(T ) ≤

O(max{ T
VT

X̃(t)∗
, T
VT

λ(t)
}) + Nσβ

β . If we further set α =

µ = O(T− 1
3 ), they can be expressed respectively as:

Dreg(T ) ≤ O(max{VT
X̃(t)∗

T
1
3 ,VT

λ(t)T
− 1

3 , T
2
3 }),Dfit(T ) ≤

O(T
2
3 ) +Nσβ

β .

V. ONLINE PAYMENT ALLOCATION

We design the payment allocation algorithm for calculating
the remuneration for the selected bidders. We also define
truthfulness and individual rationality, and prove that our
proposed approach satisfies these two economic properties.

A. Payment Allocation Algorithm

Algorithm 4 presents the payment calculation in our online
auction mechanism. The auctions are randomized, because we
determine the winning bids in each auction by Algorithm 3
in a randomized manner. Using x̃(t)

i (c(t)i , c(t)−i) to denote the
fractional solutions output by Algorithm 2 where the bid i
reports its cost as c(t)i and the other bids report c(t)−i, we take an
integral up to the upper bound of κ(t)

i = V log2(
1

θ(t)
i

)Mζ(t)1 +

|D(t)
i |ζ(t)2 , where ζ(t)1 has been explained before and ζ(t)2 can

be the estimated unit valuation of the training data as if
such data were offered by the server itself. This upper bound
captures the maximum unit payment the server can tolerate
and can make to the corresponding bid. Algorithm 4 has the
time complexity of O(I ·n ·I2 log(1/ε)). For the first loop, we
have I iterations. In each iteration, to calculate the numerical
integration, we suppose we divide the range of κ(t)

i −c(t)i into
n segments and for each segment we need to use Algorithm
2 to obtain the fractional bid-selection decision x̃(t)

i (c, c(t)−i).

Algorithm 4: Payment Allocation Algorithm

Input: Winner set [x̄(t)
1 , ..., x̄(t)

I ]

Output: payment r(t)i , ∀i
1 for i, where x̄(t)

i = 1 do

2 Set r(t)i = c(t)i x̃(t)
i (c(t)i , c(t)−i) +

∫ κ
(t)
i

c(t)i

x̃(t)
i (c, c(t)−i)dc;

3 for i, where x̄(t)
i = 0 do

4 Set r(t)i = 0;

B. Economic Properties Analysis

We define “utility”, and based on it, we define “truthfulness”
and “individual rationality” as the two economic properties.

Definition 1. Utility. The utility of the bid i at the time slot t
is

ui(b
(t)
i , b(t)−i) =






r(t)i (b(t)i , b(t)−i)− c(t)i E(x̄(t)
i (b(t)i , b(t)−i)),

if x̄(t)
i = 1

0 , otherwise

where b(t)i is the bidding price, b
(t)
−i refers to the bidding prices

of all the other bids except the bid i.

Definition 2. Truthfulness. A randomized auction is truthful

in expectation if every bid i maximizes its expected utility by

bidding its truth cost c(t)i , i.e., ui(c
(t)
i , b(t)−i) ≥ ui(b

(t)
i , b(t)−i).

Definition 3. Individual Rationality. A randomized auction is

individually rational in expectation if every bid i always has

a non-negative utility, i.e., ui(b
(t)
i , b(t)−i) ≥ 0.

Truthfulness and Individual Rationality Analysis: We
present the following theorem, which firstly states the suffi-
cient and necessary conditions [38] for a randomized auction
to become truthful and individually rational and then high-
lights that our proposed auction meets such conditions indeed.

Theorem 3. A randomized auction is truthful and indi-

vidually rational in expectation by satisfying the following

conditions: (1) E(x̄(t)
i ) is monotonically non-increasing in

c(t)i , ∀i; (2)
∫∞
0 E(x̄(t)

i )dc < ∞, ∀i; (3) the payment is

in the form as follows: r(t)i = c(t)i E(x̄(t)
i (c(t)i , c(t)−i)) +∫∞

c(t)i
E(x̄(t)

i (c, c(t)−i))dc, ∀i. Our proposed auction meets these

conditions.

Proof. See Appendix C.

Note that the key to satisfy the conditions in Theorem 3 is
to ensure E(x̄(t)

i ) = x̃(t)
i , ∀i, where x̃(t)

i , ∀i is the fractional
solution optimally solved from the one-slice problem at t. We
achieve this jointly through our Online Fractional Algorithm
and our Randomized Rounding Algorithm.

VI. EXPERIMENTAL STUDY

In this section, we conduct multiple trace-driven experi-
ments to evaluate the performance of our proposed FLORA

and interpret all the experimental results.
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A. Experimental Settings

Training Data and Tasks: We utilize the handwritten digit
classification dataset, MNIST [39], and the image classifi-
cation dataset, Fashion-MNIST [40] for federated learning.
Both datasets contain 28×28 gray-scale images in 10 classes,
a training set of 60,000 examples and a test set of 10,000
examples. We summarize the specific training tasks in our
experiments as follows.
MNIST_MLP: This task trains Multi-Layer Perception

(MLP) model on MNIST. The MLP is composed as follows:
a fully connected layer as the input layer; followed by ReLU
activation; a drop-out layer with d = 0.5 (i.e., dropout rate);
another fully connected layer as the hidden layer; and a final
softmax output layer.
MNIST_CNN: This task trains Convolutional Neural Net-

work (CNN) model on MNIST. The CNN consists of the
following structure: two 3×3 convention layers (the first layer
with 16 channels and the second layer with 32 channels), each
followed by ReLU activation and 2×2 max pooling; a fully
connected layer; and a final softmax output layer.
FMNIST_MLR: This task trains Multinomial Logistic Re-

gression (MLR) model on Fashion-MNIST. The MLR model
consists of a fully connected layer and a softmax output layer.

Server, Devices, and Bids: We set one federated learning
server, and vary the number of mobile devices as |I| = 10 ∼
80. We consider a time horizon of |T |=6000 minutes, with
60 minutes as one time slot. We set most of the inputs as
values randomly taken from realistic ranges: the asking price
c(t)i for each round of local iteration is from [5, 15]$; the energy
per unit communication γi is from [0.04, 0.08] mWh; the cost
per unit computation ζ(t)1 is from [0.02, 0.04]$; the battery
capacity Ωi is from [20, 150] Wh; the valuation per unit data
at the server ζ(t)2 is from [0.2, 0.3] $/Mbits; the local accuracy
θ(t)i is from [0.2, 0.9] [1]; the transmission power p(t)i is from
[2, 20] dBm; and the channel gain hp(t)i is from [−90,−95]
dB [1]. We assume that the noise power spectral density is
N0 = −174 dBm/Hz [6] and that the bandwidth B is 25 kHz.

Federated Learning: We emulate the federated learning
by executing different image classification tasks, where we
execute a single task in each single time slot.

• Implementation: We implement the federated learning al-
gorithm shown in Section III, and construct the federated
learning framework using PyTorch [41] (Version 1.7.0) as
the training pipeline. We conduct our experiments on a
desktop server with an Intel Xeon E5 CPU, 32GB RAM,
2TB HDD, 512GB SSD, and the Linux Ubuntu 16.04
operating system.

• Data Distribution: To capture the heterogeneous nature
of the federated learning environment, we note that the
training data a client has may not be representative for
the data’s population distribution and that the amount
of data each client has may also be different. Thus, we
partition the entire dataset and assign the partitions to the
clients as in the “non-IID and unbalanced” setting and the
“IID and balanced” setting [42], respectively, where “IID”
refers to “Independent and Identically Distributed”. For
the unbalanced distribution, we assign different amounts

of data according to the power law [43]. For the non-
IID distribution, we assign each client the samples with 3
labels for the MNIST dataset and 4 labels for the Fashion-
MNIST dataset. Due to the power law we use, the range
of the amount of the data samples used in our experiments
is from [30, 4380] for MNIST and [37, 1133] for Fashion-
MNIST [43]. We train each model on the entire 10,000
test samples.

• Hyperparameters: We use the Negative Log Likelihood
Loss (NLLLoss) function as our loss function. We set the
batch size of data as 20 and the hyper-learning rate [33] as
0.07. For the learning tasks MNIST_MLP, MNIST_CNN,
and FMNIST_MLR, we set the corresponding learning
rates as 0.003, 0.0002, and 0.001, respectively.

Control Algorithms: We implement and compare multiple
approaches that select bids and control federated learning over
time: (1) FLORA, our online approach proposed in this paper;
(2) Random_FL, the algorithm that selects bids randomly at
each time slot until the total amount of training data reaches
the required threshold; (3) Greedy_FL, the algorithm that
always select the bids with the lowest energy consumption
per global iteration, regardless of the social cost, at each time
slot; (4) Fixed_FL [44], the algorithm that selects the bid
i whose asking price is no more than pf · |D(t)

i |, where pf
is the fixed price for one unit of data size; (5) NoA_FL, the
algorithm that uses all the available bids at each time slot
without selection; (6) Offline, the approach that knows all
the inputs over the entire time horizon in advance and solves
social cost minimization for the fractional solutions via the
optimization solver CasADi [45]. Here, note that solving our
nonlinear mixed-integer program with state-of-the-art solvers
still takes unacceptably long time; thus, we use the offline
optimal fractional solutions as a lower bound for the offline
optimal mixed-integer solutions to our problem.

B. Experimental Results

Social Cost: Fig. 2 visualizes the normalized cumulative
social cost of different algorithms across continuous time
slots when the number of bids and the target accuracy are
fixed. We observe that our FLORA algorithm shows a slower
growth trend in terms of the cumulative social cost than
Random_FL, Greedy_FL and Fixed_FL, and is closer to
the performance of the Offline algorithm.

Scalability: Fig. 3 depicts the normalized cumulative social
cost of different algorithms as the function of the number
of the bidders. FLORA beats Random_FL, Fixed_FL and
Greedy_FL, saving up to 38.9%, 29.0% and 42.1% social
cost on average, respectively. We see that the more participants
there are, the more opportunities the server has with FLORA

in choosing the winning bids with high quality and low price
to reduce the social cost of the entire system, which validates
the scalability of our approach.

Individual Rationality and Truthfulness: Fig. 4 and Fig.
5 exhibit two randomly-chosen bids with their received pay-
ments. In Fig. 4, through auctions in different time slots, the
received payment is always no less than the bidding price (and
the payment is zero by default when a bid loses in an auction).
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Fig. 2: Social cost Fig. 3: Scalability Fig. 4: Payment vs. cost

Fig. 5: Utility Fig. 6: Dynamic regret & fit Fig. 7: Algorithm running time

Thus, individual rationality is achieved. In Fig. 5, we see that
if a bid bids the price other than its true cost (given all the
other bids unchanged), it cannot achieve the maximum utility.
Thus, truthfulness is achieved.

Dynamic Regret and Dynamic Fit: Fig. 6 shows the
dynamic regret and the dynamic fit for all the algorithms, as
the length of the entire time horizon changes. FLORA presents
the lowest dynamic regret and fit. This figure also confirms
that both the regret and the fit of FLORA grow sublinearly in
practice along with time, aligning with our theoretical analysis.

Algorithm running time: Fig. 7 depicts the execution
time of our Online Fractional Algorithm (i.e., Algorithm 2),
Randomized Rounding Algorithm (i.e., Algorithm 3), and
Payment Allocation Algorithm (i.e., Algorithm 4). Even as the
number of bidders reaches 80, Algorithm 2, 3, and 4 can finish
within 2.2s, 0.5s, and 7min for each auction, respectively. Our
proposed algorithms are computationally efficient in practice.
We consider such execution time negligible in realistic sce-
narios, compared to the time duration of a single time slot.

Empirical Quality of Models: Fig. 8 presents the inference
accuracy and the loss of the models trained by FLORA and
output at each time slot in the non-IID and unbalanced setting
and the IID and balanced setting, respectively, validating the
robustness and applicability of FLORA in the heterogeneous
federated learning environment. The results are obtained for
the same global iterations (Kg = 500), local iterations
(Kl = 10), and clients (|I| = 100) for the training tasks of
MNIST_MLP, MNIST_CNN, and FMNIST_MLR. The results
show a good convergence trend, even in the non-IID and
unbalanced setting, and indicate that FLORA can always
control federated learning to achieve satisfiable inference
accuracy and loss. Here, note that, we are not doing any
fine tune of the (hyper)parameters of MLP, CNN, and MLR
models; the inference accuracy and loss can be made even

better if one continues to tune such (hyper)parameters. In
the non-IID and unbalanced setting, the average inference
accuracy of MNIST_MLP, MNIST_CNN, and FMNIST_MLR is
85.78%, 83.72% and 78.35%, respectively; in the IID and bal-
anced setting, the average inference accuracy of MNIST_MLP,
MNIST_CNN, and FMNIST_MLR is 90.13%, 84.02% and
80.45%, respectively, which validating that FLORA ensures
low loss and high accuracy across different training tasks with
the different data distribution.

Social Cost and Training Time: We present our experi-
mental results on the social cost for different training tasks
and the total training time consumed by federated learning
over an entire process of model training for the five algo-
rithms, FLORA, Random_FL, Greedy_FL, Fixed_FL and
NoA_FL, respectively. We set |I| = 100 clients with the target
global accuracies of 0.82, 0.80, and 0.78 for MNIST_MLP,
MNIST_CNN, and FMNIST_MLR, respectively. Fig. 9 demon-
strates that our algorithm can always guarantee the lowest
social cost. Fig. 10 presents the comparison of total training
time, decided by the local iterations and the global iterations.
For reaching the same target global accuracy, the shorter the
training time is, the higher the training efficiency is.

VII. CONCLUSION

In this paper, we conduct an algorithmic study of incentiviz-
ing mobile devices to participate in federated learning, subject
to their long-term energy constraints. We design a mechanism
of repetitive auctions, jointly using three algorithms to select
the winning bids and allocating the corresponding payments
in an online and randomized manner without requiring the
knowledge of any future inputs. We formally prove the sublin-
ear regret and fit for our approach regarding its long-term per-
formance, and prove the economic properties of truthfulness
and individual rationality regarding each single auction. We
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Fig. 8: Accuracy and loss in the IID and balanced setting and the non-IID and unbalanced setting

Fig. 9: Social cost Fig. 10: Training time

have also carried out extensive experiments and demonstrated
the results in many different aspects to validate the practical
performance of our proposed approach.

APPENDIX

A. Proof of Theorem 1

We derive the relationship between Dreg(T ) and D̃reg
(T )

as

E[
T∑

t=1

f(X(t))]−
T∑

t=1

f(X(t)∗)
8(a)
=

T∑

t=1

f(E[X(t)])−
T∑

t=1

f(X(t)∗)

=
T∑

t=1

f(X̃(t))−
T∑

t=1

f(X(t)∗) +
T∑

t=1

f(E[X(t)])−
T∑

t=1

f(X̃(t))

8(b)
≤

T∑

t=1

f(X̃(t))−
T∑

t=1

f(X̃(t)∗) = D̃reg
(T )

, (8)

where 8(a) holds by the linearity of f(X(t)), 8(b) holds due
to E[X(t)] = X̃(t) which ensured by randomized rounding
algorithm and the fact that the objective value conducted by
integer optimum is more than fractional optimum. We derive
dynamic fit Dfit(T ) as

Dfit(T ) =

∥∥∥∥∥[E[
T∑

t=1

g(t)(X(t))]]+

∥∥∥∥∥
9(a)
≤

∥∥∥∥∥E[
T∑

t=1

g(t)(X(t))]

∥∥∥∥∥

9(b)
≤

∥∥∥∥∥

T∑

t=1

g(t)(E[X(t)]) +Nσβ
β

∥∥∥∥∥ =

∥∥∥∥∥

T∑

t=1

g(t)(X̃(t)) +Nσβ
β

∥∥∥∥∥

≤

∥∥∥∥∥

T∑

t=1

g(t)(X̃(t))

∥∥∥∥∥+
∥∥∥Nσβ

β

∥∥∥ = D̃fit
(T )

+Nσβ
β , (9)

where 9(a) follows that the value of 2-Norm will decrease due
to all the negative values are set to 0 by using [·]+ = max{·, 0}.
Jensen Gap, the linearity of g(t)(X(t)) and the unchanged
expectation property holds by the randomized rounding al-
gorithm guarantee 9(b), where N and σβ

β are the constants
introduced by Jensen Gap [6], [37].

Lemma 1. Under the all assumption, for and X̃
(t)

∈ X̃
(t), we

have

∇XL(t)(X̃(t),λ(t))(X̃(t) − X̃
(t)∗) (10)

≤
[
∥∥∥X̃(t)∗−X̃(t)

∥∥∥
2
−
∥∥∥X̃(t)∗−X̃(t+1)

∥∥∥
2
]

2α
+

α[
∥∥∥∇X(t)L(t)(X̃,λ(t))

∥∥∥
2
]

2
.

The corresponding bound for the dual variables holds:

∇XL(t)(X̃(t),λ(t))(X̃(t) − X̃
(t)∗) (11)

≤
[
∥∥λ− λ(t)

∥∥2 −
∥∥λ− λ(t+1)

∥∥2]
2µ

+
µ[
∥∥∥∇λL(t)(X̃(t),λ(t))

∥∥∥
2
]

2
.

Proof. Given the primal input X̃(t)" and dual iterate λ(t), the
optimal decision X̃(t+1) at t+ 1 is obtained by

min
X̃(t)∈X̃ (t)

∇XL
(t)(X̃(t),λ(t))(X̃(t) −X̃

(t)") +
1

2α
‖X̃(t)−X̃

(t)"‖2,

s.t. h(t)(X̃(t)) ≥ 0

So, the optimal condition implies [25]

(X̃(t)"−X̃
(t+1)) · (α∇XL(t)(X̃(t),λ(t)) + X̃

(t+1)−X̃
(t)) ≥ 0. (12)

Firstly, we focus on the item α(X̃(t) − X̃(t)")∇XL(X̃(t),λ(t)):

α(X̃(t) − X̃
(t)")∇XL(X̃(t),λ(t)) (13)

=α(X̃(t+1) − X̃
(t)")∇XL(X̃(t),λ(t))+

α(X̃(t) − X̃
(t+1))∇XL(X̃(t),λ(t))

13(a)
≤ α(X̃(t) − X̃

(t+1))∇XL(X̃(t),λ(t))+

(X̃(t)" − X̃
(t+1))(X̃(t+1) − X̃

(t)),

where 13(a) holds by the inequality (12). For α(X̃(t) −
X̃(t+1))∇XL(t)(X̃(t),λ(t)), we have

α(X̃(t) − X̃
(t+1))∇XL(t)(X̃(t),λ(t)) (14)

14(a)
≤ α‖X̃(t) − X̃

(t+1)‖‖∇XL(t)(X̃(t),λ(t))‖

14(b)
≤

1

2
‖X̃(t) − X̃

(t+1)‖2 +
α2

2
‖∇XL(t)(X̃(t),λ(t))‖2.
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According to Cauchy-Schwartz inequality, we obtain 14(a).
14(b) holds by YoungâĂŹs inequality. Then we focus on
(X̃(t)" − X̃(t+1))(X̃(t+1) − X̃(t)) , we have

(X̃(t)" − X̃
(t+1))(X̃(t+1) − X̃

(t)) (15)

≤
1

2
‖X̃(t)" − X̃

(t)‖2 −
1

2
‖X̃(t+1) − X̃

(t)‖2 −
1

2
‖X̃(t)" − X̃

(t+1)‖2.

Based on the above, we can get (10) by plugging (14) and
(15) into (13). Next, we continue the proof of (11): ‖λ −
λ(t+1)‖2 = ‖λ − [λ(t) + µ∇λL(t)(X̃(t),λ(t))]‖2 ≤ ‖λ − λ(t)‖2 −
2µ(λ − λ(t))∇λL(t)(X̃(t),λ(t)) + µ2‖∇λL(t)(X̃(t),λ(t))‖2. Finally
we rearrange the sequence, then obtain

∇λL
(t)(X̃(t),λ(t))(λ− λ

(t))

≤
1

2µ

[
‖λ− λ

(t)‖2 − ‖λ− λ
(t+1)‖2

]
+

µ

2

[
‖∇λL

(t)(X̃(t),λ(t))‖2
]
.

Lemma 2. Under the all assumptions and the update of primal
and dual variables according to Algorithm 1, we have

L(t)(X̃(t),λ)− L(t)(X̃(t)∗,λ(t))

≤

[∥∥∥X̃(t)∗−X̃(t)
∥∥∥
2
−

∥∥∥X̃(t)∗−X̃(t+1)
∥∥∥
2
]

2α
+

α

[∥∥∥∇XL(t)(X̃,λ(t))
∥∥∥
2
]

2

+

[∥∥λ−λ(t)
∥∥2−

∥∥λ−λ(t+1)
∥∥2
]

2µ
+

µ

[∥∥∥∇λL(t)(X̃(t),λ(t))
∥∥∥
2
]

2
.

Proof. According to the convexity of L(t)(X̃(t),λ(t))
w.r.t. λ(t) and the concavity of L(t)(X̃(t),λ) w.r.t.
λ, we have L(t)(X̃(t),λ(t)) − L(t)(X̃(t)∗,λ(t)) ≤
∇XL(t)(X̃(t),λ(t))(X̃(t) − X̃(t)∗),L(t)(X̃(t),λ)− L(t)(X̃(t),λ(t)) ≤
(λ − λ(t))#∇λL(t)(X̃(t),λ(t)). Sum the above two inequalities,
we obtain

L(t)(X̃(t),λ)−L(t)(X̃(t)∗,λ(t)) (16)

≤∇XL(t)(X̃(t),λ(t))(X̃(t)−X̃
(t)∗)+(λ− λ

(t))#∇λL
(t)(X̃(t),λ(t))

16(a)
≤

1

2α
(‖X̃(t)∗−X̃(t)‖2−‖X̃(t)∗−X̃(t+1)‖2)

+
α

2
(‖∇XL(t)(X̃,λ(t))‖2)

+
1

2µ
(‖λ−λ(t)‖2−‖λ−λ

(t+1)‖2)+
µ

2
(‖∇λL

(t)(X̃(t),λ(t))‖2),

where 16(a) holds by Lemma 1.

Lemma 3. We get the result over the entire time span under
Lemma 1:

∑

t

L(t)(X̃(t),λ)−
∑

t

L(t)(X̃(t)∗,λ(t))

≤
R2 +RVT

x̃(t)∗

α
+
‖λ‖2

2µ
+

TµD2

2

+ 2αG2T+2α[(D2−(
Ωmax

T
)2)4]VT

λ(t) ,

where VT
λ(t) =

∑
t ‖λ

(t)‖2.

Proof. Firstly, we focus on the term ‖g(t)(X̃(t))‖. According
to the previous assumption (1):

‖g(t)(X̃(t))‖ ≤ D⇒‖Kg(t) · E(t)
i −

Ωi

T
‖ ≤ D,∀i (17)

⇒D2 ≥ ‖Kg(t) · E(t)
i −

Ωi

T
‖2 = (Kg(t) · E(t)

i )2 + (
Ωi

T
)2, ∀i

⇒D2 ≥ (Kg(t) · E(t)
max)

2 + (
Ωmax

T
)2

⇒(Kg(t) · E(t)
max)

2

≤D2−
Ω2

max

T 2
.

Secondly, we focus on the term ‖λ(t)∇Xg(t)(X̃(t))‖. According
to the constraints (3a) and (3b), we can get: λ(t)∇Xg(t)(X̃(t)) =

[λ
(t)
1 Kg(t)E

(t)
i , ...,λ

(t)
I Kg(t)E

(t)
i ,λ

(t)
I+1Kg(t)θ

(t)
I+1, ..,λ

(t)
2I Kg(t)θ

(t)
2I ]

‖λ(t)∇Xg(t)(X̃(t))‖ (18)

=[(λ
(t)
1 Kg(t)E

(t)
1 )2 + ...+ (λ

(t)
I Kg(t)E

(t)
I )2 + (λ

(t)
I+1Kg(t)θ

(t)
I+1)

2+

...+(λ
(t)
2I Kg(t)θ

(t)
2I )

2]
1
2

18(a)
≤ [(Kg(t)E

(t)
max)

2(λ
(t)
1

2
+ ...+ λ

(t)
2I

2
)]

1
2

=[(Kg(t)E
(t)
max)

2
∥∥∥λ(t)

∥∥∥
2
]
1
2 ≤ {[D2 − (

Ωmax

T
)2]2

∥∥∥λ(t)
∥∥∥
2
}

1
2

=[D2 − (
Ωmax

T
)2]2

∥∥∥λ(t)
∥∥∥ ,

where 18(a) is due to (17). Then we can bound
‖∇XL(t)(X̃(t),λ(t))‖2 as follows:

‖∇XL(t)(X̃(t),λ(t))‖2 = ‖∇Xf (t)(X̃(t)) + λ
(t)∇g(t)(X̃(t))‖2 (19)

≤ (‖∇Xf (t)(X̃(t))‖+ ‖λ(t)∇g(t)(X̃(t))‖)2

19(a)
≤ {G+[D2 −

Ω2
max

T 2
]2‖λ(t)‖}2

19(b)
≤ 2G2 + 2[D2−

Ω2
max

T 2
]4‖λ(t)‖2,

where 19(a) follows assumption (1) ‖∇f (t)(x̃(t))‖ ≤ G and (18).
19(b) holds by the inequality (n1 +n2 + ...+nk)2 ≤ k(n2

1 +n2
2 +

...+ n2
k). Next, we have ‖∇λL(t)(X̃(t),λ(t))‖2 = ‖g(t)(X̃(t))‖2 ≤

D2. Then we can give the upper bound for 1
2α

∑
t∈T (‖X̃(t)" −

X̃(t)‖2 − ‖X̃(t)" − X̃(t+1)‖2) as follows:

1

2α

T∑

t=1

(‖X̃(t)" − X̃
(t)‖2 − ‖X̃(t)" − X̃

(t+1)‖2) (20)

=
1

2α

T∑

t=1

(‖X̃(t) − X̃
(t+1)‖2) +

1

α

T∑

t=1

‖X̃(t)"‖(‖X̃(t+1)‖ − ‖X̃(t)‖)

=
1

2α
(‖X̃(1)‖2 − ‖X̃(T+1)‖2) +

1

α
‖X̃(T+1)‖‖X̃(T )"‖

−
1

α
‖X̃(1)‖‖X̃(1)"‖

+
1

α

T∑

t=2

‖X̃(t)‖(‖X̃(t−1)"‖ − ‖X̃(t)"‖)
20(a)
≤

1

α
R2 +

R

α
VT
x̃(t)∗ ,

where 20(a) follows assumption (2) and the accumulated
hindsight optimum variation VT

X̃(t)∗ =
∑T

t=2(‖X̃
(t−1)∗− X̃(t)∗‖).

Next is to upper bound 1
2µ

∑T
t=1(

∥∥λ− λ(t)
∥∥2 −

∥∥λ− λ(t+1)
∥∥2).

1

2µ

T∑

t=1

(
∥∥∥λ− λ

(t)
∥∥∥
2
−

∥∥∥λ− λ
(t+1)

∥∥∥
2
) ≤

1

2µ
(
∥∥∥λ− λ

(1)
∥∥∥
2
−

∥∥∥λ− λ
(T+1)

∥∥∥
2
)
21(a)
≤

1

2µ
‖λ‖2 , (21)

where 21(a) is due to λ(1) = 0 and λ(T+1) ≥ λ, which is
decided by its non-negativity. Finally, based on the above, we
can expand Lemma 3 over the entire time horizon as follows:

∑

t∈T

L(X̃t,λ)−
∑

t∈T

L(X̃"
t ,λt)

≤
∑

t∈T

∇XL(X̃t,λt)(X̃t − X̃
"
t )−

∑

t∈T

∇λL(X̃t,λt)(λ− λt)

≤
1

2α

∑

t∈T

(‖X̃"
t − X̃t‖2 − ‖X̃"

t − X̃t+1‖
2) +

µ

2

∑

t∈T

‖∇λL(X̃t,λt)‖2

+
α

2

∑

t∈T

‖∇XL(X̃t,λt)‖2 +
1

2µ

∑

t∈T

(‖λ− λt‖2 − ‖λ− λt+1‖
2)

=
R2 +RVT

x̃(t)∗

α
+

‖λ‖2

2µ
+

TµD2

2
+ 2αG2T

+2α[D2−(
Ωmax

T
)2]4VT

λ(t)
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B. Proof of Theorem 2

Having the above three supporting lemmas, we can prove
Theorem 2 as follows:

∑

t∈T

[
f(X̃(t))− f(X̃(t)")

]
+

∑

t∈T

[
λ
!g(X̃(t))− λ

(t)g(X̃(t)∗)
]

≤
R2 +RVT

x̃(t)∗

α
+

‖λ‖2 /µ+ TµD2

2

+2αG2T + 2α[D2 − (
Ωmax

T
)2]4VT

λ(t) .

Due to
∑

t∈T λ(t)g(X̃(t)∗) ≥ 0, we can get

R2 +RVT
x̃(t)∗

α
+

TµD2

2
+ 2αG2T + 2α[D2 − (

Ωmax

T
)2]4VT

λ(t)

≥
∑

t∈T

f (t)(X̃(t))−
∑

t∈T

f (t)(X̃(t)") +
∑

t∈T

λ
!g(t)(X̃(t))−

‖λ‖2

2µ

22(a)
≥

∑

t∈T

f (t)(X̃(t))−
∑

t∈T

f (t)(X̃(t)") +
µg(t)(X̃(t))

2

≥
∑

t∈T

f (t)(X̃(t))−
∑

t∈T

f (t)(X̃(t)") = D̃reg
(T )

, (22)

where 22(a) is due to
∑

t∈T λ!g(t)(X̃(t)) − ‖λ‖2

2µ ≤ µg(t)(X̃(t))
2 ,

when ‖λ‖ = µg(t)(X̃(t)). As for the upper bound of
dynamic fit, according to the dual recursion in Algo-
rithm 2 and the proof of ‖λ(t)‖ ≤ ‖λ‖ in [6] Lemma
2, we have:

[
λ(T ) + µg(T )

(
X̃(T )

)]+
≥ . . . ≥ λ(1) +

∑T
t=1 µg

(t)
(
X̃(t)

)
. Then we can rearrange the items, and then

obtain
∑T

t=1 g
(t)

(
X̃(t)

)
≤ λ

(T+1)

µ
− λ

(1)

µ
≤ λ

(T+1)

µ
. Therefore,

D̃fit
(T )

=
∥∥∥
∑T

t=1 g
(t)

(
X̃(t)

)∥∥∥ ≤
∥∥∥λ

(T+1)

µ

∥∥∥ ≤ ‖λ‖
µ

.

C. Proof of Theorem 3

(1) For proving that E(x̄(t)
i ) is monotonically non-

increasing in c(t)i . We first let C(x̄(t)
i , c(t)i , c(t)−i) denotes the

objective value of the problem in (3) with reported prices
(c(t)i , c(t)−i), where c(t)i denotes the bidding price of vehicle
i and c

(t)
−i denotes all the other prices except i. We fix c

(t)
−i

and define x̃(t)
i and ˜̇x

(t)

i as the optimal fractional results of i
with bid c(t)i and ċi

(t). In the case that c(t)i ≥ ċi
(t), we have

C(x̃
(t)
i , c

(t)
i , c

(t)
−i) ≤ C(˜̇x(t)

i , c
(t)
i , c

(t)
−i)

C(˜̇x(t)
i , ċ

(t)
i , c

(t)
−i) ≤ C(x̃

(t)
i , ċ

(t)
i , c

(t)
−i).

After adding the above inequalities together and reformulate
them, we can obtain

(c
(t)
i − ċ

(t)
i ) · x̃(t)

i ≤ (c
(t)
i − ċ

(t)
i ) · ˜̇x(t)

i

⇒ x̃
(t)
i ≤ ˜̇x(t)

i ,⇒ E(x̄
(t)
i ) ≤ E(˜̇x(t)

i ).

(2) We denote κ
(t)
i as the upper bound of the integral of∫∞

0 E(x̄(t)
i )dc < ∞, which is due to an extreme case: when

the cost of vehicle i is larger than the cost of self-training at
server, κ(t)

i = V log2(
1

θ(t)
i

)Mζ(t)1 + |D(t)
i |ζ(t)2 , then we have

∫ ∞

0
E(x̄

(t)
i (c, c

(t)
−i))dc =

∫
κ
(t)
i

0
E(x̄

(t)
i (c, c

(t)
−i))dc

=

∫ V log2(
1

θ
(t)
i

)Mζ
(t)
1 +|D

(t)
i

|ζ
(t)
2

0
x̃
(t)
i (c, c

(t)
−i)dc

≤V log2(
1

θ
(t)
i

)Mζ
(t)
1 + |D(t)

i |ζ(t)2 < ∞.

(3) As for individual rationality in expectation, we have

r
(t)
i = c

(t)
i E(x̄

(t)
i (c, c

(t)
−i)) +

∫
κ
(t)
i

c
(t)
i

E(x̄
(t)
i (c, c

(t)
−i))dc,

u
(t)
i = r

(t)
i − c

(t)
i E(x̄

(t)
i (c, c

(t)
−i)) =

∫
κ
(t)
i

c
(t)
i

E(x̄
(t)
i (c, c

(t)
−i))dc ≥ 0.
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