npm-filter: Automating the mining of dynamic information
from npm packages

Ellen Arteca and Alexi Turcotte*
{arteca.e,turcotte.al}@northeastern.edu

ABSTRACT

The static properties of code repositories, e.g., lines of code, depen-
dents, dependencies, etc. can be readily scraped from code hosting
platforms such as GitHub, and from package management systems
such as npm for JavaScript; Although no less important, informa-
tion related to the dynamic properties of programs, e.g., number of
tests in a test suite that pass or fail, is less readily available. The abil-
ity to easily collect this dynamic information could be immensely
useful to researchers conducting corpus analyses, as they could
differentiate projects based on properties that can only be observed
by running them.

In this paper, we present npm-filter, an automated tool that can
download, install, build, test, and run custom user scripts over
the source code of JavaScript projects available on npm, the most
popular JavaScript package manager. We outline this tool, describe
its implementation, and show that npm-filter has already been
useful in developing evaluation suites for multiple JavaScript tools.

KEYWORDS

JavaScript, npm, corpus analysis, tool evaluation

ACM Reference Format:

Ellen Arteca and Alexi Turcotte. 2022. npm-filter: Automating the mining of
dynamic information from npm packages. In 19th International Conference on
Mining Software Repositories (MSR °22), May 23-24, 2022, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3524842.3528501

1 INTRODUCTION

Many code hosting platforms contain a wealth of useful metadata:
e.g., GitHub lists code authors, commits, and general project history,
and library repositories (such as npm for JavaScript) often contain
information on dependencies and dependents. Although it can be
readily scraped from the web, this metadata is static, and does not
tell you much about running the actual code. We thus define dy-
namicmetadata to be information gleaned from program executions:
e.g., number of running tests, code coverage of tests, performance,
memory usage, etc. Making said dynamic metadata available can
enable new corpus analyses, focused on data pertaining to program
executions—this is the purpose of our tool, npm-filter.

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9303-4/22/05...$15.00
https://doi.org/10.1145/3524842.3528501

npm-filter is a tool for automatically installing, building, and test-
ing sets of npm packages. npm is a major repository for JavaScript
library code, and already contains a wealth of static metadata about
JavaScript projects (and, if available, a link to the code). npm-filter
complements this by generating information such as how a project
is built, if and how it is tested, the number of passing/failing tests,
and the list of transitive dependencies. npm-filter runs package
code in a sandbox for added security and to ensure reproducibility
of results. Users can also specify custom scripts to run over the
source code of the package. As far as we know, there is no similar
framework to automatically build, run, and test npm packages.

npm-filter has already been used to great effect in three projects;
it was used to filter through huge lists of JavaScript projects in craft-
ing evaluations for the DrAsync anti-pattern detection tool [27],
the Nessie test generator for asynchronous JavaScript callbacks [2],
and the Desynchronizer tool for automatically migrating from syn-
chronous JavaScript APIs to their asynchronous equivalents [11].

2 BACKGROUND & MOTIVATION

Node.js [9] is an eminently popular JavaScript runtime, particularly
for server-side JavaScript, and while JavaScript is best known as a
front-end, client-side language, it is rapidly gaining in popularity for
server-side development [1]. npm [20] is the most popular package
ecosystem for Node.js applications: with the npm command-line
interface (CLI) installed, a developer needs only navigate to the root
of their project and npm install <package-name> to download
and install any package they desire. JavaScript packages have a
package. json file in which users can specify commands that can
be run by npm, e.g., many developers will specify a test command
that describes how a package’s test suite is run, then a user can
execute the package’s tests with npm run test.

npm provides a wealth of metadata for all of the projects it
hosts, including the number of weekly downloads, dependencies,
dependents, and a link to the associated code repository. This said,
running application code can reveal yet more useful information,
such as if the package is equipped with a test suite, passing, failing,
flaky tests, etc. But even though it is relatively straightforward to
install, build, and test an npm package, in our anecdotal experience
conducting JavaScript tool evaluations, we found that only (roughly)
<5% of npm packages have running test suites with no failing tests.

npm-filter can be used in any scenario where metadata about
the execution of JavaScript code is required. A list of npm projects
or JavaScript repositories (e.g., from GHTorrent [12], CodeD]J [18],
or scraping npm), can be fed into npm-filter to gather dynamic
metadata by trying to install, build, and run package tests.

3 NPM-FILTER DESIGN

We will describe the overall design of npm-filter by way of describ-
ing the steps involved in analyzing a given npm package. Analysis

https://doi.org/10.1145/3524842.3528501
https://doi.org/10.1145/3524842.3528501

MSR ’22, May 23-24, 2022, Pittsburgh, PA, USA

comprises various phases of execution, which correspond to the
tasks required to set up and test an npm package, and running any
user-specified scripts over the package’s source code.

3.1 Package Setup and Installation

Supplied with an npm package name, npm-filter scrapes the repos-
itory link from the npm package page. The source code is then
downloaded (with a git clone). If the user specified a particular
commit to be analyzed, then the source code is checked out at this
commit. If there is no repository link found on the page or if there
is an issue with the cloning, then npm-filter bails out at this stage
and reports the error to the user.

Once the code has been downloaded, the package dependencies
are installed !. The list of transitive dependencies can be a useful
piece of data: for example, [30] show that transitive dependen-
cies can contain vulnerabilities that compromise the package itself.
npm-filter computes this list by reporting the list of all packages in
the node_modules directory after the install phase has completed.
There is also an option to exclude devDependencies, which are de-
pendencies excluded from production distributions of the package.

3.2 Building a Package

Once installed, some npm packages have additional commands that
need to be run before the package is operational: we call this the
build phase. For instance, packages written in TypeScript need to
be compiled to JavaScript, and another common build step is the
application of a bundler such as rollup [23] or webpack [28].

To determine the build commands, npm-filter looks at the pack-
age’s package. json file and finds the available commands match-
ing our tracked build commands. By default, these are “build”,
“compile”, and “init” (the most common build commands in our
experience). However, users can also customize the build commands
tracked with a custom configuration file (discussed in Section 5.3).

If there is an error running a particular build command, the
problematic command is added to the end of the command list;
this way, the command can be run after potentially prerequisite
commands. If all the build commands in a list have errors, then
npm-filter bails out (to avoid infinite cycling) but continues to the
testing phase anyway, reporting the build error in the results.

3.3 Testing a Package

Next, npm-filter determines if the package has a test suite, and
if so computes some dynamic metadata—this is the test phase.
package. json is further parsed, this time to find the test com-
mands. By default, these are the common ones we observed: “test”,
“unit’ ’, “cov”, “ci”, “integration”, “lint”, “travis”,
“e2e”, “bench”, “mocha”, “jest”, “ava”, “tap”, “jasmine”z.

For each test command, npm-filter runs it and determines, by
parsing the command itself and its output:

e if it is a linter or a coverage tool, and if so what tool is used,;

e if not for linter/coverage, what testing infrastructure is used;

e whether or not it runs new user tests (this is false in test
commands that only call other test commands, or that don’t
run any tests explicitly, e.g., linters, coverage tools);

! npm-filter supports both npm and yarn package managers for installing dependencies.
2Many of these correspond to JavaScript testing infrastructures, such as mocha.

Ellen Arteca and Alexi Turcotte

e if it runs other test commands, then a list of these commands;
o if it does run new user tests, then the number of passing and
number of failing tests.

npm-filter parses the output of running tests with the following
tools, that were the most common we observed in practice: eslint [7],
tslint [21], xx [29], standard [25], prettier [22], gulp lint [14] (linters);
istanbul/nyc [16], coveralls [6], c8 [5] (coverage tools); mocha [19],
jest [8], jasmine [17], tap [26], lab [15], ava [4], gulp [13] (test
tools). Any test commands that run other infrastructures (such as
custom Node.js scripts) will still be parsed on a best-effort basis,
and whether or not the correct number of passing/failing tests is
determined depends on the shape of the output.

3.4 Running Custom Scripts and CodeQL

In addition to the metadata collected about the package build and
test suite, users can also specify shell scripts and CodeQL [10] static
analysis queries to be run over the source code of the package. The
scripts are run in the sequence specified, and any terminal output
of each of them is included in the results, including errors.
CodeQL is a semantic code analysis language: with it, users can
write static analyses for a variety of languages, including (most
relevantly for npm-filter) JavaScript/TypeScript. In Section 6.2, we
describe how this features was already used in an existing tool.

3.5 Results

The results of all phases of npm-filter are output to a JSON file.
This JSON results object is organized in a hierarchical structure
corresponding to the aforedescribed phases of execution. Any errors
in an execution phase are reported in the corresponding field of the
results. The output file is named [package name]__results. json.

If the user specifies CodeQL queries to be run over the package
source code, the output of each of these queries is output to a CSV
file, named [package name]__[query name]__results.csv. Any
errors in the CodeQL query execution would be reported in the
CodeQL field of the JSON results.

4 IMPLEMENTATION

npm-filter is written in Python. All the npm commands we run
are done by dispatching with the Python subprocess library; this
allows us to parse the output, and specify a timeout. It also doesn’t
crash npm-filter if there is any error in the subprocess.

The back end of npm-filter’s npm package analyzer is a web
scraper: given the name of an npm package, it finds the associated
repository link on the npm page so that it can analyze the package’s
source code. The scraper is built using Python’s scrapy library [24],
which allows us to include custom middleware to run if the scraper
gets an error code as a response from the site. We implemented
some middleware to deal with errors caused by the rate limiting
on the npm site: if the site returns an error indicating that too
many requests were received, the scraper pauses and then retries.
This middleware ensures that the scraper will not miss package
information because of the rate limiter, but if a user is analyzing a
large number of packages they will see a significant performance
hit compared to running on the GitHub repos directly. Thus, we also
provide an option for users to pass a list of GitHub repos instead of
npm packages to be analyzed, skipping the scraping entirely.

7
8
9

npm-filter: Automating the mining of dynamic information
from npm packages

npm-filter is open source and includes a detailed Readme, with
more examples than are included in this paper. npm-filter is avail-
able at https://github.com/emarteca/npm-filter/ [3].

5 NPM-FILTER USAGE

In this section, we explain how to use npm-filter and give some
examples of usage. To follow along, clone the source code linked
above; all example commands are run from the root of the repo. We
have also included a minimal example usage tutorial here>.

5.1 Safety first: Running in Docker

npm-filter can be run in a docker container that is provided on Dock-
erHub*, and we recommend this usage. The repository’s Readme in-
cludes a list of all system requirements if you choose to run it locally
or if you want to rebuild the docker container. To run npm-filter
sandboxed, simply preface any commands with . /runDocker. sh.

5.1.1 Input/Output from docker to host machine. Running npm-filter
in docker allows all the code being analyzed to be run in a sand-
box, protecting the host machine. To allow input to npm-filter and

access to the results files from running in docker, we have some

special directories that the docker container has access to. All in-
put files to running npm-filter in docker must be in a directory

docker_configs in the npm-filter home directory (any user scripts,

CodeQL queries, or custom configuration files). Results files end

up in the npm_filter_docker_results directory, which is also in

the npm-filter home directory.

5.2 Basic usage

This tool can either take JavaScript packages specified as GitHub
repository links, or as npm packages.
To run npm-filter over GitHub repo links, use the following:
./runDocker.sh python3 src/diagnose_github_repo.py
[--repo_list_file [rlistfile]]
[--repo_link [rlink]]
[--repo_link_and_SHA [rlink_and_SHA]]
[--config [config_filel]
[--output_dir [output_dir]]
All arguments are optional, although npm-filter will not do any-
thing if no repo links are specified.

e repo_list_file:afile containing a list of GitHub repo links
to be analyzed. Each line of the input file must specify one
repo link, with an optional whitespace delimited commit
SHA to check the repo out at.

e repo_link: alink to a single GitHub repo to be analyzed

e repo_link_and_SHA: link to a GitHub repo followed by a
space-delimited commit SHA to analyze the repo at

e config: path to a configuration file for the tool (config op-
tions explained in Section 5.3)

e output_dir: path to a directory in which to output the re-
sults files (note: this only works when not running in docker)

To run npm-filter over npm packages, use the following:

./runDocker.sh python3 src/diagnose_npm_package.py
--packages [list_of_packages]
[--config [config_filel]

3https://github.com/emarteca/npm-filter/blob/master/Tutorial.md
“4https://hub.docker.com/r/emarteca/npm-filter

10
1

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

MSR 22, May 23-24, 2022, Pittsburgh, PA, USA

[--html [html_file]]
[--output_dir [output_dir]]

e packages: list of npm packages to analyze. Required argu-

ment, and at least one package must be passed.

config: path to a configuration file for the tool

html: path to an html file that represents the npm page for

the package that is specified to be analyzed. This option only

works for one package, so if you want to use this option on

multiple packages you’ll need to call the tool in sequence.

e output_dir: path to a directory in which to output the re-
sults files (note: this only works when not running in docker)

5.2.1 Example Usage. What follows is an example of basic usage.
This example runs on a single package, specified by GitHub repo
and at a specific commit (to ensure consistency of expected output).

./runDocker.sh python3 src/diagnose_github_repo.py
--repo_link_and_SHA https://github.com/streamich/memfs
863f373185837141504c05ed19f7a253232e0905

The results file is npm_filter_docker_results/
memfs__results. json, with contents (slightly redacted for length):

"installation": {
"installer_command": "yarn"
1,
"build": {
"build_script_list": [
"build"
]
1,
"testing": {

"test": {
"num_passing": 265,
"num_failing": 0,
"test_infras": [

"jest"
—————————————————————————————— REDACTED FOR LENGTH
"metadata": {

"repo_link":
"repo_commit_SHA":

}

"https://github.com/streamich/memfs",
REDACTED FOR LENGTH

From this we can see that at this commit memf's has a test suite with
265 passing tests and no failing tests, among other metadata.
More examples are included in the npm-filter GitHub repo Readme.

5.2.2 Batch dispatch. A common application of npm-filter is to
analyze a large number of packages/repos. We provide a bash script
that dispatches npm-filter in parallel across batches of inputs.

./runParallelGitReposDocker.sh repo_link_file

Results are in npm_filter_parallel_docker_results. Note that
this parallel execution in performed in one docker container, and
not multiple parallel docker containers.

5.3 Custom npm-filter configuration

Users can customize the behaviour of the tool by providing a custom
configuration JSON file, organized by phases of npm-filter analysis.
All fields are optional - if not provided, defaults will be used®.

Default configuration: https://github.com/emarteca/npm-filter/tree/master/configs.

https://github.com/emarteca/npm-filter/
https://github.com/emarteca/npm-filter/blob/master/Tutorial.md
https://hub.docker.com/r/emarteca/npm-filter
https://hub.docker.com/r/emarteca/npm-filter
https://github.com/emarteca/npm-filter/blob/master/Tutorial.md
https://hub.docker.com/r/emarteca/npm-filter
https://github.com/emarteca/npm-filter/tree/master/configs

MSR *22, May 23-24, 2022, Pittsburgh, PA, USA

Install. package installation.

e timeout: number of millisections after which, if the install
is not complete, the process bails with a timed out error

Dependencies. package dependency tracking (this is the libraries
the current package depends on, both directly and transitively).

e track_deps: specifies to compute the package dependencies

e include_dev_deps: if true, this specifies to include the de-
vDependencies in the dependency computation

e timeout: timeout in milliseconds

Build. package compile/build stage.

e tracked_build_commands:any npm script with one of these
listed commands as a substring will be tested.
e timeout: timeout in milliseconds, per build command

Test. package test stage.

e track_tests: specifies to run this testing diagnostic stage

o tracked_test_commands: any npm script with one of these
listed commands as a substring will be tested.

e timeout: timeout in milliseconds, per test command

Meta-info. any analysis-level configurations.

e VERBOSE_MODE: if true, include full output of all commands

e ignored_commands: commands to ignore: if these are present
in the npm script name, then they are not run even if they
otherwise fall into a category of commands to run.

e ignored_substrings: commands to ignore: if these strings
are present in the command string itself, then these npm
scripts are not run (same as ignored_commands, but for the
command strings instead of the npm script names)

e rm_after_cloning: delete the package source code after the
tool is done analyzing it. Strongly recommended if running
over a large batch of packages.

e scripts_over_code: list of paths to script files to run over
the package source code.

e QL_queries: list of paths to QL query files to run over the
package source code.

6 NPM-FILTER IN PRACTICE

Now we describe three research papers that have used npm-filter.

6.1 DrAsync

Turcotte et al. used npm-filter to collect projects to evaluate their

tool to detect anti-patterns in asynchronous JavaScript programs [27].

Their tool, called DrAsync, can statically detect asynchronous anti-
patterns, and they found that many of these anti-patterns could
be manually refactored; in order to confirm that these refactorings
preserved behaviour, the authors ran application tests before and
after refactoring (to confirm that refactoring did not introduce any
failing tests). The tool also has a dynamic component that records
promise lifetimes and displays them in a visualization.

Thus, the evaluation undertaken in the paper requires running
test suites, and npm-filter was used to filter a list of 40K JavaScript
Github repositories with asynchronous JavaScript code to a much
more manageable 450 projects that had running/passing tests. This
work is being presented concurrently at ICSE Technical Track.

Ellen Arteca and Alexi Turcotte

6.2 Nessie

Arteca et. al built a test generator for JavaScript APIs with callback
arguments [2]. In this project, they wrote a static analysis in Cod-
eQL, to identify pairs of nested calls to functions that were part
of the APIs the test generator was targeting. Then they used the
CodeQL plugin feature of npm-filter to run this analysis on 13.6K
JavaScript projects on GitHub. The results of this CodeQL query,
amalgamated across all 13.6K projects, was used to inform the test
generator of common pairs of nested API calls, to generate tests
more representative of developers’ use of the APIs. They also used
npm-filter to select projects to evaluate the test generator. This
work is being presented concurrently at ICSE Technical Track.

6.3 Desynchronizer

Gokhale et al. used npm-filter to collect projects to evaluate their
tool for automatically migrating projects that use synchronous
JavaScript APIs to use their asynchronous equivalents [11]. The
tool, called Desynchronizer, statically detects calls to synchronous
JavaScript APIs that have asynchronous equivalents (e.g., calls to
readFileSync, rather than readFile)—then infers a call graph,
and refactors the code. In the evaluation, authors applied every
refactoring, and ran test suites post refactoring to establish any
behavioural differences. Thus, runnable test suites with no failing
tests were required in the evaluation, and npm-filter was used to
filter a list of 50K JavaScript projects using APIs targeted by the
tool down to a few hundred projects with passing test suites.

7 NPM-FILTER LIMITATIONS

We currently only support packages hosted on GitHub: if there is
no GitHub repo link available on the package page, then npm-filter
will not work. In our use cases we have found this to be rare.

If the package uses a testing tool that we have not implemented
output parsing for, then it might not be properly tracked. That
said, we have covered the most popular JavaScript test ecosystems.
Also, if the package uses build/test commands that don’t include
the substrings we expect, then they won’t be run. Note, however,
that users can customize their npm-filter configuration to add or
remove as many tracked commands as they want.

8 CONCLUSION

npm and GitHub contain a wealth of metadata related to static
JavaScript project properties, but augmenting this static informa-
tion with dynamic properties such as the number of tests in a test
suite that pass or fail is immensely useful to researchers conducting
corpus analyses or testing program transformation tools. In this pa-
per, we presented npm-filter, an automated tool that can download,
install, build, test, and run custom user scripts over the source code
of JavaScript projects available on npm, the most popular JavaScript
package manager. In addition to describing the implementation and
usage of npm-filter, we also show that it has already been useful in
developing evaluation suites for three separate JavaScript tools.

ACKNOWLEDGMENTS

Both authors were supported in part by National Science Foun-
dation grants CCF-1715153 and CCF-1907727, and by the Natural
Sciences and Engineering Research Council of Canada.

npm-filter: Automating the mining of dynamic information
from npm packages

REFERENCES

(1]

[13]
[14]

[15

Esben Andreasen, Liang Gong, Anders Mgller, Michael Pradel, Marija Selakovic,
Koushik Sen, and Cristian-Alexandru Staicu. 2017. A survey of dynamic analysis
and test generation for JavaScript. ACM Computing Surveys (CSUR) 50, 5 (2017),
1-36.

Ellen Arteca, Sebastian Harner, Michael Pradel, and Frank Tip. 2022. Nessie:
Automatically Testing JavaScript APIs with Asynchronous Callbacks. In ICSE
22.

Ellen Arteca and Alexi Turcotte. 2022. emarteca/npm-filter: 1.0.0. https://doi.org/
10.5281/zenodo.6374358

ava. 2022. ava. https://www.npmjs.com/package/ava. Accessed: 2022-01-20.
8. 2022. ¢8. https://www.npmjs.com/package/c8. Accessed: 2022-01-20.
coveralls. 2022. coveralls. https://www.npmjs.com/package/coveralls. Accessed:
2022-01-20.

eslint. 2022. eslint. https://www.npmjs.com/package/eslint. Accessed: 2022-01-20.
Facebook. 2022. jest. https://jestjs.io/. Accessed: 2022-01-20.

OpenJS Foundation. [n.d.]. Node.js. https://nodejs.org/en/. Accessed 2020-08-27.
GitHub. 2022. CodeQL. https://github.com/github/codeql. Accessed: 2022-01-20.
Satyajit Gokhale, Alexi Turcotte, and Frank Tip. 2021-10-20. Automatic migration
from synchronous to asynchronous JavaScript APIs. Proceedings of the ACM on
programming languages. 5, OOPSLA (2021-10-20).

Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings of
the 10th Working Conference on Mining Software Repositories (San Francisco, CA,
USA) (MSR ’13). IEEE Press, Piscataway, NJ, USA, 233-236. http://dl.acm.org/
citation.cfm?id=2487085.2487132

gulp. 2022. gulp. https://www.npmjs.com/package/gulp. Accessed: 2022-01-20.
gulp eslint. 2022. gulp-eslint. https://www.npmjs.com/package/gulp-eslint.
Accessed: 2022-01-20.

hapi. 2022. lab. https://www.npmjs.com/package/@hapi/lab. Accessed: 2022-01-
20.

[16]
(17]

(18]

MSR 22, May 23-24, 2022, Pittsburgh, PA, USA

Istanbul. 2022. nyc. https://www.npmjs.com/package/nyc. Accessed: 2022-01-20.
jasmine. 2022. jasmine. https://www.npmjs.com/package/jasmine. Accessed:
2022-01-20.

Petr Maj, Konrad Siek, Alexander Kovalenko, and Jan Vitek. 2021. CodeD]J:
Reproducible Queries over Large-Scale Software Repositories. In 35th European
Conference on Object-Oriented Programming (ECOOP 2021) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 194), Anders Meller and Manu Sridharan
(Eds.). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany,
6:1-6:24. https://doi.org/10.4230/LIPIcs. ECOOP.2021.6

mocha. 2022. mocha. https://www.npmjs.com/package/mocha.
2022-01-20.

npm. [n.d.]. npm. https://www.npmjs.com/. Accessed 2020-08-27.
palantir. 2022. tslint. https://www.npmjs.com/package/tslint. Accessed: 2022-01-
20.

prettier. 2022. prettier. https://www.npmjs.com/package/prettier. Accessed:
2022-01-20.

Rollup. 2022. Rollup. https://www.npmjs.com/package/rollup. Accessed: 2022-
01-20.

scrapy. 2022. scrapy. https://scrapy.org/. Accessed: 2022-03-21.

standard. 2022. standard. https://www.npmjs.com/package/standard. Accessed:
2022-01-20.

tap. 2022. tap. https://www.npmjs.com/package/tap. Accessed: 2022-01-20.
Alexi Turcotte, Michael D. Shah, Mark W. Aldrich, and Frank Tip. 2022. DrAsync:
Identifying and Visualizing Anti-Patterns in Asynchronous JavaScript. In ICSE
22

webpack. 2022. webpack. https://www.npmjs.com/package/webpack. Accessed:
2022-01-20.

xx. 2022. xx. https://www.npmjs.com/package/xx. Accessed: 2022-01-20.
Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.
2019. Small world with high risks: A study of security threats in the npm
ecosystem. In 28th USENIX Security Symposium (USENIX Security 19). 995-1010.

Accessed:

https://doi.org/10.5281/zenodo.6374358
https://doi.org/10.5281/zenodo.6374358
https://www.npmjs.com/package/ava
https://www.npmjs.com/package/c8
https://www.npmjs.com/package/coveralls
https://www.npmjs.com/package/eslint
https://jestjs.io/
https://nodejs.org/en/
https://github.com/github/codeql
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://www.npmjs.com/package/gulp
https://www.npmjs.com/package/gulp-eslint
https://www.npmjs.com/package/@hapi/lab
https://www.npmjs.com/package/nyc
https://www.npmjs.com/package/jasmine
https://doi.org/10.4230/LIPIcs.ECOOP.2021.6
https://www.npmjs.com/package/mocha
https://www.npmjs.com/
https://www.npmjs.com/package/tslint
https://www.npmjs.com/package/prettier
https://www.npmjs.com/package/rollup
https://scrapy.org/
https://www.npmjs.com/package/standard
https://www.npmjs.com/package/tap
https://www.npmjs.com/package/webpack
https://www.npmjs.com/package/xx

	Abstract
	1 Introduction
	2 Background & Motivation
	3 npm-filter Design
	3.1 Package Setup and Installation
	3.2 Building a Package
	3.3 Testing a Package
	3.4 Running Custom Scripts and CodeQL
	3.5 Results

	4 Implementation
	5 npm-filter usage
	5.1 Safety first: Running in Docker
	5.2 Basic usage
	5.3 Custom npm-filter configuration

	6 npm-filter in practice
	6.1 DrAsync
	6.2 Nessie
	6.3 Desynchronizer

	7 npm-filter Limitations
	8 Conclusion
	Acknowledgments
	References

