
1

Online Scheduling Algorithm for Heterogeneous
Distributed Machine Learning Jobs

Ruiting Zhou, Member, IEEE, Jinlong Pang, Qin Zhang, Chuan Wu, Senior Member, IEEE, Lei
Jiao, Member, IEEE, Yi Zhong, and Zongpeng Li, Senior Member, IEEE

Abstract—Distributed machine learning (ML) has played a key role in today’s proliferation of AI services. A typical model of distributed

ML is to partition training datasets over multiple worker nodes to update model parameters in parallel, adopting a parameter server or

AllReduce architecture. ML training jobs are typically resource elastic, completed using various time lengths with different resource

configurations. A fundamental problem in a distributed ML cluster is how to explore the demand elasticity of ML jobs and schedule

them with different resource configurations, such that the utilization of resources is maximized and average job completion time is

minimized. To address it, we propose an online scheduling algorithm to decide the execution time window, the number and the type of

concurrent workers and parameter servers for each job upon its arrival, with a goal of minimizing the weighted average completion

time. Our online algorithm consists of (i) an online scheduling framework that groups unprocessed ML training jobs into a batch

iteratively, and (ii) a batch scheduling algorithm that configures each ML job to maximize the total weight of scheduled jobs in the

current iteration. Our online algorithm guarantees a good parameterized competitive ratio with polynomial time complexity. Extensive

evaluations using real-world data demonstrate that it outperforms state-of-the-art schedulers in today’s AI cloud systems.

Index Terms—Distributed Machine Learning; Online Scheduling

!

1 INTRODUCTION

NOwadays, most leading IT companies operate dis-
tributed machine learning (ML) clusters of GPU

servers, to run ML jobs that train models over large datasets
for providing AI-driven services. To train a large model,
hundreds of concurrent workers (typically implemented on
virtual machines or containers) are deployed in parallel.
Either the training dataset or the ML model is partitioned
among workers, realizing data parallelism or model parallelism
[1][2][3]. In model parallelism, each worker updates part of
the parameters using the entire input dataset [4]. In data
parallelism, each worker has an entire copy of the ML
model and computes parameter update (gradients) using
a portion of input data; in each training iteration, workers
exchange locally-computed gradients to obtain the global
ML model update. As training data is usually enormous,
data parallelism is the dominant form of parallel training in
practice [1][3].

• R. Zhou, J. Pang and Y. Zhong are with the Key Laboratory of Aerospace
Information Security and Trusted Computing, Ministry of Education,
School of Cyber Science and Engineering, Wuhan University, Wuhan,
China. (e-mail: {ruitingzhou, jinlongpang, yizhong}@whu.edu.cn). R.
Zhou is also with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

• Q. Zhang and Z. Li are with the School of Computer Science, Wuhan Uni-
versity, Wuhan, China (e-mail: {zongpeng, qinzhangcs}@whu.edu.cn).

• C. Wu is with the University of Hong Kong, Kowloon, Hong Kong (e-
mail: cwu@cs.hku.hk).

• L. Jiao is with the University of Oregon, Oregon, America (e-mail:
jiao@cs.uoregon.edu).

Corresponding Author: Jinlong Pang
This work was supported in part by the NSFC Grants (62072344 and
U20A20177), Hubei Science Foundation (2020CFB195), Compact Exponen-
tial Algorithm Project of Huawei (YBN2020035131), the U.S. National
Science Foundation under Grant CNS-2047719, and grants from Hong Kong
RGC under the contracts HKU 17204619, 17208920 and 17207621.

There are two typical approaches for exchanging param-
eter updates among workers: parameter server (PS) frame-
work and AllReduce framework [3][5]. In the PS framework,
PSs maintain model parameters as a global key-value store,
and each worker uploads computed gradients to the PSs.
The PSs update the corresponding parameters based on
received gradients and then send updated parameters to the
workers. In the AllReduce framework, all nodes act as PS
and worker concurrently and first exchange gradients with
others to obtain the mean of the gradients. Then each node
uses the resulting gradient to update the model parameters.
The workers and PSs may be placed on different physical
servers, when they cannot be completely accommodated on
the same server, or to fully utilize expensive and fragment
resources on servers [4].

ML training jobs are resource-intensive and time-
consuming. Existing distributed ML systems [6][7][8] re-
quire job owners to estimate the amount of resources, in-
cluding the number of workers and the resource configu-
ration of each worker, as well as the time needed, to train
the ML model using a large dataset. For example, Google
uses Borg [9], and Microsoft, Tencent, and Baidu both use
customized versions of YARN schedulers [8] to aggressively
provision each job as much resource as possible according to
user demand and job priority, using strategies such as FIFO
and max-min fair allocations.

However, the job owner is often uncertain of the amount
of resources and time it may take to complete a job. There
is elasticity in ML jobs’ resource demand: It takes different
amounts of time to train a certain model with workers
of different resource configurations, especially of different
numbers of GPUs. Further, the processing time of a mini-
batch is typically not inversely proportional to the amount
of resource allocated to the worker, which is mainly due to

2

overhead in parallel training [10]. Next, assigning training
jobs less resources than what they require in the ideal case
(i.e., that leads to most expedited single-job training [10] [11]
[12]) may reduce average training completion time in the
entire system. For example, when training CIFAR-10 CNN
for 100K steps until the model achieves 87% accuracy, the
single-step training time (time to train a mini-batch) can
be 15 milliseconds with a single GPU and 10 milliseconds
with two GPUs (suppose it is the ideal case) [10]. Thus, if
there are two training jobs of this type submitted at the same
time and only three GPUs are available, with adequate other
resources, allocating one GPU to one job and two GPUs for
the other is the best strategy for minimizing the average
job completion time, which results in (10 + 15)/2 = 12.5
milliseconds, in contrast to allocating two GPUs to each job
sequentially, which results in (10+20)/2 = 15 milliseconds.

Considering demand elasticity, a fundamental problem
for a ML cluster operator is: Given limited resources, how to
decide the number/type of workers (and PSs) and running time of
each job, such that resources are maximally utilized and average
weighted completion time is minimized? Here, the weight of
each job may characterize its processing priority.

To address the above problem, we first formulate the
average weighted completion time minimization problem
into a time-indexed mathematical program. The program
formulates features of ML jobs (demand for large-volume
data analysis capacity and high inter-node connection band-
width). Different from traditional makespan minimization
problems, it contains both conventional (packing-type) con-
straints and non-conventional (set-type and natural lan-
guage described) constraints, which cannot be handled by
existing approaches [13] [14]. Decision variables include
the number/type of workers (and PSs), and the execution
window of each job. To compute schedules on the go with
the shortest completion time, we divide our design into two
steps:

First, we propose an online framework to convert the on-
line optimization problem into a series of batch scheduling
problems by partitioning the overall timespan into intervals
with geometrically increasing length. Our online scheduling
framework employs a dual approximation algorithm as a sub-
routine for performance guarantee. The dual approximation
algorithm finds an infeasible solution that is super-optimal,
where the performance of the algorithm is measured by the
degree of infeasibility allowed. The infeasible solution will
finally become feasible as job execution can span multiple
intervals. The super-optimal objective value contributes to
bound the average weighted completion time. This dual
algorithm is realized through a batch scheduling algorithm
that solves the maximum weighted schedule problem to sched-
ule as many unscheduled jobs as possible before a certain
time point.

Second, we observe that the maximum weighted sched-
ule problem includes several non-conventional constraints
for characterizing the configuration/placement of work-
ers and PSs. To handle these set-type and natural language
described constraints, we encode each valid schedule in a
variable and reformulate the original program into an inte-
ger linear program (ILP), where only conventional packing
constraints are included, at the price of introducing an
exponential number of variables. Instead of solving the ILP

directly, which is infeasible in practice due to time complex-
ity, we design an approximation algorithm by applying a
tailored primal-dual framework to the ILP’s LP relaxation
and its dual LP. We interpret dual variables as unit resource
prices, and compute the best schedule for each job based
on resource consumption cost and its ML framework. The
algorithm schedules a job if its weight is higher than its
estimated serving cost.

We carry out rigorous theoretical analysis to prove
that our online algorithm runs in polynomial time, and
achieves a bounded competitive ratio. We evaluate practical
effectiveness of our online algorithm through trace-driven
simulation studies. We implement four representative job
scheduling strategies used in existing cloud platforms, and
compare them with our algorithm. Simulation results con-
firm that our algorithm outperforms existing methods by at
least 30% in average weighted completion time, especially
in systems with resource shortage.

In the following sections, we review related work lit-
erature in Sec. 2 and model the distributed ML system
working with PS framework in Sec. 3. Sec. 4 present the
online scheduling framework. Sec. 5 propose approximation
algorithms for scheduling batch jobs. And Sec. 6 show that
our online scheduling framework is also applicable to the
distributed ML clusters working with Ring-AllReduce ar-
chitecture. Simulation studies are presented in Sec. 7. Sec. 8
concludes the paper.

2 RELATED WORK

Job Scheduling and Resource Allocation in Distributed ML
Systems. Ghodsi et al. [6] propose a fair allocation policy
of multiple resource types, similar to Mesos [7] and YARN
[8]. In these systems, job owner prescribes the number
and resource configuration of workers. In comparison, we
design an online algorithm to guide worker deployment
and resource allocation, exploiting the demand elasticity of
ML jobs. Bao et al. [15] propose a deep learning-based job
placement algorithm to minimize interference among co-
located ML jobs. Resource allocation among multiple jobs
is not considered by these work. Considering the hetero-
geneity of hardware accelerators and workloads, Narayanan
et al. [16] propose Gavel, which expresses the existing
scheduling policies as optimization problems, and uses a
round-based scheduling mechanism. Xiao et al. [17] present
AntMan, which co-designed cluster scheduler and deep
learning framework. AntMan introduces dynamic scaling
mechanisms for memory and computation to share GPU
resources. It allows GPUs to be utilized by over-provision of
opportunistic jobs at best-effort to minimize the interference
between jobs. Jeon et al. [18] analyze the trace of deep
learning jobs running on a multi-tenant GPU cluster in
Microsoft, and study three factors that affect cluster utiliza-
tion: job scheduling, locality on GPU utilization, and failures
during training. Focusing on the fairness of GPU allocation,
Mahajan et al. [19] design an ML scheduling framework,
Themis, to achieve long term finish-time fairness. Themis
presents a two-level scheduling architecture where ML apps
can bid on resources offered in an auction. Gu et al. [20]
propose a preemptive scheduler, Tiresias, which aims to
minimize the average job completion time (i.e., time from

3

job submission to job completion). Tiresias assigns jobs ac-
cording to the multiplication of a job’s remaining workload
and the number of resources, e.g., GPUs, RAM and CPUs.
The above schedulers study the scheduling problem of ML
jobs, but they pay more attention to analyzing different char-
acteristics of ML jobs, e.g., the fairness or the heterogeneity
of hardware. We explore the demand elasticity of ML jobs
to maximally utilize resources, meanwhile minimize the
average weighted job completion time. Amiri et al. [21]
propose a centralized scheduling strategy that assigns tasks
to workers to minimize the average completion time with
the help of one master. Similarly, Yan et al. [22] develop
performance models that quantify the impact of data par-
titioning and system provisioning on system performance
and scalability. Above papers don’t consider online job
scheduling and resource sharing problems. Peng et al. [23]
propose an online scheduler based on deep reinforcement
learning to minimize the average job completion time. They
dynamically adjust the number of worker/PS, but not the
type. Bao et al. [4] design an online algorithm to guide
resource allocation over time in a distributed machine learn-
ing system. Although we consider a similar problem, this
work is significantly different from [4]. First, our work is the
first that explores the demand elasticity. A job’s scheduling
and configuration are needed to be determined, while [4]
focuses on adjusting the number of customized workers in
each time slot, but does not address choices of different
types of workers/PSs for a job, nor colocation of workers
and PSs on the same physical server(s). Second, considering
the demand elasticity of ML jobs, the goal of our work is
to minimize the weighted completion time, while [4] aims
to maximize the overall utility. Third, with the different
optimization objective, our algorithmic idea to solve the
weighted completion time minimization problem is also
different from [4], as shown in Fig. 1.
Job Scheduling and Resource Allocation in Cloud Systems.
Shi et al. [24] propose the first online combinatorial auc-
tion for cloud resource allocation and pricing. Zhang et al.
[25] study online resource allocation in a cloud computing
platform through posted-price mechanisms. Zhang et al.
[26] design mechanisms for online cloud resource bundling
and provisioning to maximize social welfare with server
costs. Jiao et al. [27, 28] devise online prediction-free and
prediction-aware algorithms to provision resources across
clouds and edges for serving dynamic demands. These
studies satisfy each job’s demand within a fixed window,
and do not consider the demand elasticity and scheduling
dimensions in the solution space.

For job scheduling, Azar et al. [29] study online cloud job
scheduling problems for deadline-sensitive jobs, assuming
that one server can only execute one job in each time slot.
Zhou et al. [30] design a mechanism for online cloud job
scheduling and resource allocation, where jobs have alter-
native deadlines corresponding to different job valuations.
Wang et al. [31] schedule jobs online via creating and run-
ning multiple replicas of each task in order to mitigate the
straggler issue. The resource demand of each job is specified
by the job owner in advance in the above literatures.
Resource Allocation in Other Systems. Sheikhalishahi et
al. [32] study an open shop scheduling problem, consid-
ering the objective of human error, availability and make

span. They apply three meta-heuristic methods to find
the preferred solution. Tian et al. [33] design a scheduling
framework to resolve co-flow scheduling of multi-stage
jobs. Wang et al. [34] develop a co-flow scheduling system
which focuses on minimizing the average weighted co-flow
completion time. The scheduling problem studied in the
above work only focus on resource constrains, and don’t
take the characteristics of PS framework into consideration.

3 SYSTEM MODEL

3.1 System Overview

We consider a machine learning cluster where multiple ML
training jobs run using potentially different ML frameworks
(e.g., TensorFlow [35], MXNet [1], CNTK [36]).

Especially, a set of J training jobs arrive with large input
datasets during a large time span [T] = 1, 2, ..., T , to train
different ML models using synchronous training, i.e., syn-
chronous stochastic gradient descent (S-SGD) method. Syn-
chronous training can typically ensure model convergence
and achieve higher model accuracy than asynchronous
training [22][37], and is hence widely adopted over the latter
in AI clouds of leading IT companies [38]. The large input
dataset of job j (j ∈ [J]) is divided into Dj equal-sized
data chunks. Each data chunk is divided into Kj equal-sized
mini-batches. We consider two distributed ML architectures
in this work:PS framework [3] and Ring-AllReduce architec-
ture [5][39].

Let H denote the number of physical servers for the
deployment of workers and PSs. Each server h ∈ [H]
offers Cr

h units of type-r resource. R represents the num-
ber of resource types, including GPU, CPU, memory and
bandwidth [40][41]. Workers and PSs are implemented as
virtual machines (VMs) or containers in physical servers. We
refer to workers and PSs with different resource allocations
as different types. Let M and P denote the number of
worker and PS types, respectively. Each type-m (m ∈ [M])
worker (type-p (p ∈ [P]) PS) consumes erm (zrp) units of
type-r (r ∈ [R]) resource. Let bm (Bp) be the bandwidth
occupied by each worker m (PS p), i.e., bm = ebandwidth

m

(Bp = zbandwidth
p).

Upon the arrival of an ML job j at time aj , the following
decisions are made: (i) when to start the job, denoted by
binary variable xjt: xjt = 1 if job j is executed with starting
time t; (ii) the number of allocated type-m workers serving
job j deployed on physical server h at and after aj , indicated
by integer variable yjhm; (iii) the number of allocated type-
p PSs serving job j deployed on physical server h at and
after aj , indicated by integer variable sjhp; (iv) the amount
of consecutive time slots allocated to job j, which is related
to the number and processing capacity of workers serving
job j, specified by dj . We do not consider preemption in this
work, because when a job is suspended, the entire image of
the job needs to be stored temporarily, which increases the
overhead. Table 1 summarizes important notations for easy
reference.

3.2 Training Process with PS framework

The set of global parameters of each ML job is partitioned
into several partitions, each maintained by one PS [3]. Each
worker of job j has a complete replica of the training

4

TABLE 1: List of Notations

J # of jobs R # of resource types
T system timespan [X] interger set {1, 2, . . . , X}
aj arrival time of j Dj # of data chunks in j
wj weight of job j dj running duration of j
M # of worker types P # of PS types
Ej # of training epochs for job j
Kj # of mini-batches in one data chunk of job j
H # of servers to deploy workers and PSs
Cr

h capacity of type-r resource on server h
erm(zrp) type-r resource of worker m (PS p)
bm(Bp) bandwidth of worker m (PS p)
vjm time to train a mini-batch of job j in worker m
πj size of gradients generated by each worker after

processing one mini-batch when serve job j
Up
j time to update parameters at a type-p PS

in each iteration of j
ρpjm processing capacity of each worker when j

employs worker m and PS p
qj whether j’s all workers (and PSs) are running in

one server or not
xjt whether or not training job j with starting time t
sjhp # of type-p PSs serving job j in server h
yjhm # of type-m workers serving job j in server h

model. Each worker processes allocated mini-batches one
by one, sends computed gradients to and receives updated
parameters from all job j’s PSs after processing one mini-
batch (one iteration). The training process at all workers is
synchronized: in each iteration, each PS updates its param-
eters after it has aggregated gradients from all workers, and
then sends updated parameters to all workers. When the
entire input dataset is trained for one round, an epoch is
completed. For an ML job, the input dataset is trained for
multiple epochs. Let Ej be the required training epochs of
job j.

Let vjm denote the time for a type-m worker to train a
mini-batch of job j. Assume the computation time at a type-
p PS for updating a partition of global parameters using
gradients from all workers in each iteration of job j is a
constant, indicated by Up

j . The time for a type-m worker of
job j, deployed on a server with no PS, to transfer gradients
to all PSs in other servers is πj

bm
, and vice versa, assuming

the upload and download bandwidth are the same. When a
worker is placed together with some PS(s) in one server,
exchanging parameters/gradients with PS(s) in the same
server needs no inter-server bandwidth and takes less time.
With synchronous training, the time for exchanging gradi-
ents/parameters in one iteration of a job depends on the
worker that spends the longest time, which is bound by πj

bm
,

i.e., the time if any worker is not co-located with any PS.
We ignore fetching time of the input data as it can

be largely hidden behind training using pipelining. Let qj
indicate whether all workers and PSs of job j are deployed
in the same physical server (1) or not (0). Let ρpjm denote
the processing capacity of each worker, i.e., the number of
mini-batches that can be trained by each worker in one time
slot, when job j employs type-m worker(s) and type-p PS(s).
Thus, we have:

ρpjm =







1/(vjm + Up
j), if qj = 1

1/(vjm + Up
j +

2πj

bm
), if qj = 0

(1)

Note that when not all workers and PSs of job j are on the
same server (qj = 0), ρpjm represents the upper-bound of
time for exchanging gradients/parameters in one training
iteration, for model simplification.

3.3 Problem Formulation

We exploit the demand elasticity of ML jobs to minimize
the sum of all jobs’ weighted completion times [13], that
is
∑

j∈J wjcj , where cj denotes the completion time of job j
and cj =

∑
t∈[T] xjt(t+dj), and wj can be interpreted as the

priority of job j [9]. The objective is equivalent to minimizing
average weighted job completion time, given the fixed total
number of jobs, J . In practice, a cluster manager can set
job weights according to job arrival times, deadlines and
workloads. Jobs, which have larger workload and smaller
time interval between arrival time and deadline, can be
assigned larger weights. The larger a job’s weight is, the
sooner it is scheduled. If all weights are the same, the system
prefers to schedule small jobs earlier, as the total completion
time is shorter. This discriminates large jobs. Assigning a
larger weight to large jobs can mitigate the problem.

The offline minimization problem can be formulated as
the following time-indexed program:

minimize
∑

j∈[J]

wj

∑

t∈[T]

xjt(t+ dj) (2)

subject to:
∑

t∈[T]

xjt = 1, ∀j, (2a)

|{m ∈ [M]|
∑

h∈[H]

yjhm > 0}| = 1, ∀j (2b)

|{p ∈ [P]|
∑

h∈[H]

sjhp > 0}| = 1, ∀j (2c)

qj = 1 if and only if h = h′, ∀h, h′ : yjhm > 0, sjh′p > 0, ∀j,
(2d)

∑

h∈[H]

∑

p∈[P]

sjhp ≥ 1, ∀j, (2e)

dj
∑

h∈[H]

∑

m∈[M]

yjhmρpjm ≥ EjDjKj , ∀j, ∀p :
∑

h∈[H]

sjhp > 0 (2f)

∑

h∈[H]

∑

m∈[M]

yjhm ≤ Dj , ∀j, (2g)

∑

j:t′∈(t−dj ,t]

xjt′(
∑

m∈[M]

ermyjhm +
∑

p∈[P]

zrpsjhp) ≤ Cr
h, ∀t, ∀r, ∀h,

(2h)
∑

h′∈[H−h]

∑

m∈[M]

yjh′mbm ≤
∑

p∈[P]

sjhpBp, ∀j, ∀h :
∑

p∈[P]

sjhp > 0,

(2i)

xjt = 0, ∀j, ∀t < aj , (2j)

yjhm ∈ {0, 1, ...}, ∀j, ∀h, ∀m, (2k)

sjhp ∈ {0, 1, ...}, ∀j, ∀h, ∀p, (2l)

dj ∈ {0, 1, ...}, ∀j, (2m)

xjt ∈ {0, 1}, ∀j, ∀t. (2n)

qj ∈ {0, 1}, ∀j. (2o)

5

where ∀j, t, r, h,m, p represents ∀j ∈ [J], t ∈ [T], r ∈ [R], h ∈
[H],m ∈ [M], p ∈ [P]. Constraint (2a) requires job j to be
scheduled once. Constraint (2b) ensures that each job selects
and employs one type of workers, as it is common to use
the same type of workers to process evenly allocated input
data batches for synchronous training. Though there have
been recent studies that assign different workers different
batch sizes [42], the relevant study is still in its infancy and
not widely used in practice. If different types of workers are
used in a job, the time for the workers to process equal-sized
data batches varies; hence, workers requiring less training
time need to wait for slower workers in each iteration,
leading to lower resource efficiency. Constraint (2c) requires
that each job uses one type of PSs due to the same reason.

Constraint (2d) shows the relationship among qj , yjhm
and sjhp, which is hard and awkward to describe by linear
constraint. Constraint (2e) assures that there is at least one
PS allocated to each ML job for maintaining its global
parameters. Constraint (2f) guarantees that for job j, a suf-
ficient number of workers and time slots are allocated to
accomplish training of the dataset for Ej epochs. EjDjKj is
the total count of mini-batches trained in job j. Constraint
(2g) upper-bounds the number of workers by the number of
data chunks Dj , to ensure that one data chunk is trained by
at most one worker for Ej epochs. The resource capacity of
physical servers for running workers and PSs is formulated
by constraint (2h). Here, xjt′ = 1, t′ ∈ (t − dj , t] denotes
that job j is still running in time slot t. Since each of job
j’s workers needs to push gradients to and pull computed
parameters from all its PSs, the bandwidth reservation for
PSs of job j in server h should cover the total bandwidth of
job j’s workers placed on other servers, which can be formu-
lated as the linear constraint (2i). Here, H−h represents the
set of all the servers except h. Constraint (2j) indicates that
it is impossible to start job j before its arrival.

Without the non-linear constraints (2b)(2d), the weighted
completion time minimization problem in (2) is still a mixed
integer linear program (MILP). Even in the offline setting,
with information of all jobs given, solving such MILPs is
non-trivial and typically NP-hard [43].

3.4 Algorithmic Idea

In order to solve the weighted completion time minimiza-
tion problem, we design an efficient online algorithm with
bounded competitive ratio (i.e., the maximum ratio of the
total weighted completion time incurred by our online al-
gorithm over that incurred by the offline optimal approach
which knows all the inputs in advance) in two steps, as
shown in Fig. 1.

i. In Sec. 4, we first group unprocessed ML jobs until a
certain time point into a batch, to convert the online
optimization problem into a series of batch schedul-
ing problems. Then, we invoke a dual approxima-
tion algorithm Adual to schedule jobs in a batch.
According to Lemma 1 [14], the schedule produced
by Adual is required to satisfy two properties. It is
hard to yield such a schedule directly. Rather than
solving the the batch scheduling problem directly,
we focus on a more solvable problem instead, i.e.,
the total weight maximization problem. Leveraging

Fig. 1: Main idea of our online algorithm Aonline.

an approximation algorithm Amaxweight for the to-
tal weight maximization problem, Adual constructs
a required schedule.

ii. In Sec. 5, we introduce an approximation al-
gorithm Amaxweight for batch processing, which
solves the the total weight maximization problem.
Amaxweight applies the primal-dual framework and
employs two subroutines (Amincost1 and Amincost2)
to choose the schedule with smallest cost for each
job.

Here, Adual is a subroutine of Aonline and a dual approx-
imation algorithm to solve the maximum weighted schedule
problem in Definition 1. Adual invokes Amaxweight and
Amaxweight invokes Amincost1 and Amincost2. Amincost1 and
Amincost2 solve the cost minimization problem in Sec. 5.2.
Performance guarantees of various proposed algorithms are
shown at the end of the yellow arrows in Fig. 1.

4 ONLINE SCHEDULING FRAMEWORK

In Sec. 4.1, we introduce an online scheduling framework
Aonline that partitions the timespan to group ML jobs. It
requires a dual approximation algorithm Adual for job schedul-
ing, which is presented in Sec. 4.2.

4.1 Online Scheduling Algorithm

Our online algorithm is partly inspired by Leslie et al. [14].
The basic idea is to partition the timespan of potential
completion times at geometrically increasing points, and
iteratively schedule unprocessed ML jobs until a certain
time point. More specifically, let τ0 = 1, τi = 2i−1. In
rounds i = 1, 2, . . . , we wait until time τi. Let Ji represent
the set of jobs that have arrived by time τi, but still not
scheduled. Next, we require a dual approximation algorithm
Adual for Ji, which produces a schedule of length at most
ατi (α > 1, which is a number to indicate the infeasibility
of the schedule produced by Adual) and whose total weight
is at least the optimal weight of the maximum weighted
schedule problem in Sec. 5. The schedule generated by Adual

is then assigned to run from time ατi to time ατi+1. Because
ατi+1−ατi ≥ ατi, it is flexible to run job with length at most
ατi in interval [ατi,ατi+1], and hence our online algorithm
produces feasible schedules.

Definition 1. The Maximum Weighted Schedule Problem:
In an ML cluster, given a deadline τi, a set of jobs Ji at the
beginning, and a weight for each job, we aim to construct a feasible
schedule that maximizes the total weight of jobs completed by time
τi.

6

In Aonline (Algorithm 1), Js
i denotes the set of jobs

scheduled during round i. Note that τ0 = 1 implies the
assumption that no job can complete within the first time
slot. Lines 3-5 group unscheduled jobs into set Ji. We invoke
the dual approximation algorithm Algorithm Adual for Ji in
line 6. Next, we run j ∈ [Js

i] from time ατi to time ατi+1

according to the schedule produced by Adual in line 8-9. In
line 11, we add job(s) in Ji which is (are) not scheduled in
round i to set Ji+1, to process in next round i+ 1.

Algorithm 1 An Online Algorithm Aonline

Input: T,Cr
h, ∀h ∈ [H], r ∈ [R];

Output: xjt, yjhm, sjhp, dj , ∀j ∈ [J], t ∈ [T],m ∈ [M], p ∈
[P], h ∈ [H];

1: Initialize xjt = 0, yjhm = 0,sjhp = 0, dj = 0, ∀j ∈ [J], t ∈
[T],m ∈ [M], p ∈ [P], h ∈ [H], Ji = ∅;

2: while i = 1, 2, ... do
3: while t < τi do
4: Ji = Ji ∪ {j};
5: end while
6: {{xjt}, dj , {yjhm}, {sjhp}}j∈Ji,t∈[ατi] =

Adual(Ji, τi, {C
r
h});

7: for all j ∈ [Js
i] do

8: Run job j from time ατi to time ατi+1 according to
({xjt}, dj , {yjhm}, {sjhp});

9: end for
10: Ji+1 = Ji+1 ∪ (Ji \ J

s
i);

11: end while

Lemma 1. Given a dual approximation algorithm for Ji, i ∈
1, 2, ..., which produces a schedule satisfying two properties: (i)
the length of the schedule is at most ατi; (ii) total weight of
the schedule is at least the optimal weight of the corresponding
maximum weighted schedule problem, Aonline is an online 4α-
approximation algorithm to minimize the total weighted comple-
tion time.

Proof: Consider a fixed optimal schedule for the problem
in (2). Let I be chosen to be the smallest integer so that all
jobs complete in this schedule by time τI , and let J∗

i denote
the set of jobs that complete in the ith interval, (τi−1, τi], i =
1, 2, ..., I . In a particular interval i, consider jobs completed
during the first i intervals according to the optimal schedule,
but do not run within the first i−1 iterations by Aonline, i.e.,
J ′
i = ∪i

k=1J
∗
k−(∪i−1

k=1J
s
k). Each job j ∈ J ′

i arrives by τi, since
it can complete by τi in the optimal schedule, besides, it has
not been scheduled before τi using Aonline. That is j ∈ Ji,
so that J ′

i ⊂ Ji. Moreover, all jobs in J ′
i can be scheduled

to complete within τi by the optimal schedule for the total
weighted completion times minimization problem, as well
as the optimal solution of the maximum scheduled weight
problem for Ji. According to the property (ii) of the dual
approximation algorithm, we obtain a set Js

i of total weight
at least

∑
j∈J ′

i
wj in iteration i, i.e., w(Js

i) ≥ w(J ′
i), here

w(J) =
∑

j∈J wj . Furthermore, combining the definition
of J ′

i , for each i = 1, 2, ..., I , the following inequation is
satisfied:

∑i
k=1 w(J

s
k) ≥

∑i
k=1 w(J

∗
k).

It can be derived from the above inequation that Aonline

has scheduled all jobs by iteration I, i.e.
∑I

i=1 w(J
s
i) =∑I

i=1 w(J
∗
i). Focus on the optimal schedule for the

total weight completion time minimization problem,∑
j∈[J] wjc∗j ≥

∑I
i=1 τi−1w(J∗

i). Here c∗j denotes the com-

pletion time of job j in the optimal schedule. The sched-
ule which is iteratively constructed by Aonline has to-
tal weighted completion time at most

∑I
i=1 ατi+1w(Js

i) ≤
4α

∑I
i=1 τi−1w(Js

i) ≤ 4α
∑I

i=1 τi−1w(J∗
i) ≤ 4α

∑

j∈[J] wjc
∗
j .

4.2 A Dual Approximation Algorithm

The dual approximation algorithm Adual (Algorithm 2)
produces desired schedules based on a γ-approximation
algorithm for the Maximum Weighted Schedule Problem,
that schedules as many unscheduled jobs as possible before
a deadline (to be detailed in Sec. 5). Lines 2-4 invoke
the γ-approximation algorithm Amaxweight for α rounds.
Specifically, in the ιth (ι ∈ [α]) round, we schedule jobs in
Ji \ Js

i , i.e., jobs in Ji but not served in before rounds, from
time (ι− 1)τi + 1 to time ιτi.

Lemma 2. Given a γ-approximation algorithm for the maximum
weighted schedule problem which schedules as many jobs as
possible before deadline τi, Adual constructs a schedule of length
at most ατi and total weight at least the optimal objective value
of the corresponding maximum weighted schedule problem.

Proof: Let J∗
iι and Js

iι be the set of jobs served optimally
and completed by Adual in the ιth round, respectively. Thus,
the optimal objective value of the total weight maximization
problem for Ji is w(J∗

i1). And let Js′

iι = Js
iι ∩ J∗

i1. In the
ιth round, the input of the γ-approximation algorithm is
Ji − ∪ι−1

ι′=1J
s
iι′ . When ι = 1, we have

w(Js
i1) ≥

1
γ
w(J∗

i1). (3)

For ι ≥ 2, consider jobs which can be scheduled by the
optimal solution but are not served by Adual in the first
ι−1 rounds, i.e., J∗

i1−∪ι−1
ι′=1w(J

s′

iι′). In ιth round, since each
j ∈ [J∗

i1 − ∪ι−1
ι′=1w(J

s′

iι′)] can be completed by the optimal
solution, w(J∗

iι) ≥ w(J∗
i1 − ∪ι−1

ι′=1w(J
s′

iι′)). Then we have

w(Js
iι) ≥

1

γ
(w(J∗

i1)−
ι−1∑

ι′=1

w(Js′

iι′)) ≥
1

γ
(w(J∗

i1)−
ι−1∑

ι′=1

w(Js
iι′))

(4)

For ι ∈ [α], the following inequality holds:

ι∑

ι′=1

w(Js
iι) ≥ [1− (1−

1

γ
)ι]w(J∗

i1) (5)

We prove (5) by induction. (5) must hold for ι = 1, since
(3) holds. Suppose (5) holds for ι, according to (4), we have∑ι+1

ι′=1 w(J
s
iι) ≥

1
γw(J

∗
i1)+ (1− 1

γ)
∑ι

ι′=1 w(J
s
iι) ≥ [1− (1−

1
γ)

ι+1]w(J∗
i1). Thus we prove (5). Suppose for the specific ι∗,

∑ι∗

ι′=1 w(J
s
iι′) ≥ w(J∗

i1) and
∑ι∗−1

ι′=1 w(Js
iι′) < w(J∗

i1). Note
that J∗

i1−∪ι∗−1
ι′=1w(J

s
iι′) '= ∅, then w(Js

iι∗) ≥ minj∈[J∗
i1]

wj ≥
wmin, here wmin = minj∈[J] wj . And since (5), w(Js

iι∗) ≥
(1− 1

γ)
ι∗−1w(J∗

i1). So (1− 1
γ)

ι∗−1w(J∗
i1) ≥ wmin, then ι∗ ≤

logw(J∗

i1)−logwmin

log γ−log(γ−1) +1. We can set α =) logw(J)−logwmin

log γ−log(γ−1) *+1,
which satisfies

α ≥)
logw(J∗

i1)− logwmin

log γ − log(γ − 1)
*+ 1 ≥ ι∗, ∀i (6)

such that
∑α

ι′=1 w(J
s
iι′) ≥ w(J∗

i1), ∀i.

7

Algorithm 2 A Dual Approximation Algorithm Adual

Input: Ji, τi, C
r
h, ∀h ∈ [H], r ∈ [R];

Output: xjt, yjhm, sjhp, dj , J
s
i , ∀j ∈ [Ji], t ∈ [τi],m ∈ [M], p ∈

[P], h ∈ [H];
1: Initialize xjt = 0, dj = 0, yjhm = 0, sjhp = 0,βr

h(t) =
0, Js

i = ∅, δrh(t) = ∆r
h(0), ∀j ∈ [Ji], t ∈ [τi],m ∈ [M], h ∈

[H], p ∈ [P], r ∈ [R];
2: for ι = 1 to α do
3: {{xjt}, dj , {yjhm}, {sjhp}}j∈(Ji\J

s
i
),t∈[(ι−1)τi+1,ιτi] =

Amaxweight(Ji \ J
s
i , τi, {C

r
h});

4: end for

5 APPROXIMATION ALGORITHM FOR TOTAL

WEIGHT MAXIMIZATION

We next present an approximation algorithm Amaxweight

for batch processing, employing a primal-dual algorithm
in Sec. 5.1. As subroutines of Amaxweight, we design two
algorithms in Sec. 5.2 to compute the best schedule for each
job. Theoretical analysis is presented in Sec. 5.3.

5.1 The Maximum Weighted Schedule Problem

We formulate a maximum weighted schedule problem for
each round i in our online scheduling framework, that
maximizes the total weight of jobs in Ji completed by time
τi.

maximize
∑

j∈[Ji]

∑

t∈[τi]

wjxjt (7)

subject to:
∑

t∈[τi]

xjt ≤ 1, ∀j ∈ [Ji], (7a)

∑

t∈[τi]

xjt(t+ dj) ≤ τi, ∀j ∈ [Ji], (7b)

(2b)− (2i), (2k)− (2o), where ∀t ∈ [τi].

This maximization problem involves integer variables,
non-linear constraint (2b) (2c) and constraints concerning
multiplication of variables (2f)(2h)(7b). To address these
challenges, we first apply the compact-exponential tech-
niques [30] to reformulate problem (7) into an equivalent
conventional integer linear program (ILP) with packing
structure:

maximize
∑

j∈[Ji]

∑

l∈Γj

wjxjl (8)

subject to:
∑

j∈[Ji]

∑

l:t∈T (l),h∈l

xjlf
r
jh(l) ≤ Cr

h, ∀t ∈ [τi], r ∈ [R], h ∈ [H], (8a)

∑

l∈Γj

xjl ≤ 1, ∀j ∈ [Ji], (8b)

xjl ∈ {0, 1}, ∀j ∈ [Ji], l ∈ Γj . (8c)

In the above ILP, Γj is the set of feasible sched-
ules for job j, each corresponding to the set of decisions
(xjt, dj , yjhm, sjhp, qj , ∀m ∈ [M], p ∈ [P], h ∈ [H], t ∈ [τi]) sat-
isfying constraints (7b)(2b)(2c)(2f)(2i)(2k)(2n). Binary vari-
able xjl indicates whether job j is scheduled according to
schedule l ∈ Γj or not, ∀j ∈ [J], l ∈ Γj . T (l) records the
allocated time slots of job j in schedule l ∈ Γj . We use

h ∈ l to indicate that schedule l uses server h to deploy
workers and PSs for job j. fr

jh(l) denotes the total type-r
resource occupation of job j’s schedule l on server h, i.e.,
fr
jh(l) =

∑

m∈l,p∈l(e
r
myl

jhm + zrps
l
jhp), ∀h ∈ l, r ∈ [R], where

m ∈ l, p ∈ l specify that schedule l trains the model using
type-m workers and type-p PSs, and yljhm (sljhp) represents
the given number of workers m (PSs p) on server h in l.

Constraint (8a) is equivalent to (2h). Constraint (8b)
ensures that each job is executed according to at most one
schedule. A feasible solution to ILP (8) has a corresponding
feasible solution in problem (7), and vice versa, with the
same objective value. Note that we introduce an exponential
number of variables in ILP (8), each corresponding to a
possible schedule of job j. To solve ILP (8), we formulate
the dual LP of ILP (8) by relaxing xjl ∈ {0, 1} to xjl ≥ 0
and introducing dual variables δrh(t) and uj to constraints
(8a) and (8b):

minimize
∑

j∈[Ji]

uj +
∑

t∈[τi]

∑

h∈[H]

∑

r∈[R]

δrh(t)C
r
h (9)

subject to:

uj ≥ wj −
∑

t∈T (l)

∑

h∈l

∑

r∈[R]

δrh(t)f
r
jh(l), ∀j ∈ [Ji], l ∈ Γj , (9a)

δrh(t), uj ≥ 0, ∀j ∈ [Ji], t ∈ [τi], h ∈ [H], r ∈ [R]. (9b)

If we interpret dual variable δrh(t) as the unit
cost of type-r resource on server h in time t, then
∑

t∈T (l)

∑

h∈l

∑

r∈[R] δ
r
h(t)f

r
jh(l) is the total resource cost of

all workers and PSs serving job j by schedule l. The RHS of
(9a), i.e., job weight minus overall resource cost of job j with
schedule l, is the job utility. To minimize the dual objective,
we assign dual variables uj to be the maximum between 0
and the RHS of (9a) according to the best schedule lj :

uj = max{0,max
l∈Γj

RHS of (9a)}. (10)

If uj > 0, we construct schedule of job j according to lj
(xjlj = 1); or otherwise, we do not schedule it (xjl = 0, ∀l ∈
Γj). The rationale is that, given limited resources, we wish
to schedule jobs with larger utility.

Amaxweight in Algorithm 3 is our offline algorithm for
the maximum weighted schedule problem with the input
job set φ. Line 1 initializes primal and dual variables. For
each job j in φ, lines 3 and 4 invoke Amincost2 and Amincost1

to find a schedule with the lowest cost in the two cases, i.e.,
qj = 1 and qj = 0, respectively. Comparing the resulting
solutions, we obtain the best schedule with the highest
utility uj for job j in lines 5-7. If uj > 0, we set all primal
variables according to lj in lines 10-11 and update the
dual variables using the following carefully designed price
functions δrh(·) in line 14. Line 12 updates Js

i , i.e., the set
of jobs which have been scheduled in the ith round. In line
13, βr

h(t) records the amount of allocated type-r resource on
server h for time t.

δrh(β
r
h(t)) = λ

βr
h(t)

Cr
h − 1, ∀h ∈ [H], r ∈ [R], t ∈ [τi],

where λ = 2(THRF) + 1
(11)

We make two assumptions. First, we assume that a job’s
weight is proportional to its resource consumption, i.e.,
1 ≤

wj∑
t∈T (l)

∑
h∈l

∑
r∈[R] f

r
jh

(l) ≤ F, ∀j, l, h, r. Here parameter

F represents the upper bound of a job’s weight to its
resources consumption, and it will be used to design the

8

Algorithm 3 Total Weight Maximization Amaxweight

Input: φ, τi, C
r
h, ∀h ∈ [H], r ∈ [R];

Output: xjt, yjhm, sjhp, dj , qj , J
s
i , ∀j ∈ [Ji], t ∈ [τi],m ∈

[M], p ∈ [P], h ∈ [H];
1: Initialize xjt = 0, dj = 0, yjhm = 0, sjhp = 0,βr

h(t) =
0, δrh(t) = ∆r

h(0), ∀j ∈ [φ], t ∈ [τi],m ∈ [M], h ∈ [H], p ∈
[P], r ∈ [R];

2: for each job j ∈ [φ] do
3: (costj , lj) = Amincost2(τi, {β

r
h(t)}, {δ

r
h(t)}, {C

r
h});

4: (cost, l) = Amincost1(τi, {β
r
h(t)}, {δ

r
h(t)}, {C

r
h});

5: if cost < costj then
6: costj = cost, lj ⇐ l;
7: end if
8: uj = wj − costj ;
9: if uj > 0 then

10: xjt− = 1, dj = Lj ;
11: Set qj , yjhm, sjhp according to lj , ∀h ∈ lj ,m ∈ lj , p ∈

lj ;
12: Js

i = Js
i ∪ {j};

13: βr
h(t) = βr

h(t) + fr
jh(lj), ∀t ∈ T (lj), h ∈ [H], r ∈ [R];

14: Update δrh(t), ∀t ∈ T (lj), h ∈ [H], r ∈ [R] with (11);
15: end if
16: end for

price function of the unit resource. Second,
fr
jh(l)

Cr
h

≤ 1
log λ

,
which implies that the one type resource demand of each job
on one server is small as compared to the resource capacity
of each server. The price function starts at zero and increases
exponentially with the increase of resource consumption.
When there is little usage of type-r resource on server h,
βr
h(t) is close to zero, which allows jobs to consume resource

freely. When type-r resource on server h is exhausted, βr
h(t)

is close to the resource capacity Cr
h, and δrh(t) grows fast to

a carefully designed large value λ, so that type-r resource on
server h will be barely allocated to a job, unless its weight is
sufficiently large.

5.2 Cost Minimization Problem

Since wj is a constant, the utility maximization problem
of job j is equivalent to the following cost minimization
problem:

min
∑

t∈[t′,t′+dj)

∑

h∈[H]

∑

r∈[R]

xjt′δ
r
h(t)(

∑

m∈[M]

ermyjhm +
∑

p∈[P]

zrpsjhp)

(12)

subject to:
∑

t∈[τi]

xjt = 1, (12a)

(7b), (2b)− (2g), (2i), (2k)− (2o), ∀t ∈ [τi], for the specific j.

We next show the schedule that minimizes job j’s cost
can be found efficiently and optimally using Algorithm 5
and Algorithm 4. When we fix the worker type m and the
PS type p serving job j, the number of acquired time slots
is at most (

EjDjKj

ρ
p
jm

). For a fixed allocated time slot dj , the

number of workers needed is at least (EjDjKj

djρ
p
jm

). If we further

know the starting time of job j, problem (12) is simplified as
the following ILP, where m = m′, p = p′, t′ = t−, t+ = t−+dj :

min
y,s

cost(m′, p′, t−, t+)

=
∑

t∈[t−,t+)

∑

h∈[H]

∑

r∈[R]

δrh(t)(e
r
m′yjhm′ + zrp′sjhp′) (13)

subject to:

qj = 1 if and only if h = h′, ∀h, h′ : yjhm′ > 0, sjh′p′ > 0,
(13a)

∑

h∈[H]

yjhm′ ≤ Dj , (13b)

∑

h∈[H]

yjhm′ ≥ (
EjDjKj

djρ
p′

jm′

), (13c)

sjhp′Bp′ ≥
∑

h′∈[H−h]

yjh′m′bm′ , ∀h : sjhp′ > 0, (13d)

∑

h∈[H]

sjhp′ ≥ 1, (13e)

yjhm′ , sjhp′ ∈ {0, 1, ...}, ∀h ∈ [H], ∀p ∈ [P], (13f)

qj ∈ {0, 1}. (13g)

That is, we need to find the best placement scheme for job
j to minimize the overall resource cost satisfying constraints
(13a)-(13g). Note that constraint (13d) is satisfied naturally,
since the RHS of (13d) is zero. Besides, the processing
capacity ρpjm is affected by the location of workers and PSs.
If all workers and PSs of one job are deployed in the same
physical server, the bandwidth occupied by exchanging
gradient/parameters can be ignored. Therefore, there are
two cases according to whether all workers and PSs are
deployed in the same server. For distributed (qj = 0) and
centralized placement (qj = 1), deployment solutions of
workers and PSs are different. We come up with algorithms
to find the best schedule with the smallest cost for job j as
Amincost2 and Amincost1. Amincost2 handles the case where
all workers and PSs of job j are running on one server, i.e.,
qj = 1, ρpjm = 1/(vjm + Up

j), and Amincost1 solves the other,
i.e., qj = 0, ρpjm = 1/(vjm + Up

j +
2πj

bm
).

In Amincost1, we record the amount of available type-
r resource on server h at time slot t using ωr

h(t) in line
2. Next, we enumerate the worker and PS types serving
job j in line 3 and 4. Then, we traverse possible execution
time and compute the number of workers needed in lines
5-6. Given starting time t− in line 7, we sort servers for
worker m′ deployment in non-decreasing order of total
resource cost

∑

t∈[t−,t+)

∑

r∈[R] δ
r
h(t)e

r
m′ recorded by Ωh in

line 8. Then lines 9-33 maximally deploy workers starting
from the cheapest server, respecting capacity constraint (2h),
the required number of workers Nj in (13c) and bandwidth
reservation constraints (13d). Specifically, we decide the
number of workers and PSs in given server n in lines
14-22 in a greedy manner, i.e., the maximum number of
workers and PSs are placed satisfying (13d). If there are
not enough workers or PSs, completing job j is infeasible
(lines 25 and 26); otherwise, we compute the overall cost
∑

t∈[t−,t+)

∑

h∈[H]

∑

r∈[R] δ
r
h(t)(e

r
m′yjhm′ + zrp′sjhp′) (line 28).

9

Algorithm 4 Subroutine for Job j Amincost1

Input: τi,β
r
h(t), δ

r
h(t), C

r
h, ∀h ∈ [H], , r ∈ [R], t ∈ [τi];

Output: lj , cost m;
1: Initialize uj = 0, lj = ∅, cost m = +∞;
2: qj = 0,ωr

h(t) = Cr
h − βr

h(t), ∀h, r, t;
3: for m′ = 1 to M do
4: for p′ = 1 to P do
5: for Lj = (

EjKj

ρ
p′

jm′

) to (
EjDjKj

ρ
p′

jm′

) do

6: Nj = (
EjDjKj

Ljρ
p′

jm′

), N̂ = Nj ;

7: for t− = 1 to τi − Lj do
8: List h ∈ [H] in nondecreasing order of Ωh, t+ =

t− + Lj ;
9: for n = 1, ..., H do

10: yjhm = 0, sjhp = 0, ∀m, p, h;
11: for k = 1, ..., H do
12: ŷ = min{minr∈[R],t∈[t−,t+)+

ωr
k(t)

er
m′

,, N̂};
13: yjkm′ = ŷ;
14: if k = n then
15: for g = 0 to ŷ do
16: ŝ = minr∈[R],t∈[t−,t+)+

ωr
n(t)−ger

m′

zr
p′

,;

17: if ŝBp′ ≥ (Nj − g)bm′ then
18: yjnm′ = g;
19: sjnp′ = min{ŝ, (

(Nj−g)bm′

Bp′
)};

20: end if
21: end for
22: end if
23: N̂ = N̂ − yjkm′ ;
24: end for
25: if N̂ > 0 or sjnp′ < 1 then
26: cost = +∞;
27: else
28: Compute cost;
29: end if
30: if cost < cost m then
31: cost m = cost, lj ⇐ {t−, Lj ,y, s, qj};
32: end if
33: end for
34: end for
35: end for
36: end for
37: end for
38: return lj , cost m

We identify the schedule with smallest cost in lines 30-
32. Finally, we return the resulting schedule lj and the
corresponding cost cost m in line 38.

Compared to Amincost1, Amincost2 counts the range of
acquired time slots and number of workers needed with
different processing capacities. We enumerate the server to
run all workers and PSs on it.

5.3 Theoretical Analysis

Theorem 1. Algorithm 4 and Algorithm 5 yield an optimal
solution of problem (13) in two scenarios, respectively.

Proof. Please see Appendix.

Theorem 2. Amaxweight in Algorithm 3, with Amincost2 and
Amincost1, computes a feasible solution to problems (7)(8)(9).

Algorithm 5 Subroutine for Job j Amincost2

Input: τi,β
r
h(t), δ

r
h(t), C

r
h, ∀h ∈ [H], , r ∈ [R], t ∈ [τi];

Output: lj , cost m;
1: Initialize uj = 0, lj = ∅, cost m = +∞;
2: qj = 1,ωr

h(t) = Cr
h − βr

h(t), ∀h, r, t;
3: while traverse the value space of variables m′ p′ Lj t− in

order do
4: for h = 1, ..., H do
5: yjhm = 0, sjhp = 0, ∀m, p, h;
6: Compute yjhm′ and sjhp′ respecting (2h) and (13a)
7: Set cost according to the feasibility of yjhm′ and sjhp′
8: if cost < cost m then
9: cost m = cost, lj ⇐ {t−, Lj ,y, s, qj};

10: end if
11: end for
12: end while
13: return lj , cost m

Proof. Please see Appendix.

Theorem 3. The approximation ratio of Amaxweight in Algo-
rithm 3 is 2 log λ.

Proof. Please see Appendix.

Theorem 4. Aonline in Algorithm 1 runs in polynomial time,
with time complexity O((logw(J))JMPT 2 log T (H logH +
H2)).

Proof. Please see Appendix.

Theorem 5. Aonline in Algorithm 1 is 4α-competitive, where
α = + logw(J)−logwmin

1+log log λ−log(2 log λ−1), + 1, where λ are defined in (11),
w(J) =

∑

j∈J wj and wmin = minj∈[J] wj .

Proof. Please see Appendix.
We observe that the typical value of α is close to 4 in

simulation studies. As shown by the proof of Lemma 2,
the value of α in each round i should satisfy inequality
(6). According to the definition of J∗

i1, we can set α to be
) logw(Ji)−logwmin

log γ−log(γ−1) * + 1 in simulations. Further, if Js
i = Ji

for the specific ι, we can terminate the ith round iteration of
Adual and turn to the next round.

6 EXTENSION TO RING-ALLREDUCE FRAMEWORK

In this section, we consider the total weighted completion
time minimization problem with Ring-AllReduce architec-
ture. Sec. 6.1 model the distributed ML system. We show
that the approximation algorithm Amaxweight can also han-
dle the Ring-AllReduce architecture, in Sec. 6.2. We design
two algorithms, which act as subroutines of Amaxweight,
in Sec. 6.3 to find the best schedule for each job in the
two cases, respectively. Theoretical analysis is conducted in
Sec. 6.4.

6.1 Training Process with Ring-AllReduce Architecture

With data parallelism and AllReduce architecture, each
worker of a job trains the entire model using different data
chunks. The major computation steps on each worker are:
(i) compute the gradient using a mini-batch; (ii) compute the
mean of the gradients generating on all workers and return
the resultant gradient to all other workers. This process is
called AllReduce; (iii) update the model parameters.

10

There are several algorithms to implement the AllReduce
operation, e.g., Tree AllReduce, Round-robin AllReduce,
Butterfly AllReduce and Ring-AllReduce. In this work, we
focus on the Ring-AllReduce architecture. Ring-AllReduce
eliminates the performance bottleneck by distributing the
computation and communication over the participant work-
ers. It has been more widely adopted than the others, given
that it is efficient and simple to implement.

Considering a certain job j, let Φ be the total number of
workers serving job j, i.e., Φ =

∑
h∈[H]

∑
m∈[M] yjhm, and

each worker is uniquely identified by a number ϕ ∈ Φ.
Let Gϕ be the gradient of worker ϕ after training a mini-
batch. First, each worker divides its own gradient into Φ
parts. Gϕκ is the κ-th part of Gϕ. Let G0 be the resultant
gradient, whose size is the same as Gϕ. The κ-th part of
G0 is to be: G0κ = G1κ Op G2κ Op ... Op GΦκ. Here
Op is a binary operator. For example, the SUM operation
is used to compute the mean of gradients in distributed
deep learning. First, the worker ϕ sends Gϕϕ to the next
worker ϕ+ 1, while it receives Gϕ−1ϕ−1 from the previous
worker ϕ − 1 simultaneously. (The worker Φ sends GΦΦ

to the first worker, and vice versa.) That is, all workers
constitute a single ring. Second, worker ϕ performs the
reduction operation to the received gradient Gϕ−1ϕ−1 and
its own gradient Gϕϕ−1, and sends the reduced gradient to
the next worker ϕ+1. By repeating the receive-reduce-send
steps Φ − 1 times, each worker obtains a different portion
of the resulting gradient. Finally, all worker can obtain the
completed gradient by sharing the distributed partial results
among them.

In the Ring-AllReduce algorithm, we can calculate the
amount of communication in each worker in the following
way. In the earlier half of the algorithm, each worker sends

gradients Φ − 1 times, whose total size is πj(Φ−1)
Φ . Next,

each worker sends partial resulting gradient Φ − 1 times
of the same total size. Thus, the total amount of data each
worker sends throughout the algorithm is 2πj(Φ−1)

Φ , which
is practically independent of Φ. Similarly, the computation
time at each worker for performing the reduction operation

in the earlier half of the algorithm is Uj(Φ−1)
Φ , here Uj is

the time to process gradients of size πj at a worker. When
qj = 1, i.e., all workers of j are deployed on one server,
the communication time of each worker can be ignored.
When qj = 0, i.e., workers of job j are placed on at least two
servers, with synchronous training, the time for all workers

to transfer gradients in one iteration is 2πj(Φ−1)
Φbm

. Thus, we
have

ρjm =











1/(vjm +
Uj(Φ− 1)

Φ
), if qj = 1

1/(vjm +
Uj(Φ− 1)

Φ
+

2πj(Φ− 1)
Φbm

), if qj = 0
(14)

With Ring-AllReduce architecture, the offline minimization
problem is formulated as follows:

minimize
∑

j∈[J]

wj

∑

t∈[T]

xjt(t+ dj) (15)

subject to:
qj = 1 if and only if h = h′, ∀h, h′ : yjhm > 0, yjh′m > 0, ∀j,

(15a)
∑

j:t′∈(t−dj ,t]

xjt′

∑

m∈[M]

ermyjhm ≤ Cr
h, ∀t, ∀r, ∀h, (15b)

(2a)(2b), (2f)− (2g), (2j)− (2k), (2m)− (2o).

Constraint (15a) shows the relationship among qj and
yjhm. The resource capacity of physical servers for running
workers is formulated in constraint (15b). Here, xjt′ =
1, t′ ∈ (t − dj , t] denotes that job j is still running in time
slot t.

Note that Aonline and Adual can be applied to both
distributed ML architectures we described.

6.2 The Maximum Scheduled Weight Problem

The maximum scheduled weight problem for Ji by time
τi in each iteration i is formulated as the following integer
program:

maximize
∑

j∈[Ji]

∑

t∈[τi]

wjxjt (16)

subject to:

(7a), (7b), (15a), (15b), (2b), (2f)− (2g), (2k), (2m)− (2o),

where ∀t ∈ [τi].

To address non-conventional constraints (2b)(2f)(7b), we
reformulate problem (16) into an equivalent conventional
ILP using the compact-exponential technique:

maximize
∑

j∈[Ji]

∑

l∈Γj

wjxjl (17)

subject to:
∑

j∈[Ji]

∑

l:t∈T (l),h∈l

xjlf
r
jh(l) ≤ Cr

h, ∀t ∈ [τi], r ∈ [R], h ∈ [H],

(17a)

∑

l∈Γj

xjl ≤ 1, ∀j ∈ [Ji], (17b)

xjl ∈ {0, 1}, ∀j ∈ [Ji], l ∈ Γj . (17c)

Here, each feasible schedule of job j l ∈ Γj corresponds
to the set of decisions (xjt, dj , yjhm, qj , ∀m ∈ [M], h ∈
[H], t ∈ [τi]) satisfying constraints (7b)(15a)(2b)(2f)-
(2g)(2k)(2m)-(2o). fr

jh(l) =
∑

m∈l e
r
myljhm, ∀h ∈ l, r ∈ [R].

Constraint (17a) is equivalent to (15b). A feasible solution to
ILP (17) has a corresponding feasible solution in problem
(16), and vice versa, with the same objective value. To
solve ILP (17) with an exponential number of variables, we
formulate the dual LP of ILP (17) by relaxing xjl ∈ {0, 1}
to xjl ≥ 0 and introducing dual variables δrh(t) and uj to
constraints (17a) and (17b):

minimize
∑

j∈[Ji]

uj +
∑

t∈[τi]

∑

h∈[H]

∑

r∈[R]

δrh(t)C
r
h (18)

subject to:

uj ≥ wj −
∑

t∈T (l)

∑

h∈l

∑

r∈[R]

δrh(t)f
r
jh(l), ∀j ∈ [Ji], l ∈ Γj , (18a)

δrh(t), uj ≥ 0, ∀j ∈ [Ji], t ∈ [τi], h ∈ [H], r ∈ [R]. (18b)

∑
t∈T (l)

∑
h∈l

∑
r∈[R] δ

r
h(t)f

r
jh(l) is the total cost of re-

source occupied by job j with schedule l. The RHS of (18a) is
the job utility, which equals to the job weight minus overall
resource cost of all workers serving job j by schedule l. We

11

minimize the dual objective by setting uj to maximum of 0
and the RHS of (18a) with the best schedule lj :

uj = max{0,max
l∈Γj

RHS of (18a)}. (19)

If uj > 0, we construct schedule of job j according to lj
(xjlj = 1); or otherwise, we do not schedule it (xjl = 0, ∀l ∈
Γj).

Note that Amaxweight can also handle the Ring-
AllReduce architecture by using subroutines ARAmincost1

and ARAmincost2 in line 3 and 4 and keeping sjhp, ∀j ∈
[J], h ∈ [H], p ∈ [P] equals to 0 all the time.

6.3 Cost Minimization Problem

The utility maximization problem of job j is equivalent to
the following cost minimization problem:

min
∑

t∈[t′,t′+dj)

∑

h∈[H]

∑

r∈[R]

xjt′δ
r
h(t)

∑

m∈[M]

ermyjhm (20)

subject to: ∑

t∈[τi]

xjt = 1, (20a)

(7b), (15a), (2b), (2f)− (2g), (2k), (2m)− (2o), ∀t ∈ [τi],

for the specific j.

We next show the schedule that minimizes job j’s cost
can be found efficiently and optimally using Algorithm 6
and Algorithm 7. When we fix the worker type m and the
number of workers serving job j, the number of acquired
time slots is at least , EjDjKj∑

h∈[H]

∑
m∈[M] yjhmρjm

-, i.e., the total

work time of all workers is at least ,EjDjKj

ρjm
-. If we further

know the starting time of job j, problem (21) is simplified as
the following ILP, where m = m′,

∑
h∈[H]

∑
m∈[M] yjhm =

Φ′, t′ = t−, t+ = t− + dj :

min
y,s

cost(m′, t−, t+) =
∑

t∈[t−,t+)

∑

h∈[H]

∑

r∈[R]

δrh(t)e
r
m′yjhm′

(21)

subject to:
qj = 1 if and only if h = h′, ∀h, h′ : yjhm > 0, yjh′m > 0,

(21a)
∑

h∈[H]

yjhm′ = Φ′, (21b)

dj
∑

h∈[H]

yjhm′ ≥ (
EjDjKj

ρjm′

), (21c)

yjhm′ , dj ∈ {0, 1, ...}, ∀h ∈ [H], (21d)

qj ∈ {0, 1}. (21e)

That is, we need to find the best placement scheme for job
j to minimize the overall resource cost satisfying constraints
(21a)-(21e). Similarly, consider the situation whether all j’s
workers and PSs are deployed on the same server, i.e., qj = 1
or not i.e., qj = 0. We come up with algorithms to find the
best schedule with the smallest cost for job j as ARAmincost1

and ARAmincost2. ARAmincost1 handles the case where all
workers of job j are running on one server, i.e., qj = 1,

ρjm = 1/(vjm + Uj(Φ−1)
Φ), and ARAmincost2 solves another,

i.e., qj = 0, ρjm = 1/(vjm + Uj(Φ−1)
Φ + 2πj(Φ−1)

Φbm
).

In ARAmincost1, we enumerate the worker types and
the potential number of workers serving job j in line 3

Algorithm 6 Subroutine for Job j ARAmincost1

Input: τi,βr
h(t), δ

r
h(t), C

r
h, ∀h ∈ [H], , r ∈ [R], t ∈ [τi];

Output: lj , cost m;
1: Initialize uj = 0, lj = ∅, cost m = +∞;
2: qj = 1; /*deploy all j’s workers on one server*/
3: for m′ = 1 to M do
4: for Φ′ = 1 to Dj do

5: d̂j = ,EjDjKj

Φ′ρjm′
-;

6: for t− = 1 to τi − d̂j do
7: t+ = t− + d̂j ;
8: for h = 1, ..., H do
9: yjhm = 0,ωr

h(t) = Cr
h − βr

h(t), ∀t ∈ [τi],m ∈
[M], p ∈ [P], h ∈ [H], r ∈ [R];

10: yjhm′ = min{minr∈[R],t∈[t−,t+))
ωr

h(t)
er
m′

*,Φ′};

11: if Φ′ > yjhm′ then
12: cost = +∞;
13: else
14: cost =

∑
t∈[t−,t+)

∑
r∈[R] δ

r
h(t)e

r
m′yjhm′ ;

15: end if
16: if cost < cost m then
17: cost m = cost, lj ⇐ {t−, d̂j ,y, qj};
18: end if
19: end for
20: end for
21: end for
22: end for
23: return lj , cost m

and 4. And compute the execution time needed in lines
5. Given starting time t− in line 6, we decide the de-
ployment of workers in lines 8-19. More specifically, we
enumerate the server to run all workers on it. Line 9 sets
{yjhm}∀h∈[H],m∈[M] to zero, and uses ωr

h(t) to record the
amount of available type-r resource on server h at time
slot t. Lines 10 calculates the number of workers respecting
capacity constraint (2h), to fulfill job workload EjDj . If
not enough workers can be deployed, completing job j is
infeasible (lines 11 and 12); otherwise, we compute the
overall cost

∑
t∈[t−,t+)

∑
h∈[H]

∑
r∈[R] δ

r
h(t)e

r
m′yjhm′ (line

14). We identify the schedule with smallest cost in lines
16-17. Finally, we return the resulting schedule lj and the
corresponding cost cost m in line 23.

ARAmincost2 counts the maximum number of time slots
with different processing capacity, i.e., ρjm = 1/(vjm +
Uj(Φ−1)

Φ + 2πj(Φ−1)
Φbm

), which is related to the type and number
of workers, in line 5. Lines 9-13 maximally deploy workers
starting from the cheapest server, respecting capacity con-
straint (2h) and the total number of workers Φ′ in (21b).
Line 14 verifies the feasibility of the solution and line 17
calculates the cost of feasible solution. Results are returned
in line 25.

6.4 Theoretical Analysis

Theorem 6. Algorithm 6 and Algorithm 7 producess optimal
solution of problem (16) in two cases, respectively.

Proof. Please see Appendix.

12

Algorithm 7 Subroutine for Job j ARAmincost2

Input: τi,βr
h(t), δ

r
h(t), C

r
h, ∀h ∈ [H], , r ∈ [R], t ∈ [τi];

Output: lj , cost m;
1: Initialize uj = 0, lj = ∅, cost m = +∞;
2: qj = 0; /*deploy j’s workers on at least two servers*/
3: for m′ = 1 to M do
4: for Φ′ = 1 to Dj do

5: d̂j = ,EjDjKj

Φ′ρjm′
-,N̂ = d̂j ;

6: for t− = 1 to τi − d̂j do
7: t+ = t− + d̂j , Ωh =

∑
t∈[t−,t+)

∑
r∈[R] δ

r
h(t)e

r
m′ ;

8: List h ∈ [H] in nondecreasing order of Ωh;
9: for h = 1, ..., H do

10: ωr
h(t) = Cr

h − βr
h(t), ∀t ∈ [τi], h ∈ [H], r ∈ [R];

11: yjhm′ = min{minr∈[R],t∈[t−,t+))
ωr

k(t)
er
m′

*, N̂};

12: N̂ = N̂ − yjhm′ ;
13: end for
14: if N̂ > 0 then
15: cost = +∞;
16: else
17: cost =

∑
t∈[t−,t+)

∑
h∈[H]

∑
r∈[R] e

r
m′yjhm′δrh(t);

18: end if
19: if cost < cost m then
20: cost m = cost, lj ⇐ {t−, d̂j ,y, qj};
21: end if
22: end for
23: end for
24: end for
25: return lj , cost m

Theorem 7. Amaxweight in Algorithm 3, with ARAmincost1

and ARAmincost2, computes a feasible solution to problems
(16)(17)(18).

Proof. Please see Appendix.

Theorem 8. The time complexity of Aonline in Algorithm 1 for
Ring-AllReduce architecture is polynomial.

Proof. Please see Appendix.
Note that the approximation ratio of Amaxweight for

Ring-AllReduce architecture is the same as we claimed
in Theorem 3. And the competitive ratio of Aonline for
Ring-AllReduce architecture is the same as we claimed in
Theorem 5.

7 PERFORMANCE EVALUATION

Settings. We simulate an ML cluster running for T ∈
[100, 300] time slots (default value: 150). Each time slot is
one hour long. The default number of servers is 150. The
overall resource capacities, C, are set to be approximately
[0.2, 0.5] fraction of the respective overall job resource de-
mand, which is computed by adding the ideal resource
demand of all jobs. Resources configuration of each server
is set according to Amazon EC2 GPU instances P3, P2 and
G3. The numbers of worker and PS types are set to be 8 and
10, respectively. Following similar settings in [3][4][2], we
set resource configuration for each type worker as follows:
1 to 4 GPUs, 1 to 16 vCPUs and bandwidth of 100Mbps to
5Gbps. Resource configuration for each type PS is: 1 to 16

vCPUs and bandwidth of 5Gbps to 20 Gbps. For each job,
wj is in [200, 5000], Ej is set within [50, 100], Dj is in [5, 50],
Kj is in [10, 50], Up

j is in [10, 100] milliseconds, vjm is in
[0.001, 0.05] time slots, and πj is within [30, 575]MB [37][4].

Algorithms for comparison. We compare Aonline with
three job scheduling policies: (i) FIFO: default scheduler
in Hadoop and Spark [45]; jobs run by order of arrival,
with fixed numbers and resource configuration of workers
(and PSs). The number of workers is fixed to a number
within [1, 30] for FIFO. (ii) Dominant Resource Fairness
Scheduling (DRF): default scheduler in YARN [8] and Mesos
[7]; the numbers of workers (and PSs) are computed to
achieve max-min fairness in dominant resources [6]. (iii)
AntMan [17]: a cluster scheduler, which introduces two
types of jobs: opportunistic job and resource-guarantee job.
AntMan schedules resource-guarantee jobs first and allo-
cates sufficient GPU resources to them. For opportunistic
jobs, AntMan aims to utilize free resources to the best of
its ability. Resource-guarantee jobs that suffer long queuing
delay will be automatically executed as opportunistic jobs.
(iv) Tiresias [20]: a preemptive scheduler, which aims to
minimize the average JCT (i.e., time from job submission to
job completion).Tiresias assigns jobs according to the mul-
tiplication of a job’s remaining workload and the number
of resources, (e.g., GPUs, RAM and CPUs). In (i)-(iv), the
resource configuration of workers (and PSs) is the same
as that in the ideal case, which is derived according to
recent literature [10] [11] [12] in our simulation studies.
We compare Amaxweight with an algorithm from recent
literature [44] which proposes a greedy strategy to schedule
jobs with deadlines in the offline scenario.

7.1 Performance of Aonline

1) Objective Value (PS framework): Fig. 2 compares the total
weighted completion time produced by different algorithms
under different numbers of jobs, where T = 300. Aonline

performs at least 30% better than the other algorithms in
both cases. The objective value may grow with the increase
of number of servers according to Fig. 3. Note that λ in price
function (11) increases in line with the number of servers H .
Aonline prefers to schedule jobs of larger weight with larger
λ when available resources are insufficient. Thus, when
the overall resource capacities nearly remain the same, the
total amount of fragment resources increases and effective
resource capacity of the servers decreases with larger H . The
objective values in Fig. 2 (Fig. 3) are the average of multiple
trials. In Fig. 2 and Fig. 3, the total weight job comple-
tion time obtained by AntMan and Tiresias are both much
larger than other algorithms. This is because job execution
duration is lengthened due to frequent preemption. Fig. 4
calculates the objective value obtained by Aonline under
different F , i.e., the upper bound of a job’s weight to its
resources consumption. Recall that parameter λ in the price
function and the theoretical competitive ratio are related
to F . We can see that for larger values of F , the objective
value is larger. Larger F represents larger weights of served
jobs, i.e., jobs with weight which is not large enough will be
executed later.

(Ring-AllReduce framework): Fig. 5 and Fig. 6 represent the
total weighted completion time achieved by five algorithms

13

100 150 200 250 300

Number of Jobs

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

T
o

ta
l W

e
ig

h
te

d
 C

o
m

p
le

tio
n

 T
im

e

108

A
online

DRF

FIFO

AntMan

Tiresias

Fig. 2: Total weighted completion time
with PS framework.

150 180 210 240 270

Number of Servers

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

T
o

ta
l W

e
ig

h
te

d
 C

o
m

p
le

tio
n

 T
im

e

108

A
online

DRF

FIFO

AntMan

Tiresias

Fig. 3: Total weighted completion time
with PS framework.

100 150 200 250 300 350 400 450 500

Number of jobs

0

0.5

1

1.5

2

2.5

3

3.5

4

T
o

ta
l W

e
ig

h
te

d
 C

o
m

p
le

tio
n

 T
im

e 108

F=4+PS

F=6+PS

F=8+PS

F=4+Ring-AllReduce

F=6+Ring-AllReduce

F=8+Ring-AllReduce

Fig. 4: Total weighted completion time
of Aonline under different F .

100 150 200 250 300

Number of Jobs

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
o

ta
l W

e
ig

h
te

d
 C

o
m

p
le

tio
n

 T
im

e

108

A
online

DRF

FIFO

AntMan

Tiresias

Fig. 5: Total weighted completion time
with RA framework.

150 180 210 240 270

Number of Servers

0.5

1

1.5

2

2.5

T
o

ta
l W

e
ig

h
te

d
 C

o
m

p
le

tio
n

 T
im

e

108

A
online

DRF

FIFO

AntMan

Tiresias

Fig. 6: Total weighted completion time
with RA framework.

100 120 140 160 180 200 220 240 260 280 300

Number of Jobs

0

10

20

30

40

50

60

70

R
u

n
n

in
g

 T
im

e
 (

S
e

co
n

d
s)

PS

Ring-AllReduce

Fig. 7: Running time of Aonline with
different ML distributed system archi-
tectures.

100 200 300 400 500

Number of jobs

0.5

1

1.5

2

2.5

3

3.5

T
o

ta
l w

e
ig

h
t

105

A
maxweight

+PS

Jain+PS

100 200 300 400 500

Number of jobs

0

0.5

1

1.5

2

2.5

3

3.5

T
o

ta
l w

e
ig

h
t

105

A
maxweight

+Ring-AllReduce

Jain+Ring-AllReduce

Fig. 8: Total scheduled job weight of
Amaxweight and Jain et al.’s algorithm
[44].

PS Ring-AllReduce
0

1

2

3

4

T
o
ta

l W
e
ig

h
te

d
 C

o
m

p
le

tio
n
 T

im
e

108

A
online

p3.4xlarge

p2.2xlarge

p3.2xlarge

p2.xlarge

Fig. 9: The impact of workers’ types.

0 10 20 30 40 50

Number of workers

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
o

ta
l W

e
ig

h
te

d
 C

o
m

p
le

ti
o

n
 T

im
e

1010

PS

Ring-AllReduce

Best point

Fig. 10: The impact of the number of
workers.

100 150 200 250 300 350 400 450 500

Number of jobs

0

2

4

6

8

10

12

14

16

18

T
o

ta
l w

e
ig

h
t

105

F=4+PS

F=6+PS

F=8+PS

F=4+Ring-AllReduce

F=6+Ring-AllReduce

F=8+Ring-AllReduce

Fig. 11: Total weight of
Amaxweight under different F .

100 150 200 250 300 350 400 450 500

Number of jobs

2

3

4

5

6

7

8

9

10

11

T
o

ta
l w

e
ig

h
t

105

H=30+PS

H=35+PS

H=40+PS

H=30+Ring-AllReduce

H=35+Ring-AllReduce

H=40+Ring-AllReduce

Fig. 12: Total weight of
Amaxweight under different
H .

under different numbers of jobs and servers, respectively.
And our online job scheduling algorithm Aonline performs
the best in both two cases. Compared to Fig. 2 and Fig.

3, the results are similar, which illustrates that Aonline

outperforms four baselines. In Fig. 6, we can observe that
the total weighted completion time increases as the increase
of number of servers, which is similar to the PS framework.

2) Running Time: We apply the tic and toc functions
in MATLAB to measure the execution time of our online
algorithm. We run 10 tests on a desktop computer (Intel
Core i3-6100/8GB RAM) and present the average result in
Fig. 7. We can observe that, the running time of Aonline

increases with the number of jobs, but still remains at a low
level (< 2 minutes).

3) The impact of demand elasticity: Fig. 9 compares the total
weighted job completion time obtained by PS and Ring-
AllReduce framework under different types of workers.
To illustrate the impact of the types of workers, we select
four frequent-used types of Amazon EC2 instances [40]

14

(i.e., p3.4xlarge, p2.2xlarge, p3.2xlarge and p2.xlarge) to act
as different types of workers. Here, we assume that all
jobs employ the same type of workers. The deployment
of workers and PSs (including the number of workers/PSs
and the execution time window) are determined by Aonline.
In Fig. 9, we can observe that different types of workers
greatly affect the total weighted job completion time. Aonline

explores the demand elasticity, and chooses the best worker
type for each job. Therefore, Aonline can achieve the smallest
total weighted job time. To investigate the impact of the
number of workers, we plot the computing process of the
number of workers in Aonline. Aonline enumerates all pos-
sible numbers and always selects the one with the smallest
total weighted job completion time. Fig. 10 illustrates that
the total weighted job completion time decreases as the
increase of number of workers deployed for jobs. This is
because the more workers allocated to the job, the faster the
job would be completed.

7.2 Performance of Amaxweight

Fig. 8 compares the total weight achieved by Amaxweight

with related algorithm from recent literature [44]. Our of-
fline algorithm Amaxweight performs much better than the
other. Fig. 11 represents the total weight of Amaxweight

under different F , which is related to price function in line
14 of Amaxweight. We can see that for smaller values of F ,
the total weight is larger. Smaller F represents more jobs can
be served with the same total number of jobs, particularly,
jobs with smaller weight. Fig. 12 shows the total weight of
Amaxweight under different H , i.e., the number of servers
to deploy workers and PSs. It reflects that the total weight
is smaller for larger values of H because the total amount
of fragment resources increases with the increase of the
number of servers. In Fig. 12, there is an upward trend in
the total weight with the increment of the number of jobs.

8 CONCLUSION

We proposed an online algorithm for scheduling syn-
chronous training jobs in ML clusters. The online algo-
rithm targets total weighted completion time minimization,
consisting of (i) an online greedy-interval algorithm that
converts the online scheduling problem into a series of batch
processing problems; (ii) a primal-dual algorithm running
for each batch, which computes the best execution window
of each job, with proper number and type of workers
(and parameter servers). Both theoretical analysis and trace-
driven simulation studies validate our online algorithm’s
good performance, as compared to both offline optimum
and commonly used scheduling algorithms in read-world
cloud systems.

REFERENCES

[1] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “MXNet: A Flexible and
Efficient Machine Learning Library for Heterogeneous
Distributed Systems,” in NIPS Workshop on Machine
Learning Systems (LearningSys), 2016.

[2] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanara-
man, “Project Adam: Building an Efficient and Scalable

Deep Learning Training System,” in Proc. of USENIX
OSDI, 2014.

[3] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B. Su, “Scaling Distributed Machine Learning with the
Parameter Server,” in Proc. of USENIX OSDI, 2014.

[4] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online Job Schedul-
ing in Distributed Machine Learning Clusters,” in Proc.
of IEEE INFOCOM, 2018.

[5] baidu-allreduce, https://github.com/baidu-research/
baidu-allreduce.

[6] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica, “Dominant Resource Fairness:
Fair Allocation of Multiple Resource Types,” in Proc. of
USENIX NSDI, 2011.

[7] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica, “Mesos:
A Platform for Fine-Grained Resource Sharing in the
Data Center,” in Proc. of USENIX NSDI, 2011.

[8] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. S. amd Carlo Curino, O. O’Malley, S. Radia, B. Reed,
and E. Baldeschwieler, “Apache hadoop YARN: Yet
another resource negotiator,” in Proc. of ACM SoCC,
2013.

[9] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes, “Large-scale cluster manage-
ment at Google with Borg,” in Proc. of ACM EuroSys,
2015.

[10] Y. Gao, L. Chen, and B. Li, “Spotlight: Optimizing De-
vice Placement for Training Deep Neural Networks,”
in Proc. of ACM ICML, 2018.

[11] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang,
Z. Hu, J. Wei, P. Xie, and E. P. Xing, “Poseidon: An effi-
cient communication architecture for distributed deep
learning on gpu clusters,” in Proc. of USENIX ATC,
2017.

[12] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Opti-
mus: an efficient dynamic resource scheduler for deep
learning clusters,” in Proc. of ACM EuroSys, 2018.

[13] S. Li, “Scheduling to Minimize Total Weighted Com-
pletion Time via Time-Indexed Linear Programming
Relaxations,” in Proc. of IEEE FOCS, 2017.

[14] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein,
“Scheduling to minimize average completion time: Off-
line and on-line approximation algorithms,” Mathemat-
ics of operations research, vol. 22, no. 3, pp. 513–544, 1997.

[15] Y. Bao, Y. Peng, and C. Wu, “Deep Learning-based Job
Placement in Distributed Machine Learning Clusters,”
in Proc. of IEEE INFOCOM, 2019.

[16] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phan-
ishayee, and M. Zaharia, “Heterogeneity-aware cluster
scheduling policies for deep learning workloads,” in
Proc. of USENIX OSDI, 2020.

[17] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng,
W. Lin, and Y. Jia, “Antman: Dynamic scaling on
{GPU} clusters for deep learning,” in Proc. of USENIX
OSDI, 2020.

[18] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian,
W. Xiao, and F. Yang, “Analysis of large-scale multi-
tenant {GPU} clusters for {DNN} training work-

15

loads,” in Proc. of USENIX ATC, 2019.
[19] K. Mahajan, A. Balasubramanian, A. Singhvi,

S. Venkataraman, A. Akella, A. Phanishayee, and
S. Chawla, “Themis: Fair and efficient {GPU} cluster
scheduling,” in Proc. of USENIX NSDI, 2020.

[20] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon,
J. Qian, H. Liu, and C. Guo, “Tiresias: A {GPU} cluster
manager for distributed deep learning,” in Proc. of
USENIX NSDI, 2019.

[21] M. M. Amiri and D. Gündüz, “Computation schedul-
ing for distributed machine learning with straggling
workers,” in Proc. of IEEE ICASSP, 2019.

[22] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Perfor-
mance Modeling and Scalability Optimization of Dis-
tributed Deep Learning Systems,” in Proc. of ACM
SIGKDD, 2015.

[23] Y. Peng, Y. Bao, Y. Chen, C. Wu, C. Meng, and W. Lin,
“Dl2: A deep learning-driven scheduler for deep learn-
ing clusters,” arXiv preprint arXiv:1909.06040, 2019.

[24] W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. Lau, “An online
auction framework for dynamic resource provisioning
in cloud computing,” in Proc. of ACM SIGMETRICS,
2014.

[25] Z. Zhang, Z. Li, and C. Wu, “Optimal posted prices
for online cloud resource allocation,” in Proc. of ACM
SIGMETRICS, 2017.

[26] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. Lau, “Online
auctions in iaas clouds: Welfare and profit maximiza-
tion with server costs,” in Proc. of ACM SIGMETRICS,
2015.

[27] L. Jiao, A. Tulino, J. Llorca, Y. Jin, and A. Sala,
“Smoothed online resource allocation in multi-tier dis-
tributed cloud networks,” IEEE/ACM Trans. on Netw.,
vol. 25, no. 4, pp. 2556–2570, 2017.

[28] L. Jiao, A. Tulino, J. Llorca, Y. Jin, A. Sala, and J. Li,
“Online control of cloud and edge resources using
inaccurate predictions,” in Proc. of IEEE/ACM IWQoS,
2018.

[29] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. S.
Naor, and J. Yaniv, “Truthful online scheduling with
commitments,” in Proc. of ACM EC, 2015.

[30] R. Zhou, Z. Li, C. Wu, and Z. Huang, “An efficient
cloud market mechanism for computing jobs with soft
deadlines,” IEEE/ACM Trans. on Netw., vol. 25, no. 2,
pp. 793–805, 2017.

[31] T. Wang, Z. Qian, L. Jiao, X. Li, and S. Lu, “Geo-
clone: online task replication and scheduling for geo-
distributed analytics under uncertainties,” in Proc. of
IEEE/ACM IWQoS, 2020.

[32] M. Sheikhalishahi, N. Eskandari, A. Mashayekhi, and
A. Azadeh, “Multi-objective open shop scheduling
by considering human error and preventive mainte-
nance,” Applied Mathematical Modelling, vol. 67, pp. 573–
587, 2019.

[33] B. Tian, C. Tian, B. Wang, B. Li, Z. He, H. Dai, K. Liu,
W. Dou, and G. Chen, “Scheduling coflows of multi-
stage jobs to minimize the total weighted job comple-
tion time,” in Proc. of IEEE INFOCOM, 2018.

[34] Z. Wang, H. Zhang, X. Shi, X. Yin, Y. Li, H. Geng,
Q. Wu, and J. Liu, “Efficient scheduling of weighted
coflows in data centers,” IEEE Transactions on Parallel

and Distributed Systems, vol. 30, no. 9, pp. 2003–2017,
2019.

[35] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A System
for Large-Scale Machine Learning,” in Proc. of USENIX
OSDI, 2016.

[36] Microsoft Cognitive Toolkit, https://www.microsoft.
com/en-us/cognitive-toolkit/.

[37] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and
K. Keutzer, “FireCaffe: Near-Linear Acceleration of
Deep Neural Network Training on Compute Clusters,”
in Proc. of IEEE CVPR, 2016.

[38] Distributed Training in TensorFlow, https://www.
tensorflow.org/guide/distribute\ strategy.

[39] S. Jeaugey, “Nccl 2.0,” 2017.
[40] Amazon EC2 Instances, https://aws.amazon.com/ec2/

instance-types/.
[41] ”Google Cloud TPU”, 2017, https://cloud.google.com/

tpu.
[42] C. Chen, W. Wang, and B. Li, “Round-Robin Synchro-

nization: Mitigating Communication Bottlenecks in Pa-
rameter Servers,” in Proc. of IEEE INFOCOM, 2019.

[43] G. Gens and E. Levner, “Complexity of approxima-
tion algorithms for combinatorial problems: a survey,”
ACM SIGACT News, vol. 12, no. 3, pp. 52–65, 1980.

[44] N. Jain, I. Menache, J. S. Naor, and J. Yaniv, “Near-
optimal scheduling mechanisms for deadline-sensitive
jobs in large computing clusters,” ACM Trans. Parallel
Comput., vol. 2, no. 1, p. 3, 2015.

[45] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica, “Spark: Cluster computing with working
sets,” in Proc. of USENIX HotCloud, 2010.

Ruiting Zhou received the PhD degree from the
Department of Computer Science, University of
Calgary, Canada, in 2018. She has been an as-
sociate professor with the School of Cyber Sci-
ence and Engineering, Wuhan University since
June 2018. Her research interests include cloud
computing, machine learning and mobile net-
work optimization. She has published research
papers in top-tier computer science conferences
and journals, including IEEE INFOCOM, ACM
MobiHoc, ICDCS, IEEE/ACM Transactions on

Networking, IEEE Journal on Selected Areas in Communications, IEEE
Transactions on Mobile Computing. She also serves as a reviewer
for journals and international conferences such us the IEEE Journal
on Selected Areas in Communications, IEEE Transactions on Mobile
Computing, IEEE Transactions on Cloud Computing, IEEE Transactions
on Wireless Communications, and IEEE/ACM IWQOS.

16

Jinlong Pang received the B.E. degree in
School of Power and Machinery and the second
B.E. degree in School of Computer both from
Wuhan University, China. Now he is pursuing
his M.E. degree in School of Cyber Science and
Engineering at Wuhan University. His research
interests include distributed machine learning,
federated learning, online learning and algorithm
optimization.

Qin Zhang received the B.E. degree and the
M.E. degree both in School of Computer Science
from Wuhan University, China. Her research in-
terests include distributed machine learning, on-
line scheduling and algorithm optimization.

Chuan Wu received her B.Engr. and M.Engr.
degrees in 2000 and 2002 from the Depart-
ment of Computer Science and Technology, Ts-
inghua University, China, and her Ph.D. degree
in 2008 from the Department of Electrical and
Computer Engineering, University of Toronto,
Canada. Since September 2008, Chuan Wu has
been with the Department of Computer Science
at the University of Hong Kong, where she is cur-
rently a Professor and serves as an Associate
Head on curriculum and development matters.

Her current research is in the areas of cloud computing, distributed
machine learning/big data analytics systems, network function virtual-
ization, and data center networking. She is a senior member of IEEE, a
member of ACM, and served as the Chair of the Interest Group on Mul-
timedia services and applications over Emerging Networks (MEN) of the
IEEE Multimedia Communication Technical Committee (MMTC) from
2012 to 2014. She is an associate editor of IEEE Transactions on Cloud
Computing, IEEE Transactions on Multimedia and ACM Transactions on
Modeling and Performance Evaluation of Computing Systems. She has
also served as TPC members and reviewers for various international
conferences and journals. She was the co-recipient of the best paper
awards of HotPOST 2012 and ACM e-Energy 2016.

Lei Jiao received the Ph.D. degree in computer
science from the University of Göttingen, Ger-
many. He is currently an assistant professor at
the Department of Computer and Information
Science, University of Oregon, USA. Previously
he worked as a member of technical staff at
Alcatel-Lucent/Nokia Bell Labs in Dublin, Ireland
and also as a researcher at IBM Research in
Beijing, China. He is interested in the mathemat-
ics of optimization, control, learning, and mech-
anism design applied to computer and telecom-

munication systems, networks, and services. He publishes papers in
journals such as JSAC, ToN, TPDS, TMC, and TDSC, and in con-
ferences such as INFOCOM, MOBIHOC, ICNP, ICDCS, SECON, and
IPDPS. He is a recipient of the NSF CAREER Award. He also received
the Best Paper Awards of IEEE LANMAN 2013 and IEEE CNS 2019,
and the 2016 Alcatel-Lucent Bell Labs UK and Ireland Recognition
Award. He was on the program committees of conferences including
INFOCOM, MOBIHOC, ICDCS, IWQoS, and ICC, and was also the
program chair of multiple workshops with INFOCOM and ICDCS.

Yi Zhong received the B.E. degree in School
of Information Management from Wuhan Univer-
sity, China. Now she is pursuing her M.E. degree
in School of Cyber Science and Engineering at
Wuhan University. Her research interests include
optimization algorithms, online scheduling and
network security.

Zongpeng Li received the B.E. degree in com-
puter science from Tsinghua University, in 1999,
and the PhD degree from the University of
Toronto, in 2005. He has been with the Uni-
versity of Calgary and then Wuhan University.
His research interests are in computer networks
and cloud computing. He was named an Edward
S.Rogers Sr. Scholar, in 2004, won the Alberta
Ingenuity New Faculty Award, in 2007, and was
nominated for the Alfred P. Sloan Research Fel-
low, in 2007. He co-authored papers that re-

ceived Best Paper Awards at the following conferences: PAM 2008,
HotPOST 2012, and ACM e-Energy 2016. He received the Department
Excellence Award from the Department of Computer Science, University
of Calgary, the Outstanding Young Computer Science Researcher Prize
from the Canadian Association of Computer Science, and the Research
Excellence Award from the Faculty of Science, University of Calgary. He
is a senior member of the IEEE.

