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Abstract—Recent advances in 5G and edge computing enable
rapid development and deployment of edge-cloud systems, which
are ideal for delay-sensitive machine learning (ML) applications
such as autonomous driving and smart city. Distributed ML jobs
often need to train a large model with enormous datasets, which
can only be handled by deploying a distributed set of workers
in an edge-cloud system. One common approach is to employ a
parameter server (PS) architecture, in which training is carried
out at multiple workers, while PSs are used for aggregation
and model updates. In this architecture, one of the fundamental
challenges is how to dispatch ML jobs to workers and PSs such
that the average job completion time (JCT) can be minimized.
In this work, we propose a novel online preemptive scheduling
framework to decide the location and the execution time window
of concurrent workers and PSs upon each job arrival. Specifi-
cally, our proposed scheduling framework consists of: i) a job
dispatching and scheduling algorithm that assigns each ML job
to workers and decides the schedule to train each data chunk;
ii) a PS assignment algorithm that determines the placement
of PS. We prove theoretically that our proposed algorithm is
Dmax(1 + 1/ε)-competitive with (1 + ε)-speed augmentation,
where Dmax is the maximal number of data chunks in any job.
Extensive testbed experiments and trace-driven simulations show
that our algorithm can reduce the average JCT by up to 30%
compared with state-of-the-art baselines.

Index Terms—Distributed Machine Learning, Parameter
Server Architecture, Preemptive Scheduling, Edge-Cloud Net-
works.

I. INTRODUCTION

W ITH the advances in 5G and the edge computing
technologies, artificial intelligence (AI) is expanding

its coverage to emerging applications at the edge, e.g., au-
tonomous driving and smart city. Compared to machine learn-
ing (ML) over the central cloud, training at the edge enjoys a
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number of advantages such as low transmission latency, pri-
vacy protection, and less bandwidth consumption [1]. There-
fore, combining the advantages of the edge and the cloud to
facilitate model training seems promising. ML model training
customarily exploits data parallelism or/and model parallelism
[2] [3], in which data parallelism maintains multiple replicas
of models among servers, and model parallelism stores copies
of datasets. Data parallelism is more feasible for resource-
limited edges, in which parameter server (PS) architecture
[4] is commonly used to train ML models [5]–[7]. More
specifically, as shown in Fig. 1, each training iteration consists
of five steps. First, the job owner uploads its input dataset
in data chunks to workers, which are deployed on containers
or virtual machines (VMs) to host model copies. Next each
worker trains the received data chunks via a local replica of the
global ML model and pushes the resulting gradients to PSs,
which host global model parameters and are also deployed
on containers or VMs. Then the PSs update model parameters
using gradients. At last, each worker pulls the latest parameters
from PSs for the next training iteration.

Job 1 Job J

Data Chunks of Jobs

Edge Server 1 Edge Server 2

Upload Data Chunks

Train Mini-batches

Push Gradients

Pull Parameters
Time Span

Edge Server S

Workers PSs

Update Parameters

Remote Cloud

Fig. 1: An illustration of training ML jobs in the edge-cloud
system.

This work focuses on the preemptive scheduling of dis-
tributed ML jobs in edge-cloud networks by exploring the
benefits from both the cloud and the edge. As it turns out
that it is challenging to train ML models in an edge-cloud
network. First, edge servers are close to the data sources,
preferred by ML jobs due to low transmission latency. But
edge servers are typically resource-scarce and heterogeneous,
so all the workers and PSs involved in an ML job might not
be deployed on one edge server. Consequently, there could
be frequent communications between workers and PSs across
an edge network, which affects the job completion time. The
central cloud, on the other hand, experiences longer latency
but has abundant resources, where workers and PSs can be
easily co-hosted on the same server. Therefore, how to assign
ML jobs to workers and PSs while taking advantage of the
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edge and the cloud becomes critically important. Second, the
long run time of ML jobs keeps resources occupied by jobs
that arrive earlier, which may make jobs that arrive later can
only be dispatched to the remote cloud. Preemptive scheduling
can provide equal opportunities for all jobs, thereby improving
resource utilization. However, the existing preemptive sched-
ulers of ML jobs (e.g. CoDDL [8] and Optimus [9]) usually
need to migrate jobs’ datasets among different servers, which
can be time-consuming and costly. Thus we need to design
a new preemptive algorithm without migrating datasets of
ML jobs. Third, preemption granularity is significant to the
system’s overall efficiency. The training speed of any ML job
is typically a concave function on the number of workers [9].
For the jobs whose speeds reach optimal levels, we can reduce
part of their workers and cause relatively minor damage to
their performance. Therefore the preemption granularity of an
efficient scheduler should be a worker rather than a job.

Existing ML job scheduling has mainly focused on either
edge or cloud systems [8]–[14], which fail to capture the
salient features of edge-cloud networks. In addition, towards
better system efficiency, there are proposals advocating elas-
tic resource allocation for ML jobs according to available
resources and the utility of jobs [10], [11]. While such ap-
proaches are promising but inflexible due to the fixed resource
allocation. Recent work has considered scaling the number
and adjusting the placement of workers and PSs over the
training course [8]–[12] or introducing resource preemption at
the job level [13], [14]. Such preemptive schedulers provide
great flexibility in scheduling. However, these incur significant
overhead to migrate jobs’ datasets among different servers
dynamically. Besides, the job-level preemption granularity is
not efficient enough for scheduling ML jobs.

In this work, we focus on a fundamental problem of training
ML jobs in an edge-cloud network: how to preemptively

dispatch ML jobs to workers and PSs such that the average job

completion time (JCT) is minimized? To the best of knowledge,
this is the first attempt to address the problem of preemptively
scheduling ML jobs in edge-cloud networks. Combining the
distinct features of edge-cloud networks, we consider their ef-
fects on the design of preemptive job scheduling. Specifically,
we propose a cost-efficient preemptive scheduler that decides
the location of workers and PSs for each job only once. That
is, when a job is first scheduled, its dataset is uploaded and
stored on these workers allocated to it. Henceforth the jobs
dispatched to the same worker preemptively occupy the worker
anytime. If a job is preempted, it will be suspended, and its
dataset is still stored on the worker. This effectively eliminates
the need for migrating the datasets of ML jobs. Moreover, our
preemptive scheduler is fine-grained, i.e., we allow jobs to
partly preempt the workers allocated to other jobs, instead of
preempting all of them. This preemption is justified since the
training process can still work with the remaining workers and
all PSs. Finally, we design the scheduling rule by incorporating
various factors, i.e., the heterogeneity of edge-cloud networks,
the current load of each worker, the collaborative relationship
between workers and PSs, and the effects on preempted jobs.
Our main contributions are summarized as follows.

• We formulate the problem of minimizing the average JCT

of ML jobs as a mixed integer nonlinear program. Even
the offline setting is NP-hard, where the complete infor-
mation of all jobs is given a prior. The challenge further
escalates when tackling the online scenario, in which
we need to make scheduling decisions without know-
ing future information. We adopt the unrelated machine
scheduling model [15] to reformulate this problem into
an average fractional flow time minimization problem,
which provides a lower bound of the original problem
for performance analysis.

• We design Aonline to dispatch each ML job to workers
and PSs. We first design algorithm Agreedy for dispatching
jobs to workers to train their input data chunks. For
each data chunk of an ML job, Agreedy computes the
increment of the average training time for each worker,
and the minimal is selected for this data chunk. In
addition, we prove that the decision of PS allocation
is decoupled from worker allocation when conducting
Agreedy. Subsequently, Aps selects an available PS for
each running job without affecting the objectives in both
the original problem and of the reformulated problem.

• We employ the primal-dual theory to prove that Aonline

achieves a bounded competitive ratio with speed augmen-
tation, which is an alternative version of the competitive
ratio for analyzing unbound online algorithms.

• We carry out both trace-driven simulations and testbed
experiments to evaluate the performance of Aonline. The
evaluation results illustrate that: (i) Aonline reduces the
average JCT by up to 35%, 40% and 50% compared
to two preemptive baselines [13], [16] and one elastic
sharing benchmark [11], respectively; (ii) the number of
preemption in Aonline is relatively small; (iii) Aonline can
complete the training of ML jobs with desired model
accuracy; (iv) the practical competitive ratio (< 1.7) is
much better than the theoretical bound.

In the rest of the paper, we review related work in Sec. II,
and introduce system model in Sec. III. The online preemptive
algorithm for scheduling ML jobs is designed and analyzed
in Sec. IV. Sec. V presents performance evaluation. Sec. VI
extends our algorithm to a capacitated setting and Sec. VII
concludes the paper.

II. RELATED WORK

Job Scheduling/Offloading in Edge-Cloud. A large num-
ber of researches on job scheduling in edge-cloud focus on
efficiently offloading computation/data from mobile devices
to the remote cloud or nearby edge servers [17]–[22]. Meng
et al. [17] propose an online algorithm to jointly manage
the allocation of bandwidth and computing resources to serve
deadline-aware tasks. Cheng et al. [18] study joint resource
allocation and computation-intensive applications offloading
under energy and computation constraints. Both Zhang et al.

[19] and Tan et al. [20] consider the upload and download
delay when dispatching and scheduling jobs. Bista et al. [21]
consider a probabilistic approach to quantify the probability
of successfully offloading tasks to MEC servers. Yang et al.

[22] investigate the job offloading problem to minimize the
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overall weighted sum of energy consumption and running cost.
The above schedulers are not tailored for ML jobs and fail
to consider the influence on the processing capacity due to
frequent communication between workers and PSs.

Distributed Machine Learning Systems. Recent proposals
for ML workloads are designed with various motivations,
such as fairness [23], [24] and efficiency [8]–[14], [25]–
[27]. Mahajan et al. [23] design an auction algorithm to
achieve fairness in a single-tenant cluster. Zhao et al. [24]
extend fairness to multi-tenant setting. All studies in [8]–
[12], [14] improve the efficiency of training ML jobs by
elastic sharing. Our problem setting is similar to [10] and
[11], but the techniques adopted to achieve efficiency are
radically different. They investigate the effects of elastic
resource allocation on job performance, which do not provide
real-time adjustment when workload varies. The schedulers
in [8], [9], [12]–[14], [26], [27] dynamically re-adjust the
number of GPUs or workers according to real-time prediction
on remaining workload, job priority, the length and efficiency
of jobs, model accuracy, and the prediction of GPU utilization,
respectively. As a result, changes in the placement of GPUs
require migrating data to new GPUs for training, which incurs
heavy overhead. Han et al. [25] propose a robust algorithm to
gang-schedule placement-sensitive ML jobs while tolerating
estimation errors on execution time. In this work, the job
owner specifies the number of workers required, and the
resource allocation is non-adjustable. While we elastically
allocate resources according to the size of the job workload
and dynamically adjust the allocation without data migration
by enabling worker-level preemption. Xiao et al. [26] reduce
the fragmentation of resources by packing jobs on as few
machines as possible, thereby improving cluster utilization.
This work achieves its goal by migrating jobs among servers,
which may incur heavy transmission overhead. Qiao et al. [27]
aim to minimize the total training time of jobs while ensuring
fairness among users. They periodically adjust the number of
GPUs allocated to each job to realize a fair-resource allocation
among users. Such adjustment also leads to job migration
among servers, resulting in a high time cost. Moreover, for
a job with a given amount of resources, the scheduler in [27]
facilitates its training by re-configuring a fit batch size and
learning rate. Our work can employ this skill to mitigate the
impact of preemption on model accuracy. All the above studies
focus on model training in either cloud or edge and cannot
utilize both the advantages of the edge and the cloud. Besides,
they cannot provide flexible allocation without migrating data.

Our work is inspired by but significantly different from [11].
First, the scheduling in [11] is non-preemptive and may not
apply to resource-intensive ML job scheduling in edge servers
with the features of heterogeneity and resource scarcity. Sec-
ond, our algorithmic idea to solve the JCT minimization
problem is fundamentally different from [11], as shown in
Fig. 2. The compact-exponential technique, first proposed in
[28] and adopted in [11], cannot resolve preemptive scheduling
since it reserves all resources that each job needs and requires
job owners to pay in full. Besides, we adopt the unrelated
parallel machine model, which has been used to schedule
such jobs that cannot be split and have fixed processing time

[15], [20]. As a result, it cannot be directly applied to our
original model. Since for each ML job, its training needs the
cooperation of multiple workers and PSs, whose number and
placement make the JCT unpredictable.

III. SYSTEM MODEL

A. System Overview

Edge-Cloud System. As shown in Fig. 1, we consider an
edge-cloud system managed by a resource operator, who owns
a number of heterogeneous edge servers and a remote cloud.
These servers are denoted as a set [S]. The cloud is marked
with an alias sc and is regarded as a special server with
high latency and unlimited computation capacity. Each server
s ∈ [S] is equipped with many workers and PSs in advance,
denoted as [Ws] and [Ps], respectively. The cloud provides
infinite workers and PSs, i.e., [Wsc ] and [Psc ] include infinite
elements. A set of J ML jobs arrives at organizations online
with large input data over a large time span [T ] = {1, 2, ..., T}.
An binary variable vjsw(ojsp) indicates whether a given worker
w (PS p) on server s can serve job j or not (‘0’: no; ‘1’: yes).
The value of vjsw(ojsp) is determined immediately when job
j is released. Let [X] denote the integer set {1, 2, . . . , X}.

ML Jobs. An ML job is defined by the following pa-
rameters. First, each job j ∈ [J ] consists of Dj equal-sized
data chunks, which make up the entire datasets of the job.
Furthermore, each data chunk d ∈ [Dj ] consists of Bj equal-
sized mini-batches. Job j arrives at time rj . Upon its arrival,
every data chunk d is dispatched to at most one worker [10]
[11] with a transmission delay "↑

js, where "↑
js is set identical

for all workers on the same server s. Each data chunk of job
j needs to be trained for Ej epochs.

Note that job j specifies the type of its workers upon its
arrival. Let nj be the processing capacity of job j, i.e., the
number of mini-batches that can be trained by a qualified
worker in one time slot. nj is computed as follows. The
time of one worker to process a mini-batch is job-dependent,
indicated as mj . Similarly, the time of one PS to update
parameters is denoted as Gj . Specially, PSs can communicate
with workers synchronously or asynchronously. We adopt the
synchronous stochastic descent gradient [29] under the PS
architecture to train various ML models. As a result, the
communication time between workers and PSs is computed
as follows. Since the size of gradients and parameters are
the same [30], we use

qj
bj

to denote the time of sending

gradients or receiving updated parameters, where qj is the size
of gradients/parameters and bj denotes the reserved bandwidth.
Note that the above parameters can be obtained by pre-training
a tiny partition of datasets. As a special case, when all workers
and PSs are placed in one server, such as the cloud, the time to
exchange parameters/gradients can be negligible. We denote
this case by introducing and setting an indicator variable
ζj = 1. Different from the cloud, one edge server usually does
not have enough resources to place all the workers and PSs
of a job together, and hence ζj = 0. Thus, we have:

nj =







1/(mj +Gj +
2qj
bj

), if ζj = 0

1/(mj +Gj), if ζj = 1
(1)
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Decision Variables. Upon arrival of an ML job j, the fol-
lowing decisions are made: yjsw(t) ∈ {0, 1} (zjsp(t) ∈ {0, 1}),
which indicates whether worker w (PS p) of server s is
scheduling job j in time t or not. We assume that there is only
one PS for each job, which can represent several PS instances
placed on the same server [11], [12]. To avoid migration cost,
we do not allow migrating jobs’ data chunks among servers
after the job dispatching decisions are made. Preemption is
allowed in servers except for the cloud since an executing job
might be suspended and the server can resume it later using
the stored image of the job. Important notations are listed in
Table I.

TABLE I. Notations
Symbol Description
[X] integer set {1, 2, ..., X}
j, s, t indexes for job, server and time slot, respectively
J, S, T # of jobs, servers and time slots, respectively
rj , cj arrival and completion time of job j
Ej , Dj # of training epochs and data chunks of job j
Bj # of mini-batches in one data chunk of job j
w, p indexes for worker and PS, respectively

[Ws], [Ps] sets of workers and PSs deployed on server s

!↑
js delay to transmit one data chunk of job j to server s

nj # of mini-batches trained by one worker of j at a slot
vjsw(ojsp) whether j can be dispatched to w (p) on s
yjsw(t) whether worker w on server s is scheduling job j at t
zjsp(t) whether PS p on server s is serving job j at t
njsw # of mini-batches trained by w on s of j at one slot

yjdsw(t) whether w on s is scheduling data chunk d of j at t
ζj whether a job’s workers and PS are placed together

B. Problem Formulation

Let cj be the completion time of job j. The total completion
time of all jobs is

∑

j∈[J](cj − rj). The objective is equivalent
to minimizing average JCT, given the total number of jobs, J .
We formulate the problem of minimizing total JCT as below.

minimize
∑

j∈[J]

(cj − rj) (2)

subject to:

yjsw(t) ≤ vjsw, ∀j, ∀s,∀w, ∀t (2a)
∑

t∈[T ]

∑

s∈[S]

∑

w∈[Ws]

vjswyjsw(t)nj ≥ EjDjBj , ∀j (2b)

∑

s∈[S]

∑

w∈[Ws]

vjswyjsw(t) ≤ Dj , ∀j, ∀t (2c)

∑

j∈[J]

vjswyjsw(t) ≤ 1, ∀s, ∀w, ∀t (2d)

∑

s∈[S]

∑

p∈[Ps]

ojspzjsp(t) = 1, ∀j, ∀t :
∑

s

∑

w

vjswyjsw(t) > 0 (2e)

∑

j∈[J]

ojspzjsp(t) ≤ 1, ∀s, ∀p, ∀t (2f)

ζj = 1, ∀j : s = sc, ∀yjsw(t) = 1, ∀zjsp(t) = 1 (2g)

ζj = 0, ∀j : s ∈ [S] \ {sc}, ∃yjsw(t) = 1, ∃zjsp(t) = 1 (2h)

yjsw(t) = zjsp(t) = 0, ∀j, ∀s,∀w, ∀p, ∀t < rj +"↑
js (2i)

cj = argmax
t∈[T ]

(
∑

s

∑

w

vjswyjsw(t) > 0), ∀j (2j)

yjsw(t), zjsp(t), ζj ∈ {0, 1}, cj ∈ [T ], ∀j, ∀s, ∀w, ∀p, ∀t. (2k)

Constraint (2a) implies that job j can be only dispatched
to qualified workers (vjsw = 1). Constraint (2b) guarantees

that job j is serviced by sufficient workers. EjDjBj is the
total number of mini-batches of job j. Constraint (2c) limits
the number of allocated workers to be at most Dj , to ensure
that one data chunk is trained by at most one worker for Ej

epochs. Constraint (2d) ensures that each worker can serve at
most one ML job at every time slot. Constraint (2e) assures
that there is one PS allocated to each ML job. Constraint (2f)
indicates that each PS can serve at most one ML job at every
time slot. Constraints (2g) and (2h) reveal that only if the
whole job is dispatched to the cloud (which is regarded as
a large sever) can it ignore the communication time between
workers and PS. Constraint (2i) implies that the dispatching
and scheduling decision can be made only after a job’s arrival.
Constraint (2j) computes the JCT.

Challenges. The minimization problem of the overall JCT in
(2) is a mixed-integer nonlinear programming (MINLP). Even
in the offline setting, MINLP (2) is NP-hard [31]. Moreover,
the coupling of decision variables yjsw(t) and zjsp(t) affects
the value of nj , and further influences the JCT cj . Besides,
even given nj and the start training time, cj cannot be easily
determined, since we allow preemption in job scheduling.

Theorem 1 (NP-hardness) Problem (2) is NP-hard.

Proof: Please see Appendix A. !

IV. ALGORITHM DESIGN AND ANALYSIS

A. Algorithm Idea

In order to solve MINLP (2), we first apply the unrelated
parallel machine model [15] to reformulate it into ILP (4),
which provides a lower bound of problem (2). Then we
design an online algorithm Aonline to solve ILP (4) and
further tackle MINLP (2). ILP (4) is decomposed into two
problems, namely, worker allocation and scheduling problem,
and PS assignment problem. The two problems decide yjdsw(t)

and zjsp(t) for each job, respectively. We develop algorithm
Agreedy for dispatching jobs to workers, and prove that the
PS allocation zjsp(t) is decoupled with yjdsw(t) in this way.
Consequently, we propose a PS assignment algorithm Aps.

i. In Sec. (IV-B), we reformulate MINLP (2) as a minimiza-
tion problem of the average fractional flow time in ILP
(4) and prove that the latter provides a lower bound of
the original in Lemma 1.

ii. In Sec. (IV-C), we design a greedy algorithm Agreedy to
solve the worker allocation problem, i.e., ILP (4) without
constraints (4c) and (4d).

iii. In Sec. (IV-D), we introduce algorithm Aps to solve the
PS assignment problem. Aps and Agreedy constitute the
solution of the original problem in (2).

MINLP (2)
   ILP (4) without 

      (4c) and (4d)

Reformulation

   LP (5)
Dual

   ILP (4) with only (4c) and (4d)

Decoupling

ILP (4)

Competitive ratio of

 problem (4) and (2)

A feasible solution of

  problem (4) and (2)

&

Theorem 1

Theorem 2

澳
psA

澳
onlineA

澳
greedyA

澳
1

1
!

" #
$% &

' (

澳

max

1
1D

!
" #
$% &

' (

Fig. 2: Main idea of our online algorithm in Sec. IV.
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B. Problem Reformulation

The total JCT
∑

j∈[J](cj − rj) equals
∑

j∈[J](max{cjd|∀d ∈
[Dj ]} − rj), where cjd denotes the completion time of data
chunk d in job j. To circumvent the non-conventional objective
and constraint (2j), we reformulate MINLP (2) to ILP (4) by
employing unrelated parallel machine model. For each data
chunk, we calculate its average fractional flow time using Eq.
(3). Here we substitute njsw for nj to interpret both nj and
vjsw. If job j can be dispatched to worker w on server s,
then njsw = nj , otherwise njsw = 0. Let a binary variable
yjdsw(t) ∈ {0, 1} denote whether or not to allocate data chunk
d of job j to worker w on server s at time t. The average
fractional flow time of one chunk d in job j is tailor-made as
Eq. (3), where

EjBj

njsw
denotes the number of time slots needed

to train d in worker w on server s and
∑

t
yjdsw(t)(t−rj)

EjBj/njsw
is the

total fractional flow time [15].

fjd(y) =
1
Dj

∑

t

yjdsw(t)(t− rj)
EjBj/njsw

=
∑

t

yjdsw(t)njsw

EjDjBj
(t− rj),

(3)

where y is the collection of all yjdsw(t).

minimize
∑

j∈[J]

∑

d∈[Dj ]

fjd(y) (4)

subject to:
∑

t∈[T ]

∑

s∈[S]

∑

w∈[Ws]

yjdsw(t)njsw ≥EjBj , ∀j, ∀d ∈ [Dj ] (4a)

∑

j∈[J]

∑

d∈[Dj ]

yjdsw(t) ≤1, ∀s, ∀w, ∀t ≥ rj (4b)

∑

s∈[S]

∑

p∈[Ps]

ojspzjsp(t) = 1, ∀j, ∀t :
∑

d

∑

s

∑

w

yjdsw(t) > 0 (4c)

∑

j∈[J]

ojspzjsp(t) ≤1, ∀s, ∀p, ∀t ≥ rj (4d)

∑

s∈[S]

∑

w∈[Ws]

yjdsw(t) ≤ 1, ∀j,∀d ∈ [Dj ], ∀t ≥ rj (4e)

ζj = 1, ∀j : s = sc, ∀yjdsw(t) = 1, ∀zjsp(t) = 1 (4f)

ζj = 0, ∀j : s ∈ [S] \ {sc}, ∃yjdsw(t) = 1, ∃zjsp(t) = 1 (4g)

yjdsw(t), zjsp(t), ζj ∈ {0, 1}, ∀j, d, s,w, p, ∀t ≥ rj +"↑
js (4h)

Constraints (4a), (4b) and (4e) are equivalent to constraints
(2b), (2d) and (2c), respectively. Constraints (4c), (4d), (4f)
and (4g) are the same as (2e), (2f), (2g) and (2h), respectively.
Constraint (2a) and (2i) is implied in yjdsw(t) ∈ {0, 1} and
t ≥ rj +"↑

js, respectively. We next prove that ILP (4) yields
a lower bound for MINLP (2) in Lemma 1.

Lemma 1 For any feasible solution, the objective value of the

original MINLP (2) is at least that of ILP (4).

Proof: Please see Appendix B. !

Algorithmic Challenge. In the simplified version of problem
(4), i.e., each server is only endowed with one worker (or PS)
and ∀j,Dj = 1, Ej = 1, Garg [32] has proven that there is no
online algorithm with bounded competitive ratio. We adopt
speed augmentation [33] in algorithm analysis, whose formal
description is shown in Definition 1, and the corresponding
competitive ratio is presented in Definition 2.

Definition 1 A server is (1 + ε)-speed if its online running

speed is (1 + ε) times the offline speed, i.e., any job j can

process (1 + ε)pj units of workload, where pj denotes the

processing capacity in the offline setting.

Definition 2 An online algorithm is (1 + ε)-speed α-

competitive means that the maximum ratio of the total JCT

incurred by our online algorithm with (1 + ε)-speed over that

calculated by the optimal offline algorithm is α.

Online Algorithm Framework. We design algorithm Aonline

in Alg. 1 to solve ILP (4) and MINLP (2), where Aonline

consists of two subroutines Agreedy and Aps. At each time
slot, Aonline first collects the arriving jobs at the current time,
denoted as [Ja] (line 2). Then it calls algorithm Agreedy to
determine the target workers and corresponding schedule for
each job in [Ja] (line 3). Because the schedules of jobs may be
changed due to preemption, Aonline invokes algorithm Aps for
allocating PS to the running jobs when all arriving jobs have
been dispatched and determined schedules (line 4). Finally, it
calculates the actual objective of MINLP (2) according to the
resulting schedules of all jobs (line 6).

Algorithm 1 Online ML Job Preemptive Scheduling: Aonline

Input: T, S, [Ws], [Ps], ∀s ∈ [S]
Output: yjdsw(t), zjsp(t), ∀j ∈ [J ], d ∈ [Dj ], s ∈ [S], w ∈
[Ws], p ∈ [Ps], t ∈ [T ], AV G1, AV G

1: for t ∈ [T ] do
2: Collect jobs whose rj = t and add these jobs into set [Ja]
3: {yjdsw(t),αjd}∀j,d,s,w,t = Agreedy(T, S, {[Ws]}, [Ja])
4: {zjsp(t)}∀j,s,p,t = Aps(T, S, {[Ps]}, t, [Ja])
5: end for
6: Compute

∑

j(cj − rj) based on {yjdsw(t), zjsp(t)}∀j,d,s,w,p,t

C. Online Worker Allocation and Scheduling

Main Idea. The core issue is how to dispatch each data
chunk and determine its schedule window for a job so that the
total JCT is minimized. Intuitively, the shortest job first rule
can avoid head-of-line blocking caused by long jobs. Inspired
by it, our schedule rule is that each worker follows the highest
average processing rate first (HAPRF) rule to schedule its
pending data chunks, where the average processing rate for
each data chunk d of job j is defined as γjd =

njsw

EjDjBj
, which is

a job-dependent constant. Based on the schedule rule, the time
overhead incurred by dispatching one data chunk to a worker
has four parts: transmission delay, waiting time, processing
time, and postponed time of preempted data chunks. We thus
compute the increment in total average training time of data
chunk d by assuming it is dispatched to worker w on server
s, and let Qjdsw be the quantity:

1
Dj

"↑
js +

1
Dj

∑

d′∈A(t0):d′→j′

p̂j′d′(t0)1(γj′d′ ≥ γjd) +
1
Dj

EjBj

njsw

+
EjBj

njsw

∑

d′∈A(t0):d′→j′

1
Dj′

1(γj′d′ < γjd), (5)

where t0 = rj + "↑
js, A(t0) denotes the pending data chunks

when data chunk d arrives at worker w, and p̂j′d′(t) denotes
the remaining processing time of data chunk d′ in job j′ at
time t. In Qjdsw, the first item is the average dispatching time
of data chunk d, the second item implies the average time of
data chunk d waiting for training, the third item is the average
processing time, and the last item indicates the average delay
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time of data chunks whose average processing rate is lower
than data chunk d due to the preemption of data chunk d. With
the goal of minimizing total JCT, the dispatching policy is
naturally devised as follows: it assigns data chunk d to the
worker w on server s which makes Qjdsw minimized.

Dual Problem. To analyze the performance of Aonline,
we formulate the dual of ILP (4). First, we relax integrality
constraint (4h) to yjdsw(t) ≥ 0, which means a data chunk
is allowed to be trained by multiple workers. As a result,
constraint (4e) is redundant. Then we formulate the dual
problem of relaxed problem (4) without constraints (4c), (4d),
(4f) and (4g) by introducing dual variables αjd and βsw(t) to
constraints (4a) and (4b), respectively.

maximize
∑

j∈[J]

∑

d∈[Dj ]

αjd −
∑

s∈[S]

∑

w∈[Ws]

∑

t∈[T ]

βsw(t) (6)

subject to:

αjd
njsw

EjBj
≤

njsw

EjDjBj
(t− rj) + βsw(t),

∀j, ∀d, ∀s, ∀w, ∀t ≥ rj (6a)

αjd,βsw(t) ≥ 0, ∀j, ∀d, ∀s, ∀w, ∀t ≥ rj (6b)

We now construct a feasible solution to the dual LP (6).
First, we set αjd to mins,w Qjdsw. Let the average weight of
data chunk d of job j be µjd = 1

Dj
, then βsw(t) are interpreted

as the total average weight of all uncompleted data chunk on
worker w on server s at time t, i.e., βsw(t) =

∑

d∈A(t):d→j
1

Dj
.

Specially, βsw(t) should include the average weight of a data
chunk from the time it is released.

Algorithm Design. Our online algorithm Agreedy is elabo-
rated in Alg. 2. Upon new job j arrives, Agreedy first initiates ζj
to 0 and defines set Cj that records Qjdsw, the first scheduled
time t∗ and set A2 of preempted data chunks, respectively
(lines 1-2). Especially, when s = sc, Qjdsw is computed by
setting ζj = 1. In lines 3-8, Agreedy calculates the initial
Qjdsw, t

∗,A2 using the information of any data chunk of job
j and stores them in Cj . Next, Agreedy considers two cases
that the first data chunk is dispatched to the cloud and edge
server, respectively. In case 1, since dispatching data chunks
to the cloud has no effect on Cj , the subsequent data chunks
will be allocated to the cloud (lines 12-16). In Case 2, Agreedy

first recalculates Qjdscwc by resetting ζj = 0 (lines 17-20),
and then updates Qjds∗

d
w∗

d
for selected worker w∗

d on server
s∗d (lines 21-22). Finally, the primal and dual variables are
updated according to their definitions (lines 23-24). In function
CALCULATEQ(j, d, s, w), if the target server is the cloud, then
we calculate Qjdsw only with the first and third item in Eq.
(5) since there is no preemption in the cloud (lines 2-9).
Especially, if data chunk d is the first one, then ζj = 1;
otherwise, data chunk d is inserted into the queue of pending
data chunks according to HAPRF rule. Correspondingly, t∗, A1

and A2 can be easily obtained. Note that t∗ is at least (rj+"↑
js)

(lines 10-11). According to t∗,A1 and A2, Qjdsw is computed
by Eq. (5) (line 12). In function UPDATEVARIABLES(), data
chunk d is scheduling during time [t∗, t∗ +

EjBj

njsw
), so the

corresponding yjdsw(t) is set to 1 (line 2). All data chunks in
A2 preempted by d are postponed for

EjBj

njsw
time slots (lines

3-7). Moreover, βsw(t) increases by the average weight of job
j in [rj , t

∗ + EjBj/njsw) (line 8).

Algorithm 2 Online Worker Allocation and Scheduling:
Agreedy

Input: T, S, [Ws], ∀s ∈ [S], [Ja]
Output: yjdsw(t),αjd, ∀j ∈ [J ], d ∈ [Dj ], s ∈ [S], w ∈ [Ws], t ∈
[T ]

1: for j ∈ [Ja] do
2: Initiate ζj = 0 and set Cj = ∅, t∗ = 0,A2 = ∅
3: for s ∈ [S], w ∈ [Ws] do
4: if njsw > 0 then
5: Qjd1sw, t

∗,A2 = CALCULATEQ(j, d1, s, w)
6: Add {Qjd1sw, t

∗,A2} into Cj

7: end if
8: end for
9: for d ∈ [Dj ] do

10: Set (s∗d, w
∗
d) = (0, 0), t∗ = 0,A2 = ∅

11: (s∗d, w
∗
d), t

∗,A2 = argmins,w,t∗,A2 ({Qjdsw ∈ Cj})
12: if s∗d = sc then
13: ∀d,αjd = mins,w,t∗,A2 ({Qjdsw ∈ Cj})
14: ∀d, {{yjdsw(t)}, {βsw(t)}}∀j,d,s,w,t =

UPDATEVARIABLES(j, d, s∗d, w
∗
d, t

∗,A2)
15: break
16: end if
17: if d = d1 then
18: Qjds′w′ , t∗,A2 = CALCULATEQ(j, d, sc, wc)
19: Update Qjdsw = Qjds′w′ where (s, w) = (sc, wc)
20: end if
21: Qjds′w′ , t∗,A2 = CALCULATEQ(j, d, s∗d, w

∗
d)

22: Update Qjdsw = Qjds′w′ where (s, w) = (s′, w′)
23: αjd = mins,w,t∗,A2 ({Qjdsw ∈ Cj})
24: {{yjdsw(t)}, {βsw(t)}}∀j,d,s,w,t =

UPDATEVARIABLES(j, d, s∗d, w
∗
d, t

∗,A2)
25: end for
26: end for

Algorithm 3 Function for Calculating Qjdsw

1: function CALCULATEQ(j, d, s, w)
2: if s = sc then
3: if d = d1 then
4: Set ζj = 1
5: else
6: Set ζj = 0
7: end if
8: Calculate Qjdsw = 1

Dj
"↑

js + 1
Dj

EjBj

njsw
, t∗ = rj +

"↑
js,A2 = ∅

9: else
10: Calculate t∗ and use it as dividing time point to partition

the pending data chunks A(rj +"↑
js) into two sets A1,A2

11: Set t∗ = max(t∗, rj +"↑
js)

12: Calculate Qjdsw by Eq.(5)
13: end if
14: Return Qjdsw, t

∗,A2

15: end function

Algorithm 4 Function for Updating yjdsw(t) and βsw(t)

1: function UPDATEVARIABLES(j, d, s, w, t∗,A2)

2: Set yjdsw(t) = 1, ∀t ∈ [t∗, t∗ +
EjBj

njsw
)

3: for d′ : d′ → j′ ∈ A2 do
4: if yj′d′s′w′(t) = 1 ∧ t ≥ t∗ then

5: Set yj′d′s′w′(t) = 0, yj′d′s′w′(t+
Ej′Bj′

nj′s′w′
) = 1

6: end if
7: end for
8: Set βsw(t) = βsw(t) + 1

Dj
, ∀t ∈ [rj , t

∗ +
EjBj

njsw
)

9: Return yjdsw(t),βsw(t), ∀j ∈ [J ], d ∈ [Dj ], s ∈ [S], w ∈
[Ws], t ∈ [T ]

10: end function



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, XXX 2022 7

D. Online Parameter Server Assignment

Algorithm Design. To ensure integrity of the solution to
problem (2), we next develop the PS assignment policy. Ac-
cording to Alg. 2, for any job, its worker allocation determines
whether its PS is placed on the cloud or on edge servers.
Moreover, the objective of ILP (4) is independent with zjsp(t).
As a result, we only need to make constraints (4c) and (4d)
satisfied to generate a feasible PS assignment solution. Our
PS assignment rule Aps is as follows: at time slot t, Aps

allocates one PS to job j only if it is running. Furthermore,
if job j runs at continuous time slots, then Aps keeps the
allocated PS unchanged to save server switching overhead,
otherwise randomly specifies a PS to it (let ojsp = 1). The
formal description is shown in Alg. 5.

Algorithm 5 Online Parameter Server Assignment: Aps

Input: T, S, [Ps], ∀s ∈ [S], the current time tc,the set [Ja] of
arrived jobs
Output: zjsp(t), ∀j ∈ [J ], s ∈ [S], p ∈ [Ps], t ∈ [T ]

1: for j ∈ [Ja] do
2: if

∑

d∈[Dj ]

∑

s∈[S]

∑

w∈[Ws]
yjdsw(tc) > 0 then

3: if tc > 1 ∧ zjsp(tc − 1) = 1 then
4: Set zjsp(tc) = 1
5: else
6: Randomly select one PS p on server s from the set

of PSs whose ojsp = 1 and set zjsp(tc) = 1
7: end if
8: end if
9: end for

E. Theoretical Analysis

We first analyze the correctness of Agreedy and Aps in
Lemma 2 and 3, and then analyze the performance of Aonline

in terms of correctness, competitive ratio, and time complexity.

Lemma 2 (Correctness) Agreedy in Alg. 2 computes a feasible

solution to problem in (6), and generates feasible {yjdsw(t)}
of problem in (4) without constraints (4c) and (4d).

Proof: Please see Appendix C. !

Lemma 3 (Correctness) Aps generates feasible {zjsp(t)} of

problem in (4), i.e., constraints (4c) and (4d) are satisfied.

Proof: According to Alg. 5, Lemma 3 is clearly correct. !

Theorem 2 (Correctness) Aonline generates a feasible solu-

tion to ILP (4) and original MINLP (2).

Proof: Combining Lemma 2 and 3, we can conclude Aonline

generates a feasible solution to MINLP (2). !

Theorem 3 (Competitive Ratio) For ILP (4), the online algo-

rithm Aonline is (1+ε)-speed (1+1/ε)-competitive. For MINLP

(2), Aonline is (1+ ε)-speed Dmax(1+ 1/ε)-competitive, where

Dmax = maxj∈[J] Dj .

Proof: Please see Appendix D. !

O(1/ε) is the tight competitive ratio of existing unrelated
parallel machine models [15]. Moreover, Dj is an input
parameter, a deterministic constant independent of the problem
size.

Theorem 4 (Polynomial Time) The time complexity of Aonline

is O(JHKmax), where H =
∑

s∈[S]\sc
Ws + 1 and Kmax =

∑

j Dj .

Proof: Please see Appendix E. !

V. PERFORMANCE EVALUATION

A. Experiment Setup

Testbed Setup. We build an edge-cloud system consisting
of nine physical machines via Kubernetes 1.19 [34]. Each
machine has 1 GeForce RTX 2060 GPU, 12 CPU cores,
16GB RAM, 500GB HDDs, and a dual-port 1GbE NIC, eight
of which serve as edge servers, and the other acts as both
the remote cloud and a central scheduler. In our testbed, the
checkpoint files that record model parameters for resuming
ML jobs are stored by a shared Hadoop Distributed File
System (HDFS) [35]. Besides, we select two types of workers,
which are equipped with 1 GPU, 3GB RAM and 3 CPU cores,
2GB RAM, respectively. There is one type of PSs, and each
hosts 2 CPUs, 3GB RAM.

Workload. We generate 30 deep learning (DL) jobs as the
experimental workload by scaling down the original real-world
traces [36], [37]. From the traces, we map the submission time
of jobs into arrival time (rj) by setting one time slot to one
hour long. The worker type that each job employs is randomly
picked from the above two types, and the worker requirement
of each job is computed according to the number of GPUs
of the real trace. In addition, since there is no training model
information in the traces, we randomly pick a model for each
job from a pool of six models (Table II). Accordingly, the
processing capacity nj of job j is obtained by pre-training.
Other information is set as follows: Ei is randomly picked
within the range [20, 60], "↑

js for transmitting a data chunk to
edge servers and cloud are within [1, 4] and [10, 15] time slots,
respectively. T is set to be large enough to complete all jobs.

TABLE II. Deep learning models used for experiments

Model Dataset
# of Data chunks(Dj )

/ Mini-batches(Bj )
ResNet-50 [38] CIFAR10 [39] 27 / 58

ResNet-101 [40] CIFAR10 27 / 58
GoogLeNet [40] Caltech101 [41] 115 / 58

LeNet [42] Caltech101 115 / 58
AlexNet [43] ImageNet-12 [44] 60 / 58

Inception-BN [45] ImageNet-12 60 / 58

Simulator. We simulate a large edge-cloud system by se-
lecting 100 servers from the traces and using a virtual remote
cloud. The hardware configurations of servers in the simulator
follow the distributions in the trace, i.e., for each server, the
number of workers, and PSs corresponds to that of GPUs and
CPUs in the trace, respectively. For other information about
workers, PSs and ML jobs not discussed in the trace, we set
them as below according to [10] [11]. The types of workers
and PSs are set to be 8 to 10, the type of each worker and PS
in each server is randomly picked. The bandwidth of workers
of specified type, i.e., bj , is set within [100, 5∗1024] Mbps. As
for the workload in the simulator, we expand the number of
DL jobs to 300 by scaling up the submission times. The other
settings of ML jobs are as follows: mj ∈ [0.001, 0.05] hour,
Gj ∈ [10, 100] milliseconds, qj ∈ [30, 575] MB.
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Fig. 3: Accuracy of three ML models.
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Baselines. We compare Aonline with the following state-of-
the-art and representative ML job scheduling schemes:

• Aonline-E: Aonline only schedules jobs on edge servers to
show how Aonline trades off between the edge and cloud.

• Shortest-Remaining-Time-First (SRTF) [16]: jobs are
scheduled in the non-decreasing order of remaining train-
ing time.

• Tiresias-L [13]: for each job, the algorithm computes
its priority according to the number and the occupation
time of GPUs allocated, and groups the job into a corre-
sponding priority queue. The jobs of the queue with the
highest priority are scheduled first. Besides, the scheduler
adopts all-or-nothing resource allocation, which suspends
or resumes an entire job in each preemption.

• BatchSche [11]: first groups the uncompleted jobs into
multiple batches, then schedules batches one by one to
minimize the overall resource cost.

Metrics. We evaluate the model accuracy of DL jobs, JCT
rate (the ratio of the total JCT of one algorithm to that of
SRTF), and preemption frequency (the total number of pre-
emption triggered) for real experiments. Moreover, we evaluate
the JCT rate, preemption frequency, cluster utilization, and
actual competitive ratio in large-scale simulations.

B. Testbed Experiments

Accuracy. First, to measure the convergence of our sched-
uler, we plot the accuracy of three different models trained by
Aonline in Fig. 3. From this figure, we can conclude that all
models using Aonline can converge regardless of their types.

JCT Rate in Testbed. Since it takes too long to train an
ML model with complete dataset and the differences on total
JCT of different schedulers can also be evaluated by training
a small fraction of the entire dataset, we pick 7000 images

(101.8MB) from ImageNet ILSVRC2012 dataset to form a
smaller scale dataset, i.e., ImageNet-12. Then, we plot the JCT
rate of four algorithms in Fig. 4. As observed from Fig. 4,
Aonline outperforms other schedulers. However, because the
size of tested jobs is small, the improvement of Aonline is
not noticeable. To this end, we further measure the algorithm
performance in our larger-scale simulations to validate the
scalability in a large testbed.

Preemption Frequency in Testbed. Finally, we present the
preemption frequency of Aonline, Tiresias-L, and SRTF in
Fig. 5. We observe that the preemption in all three algorithms
has similar trends, i.e., preemption gets more frequent with
the increasing number of tested jobs. Besides, the number of
preemption in Aonline remains relatively low, which reflects
the availability of Aonline in practice. We further make this
conclusion credible by conducting large-scale simulations.

Communication Overhead in Testbed. We measure the
communication time rate (defined in the similar way to JCT
rate) for all algorithms. From Fig. 6, we observe that the ratio
of Aonline is smaller than that of baselines. The performance
improvement comes from reducing data migration time and
a trade-off between edge and cloud. Compared to SRTF
and Tiresias-L, Aonline avoids migrating data among workers,
thereby reducing the communication time. BatchSche rarely
has communication overhead between workers and PSs, but
the time to upload datasets to the cloud is relatively larger
than to the edge.

C. Simulation Studies

JCT Rate in Simulator. Fig. 7 shows the JCT rate of
Aonline and four benchmarks under the different workloads. In
any settings, Aonline and Aonline-E consistently outperform all
others in their category. Besides, we observe the following two
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Fig. 9: Preemption frequency with dif-
ferent J in simulator.
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facts: (i) the reduction of JCT in Aonline and Aonline-E over
SRTF and Tiresias-L grows as the number of jobs increases.
This shows that the fine-grained worker preemption in Aonline

is more effective and competitive than job-level preemptive
schedulers (SRTF and Tiresias-L). The key idea of Aonline is
to preempt part of workers instead of suspending the entire job,
and these preempted workers are selected by considering the
transmission delay, communication time between workers and
PSs, current system workload, such that the contribution to the
total JCT is minimized (Eq. (5)). (ii) Aonline performs better
than Aonline-E and BatchSche. Due to the low resource price
of the cloud with unlimited capacities, BatchSche schedules
jobs to the cloud with a very high probability. The fact that
the JCT of Aonline is smaller than that of BatchSche, implies
dispatching most jobs to the cloud with high transmission
delay is not a good choice. Moreover, compared with Aonline-

E, the reduction of JCT in Aonline gets larger with the
increasing number of jobs, which is attributed to offload part
of jobs to the cloud when resource contention on edge servers
becomes heavy. The two comparisons reveal that Aonline can
effectively trade off between the cloud and the edge.

Then we compare the JCT rate of Aonline and four bench-
marks under different numbers of servers in Fig. 8. First, we
can observe that the performances of Aonline and Aonline-E

are better than other baselines regardless of the setting of
hardware. Besides, as the amount of edge resources increases,
the JCT rates of Aonline and BatchSche get larger. On the
contrary, the JCT rates of Aonline-E and Tiresias-L become
smaller. The reason is that the larger the number of edge
servers, the more jobs will be offloaded to the edge. As a result,
compared to the case that resources are relatively scarce, the
advantages of dispatching jobs to the cloud are not obvious.

Preemption Frequency. Fig. 9 and Fig. 10 show the
preemption frequency of four preemptive algorithms under
different numbers of jobs and servers, respectively. From
the comparison between Aonline and Aonline-E, we know
that Aonline can reduce resource contention by offloading
overloaded workload to the cloud when computation becomes
the bottleneck of training. Although the number of preemption
triggered by Aonline is larger than SRTF, its preemption
overhead may not be high. Since the preemption in Aonline

postpones the time window of scheduling on the original
worker rather than reassigning the data chunks of preempted
jobs to other servers.

Resource Utilization. Fig. 11 shows the job submissions and

resource utilization of our cluster over time. We observe that
all schedulers have similar trends for different job submissions,
and their resource utilization rapidly increases at the two peaks
of job submission. Furthermore, the utilization of Aonline

and Aonline-E can reach 100% due to the elastic sharing in
resources. The under-utilization of resources in SRTF and
Tiresias-L results from the non-elastic job requirement. Con-
sequently, the makespan of Aonline is about 0.76× and 0.74×
smaller than both SRTF and Tiresias-L, respectively.
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Fig. 12: Competitive ratio of
Aonline with different J , ε.
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Fig. 13: Competitive ratio of
Aonline with different S, ε.

Actual Competitive Ratio. Fig. 12 and Fig. 13 show the
competitive ratio of Aonline with different J and S under
diverse speed augmentation levels (ε). We simplify ILP (4)
by setting ζj = 1, whose optimal objective is smaller than
that of ILP (4). As a result, we can use the simplified
problem to calculate an upper bound of our actual competitive
ratio of Aonline. However, MATLAB has a capacity limit in
storing the constraint coefficient matrix. Thus, we consider a
reduced input with [5, 25] jobs and [5, 45] servers. Both Fig.
12 and Fig. 13 show that the number of jobs or servers has
little influence on the competitive ratio, which implies the
performance stability of the proposed algorithm. In addition,
the observed competitive ratio remains at a low level (< 1.7)
and is much better than the theoretical bound. As indicated by
Theorem 2, the larger the ε, the smaller the competition ratio,
and Aonline is close to optimal when ε = 0.5.

VI. DISCUSSION

In this section, we discuss how to generalize our algorithm
to problem (2) with storage capacity constraints.

Problem Formulation. Each server s has a limited storage
capacity, denoted by Us. The size of one data chunk is job-
dependent, and we denote it by uj . Moreover, we introduce
decision variables xjds(t) ∈ {0, 1} to indicate whether data
chunk d of job j is stored in server s at time t (xjds(t) = 1)
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or not (xjds(t) = 0). Next, problem (2) with storage capacity
constraints can be formulated as follows.

minimize
∑

j∈[J]

(cj − rj) (7)

subject to:

(2a)− (2k)

yjsw(t) ≤ xjds(t),∀j, d, s, w, t (7a)
∑

j

∑

d

xjds(t)uj ≤ Us, ∀s, t (7b)

xjds(t) = 1,∀j, d, s, t ∈ [rj , cj ] (7c)

xjds(t) = 0,∀j, d, s, t /∈ [rj , cj ] (7d)

xjds(t) ∈ {0, 1},∀j, d, s, t (7e)

Constraint (7a) ensures that only when a job j’s data chunk d

is stored at server s can it be scheduled on the server’s qualified
worker w at time t. Constraint (7b) guarantees that the size of
all data chunks stored on a server cannot exceed the storage
capacity. Constraints (7c) and (7d) imply that data migration
is not allowed, and each data chunk occupies allocated storage
resources until it is completed.

Problem Reformulation. Similarly, we adopt the unrelated
parallel machine scheduling model to reformulate problem (7)
as (8). Lemma 1 clearly holds by substituting (7) and (8) for
(2) and (4), respectively.

minimize
∑

j∈[J]

∑

d∈[Dj ]

fjd(y) (8)

subject to:

(4a)− (4h), (7a)− (7e)

Algorithm Design. The workers conduct training over data
chunks, which typically use one or multiple GPUs in ML
clusters. Each GPU is equipped with GPU memory. If a
worker is assigned a new data chunk, it first needs to delete
the data of the current data chunk from GPU memory and
then load the new data chunk into the GPU memory from
the storage. Meanwhile, the disk storage keeps all chunks’
original data until they are completed. This way, storage
can be regarded as another kind of resource independent of
workers. In addition, for data chunks stored on a fixed server,
we cannot facilitate the training by allocating more storage
resources. As a result, the storage constraint only limits the
dispatching decisions of data chunks. Once the worker location
of a data chunk is decided, the training speed of the data
chunk only depends on the worker allocated. To this end,
before dispatching one data chunk to a server, we need to
first check if the server’s storage capacity is enough to store
the data chunk. Consequently, servers with sufficient storage
and qualified workers are known. Next, we can determine
the worker location and occupation time for the data chunk
according to the proposed dispatching policy and HAPRF rule
in Sec. IV. The remaining capacity of the selected server is
thus updated. The above process is repeated until all data
chunks of a job are arranged. These steps can be easily
implemented by fine-tuning Alg. 2, and we omit the related
details here.

Dual Problem. Next, by relaxing xjds(t) ∈ {0, 1}, yjdsw(t) ∈
{0, 1} to xjds(t) ≥ 0, yjdsw(t) ≥ 0, constraints (7a), (7c),(7d)

are redundant. Then except the dual variables (αjd,βsw(t)) in
Sec.IV, we introduce a new dual variable ηs(t) to constraint
(7b) to dualize problem (8) without constraints (4c),(4d),(4f)
and (4g). The resulting dual problem is as follows.

max
∑

j

∑

d

αjd −
∑

s

∑

w

∑

t

βsw(t)−
∑

s

∑

t

ηs(t)Us (9)

subject to:

αjd
njsw

EjBj
≤

njsw

EjDjBj
(t− rj) + βsw(t) + ηs(t)uj ,

∀j, ∀d, ∀s, ∀w, ∀t ≥ rj (9a)

αjd,βsw(t), ηs(t) ≥ 0, ∀j, ∀d, ∀s, ∀w, ∀t ≥ rj (9b)

The dual variable ηs(t) can be interpreted as the unit price
of storage resource on server s at t. Given the above analysis,
we can construct a feasible solution to the dual problem, where
ηs(t) = 0 and αj ,βs(t) are set following Sec. IV.

Theoretical Analysis. Based on the constructed primal and
dual solutions, we can easily prove that the lemmas and
theorems still hold for the related problems (7), (8) and (9).

VII. CONCLUSION

In this paper, we proposed an online preemptive algo-
rithm to efficiently schedule distributed ML jobs in edge-
cloud networks. In particular, no prior work has studied the
preemptive scheduling problem in the new emerging edge-
cloud/5G system to support a tremendous amount of dis-
tributed ML jobs. To minimize the average JCT, we design
a new preemptive scheduling framework, Aonline, which can
optimize the transmission delay and the communication time
between PS and workers, based on the average processing
rate and time, with a provable competitive ratio. Extensive
trace-driven simulation studies verify that Aonline can achieve
a near-optimal average JCT, and decrease the average JCT
by up to 30% compared with state-of-the-art algorithms. A
meaningful extension might be to minimize the bandwidth
consumption or to extend our framework to another widely
used distributed ML training architecture, Ring-AllReduce.

APPENDIX

A. Proof of Theorem 1

Our problem is a more complex version of the unrelated
parallel machine scheduling problem of maximizing the total
JCT on identical machines (symbolized as R||

∑

j cj), which
is proven NP-hard [46]. Next, we construct a polynomial-time
reduction to MINLP (2) from the problem R||

∑

j cj , which is
formulated as:

minimize
∑

j

cj (10)

subject to:
∑

s

∑

t

yjs(t) ≥ pj , ∀j (10a)

∑

j

yjs(t) ≤ 1, ∀s, ∀t (10b)

yjs(t) ∈ {0, 1},∀j, ∀s, ∀t. (10c)

pj is the processing time of job j, and other symbols are
similar to our model. First, we assume the system runs only
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in edge networks. Besides, we assume the types of workers
and PSs are both set to one, and the numbers of workers and
PSs are set to one and unlimited, respectively. Thus, the PS
allocation of any job can be satisfied, i.e., constraints (2e)-
(2h) hold. Moreover, we can regard a worker as a server,
i.e., yjsw(t) can be simplified as yjs(t). Next, by letting
Dj = 1, rj = 0,"↑

js = 0, xjsw = 1, ∀j, ∀s, ∀w, constraints
(2a),(2c) and (2i) are redundant. Subsequently, by letting
pj = EjBj/nj , (10a) is equivalent to (2b). In addition, (10b) is
exactly (2d), and the objectives of problem (10) and MINLP
(2) are identical. Such mapping can be done in polynomial
time. Consequently, problem R||

∑

j cj can be viewed as a
special case of our problem, which must be NP-hard as well.

B. Proof of Lemma 1

For each data chunk d ∈ Dj of job j, we assume that in
solution y, it is dispatched to worker w on server s. Note that
the objective value is only related to the schedule on workers
after the dispatching decisions of workers and PS are made.
fjd(y) is maximized when data chunk d is processed from
cjd − pj to cjd, where pj =

EjBj

njsw
. Thus we have

fjd(y) ≤

cjd
∑

t=cjd−pj

njsw

EjDjBj
(t− rj)

=
njsw

EjDjBj
(
pj
2
(2cjd − pj)− pjrj)

=
1
Dj

(cjd −
pj
2

− rj)

≤
1
Dj

(cjd − rj).

Then, for all data chunks of job j, we have
∑

j

∑

d fjd(y) ≤
∑

j

∑

d
1

Dj
(cjd − rj). Since for any data chunk d of job j,

cjd ≤ cj is always satisfied. So,
∑

j

∑

d∈[Dj ]

fjd(y) ≤
∑

d∈[Dj ]

1
Dj

(cjd − rj)

≤
∑

j

∑

d∈[Dj ]

1
Dj

(cj − rj) =
∑

j

(cj − rj)

Therefore, any feasible solution y to MINLP (2) has a total
completion time at least

∑

j

∑

d∈[Dj ]
fjd(y).

C. Proof of Lemma 2

Following Alg. 2, the generated {yjdsw(t)} of ILP (4)
without constraints (4c) and (4d) is clearly feasible. Next we
prove constraint (6a) is also satisfied.

We only discuss the case that new data chunk is dispatched
to edge servers, because allocating to the cloud is obviously
feasible. We fix a worker w on server s and a data chunk d of
job j. Note that the arrival of data chunk d will not affect the
feasibility of existing data chunks in the same worker. Because
αjd remains unchanged once job assigned, and βsw(t) can only
increase upon the arrival of new data chunks, which helps the
inequality in constraint (6a). To this end, we only analyze
whether the dual variables of newly arrived data chunk d are
feasible. We use A1(A2) to denote the set of data chunks whose
average processing rate is not lower (lower) than data chunk

d. We arrange the data chunks in these two sets in ascending
order of average processing rate, and let the sequence of data
chunks in A1 and A2 be d1, ..., dr and dr+1, ..., dn, respectively.
Suppose at time t′ ≥ rj + "↑

js, worker w is scheduling data
chunk dk. There are three cases:

• Case 1(dk ∈ A1):(t′ − rj) = "↑
js +

∑

d′∈A1:d′→j′ p̂j′d′(t)−
∑l=r

l=k p̂jldl(t
′), where

∑

d′∈A1:d′→j′ p̂j′d′(t) =
∑

d′∈A(t0):d′→j′ p̂j′d′(t0)1(γj′d′ ≥ γjd). Recalling the
definition of αjd, i.e., αjd = mins∗,w∗ Qjds∗w∗ ≤ Qjdsw,
we have

αjd ≤
1
Dj

∑

d′∈A(t0):d′→j′

p̂j′d′(t0)1(γj′d′ > γjd) +
1
Dj

EjBj

njsw

+
1
Dj

"↑
js +

EjBj

njsw

∑

d′∈A(t′):d′→j′

1
Dj′

1(γj′d′ < γjd)

=
1
Dj

(t′ − rj) +
1
Dj

l=r
∑

l=k

p̂jldl(t
′) +

1
Dj

EjBj

njsw

+
EjBj

njsw

∑

d′∈A2

1
Dj′

≤
1
Dj

(t′ − rj) +
l=r
∑

l=k

1
Djl

EjBj

njsw
+

1
Dj

EjBj

njsw

+
EjBj

njsw

∑

d′∈A2

1
Dj′

=
1
Dj

(t′ − rj) +
EjBj

njsw
(
1
Dj

+
l=n
∑

l=k

1
Djl

)

=
1
Dj

(t′ − rj) +
EjBj

njsw
βsw(t

′),

where the third last inequality holds due to the fol-
lowing fact. For data chunk dl(l ∈ [k, r]), γjldl ≥ γjd,

i.e.,
njlsw

Ejl
Djl

Bjl

≥
njsw

EjDjBj
⇒ 1

Dj

Ejl
Bjl

njlsw
≤ 1

Djl

EjBj

njsw
. In

addition, recalling the definition of pjldl(t), obviously

p̂jldl(t) ≤
Ejl

Bjl
njlsw

for any data chunk dl of job jl.

• Case 2(dk ∈ A2): In this case, the first k − 1 data
chunks have been completed and data chunk dk may
be partially processed. So we have (t′ − rj) ≥ "↑

js +
∑

d′∈A1:d′→j′ p̂j′d′(t) +
EjBj

njsw
+

∑l=k−1
l=r+1

Ejl
Bjl

njlsw
. So

αjd ≤
1
Dj

∑

d′∈A(t0):d′→j′

p̂j′d′(t0)1(γj′d′ > γjd) +
1
Dj

EjBj

njsw

+
1
Dj

"↑
js +

EjBj

njsw

∑

d′∈A(t′):d′→j′

1
Dj′

1(γj′d′ < γjd)

≤
1
Dj

(t′ − rj)−
1
Dj

l=k−1
∑

l=r+1

EjlBjl

njlsw
+

EjBj

njsw

∑

d′∈A2

1
Dj′

≤
1
Dj

(t′ − rj)−
l=k−1
∑

l=r+1

1
Djl

EjBj

njsw
+

EjBj

njsw

∑

d′∈A2

1
Dj′

=
1
Dj

(t′ − rj) +
EjBj

njsw

l=n
∑

l=k

1
Djl

=
1
Dj

(t′ − rj) +
EjBj

njsw
βsw(t

′),

where the third last inequality follows from the fact as
followings. For data chunk dl(l ∈ [r+1, k−1]), γjldl ≤ γjd,

i.e.,
njlsw

Ejl
Djl

Bjl

≤
njsw

EjDjBj
⇒ 1

Dj

Ejl
Bjl

njlsw
≥ 1

Djl

EjBj

njsw
.
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• Case 3(dk = d): (t′ − rj) ≥ "↑
js +

∑

d′∈A1:d′→j′ p̂j′d′(t).
We have

αjd ≤
1
Dj

∑

d′∈A(t0):d′→j′

p̂j′d′(t0)1(γj′d′ > γjd) +
1
Dj

EjBj

njsw

+
1
Dj

"↑
js +

EjBj

njsw

∑

d′∈A(t′):d′→j′

1
Dj′

1(γj′d′ < γjd)

≤
1
Dj

(t′ − rj) +
1
Dj

EjBj

njsw
+

EjBj

njsw

∑

d′∈A2

1
Dj′

=
1
Dj

(t′ − rj) +
EjBj

njsw
βsw(t

′)

Thus, αjd,βsw(t) is a feasible solution of problem (6).

D. Proof of Theorem 3

To prove Theorem 2, we first investigate Lemma 4.

Lemma 4
∑

j

∑

d αjd =
∑

s

∑

w

∑

t βsw(t).

Proof: Observing Qjdsw i.e., αjd, for data chunk d of a job j,
we know that its completion time denoted as cjd is initialized
to rj plus Dj times the sum of the first three item when it
arrives. With the arrival of the future jobs, data chunk d may be
delayed, and the delay time is the accumulation of processing
time of all future data chunks which preempt data chunk d for

scheduling, i.e.,
∑

j′
∑

d′
Ej′Bj′

nj′sw
. Recall the last item of αj′d′ ,

the average delay time of data chunk d is actually included
into the last item of αj′d′ of every data chunk d′. As a result,
cjd is updated to add the delay time. Comparing to

∑

j

∑

d αjd,
its obvious that

∑

j

∑

d αjd =
∑

j

∑

d
1

Dj
(cjd− rj).

∑

j

∑

d αjd

can be interpreted as the average completion time of all data
chunks of all jobs.

Recalling the interpretation of
∑

s

∑

w

∑

t βsw(t), it is the
accumulation of the average weight of uncompleted data
chunks at every time slot, which is equivalent to sum up the
total average weight of each data chunk on this worker. And
the total average weight of each data chunk d is

∑t=cjd
t=rj

1
Dj

=
1

Dj
(cjd − rj).

∑

s

∑

w

∑

t βsw(t) =
∑

j

∑

d
1

Dj
(cjd − rj), i.e.,

∑

j

∑

d αjd =
∑

s

∑

w

∑

t βsw(t). !

According to Definition 1, a worker with (1 + ε)-speed
augmentation implies that it can process njsw mini-batches
whereas only process njsw/(1 + ε) mini-batches in offline
setting. The formulation of the offline setting is equivalent
to problem (4) without constraints (4c), (4d), (4f) and (4g),
and only njsw is replaced with njsw/(1+ ε). We formulate the
dual for the offline setting where the speed is 1/(1 + ε).

maximize
∑

j∈[J]

∑

d∈[Dj ]

α′
jd −

∑

s∈[S]

∑

w∈[Ws]

∑

t∈[T ]

β′
sw(t) (11)

subject to:

α′
jd

njsw

(1 + ε)EjBj
≤

njsw

(1 + ε)EjDjBj
(t− rj) + β′

sw(t),

∀j, ∀d, ∀s, ∀w, ∀t ≥ rj (11a)

α′
jd,β

′
sw(t) ≥ 0, ∀j, ∀d, ∀s, ∀w, ∀t ≥ rj (11b)

Let α′
jd = αjd,β

′
sw(t) =

βsw(t)
1+ε . Then we have Lemma 5.

Lemma 5 The dual variables α′
jd and β′

sw(t) is a feasible

solution of problem (11).

Proof: We know αjd and βsw(t) is a feasible solution of
problem (6), then we have

αjd ≤
1
Dj

(t− rj) +
EjBj

njsw
βsw(t)

⇔α′
jd ≤

1
Dj

(t− rj) +
EjBj

njsw
(1 + ε)β′

sw(t)

⇔
α′
jd

1 + ε
≤

1
(1 + ε)Dj

(t− rj) +
EjBj

njsw
β′
sw(t).

Thus, Lemma 5 is correct. !

The dual objective value of problem (11) is denoted by DI ,
then

DI =
∑

j∈[J]

∑

d∈[Dj ]

α′
jd −

∑

s∈[S]

∑

w∈[Ws]

∑

t∈[T ]

β′
sw(t)

=
∑

j

∑

d

αjd −
∑

s∈[S]

∑

w∈[Ws]

∑

t∈[T ]

βsw(t)
1 + ε

=
ε

1 + ε

∑

j∈[J]

∑

d∈[Dj ]

αjd.

Let PI denote the objective value of the primal problem of
(11), and OPTI is the offline optimum of this primal problem.
We have DI ≤ PI by weak duality and PI ≤ OPTI via LP

relaxation. In summary, DI ≤ OPTI , i.e.,

∑
j∈[J]

∑
d∈[Dj ]

αjd

OPTI
≤

(1+1/ε). Recall
∑

j

∑

d∈[Dj ]
fjd(y) ≤

∑

j

∑

d∈[Dj ]
1

Dj
(cjd−rj)

in Lemma 1 and
∑

j

∑

d αjd =
∑

j

∑

d
1

Dj
(cjd − rj) in Lemma

4, we can conclude the algorithm Aonline for ILP (4) is (1+ε)-
speed (1 + 1/ε)-competitive.

Let OPT be the offline optimum of MINLP (2), we have
OPTI ≤ OPT by Lemma 1. We know DI ≤ OPT , then

Dmax

∑

j

∑

d

αjd = Dmax

∑

j

∑

d

1
Dj

(cjd − rj)

≥
∑

j

∑

d

(cjd − rj) ≥
∑

j

(cj − rj).

We use AV G = Dmax
∑

j

∑

d αjd as an approximate objective
value of MINLP (2), then AV G

OPT ≤ Dmax(1 + 1/ε). The proof
is finished.

E. Proof of Theorem 4

For algorithm Agreedy, we first analyze the time complexity
of functions CALCULATEQ() and UPDATEVARIABLES(). For
CALCULATEQ(), both lines 3-8 and lines 11-12 can be done
in constant time, whereas line 10 spends O(K) steps to insert
new data chunk d into the sorted set of pending data chunks
by StraightInsertionSort algorithm, where K is the number
of pending data chunks in worker w on server s. All in
all, the cost of invoking CALCULATEQ() once is O(K). For
UPDATEVARIABLES(), the running time is mainly produced by
executing lines 3-7, and the size of A2 is at most K, i. e.,

this function’s time complexity is also O(K). For each job j,
Agreedy first calculates at most (

∑

s∈[S]\sc
Ws+1) times Qjdsw

by calling CALCULATEQ() (lines 3-8), denotes
∑

s∈[S]\sc
Ws+1

as H where 1 is incurred by the cloud. As a result, the
execution time of the loop in line 3 is O(HK). The loop in line
9 can be done in two branches, both of them first execute line
11 in O(H logH) by Quicksort algorithm where H also upper-
bounds the number of all Qjdsw. The first branch is in lines 12-
16, where line 13 can be done in O(Dj) time and line 14 takes
O(DjK) steps by invoking O(Dj) times UPDATEVARIABLES().
To sum up, the first branch takes max(O(H logH), O(DmaxK))
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steps. The second branch is other lines except lines 12-16
of loop in line 9. In this case, line 11 takes O(H logH)

steps only when d = d1, the subsequent data chunks only
need O(H) steps to resort by StraightInsertionSort algo-
rithm. The running time of lines 17-20 or lines 21-22 is
O(K). In conclusion, the running time of the second branch
is max(O(H logH), O(DmaxH), O(DmaxK)). In practice, the
maximal K denoted by Kmax can up to

∑

j Dj , which is much
larger than H and H . Dmax. In a word, the time complexity
of Agreedy is O([Ja]HKmax).

As for algorithm Aps, every step can be completed at
constant time, and hence the time complexity of Aps is O([Ja]).

For algorithm Aonline,
∑

t∈[T ][Ja] = J . So the time complex-
ity of Aonline is max(O(JHKmax), O(J)) = O(JHKmax).
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