
1

Online Orchestration of Collaborative Caching
for Multi-Bitrate Videos in Edge Computing

Song Yang, Member, IEEE, Lei Jiao, Member, IEEE, Ramin Yahyapour, and Jiannong Cao, Fellow, IEEE

Abstract—In the traditional video streaming service provisioning paradigm, users typically request video contents through nearby

Content Delivery Network (CDN) server(s). However, because of the uncertain wide area networks delays, the (remote) users usually

suffer from long video streaming delay, which affects the quality of experience. Multi-Access Edge Computing (MEC) offers caching

infrastructures in closer proximity to end users than conventional Content Delivery Networks (CDNs). Yet, for video caching, MEC’s

potential has not been fully unleashed as it overlooks the opportunities of collaborative caching and multi-bitrate video transcoding. In

this paper, we model and formulate an Integer Linear Program (ILP) to capture the long-term cost minimization problem for caching

videos at MEC, allowing joint exploitation of MEC with CDN and real-time video transcoding to satisfy arbitrary user demands. While

this problem is intractable and couples the caching decisions for adjacent time slots, we design a polynomial-time online orchestration

framework which firstly relaxes and carefully decomposes the problem into a series of subproblems solvable in each individual time slot

and then converts the fractional solutions into integers without violating constraints. We have formally proved a parameterized-constant

competitive ratio as the performance guarantee for our approach, and also conducted extensive evaluations to confirm its superior

practical performance. Simulation results demonstrate that our proposed algorithm outperforms the state-of-the-art algorithms, with

13.6% improvement on average in terms of total cost.

Index Terms—Online Caching, Multi-Bitrate Video, Multi-Access Edge Computing, Quality of Experience.

!

1 INTRODUCTION

ALONG with the rapid development of personal mobile
devices and proliferation of video content providers

(e.g., YouTube, Netflix, etc.), mobile video streaming has
become one of the most popular applications on the users’
mobile devices. According to Cisco [1], video traffic will
account for around 79 percent of the whole mobile data
traffic by 2022, up from 59 percent in 2017. The nowadays’
video streaming service usually requires low latency and
large bandwidth [2] in order to satisfy the Quality of Expe-
rience (QoE) of users. Content Distribution Network (CDN)
is the current main video service provisioning paradigm [3],
in which CDN servers are deployed across geo-distributed
backbone Internet nodes. In this sense, users can access the
video file from their nearby CDN server. However, this
paradigm still suffers from the high streaming delay [4]
because of the “long” transmission distance from end users
to CDN server deployed on Internet backbone. Moreover,
with the increasing amount of video traffic, it will cause
the network bottleneck and hence results in high latency,
which affects the QoE of users. Consequently, the current
video provisioning paradigm cannot keep pace with the
ever-increasing video demands with more stringent QoE

• Song Yang is with the School of Computer Science and Technol-
ogy, Beijing Institute of Technology, Beijing 100081, China. E-mail:
S.Yang@bit.edu.cn

• Lei Jiao is with the Department of Computer and Information
Science, University of Oregon, Eugene, OR 97403, USA. E-mail:
jiao@cs.uoregon.edu

• Ramin Yahyapour is with Gesellschaft für wissenschaftliche Datenver-
arbeitung mbH Göttingen (GWDG) and Institute of Computer Sci-
ence, University of Göttingen, 37077 Göttingen, Germany. E-mail:
Ramin.Yahyapour@gwdg.de

• Jiannong Cao is with the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong. E-mail: csjcao@comp.polyu.edu.hk.

requirement, which poses big challenges for video service
providers.

The concept of Multi-Access Edge Computing (MEC) [5]
has been proposed by ETSI. MEC aims at pushing cloud
service from network core to network edge, by building
small-scale cloud infrastructures (called edge cloud) in close
proximity to end users. In this sense, the video file can be
cached in edge cloud for nearby end users, so as to shorten
the video content transmission delay to guarantee the QoE.
Since the edge cloud contains a limited number of servers,
it is suggested each individual edge cloud should connect
to one another via local area network or wired peer-to-
peer links in order to work collaboratively [6] and expose
a greater storage and processing capability. Moreover, it is
known that a video file with a higher bitrate level has a
higher quality, but consumes a larger capacity. Therefore,
there exists a tradeoff in caching which bitrate level(s) for
a certain video file to satisfy the QoE requirement without
violating the capacity of the edge cloud. Nevertheless, it still
happens that when all the edge clouds are fully utilized
and there are still remaining video requests to be served.
In that case, the central CDN server(s) with more sufficient
capacity will be in help to store and provision requested
video file, but this comes at the expense of higher delay.
This deals with how to strategically place requested video
files with appropriate bitrate level on edge clouds and CDN
server(s) to satisfy the QoE of users. We refer this problem
to the video caching problem in edge computing in this
paper. Fig. 1 shows a framework about video caching at
the network edge.

The existing efforts [7], [8] on solving the video caching
problem in edge computing can be categorized into the
offline and online scenarios. On the one hand, the offline sce-

2

CDN Server

Core network

Core network

Edge
 cloudBase

station

User

Fig. 1: A framework about video caching at network edge.

nario assumes that the whole traffic requests are known as
a prior. However, in practice the traffic requests are usually
time-varying and difficult to obtain accurately. The offline or
the one-shot solutions therefore cannot solve the dynamic
video caching problem appropriately without knowing all
the traffic information. On the other hand, the current work
on the online video caching problem fails to jointly optimize
the QoE factor such as delay for users and OPerational EX-
penditures (OPEX)1 for service providers in a collaborated
MEC network as we elaborate above. For instance, some
work [10]- [11] for video caching only focus on guaranteeing
the QoE for the end users without considering the cost ex-
penditure of service providers. Moreover, the current work
[12], [13] usually consider the scenario containing one edge
cloud, ignoring the collaboration of multiple edge clouds.
In this paper, we tackle the online video caching problem
in edge computing, where the network lifetime consists of
a set of time slots, and in each time slot the video requests
arrive at the network dynamically. We jointly consider three
kinds of costs, namely (1) the operational cost incurred by
OPEX, (2) the deployment cost due to launching new video
file, and (3) video streaming delay cost which consists of
video delivering delay cost and transcoding delay cost. The
goal of the considered problem in this paper is to minimize
the total sum of all these kinds of costs.

In order to solve the considered online video caching
problem in edge computing, we first formulate it as an
offline Integer Linear Programming (ILP). After that, we
leverage the regularization-based technique [14] to divide
the relaxed ILP into a series of regularized subproblems.
In particular, we identify deployment cost in the objective
function as the connection between consecutive time slots
and apply regularization technique to eliminate its correla-
tion between consecutive time slots. By doing this, each of
the subproblems can be solved efficiently in each time slot
using only current information, and therefore the caching
decisions in each time slot constitute the final feasible solu-
tion to the relaxed offline problem. Subsequently, we design
a randomized dependent rounding scheme [15] to round
the fractional solutions for the regularized subproblems

1. OPEX [9] mainly refers to the cost factors of the network oper-
ation such as the maintenance of running services, operating, testing
equipment to detect failures, etc.

to integer solution. The randomized dependent rounding
scheme continuously selects a pair of fractional variables
and rounds them up and down in a compensative manner
respectively, such that the sum of them remains largely the
same as before without violating the related constraints. The
online orchestration video caching framework, consisting of
the online regularization-based algorithm and randomized
dependent rounding scheme, is able to achieve a provable
competitive ratio compared to the offline optimum. In all,
our key contributions are as follows:

• We analyze the video caching model in edge comput-
ing by considering three kinds of costs and formulate
the online video caching problem in edge computing.

• We propose an online orchestration framework by
leveraging the regularization technique and random-
ized dependent rounding scheme to solve the consid-
ered problem with provable competitive ratio.

• We validate the performance of the proposed solu-
tion with three existing benchmark algorithms via
extensive simulations.

The remainder of this paper is organized as follows.
Section 2 presents the related work. Section 3 introduces the
network model, formally defines the considered problem
and presents its formulation. Section 4 presents the online
orchestration framework for video caching in edge comput-
ing, and Section 5 analyzes and proves its overall compet-
itive ratio. Section 6 provides the performance evaluation
results and we conclude in Section 7.

2 RELATED WORK

A survey about video caching, content delivery and video
streaming in MEC can be found in [7], [8].

2.1 Offline Video Caching in Edge Computing

Li et al. [10] formulate the video caching problem in MEC
as a submodular maximization problem to maximize the
aggregated utility. They subsequently devise a k-cost benefit
greedy algorithm to solve this problem and prove it has an
approximation ratio when k = 2. Qu et al. [16] address the
caching problem in MEC to maximize the QoE value over
all the users under the condition that the QoE function has
general or linear function with received bitrate. They present
approximation algorithms by leveraging the idea to solve
the multiple-choice knapsack problem to solve this problem
in these two cases, respectively. Chen et al. [11] formulate
the multi-bitrate video caching problem in edge computing
as a Stackelberg game in order to jointly maximize the
profit of service provider and video providers. A dynamic
programming algorithm and a adjustive caching algorithm
are proposed in [11] to find the Stackelberg equilibrium.
Nevertheless, the above literature only works in the offline
scenario, and cannot properly solve the online video caching
problem where the future requests are unknown.

Moreover, Wang et al. [17] present a deep reinforce-
ment learning approach to solve the offline video caching
(placement) problem by jointly minimizing streaming delay,
channel switching latency and bitrate mismatch level as well
as system costs. Wang et al. [18] later develop a multi-agent
deep reinforcement learning approach to solve the similar

3

TABLE 1: Difference between our work and existing work.

Ref Online Multi-Edges Multi-Costs Transcode
[10] no no yes no
[16] no yes yes no
[11] no no yes yes
[17] no no yes no
[18] no no yes no
[19] yes no no yes
[20] yes no yes no
[21] yes yes yes no
[22] yes yes no no
[12] yes no yes no
[13] yes no yes no
[23] yes no yes no
[24] yes no no no
[25] yes no yes no
[26] yes no no no
Our work yes yes yes yes

problem. However, as mentioned in [17], the action space in
the proposed deep reinforcement learning-based algorithm
will increase exponentially with the number of requests,
which means that the proposed DRL-based algorithm can-
not concurrently return the solution for a number of (online)
requests within a reasonable time.

2.2 Online Video Caching and Streaming in Edge Com-
puting

Tran and Pompili [19] decompose the collaborative video
caching problem in MEC into the cache placement subprob-
lem and request scheduling subproblem. They respectively
devise an Adaptive Bitrate (ABR)-aware proactive cache
placement algorithm and an online video request schedul-
ing algorithm to solve these two subproblems. Li et al. [20]
present an online content placement, node association and
power allocation strategy based on Lyapunov optimization
and Generalized Benders decomposition. Similarly, Xia et
al. [21] apply Lyapunov technology to develop an online
data caching framework in edge computing. Chiang et al.
[22] apply Auto Regressive Moving Average (ARMA) model
to predict social behaviour of users and the popularity of
videos, and then present a collaborative social-aware online
video caching framework. Choi et al. [27] study the dynamic
video delivery problem in wireless caching networks. More
specifically, when the mobile users are moving around and
the wireless network condition is stochastic between the
user and caching node, they investigate how to control
and receive different chunks of desired files to guarantee
the video quality. Hao et al. [12] propose a Multi-Armed
Bandit (MAB)-based online algorithm to place video caching
to maximize the service provider’s profit on edge cloud.
Wang et al. [13] study the dynamic configuration adaptation
and bandwidth allocation problem in edge-based video
analytics systems for multiple video streams, where energy
consumption of mobile device and service latency are taken
into account. They present a Lyapunov-based algorithm to
solve this problem. However, only one edge server (cloud)
is considered in [12], [13].

Mehrabi et al. [23] develop a network-assisted bitrate
adaptation heuristic for video streaming in edge computing,
which uses a self-tuning of the values of the optimiza-
tion problem parameters. Mu et al. [24] present a Deep

Reinforcement Learning (DRL) algorithm by capturing the
content features and channel estimation to make playout
rate and bitrate decision for video streaming. Li et al. [25]
study the trusted cooperative computation offloading prob-
lem in MEC, and devise a online learning-aided offloading
mechanism based on Lyapunov optimization and Online
Gradient Descent (OGD) method. Galanopoulos et al. [26]
develop an online learning-based configuration algorithm
for video analytic based on Bayesian GP technique with
bandit learning and safe constraint exploration. While [23]-
[26] respectively deals with video streaming, computation
offloading and video analytics problems in MEC, our work
which addresses the online video caching problem is differ-
ent from them. In all, Table 1 provides a table showing the
difference between our work and the existing work.

Nevertheless, none of above work addresses our consid-
ered online video caching problem in a collaborated MEC
network by considering various kinds of costs and multi-
bitrate video transcoding. We comprehensively take into
account the operational cost, deployment cost and video
streaming delay cost. Since the deployment cost couples
two successive time slots, the above mentioned work solv-
ing online video caching problem by applying Lyapunov
technique and MAB theory cannot solve our problem ap-
propriately. This stimulates us to develop an online algo-
rithm based on regularization technique to decouple the
time-consecutive costs together with randomized depen-
dent rounding technique to make the algorithm can execute
in polynomial time.

3 NETWORK MODEL AND PROBLEM FORMULA-
TION

3.1 Video Caching Edge System

We assume there is a set of edge cloud Ne. Co-located
with each edge cloud n ∈ Ne, there is a base station for
sending and receiving signals. An edge cloud consisting of a
limited number of edge servers processes and caches video
files requested by the users. We use λ(n) to represent the
available capacity of the edge cloud n. λ(n) is usually less
than the full capacity of n to guarantee that the server can
work normally and steadily so that the tasks performed on it
will not affect each other. Moreover, there is one CDN server
Nc for simplicity, which is assumed to store as many video
files as possible without loss of generality. Different edge
clouds as well as the CDN server are inter-connected with
each other, and we use T (u, v) to denote the transmitting
delay from u to v, where u, v ∈ Ne ∪ Nc : u #= v. As a
result, the network can be represented by G(N ,L), where
N = Ne ∪Nc denotes the set of N nodes and L represents
the set of L links. In fact, the video file consists of a number
of same-sized chunks, and different chunks of a video file
can be stored on different edge nodes. In this sense, the
video file can be further divided and stored on different
nodes. For ease of presentation, we assume that the video
file cannot be further divided and stored on different nodes
in this paper, similar to [12], [18], [19]. The reason is that, if
each request r asks for a video file consisting of m chunks,
we can also equivalently change it to the case where m
requests demands m chunks (files). We denote F as the set
of total |F | different video files, and B as the set of total |B|

4

TABLE 2: Notations.

Notation Description
G(N ,L) A network with set of nodes N and links L.
Ne,Nc The set of edge cloud and CDN server.
λ(n) Available capacity of edge cloud n ∈ Ne.
T (u, v) Transmitting delay from u to v.
F,B The set of total |F | video files, the set of total |B| bitrate levels.
∆n The transcoding cost per unit.
Φn The per-unit cost for caching a video file.
CO(t), CD(t), CW (t) The total operational cost, deployment cost and video streaming cost at time t.
en The per-unit cost for deploying a file with a certain bitrate level in an edge node n.
Γv(f, b,β) The transcoding delay for f from current cached bitrate level β to the requested bitrate level b.

Rt
The set of requests Rt at time t. For each request r(u, f, b) ∈ Rt,
u indicates his/her local edge cloud, and f denotes the requested video file with bitrate level b.

P, P′, Pt, P̃t, D
Original OVCE problem in Eqs. (5a)-(5e), relaxed OVCE problem of P, one shot OVCE problem of P′ at time t,
regularized OVCE problem at time t, Lagrange dual problem of relaxed OVCE problem P′

P , P ′, Pt, P̃t
Objective function of original OVCE problem P, relaxed OVCE problem P′, one shot OVCE problem Pt,
and regularized OVCE problem P̃t

X
r,β
n,t

A boolean variable. It is 1 (true) if r is accommodated by the requested cached file with
bitrate level β on node n at time t; and 0 (false) otherwise.

Y
f,β
n,t A boolean variable. It is 1 (true) if f with bitrate level β is placed on n at time t, and 0 (false) otherwise.

bitrate levels. We use Sf
β to represent the size of file f ∈ F

with bitrate level β ∈ B. Clearly, a video file with higher
bitrate level has a larger size than it with lower bitrate level.
For ease of reading, Table 2 provides all the used notations
and variables in this paper.

Nevertheless, our work can also be extended to the
scenario of multiple geo-distributed CDN servers, where the
CDN server set Nc contains more than one geo-distributed
CDN servers. In that case, each CDN server node n ∈ Nc is
connected with the edge node n ∈ Ne with a transmitting
delay value. Compared to the single CDN server scenario,
in the multiple geo-distributed CDN scenario, the network
topology G′(N ,L) contains more than one CDN server
nodes, where N = Nc ∪ Ne. However, since the CDN
server node is assumed to have infinite storage capability,
one CDN server is always enough to host all the video files
(at the expense of the higher transmitting delay compared
to placing the video file on edge node). In the multiple
CDN servers scenario, the algorithm’s procedure and per-
formance ratio keep the same with the single CDN server
scenario, but only to take G′(N ,L) as the problem input.

The video caching edge system works in a time-slotted
fashion over a continuous time span of T = {1, 2, . . . , T}.
Each time slot t ∈ T indicates a decision interval, and
usually set to be longer than video streaming delay in
order to avoid frequent update configurations and reduce
overheads [13], [28]. We use Rt to represent the set of traffic
requests in time slot t. In each time slot t, the user sends
his/her request r(u, f, b) ∈ Rt to his/her local edge cloud
u, where f denotes the requested video file with bitrate
level b. We define two boolean variables Xr,β

n,t and Y f,β
n,t for

calculating the caching decision. More specifically, Xr,β
n,t is 1

(true) if r is accommodated by the requested cached file with
bitrate level β on node n at time t, and 0 (false) otherwise.
Y f,β
n,t is 1 (true) if f with bitrate level β is placed on n at time

t, and 0 (false) otherwise.

3.2 Cost Structure

3.2.1 Operational cost

In general, the operational cost consists of (1) transcoding
cost and (2) caching cost. For a request r(u, f, b) accessing
video file on edge node n, the transcoding cost happens
when n only stores f with the bitrate level(s) (say β) higher
than b. In that context, the transcoding cost2 for r can be
calculated as Xr,β

n,t · (Sf
β − Sf

b)∆n, where ∆n represents
the transcoding cost per unit (e.g., Gb). The caching cost
indicates the cost for storing file on an edge or CDN server
node. Let Φn denote the per-unit cost for caching a video
file, then the caching cost for file f with bitrate level β at
time slot t on node n can be calculated as: Y f,β

n,t ·Sf
β ·Φn. As

a result, the total operational cost (denoted by CO(t)) for all
the requests at time slot t can be formulated as:

CO(t) =
∑

r∈Rt

∑

n∈N

∑

β∈B

Xr,β
n,t · (S

f
β − Sf

b)∆n+ (1)

∑

f∈F

∑

n∈N

∑

β∈B

Y f,β
n,t · Sf

β · Φn

3.2.2 Deployment cost

We use en to represent the per-unit cost for deploying a
file with a certain bitrate level in an edge node n, while
there is no such video file in n in the previous time slot.
The deployment cost is mainly due to the effort of trans-
ferring/duplicating a video file in/out of the edge cloud,
which consumes network bandwidth [30] and video file
duplication and transferring time [31]. The deployment cost
can also reflect the QoE influence for the users, since trans-
mitting a video file consumes some time and may result in
a “delayed” service. As a result, The total deployment cost
(denoted by CD(t)) for all the requests at time slot t can
therefore be calculated as:

2. In this paper, we assume that the size of a video file is proportional
with the bitrate level and adopt the transcoding cost model similar to
[29].

5

E1

C

E2

E3

90ms

f2

f1

f3

f1,f2,f3,f4

Edge Cloud

CDN Server

Transcoding delay: 50ms

15ms

User1: f1,720p

 User2: f2,1080p

User3: f3,720p

 User4: f4,1080p

User2User1

User3

User4

Fig. 2: An example of video streaming delay calculation.

CD(t) =
∑

f∈F

∑

n∈N

∑

β∈B

enS
f
β · (Y f,β

n,t − Y f,β
n,t−1)

+ (2)

where (Y f,β
n,t − Y f,β

n,t−1)
+ def

= max{0, Y f,β
n,t − Y f,β

n,t−1}.

3.2.3 Video streaming delay cost

In general, the video streaming delay consists of transmit-
ting delay and transcoding delay. For a user whose local
edge cloud is u requires f with bitrate level b, the video
streaming delay is represented as:

T (u, v) + Γv(f, b,β) (3)

where T (u, v) denotes the transmitting delay from u to v
where f is cached. Clearly, if f is cached on u (in this case
u = v), then the transmission delay is 0. Γv(f, b,β) indicates
the transcoding delay for f from current cached bitrate level
β to the requested bitrate level b. Video transcoding is to
encode video content into multiple representations, and we
consider that a lower bitrate variant can be obtained from a
higher bitrate variant via transcoding [19].

For example in Fig. 2, the video caching edge system
contains 3 edge clouds and 1 CDN server, and they are
interconnected with each other where the transmission de-
lays are shown on respective links. The transmission delay
between edge cloud and CDN server is set to be larger
than the transmission delay between edge clouds because
of longer physical distance, which reflects the practical
scenario. Suppose there are 4 requested video files, and it
is assumed that each edge cloud only caches one video file
with the bitrate level 1080p because of capacity constraint
and CDN server stores all the video files with all the bitrate
levels. For simplicity, the transcoding delay from 1080p
to 720p for all the files is assumed to be 50 ms. Within
the coverage of each edge area, the users request video
files with different bitrate levels. For example, since user
3 requires f3 with 720p bitrate level and f3 is cached in
E3 with 1080p bitrate level, the streaming delay is equal to:
12 (transmission delay) + 50 (transconding delay) = 62 ms.
Even though f3 is also cached on the CDN server, since it
consumes much longer transmission delay, it is preferable to
accommodate the request of user 3 by using the edge cloud.
On the contrary, since the requested f4 is not cached on any
edge cloud, user 4 has to fetch the video file from remote

CDN server, causing a streaming delay of 85 ms. From this
example we can see that caching a video file on edge cloud
to accommodate a user quest can result in less delay cost
compared to provisioning a request by the CDN server.

Consequently, the video streaming delay cost (denoted
by CW (t)) for all the requests at time slot t can be calculated
as:

CW (t) =
∑

r∈Rt

∑

n∈N

∑

β∈B

Xr,β
n,t · (T (n, u) + Γn(f, b,β)) (4)

3.3 Problem Definition and Formulation

In this subsection, we formally define the Online orches-
tration of collaborative Caching for multi-bitrate Videos in
Edge computing (OCVE) problem as follows:

Definition 1. Given is a network G(N ,L) and for each time slot
t ∈ T , there is a set of video requests Rt. For each r(u, f, b) ∈ Rt,
the OCVE problem is to place f on v ∈ N in order to minimize
the total sum of operational cost, deployment cost and delay cost
for all the requests over all the time slots.

Subsequently, we present an exact solution to formulate
the OCVE problem.

P : min
∑

t∈T

H1 · CO(t) +H2 · CD(t) +H3 · CW (t)

(5a)

s.t.
∑

n∈N

∑

β∈B′

Xr,β
n,t ≥ 1 ∀t ∈ T , r ∈ Rt (5b)

Y f,β
n,t ≥ Xr,β

n,t ∀β ∈ B,n ∈ N , f ∈ F,

r ∈ Rt : r.f = f (5c)
∑

β∈B,f∈F

Y f,β
n,t · Sf

β ≤ λ(n) ∀t ∈ T , n ∈ Ne (5d)

Xr,β
n,t ∈ {0, 1}, Y f,β

n,t ∈ {0, 1} ∀t ∈ T , r ∈ Rt,β ∈ B,

f ∈ F, n ∈ N (5e)

(5a) minimizes the total sum of operational cost, deploy-
ment cost and video streaming delay cost for all the requests
over all the time slots, where H1, H2 and H3 denotes the
weight for each cost, respectively. (5b) ensures that in each
time slot, each request should be accommodated by placing
the requested video file with a higher (or equal) bitrate level
than b of r on one node. Here, B′ denotes the bitrate level set
that is no lower than b of r. (5c) draws the relation between
Xr,β

n,t and Y f,β
n,t . (5d) ensures that the capacity of each edge

cloud cannot be exceeded. (5e) ensures that all the decision
variables are binary.

The OCVE problem is NP-hard in general. To prove it,
for simplicity we assume there is only one time slot and we
assume that transmission delay are all 0. We also do not
allow the video transcoding and therefore the transcoding
delay is 0. After this simplification, only operational cost
is considered in the OVCE problem. We further assume
that the operational cost coefficient is the same for all the
network nodes and each request asks for the unique video
file. Consequently, the simplified OVCE problem can be
reduced to the NP-hard multiple knapsack problem [32],
which is to pack a subset of given items into N knapsacks

6

to maximize the total profit such that the total weight on
each knapsack does not exceed its maximum capacity. Since
the simplified OVCE problem is a special case of the original
OVCE problem, the OVCE problem is in general NP-hard.

4 AN ONLINE ORCHESTRATION FRAMEWORK FOR

VIDEO CACHING IN EDGE COMPUTING

4.1 Challenges and Algorithm Idea

Challenges: There area two major challenges for solving the
OVCE problem:

The first challenge is the online uncertainty. The de-
ployment cost couples two successive time slots concerning
with non-convex expression max{0, Y f,β

n,t − Y f,β
n,t−1}, so we

first need a way to better formulate it as convex expression
without changing the nature of the problem. Moreover, the
OVCE problem requires to make online decision only ac-
cording to the current information, but this decision would
influence the decision made in next time slot when consider-
ing e.g, switching cost. Therefore, an online algorithm that
has guaranteed competitive ratio is desired, in which case
the total cost over all time slots of our online decisions made
without future knowledge should not exceed a constant
times that of the optimal offline optimal algorithm.

The second challenge is the intractability. As we prove
that the OVCE problem is NP-hard even for one time
slot scenario, it is also intractable to solve in the offline
scenario with multiple time slots, not to mention to devise
an online algorithm. It is desired to design a polynomial-
time algorithm to return an integer solution that incurs a
total cost no greater than a constant times of the optimal
solution.

Algorithm idea: In this section, we present an Online
oRchestration Framework for video Caching (ORFC) in
edge computing. In general, ORFC first relaxes the original
problem and leverages regularization-based technique to
decompose the correlation about the deployment cost across
successive time slots. By doing this, the original problem is
decomposed into a series of one-time slot fractional opti-
mization problems. After that, ORFC applies the random-
ized dependent rounding scheme to convert the fractional
solutions to obtain an integer solution with bounded inte-
grality gap.

4.2 Online Regularization-based Video Caching Frac-
tional Algorithm

We first transform problem P of (5a)-(5e) into a linear
programming by relaxing Xr,β

n,t and Y f,β
n,t into fractional

numbers.

P
′ : min H1 · CO(t) +H2 · CD(t) +H3 · CW (t)

s.t. Constraints (5b)− (5d)

0 ≤ Xr,β
n,t ≤ 1, 0 ≤ Y f,β

n,t ≤ 1 ∀r, ∀f, ∀β, ∀n, ∀t
(6a)

The main difficulty in solving problem P′ lies in mini-
mizing the deployment cost in Eq. (2) which couples every
two consecutive time slots. Moreover, since Eq. (2) is not

convex, it causes problem P′ intractable to solve. To over-
come it, we adopt the regularization technique [14], which
approximates and substitutes (Y f,β

n,t − Y f,β
n,t−1)

+ in Eq. (2)
with convex regularizer relative entropy function as follows:

∆(Y f,β
n,t ||Y

f,β
n,t−1) = Y f,β

n,t ln
Y f,β
n,t

Y f,β
n,t−1

+ Y f,β
n,t−1 − Y f,β

n,t (7)

where Y f,β
n,t ln

Y f,β
n,t

Y f,β
n,t−1

indicates the relative entropy term and

Y f,β
n,t−1 − Y f,β

n,t is the linear term and implies the movement.
Since the relative entropy function is convex and differ-
entiable, it has been widely used to approximate the non-
convex term such as L1-distance term (e.g., the deployment
cost in this paper). In order to ensure the fraction is still
feasible when Y f,β

n,t−1 = 0, we add ε on denominator and
nominator of the fraction in the relative entropy term. More-
over, to normalize the deployment cost by regularization,
we define a factor σ = ln(1+ 1

ε
) and multiply the improved

relative function by 1
σ

. As such, the regularized deployment
cost at time t (denoted by C∗

D(t)) can be formulated 3 as the
following convex function:

C∗
D(t) =

∑

f,β,n

en
σ

·

(

(Y f,β
n,t + ε) ln

Y f,β
n,t + ε

Y f,β
n,t−1 + ε

− Y f,β
n,t

)

(8)

By substituting CD(t) with C∗
D(t) in the objective of P′, we

obtain the regularized relaxed problem P̃. Since C∗
D(t) only

requires the current information and previous decision in
time t− 1, we can partition the regularized relaxed problem
P̃ into a series of one-shot convex optimization problems
P̃t, which can be solved in each individual time slot t based
on the decision in time t− 1 (but does not depend on future
traffic information). Consequently, the solutions returned by
solving P̃t in each time slot constitute a feasible solution to
the relaxed problem P′. More specifically, we have:

P̃t : min P̃t = H1 · CO(t) +H2 · C
∗
D(t) +H3 · CW (t)

s.t. Constraints (5b)− (5d), (6a), without t

Convex optimization problem is a problem where the
objective function is either a maximization of a concave
function or a minimization of a convex function, and its
constraints are all convex. Convex optimization problems
can usually be solved quickly and accurately with con-
vex optimization solvers. We notice that problem P̃t is a
standard convex optimization problem, since its objective
is to minimize the a convex function, and its constrains
are all convex (linear). The convex optimization problem
can usually be solved in polynomial time by some classical
methods, like subgradient projection, interior point method,
cutting-plane method, etc. We choose to apply interior point
method [33] to solve Problem P̃t, which makes use of
self-concordant barrier functions and self-regular barrier
functions. In all, Algorithm 1 reflects the whole procedure
of our proposed online regularization-based video caching
fractional algorithm.

3. We eliminate Y
f,β
n,t−1

in C∗

D(t) for brevity since this value is already
known and cannot be further optimized at time slot t.

7

Algorithm 1: Online Regularization-based Video
Caching Fractional Algorithm

Input: G(N ,L),S,∆,Φ, e,T ,Γ,λ
Output: X,Y

1 foreach time slot t ∈ T do
2 Observe values Xt−1, Rt

3 Use the interior point method to solve Problem

P̃t

4 Return solution Xt, Yt

4.3 Randomized Dependent Rounding Algorithm

Algorithm 1 only returns the fractional caching solutions,
while the caching decision should be boolean in practice.
Therefore, we need to round the fractional solutions re-
turned by Algorithm 1 to boolean number (either 0 or 1).
Since the constraints are coupled and dependent in Prob-
lem P̃t, the traditional randomized rounding, where each
variable is rounded up and down independently, cannot
guarantee the constraints are always obeyed after being
rounded. To this end, we present a randomized dependent
rounding algorithm in this subsection to deal with this issue.

The main idea of the proposed randomized dependent
rounding algorithm is that it iteratively selects two variables
each time. Based on respective calculated probabilities, a
variable is rounded up and another variable is rounded
down correspondingly. We first round Ỹ using this routine
in order to get boolean decision Y , and then calculate
rounded X based on Y . More specifically in Algorithm 2,
taking rounding Ỹ for example, for each f and β, we
maintain a set Iβ

t that stores all the nodes with ρβnt either
fractional or integral, and another set I ′β

t that contains all
the nodes whose ρβnt value is fractional (Step 5-10). As long
as I ′β

t contains more than one element, we repeatedly select
two nodes n1 and n2 in Step 12, and define two weights Ψ1

and Ψ2 for them as in Step 13-14, respectively. After that,
the ρβnt value for n1 and n2 are accordingly updated in Step
15-18. As shown in Step 19-22, if a node ρβnt becomes 0 (or

1), then we round down (or round up) Y
f,β

n,t . If there is only

single node in I ′β
t , we round Y

f,β

n,t up (Step 23-24).
The time complexity of Algorithm 2 can be analyzed as

this: Algorithm 2 rounds Ỹt and X̃t respectively, so we take
analyzing the complexity of rounding Ỹt for example, and
the case of rounding X̃t follows similarly. When κ = f in
Step 5, it takes O(|F |) time. Step 6 has a time complexity
of O(|B|), and Step 8 consumes O(N) time. There are at
most O(N) elements in I ′β

t , so Step takes O(N) time. As a
result, the time complexity of Algorithm 2 for rounding Ỹt

is O(|F ||B|N). Similarly, time complexity of Algorithm 2
for rounding X̃t is O(|Rt||B|N). In all, the time complexity
of Algorithm 2 is O(|B|N · (|F |+ |Rt|)).

Algorithm 2 holds three properties. (i) either ρβn1t or

ρβn2t, or both of them are rounded into integers. (ii) the
total weighted sum of two variables stay unchanged after
updating either in Step 16 or Step 18. For instance, in Step
16, (ρ̃βn1t+Ψ1)λ(n1)+(ρ̃βn2t−

λ(n2)
λ(n1)

Ψ1)λ(n2) = ρ̃βn1tλ(n1)+

ρ̃βn2tλ(n2). (iii) The expectation of the integral solution is

Algorithm 2: Randomized Dependent Rounding
Algorithm

Input: G(N ,L), F , B, Rt, X̃t, Ỹt

Output: Xt, Yt

1 First, round Ỹt

2 Denote Y
f,β

n,t as uf,β
n,t , Ỹ f,β

n,t as ûf,β
n,t

3 Then, based on Yt, round X̃t

4 Denote X
r,β

n,t as ur,β
n,t , X̃r,β

n,t as ûr,β
n,t

5 foreach κ ∈ F or Rt (κ = f or r) do
6 foreach β ∈ B do

7 Iβ
t = ∅, I ′β

t = ∅
8 foreach n ∈ N do

9 ρβnt = ûκ,β
n,t −)ûκ,β

n,t *, Iβ
t = Iβ

t ∪ {n}

10 I ′β
t = I ′β

t ∪ {n} if ρβnt /∈ {0, 1}
11 while |I ′β

t | ≥ 1 do

12 Randomly select n1 and n2 from I ′β
t

13 Ψ1 = min{1− ρβn1t,
λ(n2)
λ(n1)

ρβn1t}

14 Ψ2 = min{1− ρβn2t,
λ(n2)
λ(n1)

ρβn2t}

15 With the probability Ψ2

Ψ1+Ψ2
set

16 ρβn1t = ρβn1t +Ψ1, ρβn2t = ρβn2t −
λ(n2)
λ(n1)

Ψ1

17 With the probability Ψ1

Ψ1+Ψ2
set

18 ρβn1t = ρβn1t −Ψ2, ρβn2t = ρβn2t +
λ(n2)
λ(n1)

Ψ2

19 if ρβn1t = 0 or ρβn1t = 1 then

20 uκ,β
n1,t = ρβn1t +)ûκ,β

n1,t*, Iβ
t = Iβ

t \{n1}

21 if ρβn2t = 0 or ρβn2t = 1 then

22 uκ,β
n2,t = ρβn2t +)ûκ,β

n2,t*, Iβ
t = Iβ

t \{n2}

23 if |I ′β
t | = 1 then

24 uκ,β
n,t = +ûκ,β

n2,t, for the only n ∈ I ′β
t

equal to the fractional value. For instance, E(X
r,β

n1,t
) =

(X̃r,β
n1,t +Ψ1)

Ψ2

Ψ1+Ψ2
+ (X̃r,β

n1,t −Ψ2)
Ψ1

Ψ1+Ψ2
= X̃r,β

n1,t.

5 PERFORMANCE ANALYSIS

In this section, we rigorously analyze the theoretical per-
formance in terms of overall competitive ratio of our pro-
posed approach. The overall competitive ratio represents
the worst case of the performance achieved by our ap-
proach ORFC compared to the offline optimal solution,
i.e., CR = max COFRC

Copt
, where CORFC and Copt represent

the cost returned by ORFC and offline optimum solution,
respectively. In general, we prove the overall competitive
ratio of ORFC as CR = CR1 · CR2, where CR1 represents
the competitive ratio of online regularization-based video
caching fractional algorithm (Algorithm 1) and CR2 denotes
the integrality gap associated to our randomized dependent
rounding algorithm (Algorithm 2). Fig. 3 shows the main
idea of the performance analysis of our proposed approach.

Throughout the rest of the paper, we introduce some
additional notations: P is our original problem, P′ is the
relaxed problem of P, Pt is one shot problem at time t of
P′, P̃t is the regularized problem corresponding to Pt. D

8

P 'P

D () 1tC P CR optd � () 1 2tC P CR CR optd � �

Relax

'opt Pt
Regularize Round

'P DtDual

KKT
analysis

Map

Interior
point

Randomized
dependent
rounding

t�P 'P

D () 1tC P CR optd � () 1 2tC P CR CR optd � �

Relax

'opt Pt
Regularize Round

'P DtDual

KKT
analysis

Map

Interior
point

Randomized
dependent
rounding

t�tP t� tP

Fig. 3: Main idea of performance analysis of ORFC.

is the Lagrange dual problem of problem P′ and D is the
objective function of this dual problem. P , P ′, Pt, P̃t are
the corresponding problem objective functions. Xt and Yt

are shorthand for Xr,β
n,t and Y f,β

n,t , ∀r, f,β, n, t. We also use
different diacritical marks with such symbols to represent
respective solutions. For instance, X̃r,β

n,t represents the frac-
tional solution returned by regularization-based fractional
algorithm, and Xt denotes the integral solution achieved
by the randomized dependent rounding algorithm.

5.1 Competitive Ratio

5.1.1 An Equivalent LP Transformation

Since Problem P′ contains the time-coupling constraint, it
is not straightforward to write its dual problem. As such,
we introduce an auxiliary variable Zr,β

n,t and equivalently
transform P′ into the following LP formulation:

min H1 · CO(t) +H3 · CW (t) +H2 ·
∑

f

∑

n

enS
f
β · Zf,β

n,t

s.t. Constraints (5b)− (5d)

0 ≤ Xr,β
n,t ≤ 1, 0 ≤ Y f,β

n,t ≤ 1, Zf,β
n,t ≥ 0 ∀r, f,β, n

(9a)

5.1.2 Deriving the Dual Lagrange problem

We first define the Lagrange dual variables αr,t, πf,r,β,n,t,
θn,t, ωr,β,n,t, µf,β,n,t, which corresponds to the Constraints
(5b)-(5d) and (9a) in above LP formulation. As a result, its
dual problem can be written as following:

max D =
∑

r,t

αr,t −
∑

n,t

θn,tλ(n)−
∑

r,β,n,t

ωr,β,n,t

s.t. αr,t − πf,r,β,n,t − µf,β,n,t + µf,β,n,t−1 − ωr,β,n,t

≤
∑

n,r,β,t

H1(S
f
β − Sf

b)∆n +H3T (n, u) +H3Γn(f, b,β)

(10a)

πf,r,β,n,t − θn,t
∑

β,f

Sf
β ≤ H1

∑

f,β,n

Sf
β · Φn ∀f,β, r, n, t

(10b)

µf,β,n,t ≤ H2enS
f
β ∀f,β, n, t (10c)

5.1.3 Characterizing the Regularized Problem

The optimal fractional solution achieved by Algorithm 1
satisfies the Karush-Kuhn-Tucker (KKT) conditions, i.e., the
first order necessary conditions for optimal solution. By

using the Lagrange dual variables αr , πf,r,β,n, θn, ωn cor-
responding to Constraints (5b)-(5d) and (6a) in Problem P′,
we have the P̃t’s KKT conditions as follows:

H1

∑

r,β

(Sf
β − Sf

b)∆n +H3

∑

r,n,β

T (n, u) +H3Γn(f, b,β)+

H2

∑

r,n

enS
f
β

σ
ln

Y f,β
n,t + ε

Y f,β
n,t−1 + ε

− αr + πf,r,β,n + ωr,β,n = 0

(11a)
∑

f,β,n

Sf
βΦn − πf,r,β,n +

∑

β,f

Sf
βθn = 0 (11b)

αr(
∑

n,β

Xr,β
n,t − 1) = 0 (11c)

πf,r,β,n(Y
f,β
n,t −Xr,β

n,t) = 0 (11d)

θn(
∑

β,f

Y f,β
n,t S

f
β − λ(n)) = 0 (11e)

ωr,β,n(X
r,β
n,t − 1) = 0 (11f)

5.1.4 Constructing the mapping

We now construct a mapping denoted from P̃’s primal
and dual solution to a feasible solution of the relaxed
dual problem at time t as following. It can be verified
that the constructed solutions from P̃ satisfies constraints
(10a)-(10c).

αr,t = αr, ∀r; πf,r,β,n,t = πf,r,β,n, ∀f, r,β, n;
θn,t = θn, ∀n; ωr,β,n,t = ωr,β,n, ∀r,β, n;

µf,β,n,t =
enS

f
β

σ
ln 1+ε

Ỹ f,β
n,t−1

+ε
, ∀f,β, n.

5.1.5 Bounding

We are now ready to bound total cost returned by Al-
gorithm 1. We respectively bound the sum of operational
cost and video streaming delay cost as “static cost”, and
deployment cost as “dynamic cost”. Accordingly, we have
the two following lemmas.

Lemma 1. The sum of operational cost and video streaming delay
cost achieved by Algorithm 1 is no larger than D.

Proof. To bound the sum of operational and video streaming
delay cost, we have following equations:

H1

∑

r,β,t

X̃r,β
n,t · (S

f
β − Sf

b)∆n +H1

∑

f,β,n,t

Ỹ f,β
n,t · Sf

β · Φn

+H3

∑

r,n,β,t

(T (n, u) + Γn(f, b,β))X̃
r,β
n,t (12a)

=
∑

t

(αr −H2

∑

r,n

en
σ

ln
Ỹ f,β
n,t + ε

Ỹ f,β
n,t−1 + ε

− πf,r,β,n,t − ωr,β,n,t)X̃
r,β
n,t

+λ(n) · Φn (12b)

≤
∑

t

(αr,t − ωr,β,n,t + λ(n)Φn) (12c)

≤
∑

r,t

αr,t −
∑

n,t

θn,tλ(n)−
∑

r,β,n,t

ωr,β,n,t (12d)

=D (12e)

(12b) holds because of (11a) and (11e). (12c) follows from

(11c) and
∑

t Ỹ
f,β
n,t ln

Ỹ f,β
n,t +ε

Ỹ f,β
n,t−1

+ε
≥ 0, which will be proved

9

later. (12d) is due to (11b). Similar to [34], we are ready to

prove
∑

t Ỹ
f,β
n,t ln

Ỹ f,β
n,t +ε

Ỹ f,β
n,t−1

+ε
≥ 0 as follows:

∑

t

Ỹ
f,β
n,t ln

Ỹ
f,β
n,t + ε

Ỹ
f,β
n,t−1

+ ε

=
∑

t

(X̃r,β
n,t + ε) ln

Ỹ
f,β
n,t + ε

Ỹ
f,β
n,t−1

+ ε
−

∑

t

ε ln
Ỹ

f,β
n,t + ε

Ỹ
f,β
n,t−1

+ ε

$

≥(
∑

t

(Ỹ f,β
n,t + ε)) ln

∑
t(Ỹ

f,β
n,t + ε)

∑
t(X̃

r,β
n,t−1

+ ε)
+ (Ỹ f,β

n,0 + ε) ln
Ỹ

f,β
n,0 + ε

Ỹ
f,β
n,T + ε

≥
∑

t

(Ỹ f,β
n,t + ε)−

∑

t

(Ỹ f,β
n,t−1 + ε) + Ỹ

f,β
n,0 − Ỹ

f,β
n,T

=0

where - comes from the fact that (
∑

n pn) ln
∑

n pn∑
n qn

≤∑
n pn ln

pn

qn
and p− q ≤ p ln p

q
.

Lemma 2. The deployment cost achieved by Algorithm 1 is no
larger than (1 + ε) ln(1 + 1

ε
)D.

Proof. We set that η = (1 + ε)σ and N ′ def
={

n ∈ N|X̃r,β
n,t > X̃r,β

n,t−1

}
. We now bound the deployment

cost as follows:

H2

∑

f,n,t

enS
f
β (Ỹ

f,β
n,t − X̃r,β

n,t−1)
+

≤H2

∑

t,f

∑

n∈N ′

enS
f
β (Ỹ

f,β
n,t − Ỹ f,β

n,t−1) (13a)

≤H2

∑

t,f

∑

n∈N ′

enS
f
β (Y

f,β
n,t + ε) ln

Y f,β
n,t + ε

Y f,β
n,t−1 + ε

(13b)

≤ηH2

∑

t,f

∑

n∈N ′

enS
f
β

σ
ln

Y f,β
n,t + ε

Y f,β
n,t−1 + ε

(13c)

=η
∑

t,f

∑

n∈N ′

(αr,t − πr,β,n,f,t − ωr,β,n,t −H1

∑

r,β

(Sf
β − Sf

b)∆n

−H3

∑

r,n,β

T (n, u)−H3Γn(f, b,β) (13d)

≤η
∑

t,r

∑

n∈N ′

(αr,t − πr,β,n,f,t − ωr,β,n,t) (13e)

≤η




∑

r,t

αr,t −
∑

n,t

θn,tλ(n)−
∑

r,β,n,t

ωr,β,n,t



 (13f)

=(1 + ε) ln(1 +
1

ε
)D (13g)

(13a) follows from the definition of N ′. (13b) is due to the
fact that a − b ≤ a ln a

b
. (13c) follows from the definition

of η and σ. (13d) follows from (11a). (13e) follows from∑
r,n,β T (n, u)+γn(f, b,β) ≥ 0 and

∑
r,β(S

f
β −Sf

b)∆n ≥ 0.
(13f) holds because of (11b), (11d)-(11f). More specifically,
we have πf,r,β,n ≥

∑
f,β,n S

f
βθn,t in (11b). From (11d)-

(11f) we obtain λ(n) =
∑

f,β,n S
f
β . In all, we arrive at

πf,r,β,n ≥ λ(n) · θn,t, and therefore (13f) holds.

Theorem 1. Algorithm 1 can achieve an overall cost no larger
than CR1 times of the offline optimum, where CR1 = 1 + (1 +
ε) ln(1 + 1

ε
).

Proof. The proof follows from Lemma 1 and 2.

5.2 Integrality Gap

We analyze the integrality gap of Algorithm 2. We re-
spectively bound the expectation of three kinds of costs
considered in P′. To that end, we first upper-bound
∑

f

∑
β

∑
n Y

f,β

n,tS
f
β . Based on it, we draw connection from

all the terms in three kinds of costs and derive bounds.

Lemma 3. For the random variable Y
f,β

n,t , ∀f,β, n, t and every

possible value it can take, we have:
∑

f

∑
β

∑
n Y

f,β

n,tS
f
β ≤

τP ′(X̃t, Ỹt, ∀t), where τ =
(1+

maxf,β S
f
β

minf,β S
f
β

)

minn Φn
.

Proof.

∑

t

∑

f

∑

β

∑

n

Y
f,β

n,tS
f
β

=
∑

t

∑

f

∑

β

∑

n∈Iβ
t \I′β

t

Y
f,β

n,tS
f
β +

∑

t

∑

f

∑

β

∑

n∈I′β
t

Sf
β (14a)

≤
∑

t

(
∑

f,β,n

Ỹ f,β
n,t S

f
β +max

f,β
Sf
β) (14b)

≤
∑

t

(
∑

f,β,n

Ỹ f,β
n,t S

f
β +

∑

r,n,β

X̃r,β
n,t max

f,β
Sf
β) (14c)

≤
∑

t

(
∑

f,β,n

Ỹ f,β
n,t S

f
β +

∑

f,n,β

Ỹ f,β
n,t max

f,β
Sf
β) (14d)

≤
∑

t

(
∑

f,β,n

Ỹ f,β
n,t S

f
β +

maxf,β S
f
β

minf,β S
f
β

∑

f,β,n

Ỹ f,β
n,t S

f
β) (14e)

=(1 +
maxf,β S

f
β

minf,β S
f
β

)
∑

t

∑

f,β,n

Ỹ f,β
n,t S

f
β (14f)

≤
(1 +

maxf,β Sf
β

minf,β Sf
β

)

minn Φn

∑

t

∑

f,β,n

Ỹ f,β
n,t S

f
βΦn (14g)

≤
(1 +

maxf,β Sf
β

minf,β Sf
β

)

minn Φn
P ′(X̃t, Ỹt, ∀t) (14h)

≤
(1 +

maxf,β Sf
β

minf,β Sf
β

)

minn Φn
P (Xt,Yt, ∀t) (14i)

(14a) holds because of the definition of Iβ
t and I ′β

t in
Algorithm 2. Since there is at most one element in I ′β

t after
executing Algorithm 2, we reach (14b). (14c) follows from
constraint (5a), and (14d) is by constraint (5b). (14e)-(14g)
is due to some simple algebra, and (14h) holds due to the
definition of objective function P ′. (14i) holds because the
optimal solution of the relaxed problem provides a lower
bound of optimal solution of the original problem.

Theorem 2. Algorithm 2 ensures that E(P ′(X̃t, Ỹt, ∀t)) ≤
CR2 · P ′(Xt,Yt, ∀t), where CR2 = δo + δd + δw and

δo = max
n

(∆n + Φn) · τ

δd = max
n

en · τ

δw =
maxn,b,β T

n,u
f,b,β

minf,β S
f
β

· τ

10

Proof. We respectively bound the operational cost, deploy-
ment cost and delay cost. We start with operational cost and
prove δo.

E(
∑

t

CO(t))

≤
∑

t

(
∑

r

∑

β

X
r,β

n,t · S
f
β ·∆n +

∑

f

∑

β

∑

n

Y
f,β

n,t · S
f
β · Φn)

(15a)

≤
∑

t

(
∑

f

∑

β

Y
f,β

n,t · S
f
β ·∆n +

∑

f

∑

β

∑

n

Y
f,β

n,t · S
f
β · Φn)

(15b)

≤max
n

(∆n + Φn)
∑

t

∑

f

∑

β

∑

n

Y
f,β

n,t · S
f
β (15c)

≤max
n

(∆n + Φn) · τ · P ′(X̃t, Ỹt, ∀t) (15d)

≤max
n

(∆n + Φn) · τ · P (Xt,Yt, ∀t) (15e)

(15a) is by definition of operational cost in Eq. (1). (15b)
follows from Constraint (5b). (15c) is due to simple algebra,
and (15d) holds according to Lemma 3. (15d) follows from
the fact that the optimal solution of the relaxed problem
provides a lower bound of optimal solution of the original
problem. We next bound deployment cost and prove δd.

E(
∑

t

CD(t))

≤
∑

t

∑

f

∑

n

enS
f
βY

f,β

n,t (16a)

≤max
n

en
∑

t

∑

f

∑

n

Y
f,β

n,tS
f
β (16b)

≤max
n

en · τ · P ′(X̃t, Ỹt, ∀t) (16c)

≤max
n

en · τ · P (Xt,Yt, ∀t) (16d)

(16a) uses the definition of deployment cost in Eq. (2). (16b)-
(16c) follows analogously from (15b)-(15d).

Finally, we will bound delay cost and prove δw. We
denote T n,u

f,b,β = T (n, u) + Γn(f, b,β) for simplicity.

E(
∑

t

CW (t))

≤max
n,b,β

T n,u
f,b,β ·

∑

t

∑

f,β,n

Y
f,β

n,t (17a)

≤
maxn,b,β T

n,u
f,b,β

minf,β S
f
β

·
∑

t

∑

f,β,n

Y
f,β

n,tS
f
β (17b)

≤
maxn,b,β T

n,u
f,b,β

minf,β S
f
β

· τ · P ′(X̃t, Ỹt, ∀t) (17c)

≤
maxn,b,β T

n,u
f,b,β

minf,β S
f
β

· τ · P (Xt,Yt, ∀t) (17d)

The proof of (17a)-(17c) follows analogously from (16a)-
(16d) and we therefore omit it.

5.3 The overall competitive ratio

Based on the derived competitive ratio of Algorithm 1 and
integrality gap of Algorithm 2, we can now get the overall
competitive ratio of ORFC in Theorem 3.

Theorem 3. The overall competitive ratio of ORFC is CR =
CR1 · CR2, where CR1 and CR2 are derived in Theorem 1 and
2, respectively. That is, the overall cost achieved by ORFC is no
larger than CR times of the cost returned by the offline optimum
solution.

6 PERFORMANCE EVALUATION

6.1 Evaluation Setup

We first generate one MEC network topology with a total
network nodes N = 8 which consists of Ne = 7 edge
nodes and Nc = 1 CDN server. The capacity of each
edge node is set to 7 Gb first and we assume the CDN
server has unlimited storage. The delay between each edge
node pair is randomly picked in [0.01, 0.05] seconds, and
the delay between edge node and CDN server falls in the
range of [0.1, 0.15] seconds, considering that the cloud is
geographically far away from edge clouds, which is similar
to [35].

There are in total |F | = 12 video files with |B| = 5
bitrate levels, which are 360p, 480p, 720p, 1080p and 1440p.
The transcoding delay for a video file with different bitrate
levels is randomly chosen in [0.01, 0.05] seconds. The video
access pattern is assumed to follow the Zipf distribution
according to [36], and each video file fi (1 ≤ i ≤ 12) with
bitrate level j (1 ≤ j ≤ 5) has an accessing probability:

pij =
(i ∗ j)−z

∑
1≤a≤Aa−z

, ∀1 ≤ a ≤ A (18)

where A = 12∗5 = 60 is the number of all the distinct video
files with different bitrate levels and z is set to 0.8 which
denotes the aggregation degree of video requests similar to
[16]. Without loss of generality, we regard that the video file
consists of a series of same-duration chunks (the duration
is set 10 seconds in this case), and each 10-seconds chunk
takes up 0.5 Mb according to [37]. We first set Sf

β ∈ [3, 10]
Gb, where β = 1440p. Afterwards, for a same video file f
with bitrate level β′ in {360p, 480p, 720p, 1080p}, we set

Sf
β′ =

β′

1440 · Sf
1440. Accordingly, we set ∆n ∈ [0.001, 0.01]$

per GB, Φn ∈ [0.01, 0.12]$ per GB [38], and en ∈ [1, 1.5]$ per
GB. Due to the lack of workload trace of public accessible
video requests in MEC, we randomly generate 50 requests
among all the edge areas in each time slot, and we generate
such 50 requests for 100 time slots (rounds) in total. We let
all 3 kinds of costs have weight of 1 in the simulation. We
set ε = 0.001 in ORFC, and compare it with the following
algorithms4:

• Online Randomized Rounding (OnRR): It first ex-
ecutes Algorithm 1 to obtain online fractional so-
lutions, and then applies traditional randomized
rounding to convert the fractional solutions to inte-
ger solutions. In case a rounded solution for request
r violates the edge node’s capacity constraint, r will
be delivered to the CDN server.

4. The offline optimum solution consumes extreme long running time
(more than 1 day) without returning a feasible solution. We therefore
do not present the offline optimum solution’s results in the current
simulation setup. Later, we will accordingly reduce the problem size
to obtain the performance of the offline optimum algorithm to provide
the ground truth.

11

T = 20 T = 60 T = 100
Time slots

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

T
ot
al

C
os
t

×105

ORFC

OnRR

APCP-OnRS

Greedy

Fig. 4: Overall total cost under differ-
ent time slots.

N = 8 N = 10 N = 12
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

T
ot
al

C
os
t

×105

ORFC

OnRR

APCP-OnRS

Greedy

Fig. 5: Overall total cost under differ-
ent number of edge clouds.

7 8 9 10

Edge node capacity (GB)

1.0

1.2

1.4

1.6

1.8

2.0

T
ot
al

C
os
t

×105

ORFC

OnRR

APCP-OnRS

Greedy

Fig. 6: Overall total cost under different
capacities.

With Transcoding Without Transcoding
0.0

0.5

1.0

1.5

2.0

2.5

T
ot
al

C
os
t

×105

ORFC

OnRR

APCP-OnRS

Greedy

Fig. 7: Overall total cost with and
without transcoding.

ε = 0.001 ε = 0.1 ε = 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
ot
al

C
os
t

×105

ORFC N=8

ORFC N=10

ORFC N=12

Fig. 8: The impact of ε on ORFC.

N = 8 N = 10 N = 12

101

102

103

104

A
ve
ra
ge

R
un

ni
ng

T
im

e
pe
r
T
im

e
S
lo
t
(m

s)

ORFC

OnRR

APCP-OnRS

Greedy

Fig. 9: Running time per time slot.

• APCP-OnRS [19]: This is a two-step algorithm. In
each time slot, APCP iteratively selects the most pop-
ular video file and places it in the most appropriate
edge cloud in order to maximize the total cost. After
that, OnRS accommodates each request by using the
video file cached in the priority of (1) local edge
cloud, (2) neighbor edge cloud, and (3) CDN server.

• Greedy: In each edge area n, it sequentially accom-
modates each request r by caching its required video
file f with requested bitrate b, if such bitrate level
video file is not stored on n and the capacity of n is
still sufficient. If the capacity of n is full, Greedy will
try to use the nearest edge node to accommodate r,
otherwise r will be delivered to CDN server.

The simulations are run on a high-performance desktop
PC with 8 core 3.40GHz Intel(R) Core(TM) i7-6700 pro-
cessors and 16 GB memory. We use Matlab CVX [39] to
implement ORFC and OnRR, and use C# to implement
APCP-OnRS and Greedy.

6.2 Evaluation Results

We first evaluate the overall total cost achieved by all the
algorithms with different time slots. Fig. 4 shows that ORFC
can always achieve the minimum total cost, followed by
OnRR and APCP-OnRS, and Greedy returns the largest
total cost. We calculate that ORFC outperforms them in
terms of cost savings by 9.5% and 17.5%, respectively. It
is worthwhile to mention that with more time slots by
setting T = 200, we rerun simulations and found that
ORFC can outperform them regarding the cost savings
by around 12% and 21%. We omit showing this result

in the figure for brevity. APCP-OnRS and Greedy behave
worse than ORFC and OnRR, since both of them do not
essentially capture the “online” nature of the problem, and
only “greedily” or “locally” make the caching decisions. On
the one hand, the adopted strategies for APCP-OnRS and
Greedy cannot guarantee to return (sub)optimal solution in
the current (one) time slot, since they are two heuristics and
do not provide performance-guaranteed solution. On the
other hand, both of them pay attention on caching video
files for only current time slot, and they ignore the influence
of current caching decision on the future time slots. This
leads to the inefficiency of these two heuristics, and makes
them to achieve lower total cost. On the contrary, our
proposed ORFC (1) applies regularization-based technique
to get the online per-time slot fractional solutions with
proved competitive ratio, and then (2) leverages random-
ized dependent rounding technology to return the integer
solution with theoretical approximation ratio. By combining
these two procedures, ORFC is able to make online deci-
sions with guaranteed performance. This is the reason why
ORFC minimum cost consumption and also Fig. 4 verifies
its efficiency. Because of applying randomized dependent
rounding scheme, ORFC outperforms OnRR, which uses
traditional randomized rounding mechanism. It therefore
shows the superiority of randomized dependent rounding.

We next show the performance of all the algorithms
when we respectively set the number of network nodes N to
be 6 (with Ne = 5 and Nc = 1), 8 (with Ne = 7 and Nc = 1)
and 10 (with Ne = 9 and Nc = 1), but set the number of
requests to be 50 in all this cases (unchanged). We see from
Fig. 5 that when the number of network nodes increases,

12

T = 10 T = 20 T = 30
Time slots

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
om

pe
ti
ti
ve

R
at
io

ORFC

OnRR

APCP-OnRS

Greedy

Fig. 10: Competitive ratio.

Nc = 1 Nc = 3 Nc = 5

Number of CDNs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

T
ot
al

C
os
t

ORFC

OnRR

APCP-OnRS

Greedy

Fig. 11: The total cost for different
number of CDNs.

the overall total cost of all the algorithms decreases. The
reason is that when the number of network nodes increases,
more requested video files can be cached on edge nodes.
This saves more delay cost and leads to less total cost for
all the algorithms. For the similar reason, when we keep
the number of network nodes unchanged (N = 8) but
vary the capacity of edge nodes, Fig. 6 illustrates that the
total cost achieved by all the algorithms decreases when the
capacity of edge node increases. Nevertheless, ORFC can
always achieve the minimum total cost in these two figures,
which also verifies its effectiveness and efficiency.

Fig. 7 shows the overall total cost of all the algorithms
with and without transcoding when N = 8. With the aid of
transcoding, the requests which access the same video file
(with different bitrate levels) can be accommodated by using
the same video file with a higher bitrate level. This saves
more capacity for edge cloud and reduces transmission
delay cost of placing the video files on CDN server for
the case when transcoding is not allowed. Fig. 8 shows that
when we increase ε, the overall total cost of ORFC decreases
slightly. Although this corresponds to Lemma 2, we find that
the effect of ε on the overall performance is very limited.
Finally, Fig. 9 gives the average running time per time slot
(in log scale) of all the algorithms with different number
of network nodes. It can be seen that ORFC for N = 12
takes less than 17 seconds. We believe with more advanced
servers, the running time of ORFC can be further reduced.

In the above simulation setup, the offline optimum algo-
rithm cannot return a feasible solution in a reasonable time
due to the relative large problem input size. We therefore
reduce the problem input size by setting N = 4, |R| = 25
and |T | = 30. By doing this, the offline optimum algorithm
can return the feasible solution in order to provide a ground
truth. We show in Fig. 10 the competitive ratio of all the

compared algorithms. We see from the figure that with the
number of time slots increases, the competitive ratio of all
the algorithms increases accordingly. Nevertheless, ORFC
can always achieve the minimum competitive ratio value
(i.e., the most close performance with offline optimum),
which confirms its superiority. Moreover, we also increase
the number of CDN servers from 1 to 3 and 5, respec-
tively, and draw links between the CDN sever and all the
other edge clouds following the similar way to the above
simulation setup. We see from Fig 11 that the number of
CDN servers have very tiny impact on the performance of
all the algorithms. For different number of CND servers,
all the algorithms return the similar total cost. This can be
explained that all the CDN servers are assumed to have
infinite storage capacity, so it makes no difference in placing
video files on any specific CDN server.

7 CONCLUSION

In this paper, we have presented the online orchestra-
tion framework for multi-bitrate video caching in Edge
Computing. The online orchestration framework consists of
two main components, namely, (i) an online regularization-
based video caching fractional algorithm that decomposes
the original problem into a series of one-shot optimization
subproblems, and (ii) a randomized dependent rounding
scheme that converts the fractional solutions for the regu-
larized subproblems to integer solution. We have rigorously
proved that the online orchestration framework can achieve
an upper-bounded competitive ratio compared to the offline
optimum. The extensive simulation results confirm the su-
periority of our proposed online orchestration framework
over alternative algorithms. In our future work, we will
implement our proposed algorithm in a large-scale real
experimental testbed. We are also interested in predicting
the traffic information and incorporate the traffic prediction
algorithm in the proposed online algorithm.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
and the editor for their valuable suggestions. The work
is partially supported by the National Natural Science
Foundation of China under Grants No. 62172038 and No.
61802018, by Beijing Institute of Technology Research Fund
Program for Young Scholars, by the U.S. National Science
Foundation under Grant CNS-2047719, by Hong Kong RGC
TRS under Grant T-41-603/20R and by Hong Kong GRC
GRF PolyU under Grant 15217919. Song Yang is the corre-
sponding author.

REFERENCES

[1] “Cisco visual networking index (vni) global and
americas/emear mobile data traffic forecast, 20172022,” 2019.
[Online]. Available: https://www.cisco.com/c/dam/m/en us/
network-intelligence/service-provider/digital-transformation/
knowledge-network-webinars/pdfs/190320-mobility-ckn.pdf

[2] J. Wu, R. Tan, and M. Wang, “Streaming high-definition real-time
video to mobile devices with partially reliable transfer,” IEEE
Transactions on Mobile Computing, vol. 18, no. 2, pp. 458–472, 2018.

[3] E. Ghabashneh and S. Rao, “Exploring the interplay between CDN
caching and video streaming performance,” in IEEE INFOCOM,
2020, pp. 516–525.

13

[4] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: Adaptive wide-area streaming analytics,” in ACM
SIGCOMM, 2018, pp. 236–252.

[5] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computinga key technology towards 5G,” ETSI white paper,
vol. 11, no. 11, pp. 1–16, 2015.

[6] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service
caching and workload scheduling in mobile edge computing,” in
IEEE INFOCOM, 2020.

[7] B. Jedari, G. Premsankar, G. Illahi, M. Di Francesco, A. Mehrabi,
and A. Ylä-Jääski, “Video caching, analytics, and delivery at the
wireless edge: A survey and future directions,” IEEE Communica-
tions Surveys & Tutorials, vol. 23, no. 1, pp. 431–471, 2020.

[8] X. Jiang, F. R. Yu, T. Song, and V. C. Leung, “A survey on multi-
access edge computing applied to video streaming: Some research
issues and challenges,” IEEE Communications Surveys & Tutorials,
2021.

[9] C. M. Machuca, O. Moe, and M. Jäger, “Impact of protection
schemes and network component’s availability on operational
expenditures,” Journal of Optical Networking, vol. 7, no. 2, pp. 142–
150, 2008.

[10] C. Li, L. Toni, J. Zou, H. Xiong, and P. Frossard, “QoE-driven
mobile edge caching placement for adaptive video streaming,”
IEEE Transactions on Multimedia, vol. 20, no. 4, pp. 965–984, 2018.

[11] N. Chen, W. Xing, D. Zhang, M. Guo, and L. Gao, “Multi-bitrate
video caching and processing in edge computing: A stackelberg
game approach,” in IEEE ICC, 2020, pp. 1–6.

[12] Y. Hao, L. Hu, Y. Qian, and M. Chen, “Profit maximization for
video caching and processing in edge cloud,” IEEE Journal on
Selected Areas in Communications, vol. 37, no. 7, pp. 1632–1641, 2019.

[13] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-based
real-time video analytics,” in IEEE INFOCOM, 2020, pp. 1–10.

[14] N. Buchbinder, S. Chen, and J. Naor, “Competitive analysis via
regularization,” in Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms. SIAM, 2014, pp. 436–444.

[15] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan, “Depen-
dent rounding and its applications to approximation algorithms,”
Journal of the ACM, vol. 53, no. 3, pp. 324–360, 2006.

[16] Z. Qu, B. Ye, B. Tang, S. Guo, S. Lu, and W. Zhuang, “Cooperative
caching for multiple bitrate videos in small cell edges,” IEEE
Transactions on Mobile Computing, vol. 19, no. 2, pp. 288–299, 2020.

[17] F. Wang, C. Zhang, F. Wang, J. Liu, Y. Zhu, H. Pang, and
L. Sun, “Intelligent edge-assisted crowdcast with deep reinforce-
ment learning for personalized QoE,” in IEEE INFOCOM, 2019,
pp. 910–918.

[18] F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, “Intelligent video
caching at network edge: A multi-agent deep reinforcement learn-
ing approach,” in IEEE INFOCOM, 2020.

[19] T. X. Tran and D. Pompili, “Adaptive bitrate video caching and
processing in mobile-edge computing networks,” IEEE Transac-
tions on Mobile Computing, vol. 18, no. 9, pp. 1965–1978, 2019.

[20] R. Li, L. Wang, Y. Gong, M. Song, M. Pan, and Z. Han, “Dynamic
cache placement, node association, and power allocation in fog
aided networks,” in IEEE Global Communications Conference, 2019,
pp. 1–6.

[21] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Online collaborative data caching in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp.
281–294, 2021.

[22] Y. Chiang, C.-H. Hsu, and H.-Y. Wei, “Collaborative social-aware
and QoE-driven video caching and adaptation in edge network,”
IEEE Transactions on Multimedia, pp. 1–15, 2021.

[23] A. Mehrabi, M. Siekkinen, and A. Yl-Jski, “Edge computing as-
sisted adaptive mobile video streaming,” IEEE Transactions on
Mobile Computing, vol. 18, no. 4, pp. 787–800, 2019.

[24] P. K. Mu, J. Zheng, T. H. Luan, L. Zhu, M. Dong, and Z. Su, “Amis:
Edge computing based adaptive mobile video streaming,” in IEEE
INFOCOM, 2021, pp. 1–10.

[25] Y. Li, X. Wang, X. Gan, H. Jin, L. Fu, and X. Wang, “Learning-
aided computation offloading for trusted collaborative mobile
edge computing,” IEEE Transactions on Mobile Computing, vol. 19,
no. 12, pp. 2833–2849, 2020.

[26] A. Galanopoulos, J. A. Ayala-Romero, D. J. Leith, and G. Iosifidis,
“AutoML for video analytics with edge computing,” in IEEE
INFOCOM, 2021, pp. 1–10.

[27] M. Choi, A. No, M. Ji, and J. Kim, “Markov decision policies
for dynamic video delivery in wireless caching networks,” IEEE
Transactions on Wireless Communications, vol. 18, no. 12, pp. 5705–
5718, 2019.

[28] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nan-
duri, and R. Wattenhofer, “Achieving high utilization with
software-driven wan,” in ACM SIGCOMM, 2013, pp. 15–26.

[29] Y. Jin, Y. Wen, and C. Westphal, “Optimal transcoding and caching
for adaptive streaming in media cloud: An analytical approach,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 25, no. 12, pp. 1914–1925, 2015.

[30] Y. Ma, T. Nandagopal, K. P. Puttaswamy, and S. Banerjee, “An
ensemble of replication and erasure codes for cloud file systems,”
in IEEE INFOCOM, 2013, pp. 1276–1284.

[31] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. C. Lau, “Moving
big data to the cloud: An online cost-minimizing approach,” IEEE
Journal on Selected Areas in Communications, vol. 31, no. 12, pp.
2710–2721, 2013.

[32] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W. H. Freeman & Co.,
1979.

[33] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[34] W. You, L. Jiao, J. Li, and R. Zhou, “Scheduling DDoS cloud
scrubbing in ISP networks via randomized online auctions,” in
IEEE INFOCOM, 2020, pp. 1658–1667.

[35] B. P. Rimal, D. P. Van, and M. Maier, “Mobile-edge computing
versus centralized cloud computing over a converged fiwi access
network,” IEEE Transactions on Network and Service Management,
vol. 14, no. 3, pp. 498–513, 2017.

[36] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic charac-
terization: a view from the edge,” in Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, 2007, pp. 15–28.

[37] J. Summers, T. Brecht, D. Eager, and B. Wong, “To chunk or not to
chunk: Implications for http streaming video server performance,”
in Proceedings of the 22nd international workshop on Network and
Operating System Support for Digital Audio and Video, 2012, pp. 15–
20.

[38] Z. Xu, L. Zhou, S. C.-K. Chau, W. Liang, Q. Xia, and P. Zhou,
“Collaborate or separate? distributed service caching in mobile
edge clouds,” in IEEE INFOCOM, 2020, pp. 1–10.

[39] M. Grant and S. Boyd, “CVX: Matlab software for disciplined
convex programming, version 2.2,” http://cvxr.com/cvx, 2020.

Song Yang received the Ph.D. degree from Delft
University of Technology, The Netherlands, in
2015. From August 2015 to July 2017, he worked
as postdoc researcher for the EU FP7 Marie
Curie Actions CleanSky Project in Gesellschaft
für wissenschaftliche Datenverarbeitung mbH
Göttingen (GWDG), Göttingen, Germany. He is
currently an associate professor at School of
Computer Science and Technology in Beijing
Institute of Technology, China. His research in-
terests focus on data communication networks,

cloud/edge computing and network function virtualization. He is a mem-
ber of IEEE and ACM.

14

Lei Jiao received the Ph.D. degree in computer
science from the University of Göttingen, Ger-
many. He is currently an assistant professor at
the Department of Computer and Information
Science, University of Oregon, USA. Previously
he worked as a member of technical staff at
Alcatel-Lucent/Nokia Bell Labs in Dublin, Ireland
and also as a researcher at IBM Research in
Beijing, China. He is interested in the mathemat-
ics of optimization, control, learning, and mech-
anism design, applied to computer and telecom-

munication systems, networks, and services. He publishes papers in
journals such as IEEE/ACM Transactions on Networking, IEEE Transac-
tions on Parallel and Distributed Systems, IEEE Transactions on Mobile
Computing, and IEEE Journal on Selected Areas in Communications,
and in conferences such as INFOCOM, MOBIHOC, ICNP, and ICDCS.
He is a recipient of the NSF CAREER Award. He also received the
Best Paper Awards of IEEE LANMAN 2013 and IEEE CNS 2019, and
the 2016 Alcatel-Lucent Bell Labs UK and Ireland Recognition Award.
He served as a guest editor for IEEE JSAC. He was on the program
committees of conferences including INFOCOM, MOBIHOC, ICDCS,
and IWQoS, and was also the program chair of multiple workshops with
INFOCOM and ICDCS.

Ramin Yahyapour is full professor at the Georg-
August University of Göttingen. He is also man-
aging director of the GWDG, a joint compute
and IT competence center of the university and
the Max Planck Society. Dr. Yahyapour holds
a doctoral degree in Electrical Engineering and
his research interest lies in the area of efficient
resource allocation in its application to service-
oriented infrastructures, clouds, and data man-
agement. He is especially interested in data and
computing services for eScience. He gives lec-

tures on parallel processing systems, service computing, distributed
systems, cloud computing, and grid technologies. He was and is active
in several national and international research projects. Ramin Yahyapour
serves regularly as reviewer for funding agencies and consultant for
IT organizations. He is organizer and program committee member of
conferences and workshops as well as reviewer for journals.

Jiannong Cao received the BSc degree in com-
puter science from Nanjing University, China, in
1982, and the MSc and PhD degrees in com-
puter science from Washington State University,
Pullman, Washington, in 1986 and 1990, respec-
tively. He is currently the Otto Poon Charitable
Foundation professor in data science and the
chair professor of distributed and mobile com-
puting with the Department of Computing, The
Hong Kong Polytechnic University, Hong Kong.
He is also the director of the Internet and Mobile

Computing Lab, Department and the associate director of University
Research Facility at Big Data Analytics. His research interests include
parallel and distributed computing, wireless networks and mobile com-
puting, big data and cloud computing, pervasive computing, and fault
tolerant computing. He has coauthored five books in Mobile Computing
and Wireless Sensor Networks, co-edited nine books, and published
more than 600 papers in major international journals, and conference
proceedings. He is a distinguished member of ACM and a senior mem-
ber of China Computer Federation (CCF)

