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ABSTRACT

An approach to generate anharmonic potential energy surfaces for both linear and bent XY,-type molecules from their equilibrium geome-
tries, Hessians, and total atomization energies alone is presented. Two key features of the potential energy surfaces are that (a) they reproduce
the harmonic behavior around the equilibrium geometries exactly and (b) they have the correct limiting behavior with respect to total bond
dissociation. The potentials are constructed from two diatomic potentials, for which both the Morse or Varshni potentials are tested, and a
triatomic potential, for which modified forms of the Anderson-n potential are tested. Potential energy surfaces for several linear and bent
molecules are constructed from ab initio data, and the third-order derivatives of these surfaces at their equilibrium geometries are com-
pared to the results of finite difference computations. For bent molecules, the vibrational spectra predicted by vibrational configuration
interaction calculations on these surfaces are compared to experiment. A modified version of the Anderson-# potential, in combination with
the Varshni potential, is demonstrated to predict vibrational frequencies associated with bond angle bending an average of 20 cm™" below
the harmonic oscillator approximation and with a fourfold reduction in the root-mean-square deviation from experiment compared to the
harmonic oscillator approximation.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0096893

Il. THEORY

Computational electronic structure methods have come of age;
for example, the computation of highly accurate equilibrium geome-
tries, Hessians, and relative energies is now routine for moderately
sized polyatomic molecules. Accurate computational vibrational
structure methods, such as vibrational configuration interaction
(VCD)'* and vibrational coupled—cluster,3 ” have also been available
for many years; however, most routine thermochemistry calcula-
tions continue to make use of the harmonic oscillator (HO) approx-
imation for the computation of vibrational partition functions. As
the availability of computational resources continues to dramatically

HO approximation in computational thermochemistry is the high
computational intensity of the fourth- and/or sixth-order deriva-
tive tensors necessary to construct an anharmonic potential energy
surface from a Taylor series expansion around an equilibrium geom-
etry." We, therefore, consider an alternative to this Taylor series
expansion: estimation of the anharmonic behavior around an equi-
librium geometry by constraining the potential energy surface to
have qualitatively and/or quantitatively correct behavior upon the
dissociation of one or more bonds. In doing this, we take inspira-
tion from the Morse potential'' [Eq. (5)], a three-parameter bonding
potential that does just that for diatomics: it requires only the bond

increase, and the use of higher accuracy electronic structure meth-
ods has become more commonplace, the relative contribution of
the HO approximation to the total error of thermochemical calcu-
lations has increased to the point where it is not uncommon for the
HO approximation to be a major source of error in routine thermo-
chemical calculations.” '’ A major reason for the persistence of the

length, harmonic constant, and bond dissociation energy as para-
meters. The Morse potential has been widely used to model the
potential energy curves of covalent, ionic, and metallic bonds, and
even van der Waals dimers, a success which it owes no doubt to
its simplicity and correct limiting behavior. Without the need for
any explicit numerical computation of higher-order derivatives, the
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Morse potential can be used to obtain a reasonably good estimate for
the anharmonic behavior of a diverse range of diatomic interactions.
This work supposes that similarly universal anharmonic potentials
can be derived for polyatomic molecules as well. A general approach
is proposed and applied to the cases of linear and bent XY,-type
molecules.

A. The general approach

The form of the potential, U, of a molecule in the general
approach that we propose is a sum of independent “local” potentials.
These could include diatomic bonding potentials (U,,), triatomic
bond angle bending potentials (U, ), and tetratomic dihedral or
improper torsional potentials (Uppeq ),

Nponds Mpends Rtorsions

U= Z Uap + Z Uape + Z Uabed- 1)

However, attempting to fit such a flexible and complex potential to
a single equilibrium geometry and Hessian could result in an ill-
posed problem. One strategy to avoid this would be to introduce
some additional constraints on the nature of the constituent local
potentials, which enforce a strict separability:

e FEach local potential must have a value of zero at the
equilibrium geometry of the molecule.

e Each local potential must have critical point at the equilib-
rium geometry of the molecule (i.e., the first derivatives with
respect to the movement of any atom must be zero).

e Each local potential must have the harmonic behavior (i.e.,
second derivatives with respect to the movement of any
atom or pair of atoms) at the equilibrium geometry of the
molecule, which is assigned to it (e.g., a harmonic bond
stretch), and no additional harmonic behavior.

e Each bonding potential, U, has a bond dissociation energy
assigned to it, which may be either estimated or explicitly
computed. The potential must have this value as its limit
with respect to the dissociation of bond AB.

e Each triatomic potential, Uy, must have a limit of zero with
respect to the dissociation of bond AB, bond BC, and both
bonds.

e Each tetratomic potential, U4, must similarly have a limit
of zero with respect to the dissociation of any bond between
atoms A, B, C, and D, and to any combination of such bonds.

B. Symmetric molecules

One challenge in extending the Morse approach to polyatomic
molecules is that there can be multiple bonds in a molecule with
unique bond dissociation energies (Epp). A result of this is that
several quantities, which cannot be derived from the equilibrium
geometry of a molecule, must be known in order to correctly con-
strain the limiting behavior of the potential energy surface. Explicit
computation of bond dissociation values can require separate elec-
tronic structure calculations of several radical species, which does
not lend itself to routine implementation. In some cases, it may be
judged that quantitatively accurate behavior in the limit of single
bond dissociation (that is, dissociation to the explicitly computed
bond dissociation energy) may be worth this effort. However, the
motivation for the approach proposed here is the need to estimate
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the anharmonic behavior of a molecule around geometry with min-
imal additional computation. Several schemes have been proposed
to estimate bond dissociation energies from electronic structure
calculations,” ' and these may suffice in many situations.
However, while the limits with respect to the dissociation of a
single bond may require estimation, one limit, which is rather sim-
ple to determine from explicit computation, is the limit of the energy
with respect to the dissociation of all bonds or the total atomization
energy (Era). Although most electronic structure programs return
electronic energies rather than total atomization energy values, the
total atomization energy of a molecule is easily derived from its elec-
tronic energy, and the sum of the electronic energies of each atom
is computed at the same level theory. For symmetric molecules with
only one unique bond, the total atomization energy could conceiv-
ably be used as the only piece of information, which constrains the
potential energy surface other than the equilibrium geometry and
Hessian; for example, each bond dissociation energy could be esti-
mated from the total atomization energy and the number of bonds

(nbonds)>

Epp = . (2)

This allows for the construction of an anharmonic potential energy
surface with essentially the same amount of computational complex-
ity as the computation of the equilibrium geometry and Hessian,
which are also necessary for the construction of a harmonic poten-
tial energy surface. The resulting anharmonic surface, however, has
the correct behavior in the limit of the dissociation of all bonds and
areasonable estimate for the behavior in the limit of the dissociation
of a single bond. Although a general method for the construction
of anharmonic potential energy surfaces for polyatomic molecules
necessarily involves either the estimation or explicit computation of
bond dissociation energies, the approximation in Eq. (2) provides
a framework to test and evaluate general methods for polyatomic
potentials independently of the development and evaluation of
estimation methods for bond dissociation energies.

C. XY,-type molecules

In the case of a symmetric triatomic molecule, the general form
in Eq. (1) yields only two (identical) bonding potentials and a single
triatomic potential,

2
U(ry,12,63) = Z Ui(ri) + Ura(r1,72,63). (3)

i=1

Following Eq. (2), each bonding potential will dissociate to half the
value of the explicitly computed total atomization energy. For linear
XY,-type molecules, we assume a single well on the potential energy
surface at 6 = 7; for bent XY,-type molecules, we assume two wells
at 0 =0, and 0 = -6, and a first-order saddle point at 6 = 7. If the
Hessian is computed in the internal coordinates (1,72, 03), the Hes-
sian of linear molecules contains four non-zero terms: the identical
bond stretch terms ki, and ky,, which are assigned to the bonding
potentials, the bond-bond cross-term ki, which is assigned to the
triatomic potential, and the bending term k33, which is also assigned
to the triatomic potential. The Hessian of bent molecules contains
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two additional non-zero terms, ki3 and kz3, which are identical and
are assigned to the triatomic potential. Therefore, in total, we have
three unique non-zero data points to fit the bonding potentials for
both linear and bent XY,-type molecules: ki1, Era, and the equilib-
rium bond length, .. For linear molecules, we have two data points
to fit the triatomic potentials, k1, and ks3. Finally, we have five data
points to fit the triatomic potentials for bent molecules: k2, k33, ki3,
k23, and the equilibrium bond angle, 6..

D. Bonding potentials
1. Harmonic potential

The HO approximation, as applied to bonding potentials, is
a two-parameter potential with incorrect limiting behavior, but we
will consider it as a reference,

U(f’) = %ke(r - re)z- 4)

The HO approximation strongly overestimates vibrational frequen-
cies associated with bond stretching.

2. Morse potential

The Morse potential is a three-parameter potential first
described in 1929.'! It is widely used in the spectroscopy of diatomic
molecules, although it has been partially displaced in popularity by
more accurate potentials with additional parameters. However, it is
now finding increasing use in molecular modeling'’ " due to its
conceptual and computational simplicity,

2

U(r) = Do(1-0) ©)

3. Varshni potential

While the Morse potential is perhaps the simplest three-
parameter diatomic potential, it is not the only functional form that
meets the same constraints, and not necessarily the form that best
models covalent bonding. Generally, the Morse potential tends to be
too soft, slightly overestimating the anharmonicity of bond stretches.
Several other three-parameter bonding potentials have been sug-
gested, of which the Varshni*’ potential has been shown to be one
of the more reliably accurate,’!

2

U(r) = De(l - r—:e"’(’z"f)) (6)

E. Triatomic potentials
1. Harmonic potential

The HO approximation, as applied to the parts of the Hessian
assigned to the triatomic potential, also does not have the correct
limiting behavior but is considered as a reference,

1
Uia(r1,12,03) = Ek33(03 - 9e)2 +hkia(r—re)(r2—r1e)

+ k13(7’1 = re)(63 - 62)
+ k23(1‘2 - Te)(93 - 95). (7)

scitation.org/journal/adv

Bending vibrational modes are generally less anharmonic than bond
stretching modes. One source of anharmonicity is that bond angle
bends tend to have positive fourth derivatives, which have the effect
of stiffening bending potentials. However, the angular dependence
of molecular potentials vanishes as either one or both of the bonds
that form the angle dissociate, which has the effect of softening
bending potentials. This second phenomenon has a larger effect on
vibrational frequencies and is enhanced by the anharmonicity of
bond stretches, which causes the average bond length of the ground
state of molecules to be longer than the equilibrium bond lengths
where the angular dependence of the molecular potential is softer.
Therefore, the HO approximation tends to slightly overestimate
vibrational frequencies associated with bond angle bending.

2. Anderson-n potential

222

The Anderson-n potential
bond angle bending in terms of the distance between the terminal
atoms, r12,

o = \/rf +12 = 2rir; cos(653). (8)

The model contains two optimized parameters and a fixed para-
meter, which has a recommended value of n = 4,

(n _ @ B
UV = — + . 9
A i, (r+n)" ©)

This potential can be used to represent the harmonic bending term
and the harmonic bond-bond cross-term and has the correct limit-
ing behavior (it vanishes with the dissociation of either one or both
bonds). The description of the bond angle bending in terms of an
inverse power r12, rather than the angle, corrects for both problems
with the harmonic treatment of the triatomic potential described
above. The second term in Eq. (9) reproduces the harmonic behav-
ior of the bond-bond cross-term. The advantage of the model in
Eq. (9) is that it is probably the simplest expression, both concep-
tually and computationally, for describing the harmonic behavior of
the triatomic potential while also having the correct limiting behav-
ior and qualitatively correct anharmonicity. It is simple enough, in
fact, that analytical expressions for the parameters, « and f, can be
derived in terms of the geometry and Hessian data, for example, if
n=4,

a'? = 16k, (10)
16
24) =a-— ?km?’g. (11)

3. Modified Anderson-n (mA-n) potential

However, the Anderson-n potential has a non-zero value and
non-zero first and second derivatives at the equilibrium geome-
try. While the non-zero value of the potential could be easily fixed
by an intercept term, the non-zero value of the derivatives makes
the potential incompatible with the method outlined in Sec. I A.
Moreover, a triatomic potential with non-zero derivatives at the
equilibrium geometry ensures that the diatomic potential must also
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have non-zero derivatives at the equilibrium geometry, and thus a
minimum at bond length other than the equilibrium bond length.
While a diatomic fragment formed by the dissociation of a terminal
atom from a triatomic molecule should not have the same equi-
librium bond length as the triatomic equilibrium bond length, the
diatomic fragment bond lengths predicted incidentally by the fit-
ting of the Anderson-n potential to an equilibrium geometry can
be highly unphysical. A solution to this problem is to modify the
Anderson-n potential to include five additional parameters,

2 2
rl, nra  rirn  nr;

3 2 3
i 2 onr

U;’X:i+ﬁ0+ﬂl+ﬁ2 B +ﬁ+/35 (12)

Fitting such potential requires five additional constraints; in this
case, we demand that the potential and its first and second deriva-
tives with respect to r; and r; are zero at the equilibrium geometry.
As a consequence of this, the modified potential in Eq. (12) meets
all of the requirements for separable local potentials proposed in
Sec. [ A. One advantage of this approach is the stability of the method
across the entire chemical space of linear triatomic molecules. How-
ever, the modified potential also creates a flexible framework in
which either the constraints of Sec. I A can be applied, or if the
need for greater accuracy is judged to be worth the additional effort,
constraints derived from the explicit computation of the bond dis-
sociation energy as well as the bond length and harmonic constant
of the diatomic fragment formed by single bond dissociation can be
applied.

4. Extensions to bent XY ,-type molecules

Extending such a potential to bent XY,-type molecules requires
three additional parameters. We propose an additional term, which
is an inverse power of the distance between a terminal atom and a
dummy point, r,,/,

(n) _ y4(n) Yo + Y111 + Y212
Uhent - Ulinear 1’;12, ' (13)

The dummy point could be placed in the plane of the molecule, a dis-
tance from the central atom equal to the bond distance to the other
terminal atom, directly opposite the direction that bisects the bond
angle (see Fig. 1). Such a dummy point simulates the effect of a single
lone pair of electrons and is subsequently referred to as the “planar”
model. In this model, the distance between each terminal atom and
its dummy atom is identical,

0
o = \/rf +12-2nn cos(ﬂ - ?3) (14)

An alternative definition of r;,» would be a similar dummy point,
the same distance from the central atom and at the same angle in
the plane, but rotated out of the plane of the molecule at an angle
equal to half of the bond angle, 63. Such dummy points simulate the

scitation.org/journal/adv

o s

/

FIG. 1. A bent XY,-type molecule with atoms A, B, and C with the bond lengths
(r1 and ry), the distance between the terminal atoms (rz), and the distances
between the terminal atoms and their in-plane dummy points (r;,- ) displayed.

effect of two lone pairs of electrons and are subsequently referred
to as the “out-of-plane” model. In this model, the distance between
each terminal atom and each of its dummy atoms is identical,

iy = \/(rf + r%)sinz(%) +(rn+n)’ COSZ(%)- (15)

Il. COMPUTATIONAL DATA SET

Numerical derivatives are computed around the equilibrium
geometry of 10 linear molecules and 15 bent molecules (see Table I).
A seventh-order finite difference stencil and a finite difference
parameter of 5 pm are used.

lll. EXPERIMENTAL DATA

A subset of the bent molecules under consideration had
critically evaluated experimental data for fundamental vibration
frequencies.”*”” All available data that were critically evaluated with
estimated uncertainties less than 5 cm™' are included, and these
values are presented in Table II.

TABLE I. The sets of linear and bent XY,-type molecules for which potential energy
surfaces are constructed.

Linear Bent
BeHz MgHz C02 CHZ 03 SHZ
Ber Mng CSZ CFZ OClz SOZ
BeClz MgClz SiOz CClz Sin SFz
SiS, OH, SiF, S3
OF, SiCl, SCl,

AIP Advances 12, 065012 (2022); doi: 10.1063/5.0096893
© Author(s) 2022

12, 065012-4


https://scitation.org/journal/adv

AIP Advances ARTICLE

TABLE Il. The experimental vibrational frequencies used in all comparisons with com-
puted vibrational frequencies. Unless otherwise noted, the frequencies are for the
most abundant isotope of each atom.

scitation.org/journal/adv

TABLE IIl. Mean signed deviations (MSDs) and root-mean-square deviations
(RMSDs) from explicit finite difference computations of the internal coordinate third-
order cross-term derivative predictions, in atomic units, of potentials constructed with
various triatomic approximations for ten linear XY,-type molecules.

la; 2a1 1b, References
OF, 461 928 831 24
OH, 1595 3657 3756 26
O3 701 1103 1042 25
SH; 1183 2615 2626 24
SO, 518 1152 1362 27
IV. METHODS

A. Electronic structure calculations

Unless otherwise noted, all electronic structure calculations are

implemented in PSI4”* using coupled-cluster through perturbative
triples [CCSD(T)] and the aug-cc-pVTZ basis set.”” !

B. Vibrational structure calculations

The analytical derivatives of all model potentials up to sixth-
order are computed using SymPy,” and these derivatives are con-
verted into normal mode coordinates using PyPES.”* Fundamental
vibrational modes are computed for each normal-mode potential
energy surface with VCI calculations in PyVCI* using the default
settings. The PyPES input files were generated using a Python script,
which is freely available.**

V. RESULTS

A. Third-order derivatives of linear triatomic
potentials

For linear XY,-type molecules, there are three symmetry-
unique non-zero third derivatives in internal coordinates. The
predictions of the bond-stretch third derivative, ki11, are affected
primarily by the choice of bonding potential, U,,. However, the
constraints introduced to ensure the separability of the local poten-
tials ensure that the predictions of the bond-stretch cross-term,
k112, and the bond-stretch-angle-bend cross-term, k33, are affected
only by the choice of triatomic potential, U,;.. The mean signed
deviations (MSD) and root-mean-square deviations (RMSD) from
explicit finite difference computations of the predictions of these
derivatives made by the harmonic oscillator approximation and by
the modified Anderson-»n method with values of n ranging from 2 to
6 are reported in Table I11.

The ability of the methods under consideration to model the
anharmonicity of the coupling of bond stretches is probably funda-
mentally limited by the approximation made in Eq. (2). However,
both the modified Anderson-2 and modified Anderson-3 methods
predict ki1, terms with half the RMSD of the harmonic oscillator
approximation. Interestingly, the modified Anderson method pre-
dicts k112 that are too negative, as evidenced by the MSD (while the
harmonic oscillator approximation predicts a k112 value of zero by
definition). The modified Anderson-n potentials make a more sub-
stantial correction to the anharmonic coupling of the bond stretches
to the bond angle bends, as evidenced by the k33 predictions. The

Derivative Triatomic potential MSD RMSD
HO® 0.017 0.034

mA-2° -0.006 0.014

k112 mA-3 -0.008 0.015
mA-4 -0.011 0.019

mA-5 -0.016 0.027

mA-6 -0.026 0.040

HO 0.043 0.059

mA-2 0.013 0.024

ki3s mA-3 -0.002 0.012
mA-4 -0.017 0.019

mA-5 -0.032 0.036

mA-6 -0.047 0.054

*Equation (7).
PEquation (12).

modified Anderson-3 potential, in particular, reduces the RMSD of
the ki33 predictions by a factor of 5 in comparison to the HO approx-
imation. The modified Anderson-2 potential slightly underestimates
the anharmonicity, predicting ki33 constants that are too close to
zero (as evidenced by the mean signed deviations) and in worse
agreement with the finite difference calculations than the modi-
fied Anderson-3 potential (as evidenced by the root-mean-square
deviations). Likewise, the modified Anderson-4 potential slightly
overestimates the anharmonicity, predicting k133 constants that are
too negative and in worse agreement with the finite difference
calculations than the modified Anderson-3 potential.

B. Third-order derivatives of bent triatomic potentials

For bent XY,-type molecules, there are six symmetry-unique
non-zero third derivatives in internal coordinates. With the excep-
tion of the k111 term, these derivatives are affected only by the choice
of triatomic potential, U, and MSD and RMSD from explicit finite
difference computation of each of the predictions made by both
the planar and out-of-plane modified Anderson methods of these
derivatives are reported in Table IV,

The predictions made by all of the modified Anderson-#» meth-
ods for the ki1, term are also not particularly good for bent XY;
molecules, with only marginal improvements over the harmonic
oscillator method. However, considerable improvements were made
in the third derivative involving the bond angle bend, 83, espe-
cially for the planar model. Predictions of the ki3 and k123 terms
were best with the planar mA-4 method, with twofold and threefold
improvements over the RMSD of the harmonic oscillator approxi-
mation, respectively. Predictions of the ki33 and k333 terms were best
with the planar mA-5 method, with threefold and fourfold improve-
ments over the RMSD of the harmonic oscillator approximation,
respectively. Interestingly, the out-of-plane methods make similar
predictions to the planar methods for every third derivative except
for the k333 term. The out-of-plane method predicts k333 terms that

AIP Advances 12, 065012 (2022); doi: 10.1063/5.0096893
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TABLE IV. Mean signed deviations (MSD) and root-mean-square deviations (RMSD) TABLE IV. (Continued)
from explicit finite difference computations of the internal coordinate third-order cross-
term derivative predictions, in atomic units, of potentials constructed with various Derivative Triatomic potential MSD RMSD
triatomic approximations for ten linear XY,-type molecules.

HO 0.594 0.691
Derivative Triatomic potential MSD RMSD
mA-2 (planar) 0.239 0.338
HO" 0.029 0.047 mA-3 (planar) 0.147 0.260
b C mA-4 (planar) 0.060 0.203
mA-2” (planar) 0.010 0.041 mA-5 (planar) -0.022 0.177
mi‘i (Pianar) —g-g‘l)g g-gﬁ mA-6 (planar) ~0.105 0.193
mAS 8212223 —0.009 0046 K mA-2 (oop) —0.050 0.203
mA-6 (planar) ~0.009 0.050 mA-3 (oop) ~0.108 0.214
mA-4 (oop) -0.167 0.242
k112 mA-2 (oop)’ 0.010 0.038 mA-5 (oop) —0.225 0.281
mA-3 (oop) -0.007 0.040 mA-6 (oop) -0.284 0.327
mA-4 (oop) -0.011 0.044
mA-5 (oop) -0.014 0.048 Ziqua‘%m <71>2-)
mA-6 (oop) ~0.017 0.052 Egﬁ:ﬁg;‘fl o
HO 0.058 0.077  ‘Eauation(15).
mA-2 (planar) 0.037 0.054
mA-3 (planar) 0.026 0.042
mA-4 (planar) 0.015 0.035 are too negative for all values of n considered. Both the overly soft
mA-5 (planar) -0.009 0.042 bending of the out-of-plane potentials and the agreement of the out-
mA-6 (planar) -0.007 0.035 of-plane potentials with the numerically computed third derivatives
kiis mA-2 (oop) 0.034 0.049 worsen with higher values of the n parameter.
mA-3 (0op) 0.023 0.039 However, another difference between the planar and out-of-
mA-4 (oop) 0.012 0.033 plane models is that while the out-of-plane model correctly predicts
mA-5 (0op) ~0.001 0.032 a critical point on the potential energy surface at a bond angle of
mA-6 (oop) 0011 0.036 05 = m, the planar model has a discontinuity on its potential energy
surface. Figures 2 and 3 show cross sections of the bond angle bend-
HO 0.046 0.063 ing coordinate of potential energy surfaces generated with these
mA-2 (planar) 0.018 0.032
mA-3 (planar) 0.006 0.023
mA-4 (planar) -0.005 0.020
mA-5 (planar) -0.016 0.027 008 — planar /I
mA-6 (planar) -0.027 0.037 —— out-of-plane /
k23 mA-2 (oop) 0.021 0.035 0071 * ::::;ﬁ:‘ evaluation /
mA-3 (oop) 0.010 0.025 !
mA-4 (oop) ~0.002 0.020 0061
mA-5 (oop) -0.013 0.024 S 0.05 4
mA-6 (oop) -0.024 0.034 s
3 0.04
HO 0.198 0.243 g
? 0.03
mA-2 (planar) 0.113 0.154
mA-3 (planar) 0.065 0.109 0.02 -
mA-4 (planar) 0.017 0.074
mA-5 (planar) -0.032 0.070 0.01 1
mA-6 (planar) —-0.080 0.100 0.00 L. : ' ' ' ' ' '
ki3 mA-2 (oop) 0.099 0.138 16 18 20 22 24 26 28 30
mA-3 (0op) 0.052 0.096 angle [radians]
mA-4 (oop) 0.005 0.068 FIG. 2. The potential of an H,O molecule fit with the mA-5 planar [Eq. (14)] and
mA-5 (oop) -0.042 0.073 mA-2 out-of-plane [Eq. (15)] potentials as a function of the bond angle bend, 65,
mA-6 (oop) -0.089 0.107 at the equilibrium bond lengths of r1 and r».
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FIG. 3. The potential of an SO, molecule fit with the mA-5 planar [Eq. (14)] and
mA-2 out-of-plane [Eq. (15)] potentials as a function of the bond angle bend, 63,
at the equilibrium bond lengths of ry and r».

methods for H,O and SO,, respectively, with both bond lengths con-
strained to their equilibrium values. The planar and out-of-plane
methods that are demonstrated to best predict the third derivative
of the bond angle bending coordinate, k333, in Table IV (which are,
respectively, n = 5 and n = 2) are used. For both H,O and SO,, the
out-of-plane model underpredicts the linearization barrier height.
While the planar model has the wrong qualitative behavior, it is
in closer quantitative agreement with the numerical evaluation of
the H,O and SO, surfaces than the out-of-plane methods close to
equilibrium.

C. Fundamental vibrational frequencies

The MSD and RMSD from the experiment of the vibrational
frequency predictions made by VCI calculations on the model
potential energy surfaces are reported in Table V. With the har-
monic triatomic potential, both the Morse and Varshni diatomic
potentials resulted in much greater agreement with the experiment
than the harmonic bonding potential. They both reduced the over-
all RMSD by a factor of 4, but their effect was not limited to the
two bond stretch modes. Both the Morse and the Varshni potentials
also softened the 1a; bond angle bending modes by over 10 cm™
and lowered the RMSD of the 1a; modes by a factor of 2. The use
of the planar triatomic potential with the Morse and Varshni poten-
tial resulted in even better agreement than the harmonic triatomic
potential. The 1a; modes softened and had reduced RMSD from the
experiment with increasing values of the parameter #n. For both the
Morse and Varshni potentials, the planar mA-6 potential predicted
the 1a; frequencies with the best agreement with the experiment,
with an approximately fourfold reduction in the RMSD. The overall
agreement with the planar mA-6 potential was better for the Varshni
bond potential, as the Morse potential overestimates bond stretch
anharmonicity and thus underestimates the bond stretch frequen-
cies. The use of the out-of-plane triatomic potential with both the
Morse and Varshni bonding potentials resulted in an overestimation

scitation.org/journal/adv

TABLE V. Mean signed deviations (MSD) and root means signed deviations (RMSD)
from the experiment of the fundamental frequency predictions, in cm=", of potentials
constructed with various diatomic and triatomic approximations for five bent XY,-type
molecules (see Table || for experimental data).

1a; mode All modes
Diatomic Triatomic

potential potential MSD RMSD MSD RMSD

HO HO 21.0 294 52.6 82.1

HO 8.1 13.7 -4.4 214

mA-2 (planar) 8.5 14.3 -4.4 21.9

mA-3 (planar) 4.9 10.3 -10.7 25.4

mA-4 (planar) 2.5 8.5 -11.1 25.1

mA-5 (planar) 0.5 7.6 -10.4 23.9

mA-6 (planar) -0.9 7.4 -9.0 22.9

Morse mA-2 (oop) -7.4 16.8 -11.7 23.1

mA-3 (oop) -10.9 20.4 -15.6 26.4

mA-4 (oop) -13.6 23.1 -15.7 26.8

mA-5 (oop) -15.6 25.0 -15.2 26.7

mA-6 (oop) -16.7 25.8 -14.8 26.5

HO 8.8 14.4 4.2 19.3

mA-2 (planar) 9.5 15.3 4.2 20.4

mA-3 (planar) 6.2 11.6 -1.4 18.7

mA-4 (planar) 4.0 9.5 -1.4 18.5

mA-5 (planar) 2.3 8.3 -0.7 18.5

mA-6 (planar) 1.0 7.8 0.1 18.8

Varshni mA-2 (oop) -6.4 16.4 -2.7 19.7

mA-3 (0op) 98 197  -64 202

mA-4 (oop) -12.1 22.1 —-6.6 21.0

mA-5(oop)  -139 237 62 217

mA-6 (oop)  -149 243 58 222

of bend anharmonicity and an underprediction of the la; vibra-
tional frequency, with the agreement with the experiment worsening
with increasing values of the parameter #.

As the Varshni potential with the planar mA-5 potential pre-
dicts vibrational frequencies with the best overall agreement with
the experiment, these predictions are compared with the predictions
made from analogous surfaces fitted to MP2 and CCSD calculations
instead of CCSD(T) calculations. These predictions are reported in
Table VI, along with their corresponding harmonic frequencies and
frequencies predicted by a combination of the Varshni potential
and the harmonic triatomic potential. As expected, the treatment of
electron correlation has a big impact on vibrational frequency pre-
dictions, and the overall agreement of the harmonic frequencies with
the experiment (and quantified by the RMSD of all modes) improves
smoothly with higher levels of electron correlation treatment. Inter-
estingly, the harmonic bending mode has a worse agreement with
the experiment with CCSD than it does with MP2, which has a
similar agreement to CCSD(T). However, for all three levels of the-
ory, the replacement of the harmonic diatomic potential with the
Varshni potential increases the agreement with the experiment, as
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TABLE VI. Mean signed deviations (MSD) and root mean signed deviations (RMSD) from the experiment of the fundamental
frequency predictions, in cm™", of potentials constructed with various diatomic and triatomic approximations from various
levels of electronic structure theory for five bent XY,-type molecules (see Table |l for experimental data).

la; mode All modes
Electronic structure Diatomic Triatomic
theory potential potential MSD RMSD MSD RMSD
HO HO 19.6 30.4 136.3 325.0
MP2/aTZ Varshni HO 5.6 19.4 73.9 286.6
Varshni mA-6 (planar) 0.3 18.9 74.9 285.8
HO HO 46.8 50.5 112.1 132.7
CCSD/aTZ Varshni HO 34.2 38.0 58.9 77.1
Varshni mA-6 (planar) 27.0 314 534 74.6
HO HO 21.0 29.4 52.6 74.6
CCSD(T)/aTZ Varshni HO 8.8 14.4 4.2 19.3
Varshni mA-6 (planar) 2.3 8.3 -0.7 18.5

does the further replacement of the harmonic triatomic potential
with the planar mA-6 potential.

VI. CONCLUSIONS

The potential energy surfaces of polyatomic molecules are
dominated by the effect of covalent bonding. This means that
in the method we propose for constructing anharmonic potential
energy surfaces from a sum of bonding potentials and triatomic
potentials, the selection of the bonding potentials has the largest
impact on the accuracy of the potential energy surfaces. However,
we also demonstrate that the use of anharmonic triatomic poten-
tials, which vanish with the dissociation of either one or both of
the bonds, further improves the accuracy of potential energy sur-
faces and offers better agreement with vibrational spectroscopy
data. In particular, we recommend the mA-3 triatomic potential for
linear XY,-type molecules and the planar mA-5 potential for bent
XY ,-type molecules.

Extension of the methods evaluated here to further regions
of chemical space introduces some additional challenges, such as
the need to estimate the contributions of each bond to the total
atomization energy; however, the possibility of reasonably accurate
estimates of higher-order derivatives at a negligible computational
cost could make the consideration of such further approximations
justifiable. Future work will focus on extending the method out-
lined in Sec. I A to more complex geometries, such as XY3 and
XY}, using the approximation in Eq. (2) and also more generally to
polyatomic molecules with multiple centers using bond dissociation
energy estimating methods.
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