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Abstract

We demonstrate the flexibility and utility of the Berger—Rigoutsos adaptive
mesh refinement (AMR) algorithm used in the open-source numerical relativ-
ity (NR) code GRCHoMBO for generating gravitational waveforms from binary
black-hole (BH) inspirals, and for studying other problems involving non-trivial
matter configurations. We show that GRCHOMBO can produce high quality
binary BH waveforms through a code comparison with the established NR code
LEAN. We also discuss some of the technical challenges involved in making use

*Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms of the Creative Commons
Attribution 4.0 licence. Any further distribution of this work must maintain attribution
to the author(s) and the title of the work, journal citation and DOI.

1361-6382/22/135006+43$33.00 © 2022 The Author(s). Published by IOP Publishing Ltd  Printed in the UK 1



Class. Quantum Grav. 39 (2022) 135006 M Radia et al

of full AMR (as opposed to, e.g. moving box mesh refinement), including the
numerical effects caused by using various refinement criteria when regridding.
We suggest several ‘rules of thumb’ for when to use different tagging criteria for
simulating a variety of physical phenomena. We demonstrate the use of these
different criteria through example evolutions of a scalar field theory. Finally, we
also review the current status and general capabilities of GRCHOMBO.

Keywords: numerical relativity, adaptive mesh refinement, gravitational waves,
compact objects, computational methods

(Some figures may appear in colour only in the online journal)

1. Introduction

One of the key theoretical achievements that underpins the momentous detection of grav-
itational waves (GWs) from the inspiralling black-hole (BH) binary GW 150914 [1] is the
numerical relativity (NR) breakthrough in binary BH modeling in 2005 [2—4]. About 90 com-
pact binary merger events have by now been observed by the GW detector network [5—7] with a
wide range of total masses and mass ratios of the binary constituents. Indeed, it is a generic fea-
ture of general relativity and its character as a highly non-linear theory that its solutions often
span across a large range of spatial and temporal scales. Combined with the inherent limits of
computational resources, it follows that any finite difference numerical code will require some
form of spatial and temporal mesh refinement to fully capture the dynamics of these solutions.

In the NR community, many codes rely on the technique of so-called ‘moving boxes’ for
mesh refinement, where a hierarchy of nested boxes with increasingly fine meshes is centered
around specified points (also sometimes referred to as the ‘box-in-box’ approach). Within this
framework, boxes move around either dynamically or along predetermined paths, in order to
track objects’ trajectories’. This technique has proved remarkably successful, particularly in
the case of generating gravitational waveforms from binaries of compact objects for the tem-
plate banks for GW detectors, such as LIGO-Virgo—KAGRA [21-25]. Moving box codes
have matured to allow exploration of a wide variety of physics with a plethora of diagnostic
tools [26, 27].

However, there are classes of problems for which the moving boxes technique becomes
impractical due to the topology of the system. Here, the use of ‘fully adaptive’ mesh refinement
(AMR) is required where the mesh dynamically adjusts itself in response to the underlying
physical system being simulated, following user-specified mesh refinement criteria. In general,
there are two broad classes of AMR, depending on whether newly refined meshes are added to
the grid on a cell-by-cell ‘tree-structured’ basis [28—30] or on a box-by-box ‘block-structured’
basis. In this work, we will exclusively discuss the latter.

In block-structured AMR, first described and implemented by Berger and Oliger [31], the
computational domain is built from a hierarchy of increasingly fine levels, with each one con-
taining a set of (not necessarily contiguous) boxes of meshes, with the only condition being
that a finer mesh must lie on top of one or possibly more meshes from the next coarsest level.
It is important to stress that this means it is allowed for a fine mesh to straddle more than
one coarse mesh—in other words the grid structure is level-centric rather than box-centric.

7 In addition, boxes may be allowed to merge if they come close enough together. These codes include those built upon
the popular Cactus computational framework [8—10] such as the McLACHLAN [11], LAZEv [12], MAyA [13], LEAN
[14, 15] and CANUDA [16] codes, and the BAM code [17-20].
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In contrast to the moving boxes approach, this approach allows for highly flexible ‘many-
boxes-in-many-boxes’ mesh topologies, enabling the study of dynamical systems where the
spacetime dynamics are not driven by localized compact systems e.g. in studying non spherical
collapse scenarios [32, 33], higher dimensional BHs/black string evolution [34-39], cos-
mic string evolution [40-42], and the behaviour of strongly inhomogeneous cosmological
spacetimes [43-51].

Despite its advantages, AMR is a double-edged sword and its flexibility comes with a
cost—each coarse-fine transition may introduce unwanted interpolation and prolongation
errors whose magnitude depends on the order of the coarse-fine boundary operators, in addi-
tion to introducing a ‘hard surface’ which can generate spurious unphysical reflections. We
emphasize that AMR should not be treated as a ‘black box’, but requires careful control and
fine-tuning of refinement criteria, that often depend on the physics being simulated, in order to
work effectively. In particular, the creation/destruction of a finer grid is determined by the tag-
ging of cells for refinement, which in turn is controlled by a tagging criterion. Although this
ability to refine regions can be incredibly powerful, in practice it can be difficult to manage
the exact placement of refined grids. Furthermore, we find that the management of coarse-fine
boundaries in dynamically sensitive regions of spacetime, such as near apparent horizons, is
essential for producing accurate results.

In this paper we explain some of the tagging criteria and numerical techniques we have used
to obtain convergent, reliable results when using block-structured AMR. We will discuss these
issues in the context of the AMR NR code GRCHOMBO [52, 5318, which was first introduced in
2015 and uses the CHOMBO [76] library. While our methods apply directly to GRCHOMBO, we
believe many of the lessons we have learned are general and may be useful to researchers who
work with other NR codes that make use of block-structured AMR, in particular those which
rely on the Berger—Rigoutsos [77] style grid generation methods.

We demonstrate the utility of the techniques we have employed through a direct compar-
ison of gravitational waveforms generated by binary BH inspiral and merger calculated by
GRCHOMBO and the more established LEAN code which uses the aforementioned ‘moving
boxes’ style mesh refinement, and show that GRCHOMBO is capable of achieving compara-
ble production-level accuracy. We secondly apply AMR techniques to the evolution of several
scalar field models which exhibit dynamics on a wide range of spatial and temporal scales, to
demonstrate the relative advantages of several tagging criteria implemented in GRCHOMBO.

This paper is organized as follows:

e In section 2 we detail the computational framework of GRCHOMBO with a focus on the
AMR aspects.

e In section 3 we discuss considerations for tagging criteria in AMR grid generation.
e Insections4 and 5 we illustrate how these techniques are applied in practice to simulations
of BH binaries and spacetimes with a (self-interacting) scalar field.

8 AMR is now being used in several other NR codes. For example, those based on the PAMR/AMRD mesh refinement
libraries [54-56], the HAHNDOL code [4], which uses PARAMESH [57], the HAD code [58], and the pseudospec-
tral codes, SPEC [59], BAmPS [60] and SFINGE [61] in which the AMR implementation is somewhat different to
finite difference codes like GRCHOMBO. More recently, CosSMOGRAPH [62], and SIMFLOWNY [63] both based on the
SAMRAL library [64—66], GRATHENA++ [67], GMUNU [68] and DENDRO-GR [69], all based on oct-tree AMR, and
GRAMSES [30] have been introduced. Alternatives are problem-adapted coordinate systems, e.g. NRPy+ [70] or
discontinuous Galerkin methods as in SPECTRE [71, 72] (see also [73, 74]). Furthermore, it should be noted that
some code frameworks, such as those based on the Carpet mesh refinement driver [10], are technically capable of
performing block-structured AMR. However, it can be cumbersome to use and these codes typically rely on moving-
box type methods (e.g. the codes referenced in footnote 7). A brief overview of the history of NR codes can be found
in [75].
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Our notation conventions are as follows. We use Greek letters u, v, ... = 0, 1, 2, 3 for space-
time indices and Latin letters i, j,... = 1,2, 3 for spatial indices. We use a mostly plus sig-
nature (— + ++) and geometric units ¢ = G = 1. When there is a potential for ambiguity
between spacetime and purely spatial tensors (e.g. the Ricci scalar R), we prepend a @ to
denote the spacetime quantity. In the sections on BHs we set the mass scales with respect to
the ADM mass of the spacetime, whereas for the section on scalar fields we set 1 = mc/h = 1,
which then describes lengths relative to the scalar Compton wavelength®.

2. Computational framework

This section provides a comprehensive update of the methodology discussed in section 2 of
[53]. See also appendix D for details on how GRCHOMBO is parallelized.

2.1. Mathematical equations and notational conventions

2.1.1. Evolution equations and gauge conditions. GRCHoOMBO implements the CCZ4 formu-
lation [78, 79] in order to evolve solutions of the Einstein equations, which we review below.
We have found empirically with AMR that the inclusion of constraint damping terms in this
formalism can be important to maintain accuracy; these mitigate the additional noise intro-
duced by spurious reflections off the refinement boundaries due to the more complicated grid
structures [80] (when compared with moving-box mesh refinement grids). The Z4 equation of
motion with constraint damping and cosmological constant is [78]'°

(4)Rl“/ — Agw + ZV(uZV) — 2/‘61}’[(;,2,/) + k(1 + Kz)g#yl’laza

1
=8 (Tuu - ZguyT> ) (1)

where V is the Levi-Civita connection of the metric g, R, is the Ricci tensor of V, A
is the cosmological constant, Z" is the Z4 vector which vanishes on physical solutions of the
Einstein equation, n* is the future-directed unit normal to the foliation of spatial slices, x; and
ko are constant damping parameters, T, is the energy—momentum tensor, and 7 = 8T, is
its trace.

In the standard 3 + 1 decomposition of spacetime [81, 82], the metric in adapted coordinates
(t, x') takes the form

ds? = —a? dr? + y;(dx’ + B dr)(dx/ + B/ dr), @

where ~,; is the spatial metric, o = 1/||d|| is the lapse function and /' is the shift vector. The
future-directed unit normal to the foliation is

(or - 9 . (3)

Q=

n, = — a(dr),, n" =

9Tf we are interpreting the results in terms of a physical particle mass, this is equivalent to setting the value of 7 in the
code. Note that in general 72 # 1 in NR simulations (as this would imply that one unit in the length scale is equal to
the Planck length /p;).

10 Note the sign difference between the unit normal in [78] and here. We choose the sign which ensures the unit normal
is future-directed.
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and the extrinsic curvature is

1
K;w = - i(ﬁn’}/)ﬂw 4)

which in adapted coordinates (2) becomes

1

Kij= 2a

(07 = B"Owvij — 27mi0p "] - S
In analogy to the spacetime metric, we decompose the energy—momentum tensor according to

p=nanzT, Si= — YiansT, Sij= 'y,-a'ngT““", S:=9"S;;.  (6)
We conformally rescale the spatial metric as''

. VR
Yij = XVij» = ;7”, (7

where x = [det(7;)]~'/ so that the determinant of the conformal metric 7;; is unity. As
in the Baumgarte—Shapiro—Shibata—Nakamura—Oohara—Kojima (BSSNOK) formulation, we
introduce the conformally rescaled traceless extrinsic curvature,

~ 1

Aij=x (Kij -3 ’Yij) , (8)
with K = v"/K;; and the conformal connection functions

I':= 55T = —0/7", ©)

where 1:‘3.,( are the Christoffel symbols with respect to the conformal metric 7;;. Finally, we
decompose the Z4 vector by defining'?

0= —n,2", 0 =~ 7" (10)

Rather than evolving the © directly, we instead incorporate them into a set of modified
conformal connection functions
i T ~ ik i o
I'=T"+27"0; =T"4+2—. (11)
X

Finally our complete set of dynamical variables are

{X’;}I/ij’K’Aij’ e’f‘i} 5 (12)

! This is the main difference with the previous GRCHOMBO paper [53], where x> was used in place of .
12 The spatial projection is often denoted just Z' in the literature e.g. [78], but we have changed the symbol in order to
make clear that this is the projected three-vector as opposed to the spatial components of the Z4 vector.
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and the CCZ4 evolution equations are'?

2
Ohx = POy + FX(aK — xBh, (13)

- L - - 2
i = B OAij + Au0iB* + 10" — 2045 — g’Yijakﬂka (14)
0K = B*OK + o (R+ K(K — 20)) — 3aki(1 + k2)© — YDy Djex
+4ma(S — 3p) — 3aA, (15)

dAi; = B*OA;; + x[-DiDje + a(R;; — 87S;))] ™
- 2 ) - U
+A;j {a(K —20) - gakﬁ‘] + 24430, B° — 207" AzAy, (16)
k 1 N5 ok, 2
Zﬂ (9](@4- EO& R—Ak[A + gK — 20K
— ak1OQ2 + k) — O — 8map — al, (17)
) _ i i i
= B"@kl“’ + = |:(9kﬁk <Fl + 2%3(9) - 2@K®:| - 20[/11 9
3 X X X
+ 27* (0 ©® — Oda) — 2A4% 00 + Z(xf‘;\,,gkl

4 . ..
—a [a’kakK + 3A’kakx} (rk + 2/@@) W
3 X X

, A .
+ M0 0,8" + ga'ka,akﬁ’ — 167 Sy, (18)

where D; is the Levi-Civita connection on the spatial slice, [-]™F denotes the trace-free part of
the expression in square brackets, R;; is the modified Ricci tensor, given in terms of the normal
Ricci tensor of Dy, R;; by

k,'j ::R,-j—i—2D(,-@J>, (19)
and k3 is a third damping parameter. At each right-hand side (rhs) evaluation, we construct

the quantity ©'/x using the evolved I and T computed from the metric and its derivatives in
(11). The covariant second derivatives of the lapse are computed via

) 1 -
VDD = A OO — Eak’akaa,x — xT*oa, (20)

DiDjo = 0;0ja — F Oka—l— 2 (8 adjx + 0ix0jo — iy (')/\ozf)lx) 21)

13 Note that by default we make the modification ax; — x| mentioned in [79] that allows stable evolution of BHs with
k3 = 1. However, equations (13)—(18) do not have this modification.

6
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The modified Ricci tensor (19) is given by'*
. - 1 -
with

1. _ - . Lopo
Rij = _E'Yklakal'}/ij + FrOpT* + EF‘OW,-J-

+ ,~)/Im (f‘;(,'f‘jkm + fl;jfiklfl + f‘f'(mf‘“J) ’ (23)
P RO N T
RS = 3 [D:iDjx + 77" DiDyX]
1 I
C4x [9ix0ix + 377" Ox O] » 24)
@k
= = (a0 + 350~ 3000). =

and 1:‘,- = %-,f‘i-,\,. Finally, the modified Ricci scalar is given by the trace of the modified Ricci
tensor:

R = x7"Ry. (26)
By default, GRCHOMBO uses the damping parameters'?
ar; = 0.1, ko =0 and k3 =1. 27

To close the system (13)—(18), we need to specify gauge conditions for the lapse and shift.
Although the structure of the code allows easy modification of the gauge, by default we use a
Bona-Masso-type slicing condition [83] of the form

O = a1 0 — ara® (K — 20), (28)

where a;, a, and a; are constant parameters. Note that this reduces to the familiar 1 +
log slicing in the case

a =1, a =2 and a; =1, 29)
which is the default. For the shift, we use the Gamma-driver shift condition [3, 4] in the form:
0" = b1 B0’ + brB', (30)
OB = by (BB — BO,T) + O T — B, 31

where by, b, and 1) are constant parameters. By default we take b; = 0 and b, = 3/4, whereas
the value of 7 depends on the specific configuration considered (typically O(1/Mapm))-
Together, these gauge conditions are commonly referred to as the moving puncture gauge.
We enforce the tracelessness of A; j (8) before every rhs evaluation and at the end of each
full timestep. Furthermore, we also enforce the condition x > X, and « > amp, before

14 Note the somewhat unconventional factor of x~! multiplying R,\j

7
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every rhs evaluation and at the end of each full timestep, where the default values are
Xmin = 107 = amin, in order to ensure these variables do not become arbitrarily small or
negative due to discretization error'>,

As is common when using the moving puncture gauge with BH spacetimes, GRCHOMBO

can track the position of the puncture(s) x;, by solving [26]
i
p i
_— = — X, . 32
P B'(xp) (32)
which is integrated using the trapezium rule at user-specified time intervals.
During evolutions, we monitor the violations of the Hamiltonian and momentum constraints
which are given by

2 - -

H:=R+ 31{2 — AgA* — 2\ — 167p, (33)
~kl ~ ~m X it 8IX 2

M,‘ =7 OkA,,- — ZF[(iAk)m — 3Aik§ — g(‘),K — 87TS,'. (34)

In the continuum limit these two quantities should vanish. From the Bianchi identities, if
the constraints vanish on the initial data surface, they vanish throughout the spacetime [84].
However, given errors due to our discretization of the equations of motion, we expect there
to be small violations of the constraints in our numerical simulations. We often monitor the
constraint violation to assess the accuracy of a given run.

In the case of non-vacuum spacetimes, one can normalize the constraints with some measure
(e.g. the maximum) of their matter sources, i.e. H with p and M; with §;.

2.1.2. Initial data. For BH binaries, we have integrated the TwoPunctures spectral solver [85]
into GRCHomBo. This provides binary puncture data [86] of Bowen—York type [87]; the ver-
sion we use also incorporates the improvements described in [88] that allows for fast spectral
interpolation of the pseudospectral solution onto, e.g. a Cartesian grid. Besides TwoPunctures,
GRCHoMmBO includes a class for non-spinning binary Bowen—York data with an approximate
solution of the Hamiltonian constraint for the conformal factor [89], which is valid in the limit
of small boosts |P| < M, where P is the initial momentum of an individual BH and M is some
measure of the total mass.

We also provide initial data for Kerr BHs using the formulation in [90], which allows for
the evolution of near-extremal BHs within the moving puncture approach to BH evolution.

For matter spacetimes, one must in general solve the Hamiltonian and momentum con-
straints numerically to obtain valid initial conditions for the metric that correspond to the
energy and momentum distributions which are chosen (including BHs using the methods
above, where required). For time-symmetric spherically symmetric initial data this can be
done using shooting methods, as for the axion star data used in section 5 and previous works
[91-98]. In inhomogeneous cosmological spacetimes, numerical solutions for an initial matter

configuration should be obtained using relaxation or multigrid methods, as in'®,

15 Typically any values that are affected by this procedure lie behind a horizon so are causally disconnected from most
of the computational domain. In cosmological simulations the conformal factor is directly related to the scale factor
and thus in rapidly expanding or contracting spacetimes this limit may need to be adjusted.

16 Most of these works assume an initial time symmetry in order to avoid solving the momentum constraints. A fully
general multigrid initial condition solver for GRCHOMBO that solves the coupled constraint system for any scalar field
distribution with and without BHs is currently under development.

8
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2.2. Code features

2.2.1. Discretization and time-stepping. GRCHOMBO evolves the CCZ4 equations using the
method of lines with a standard fourth-order Runge—Kutta method (RK4). For the spatial
discretization, we typically use either fourth or sixth order centered stencils except for the
advection terms, for which we switch to lopsided stencils of the same order depending on
the sign of the shift vector component. For completeness, the expressions for the stencils are
provided in appendix B.

Finite difference methods can often introduce spurious high-frequency modes, particularly
when using AMR and regridding. To ameliorate this, GRCHOMBO uses N = 3 Kreiss—Oliger
(KO) dissipation [99]; at every evaluation of the rhs for an evolution variable F, we add the
term

g

64Ax

to the rhs, where A x is the relevant grid spacing (cf (37)). A von Neumann stability analysis
[26] shows that this scheme, when applied to the trivial Partial Differential Equation (PDE)
OF = 0, is linearly stable only if

(Fi-3 — 6F;_5 + 15F;_y — 20F; 4+ 15F ;1 — 6F; 15 + F;13) (35)

0<o< i, (36)
(876

where ac = At/Axis the Courant—Friedrichs—Lewy factor, which we typically setto 1/4, and
At is the size of the timestep'”. Note that we always use N = 3 KO dissipation, independent
of the order of spatial discretization. Naively, one might question this choice for sixth order
spatial derivative stencils as the conventional wisdom is to pick N such that 2N — 1 > m, where
m is the order of the finite difference scheme (see, for example, [26]). However, in this case,
what matters is the order of the time stepping which is still fourth order'®, hence the dissipation
operator does not ‘spoil’ the convergence properties of the scheme. This is consistent with the
approach discussed in section 3.2 of [100].

2.2.2. Berger-Rigoutsos AMR. In GRCHOMBO, the grid comprises a hierarchy of cell-
centered Cartesian meshes consisting of up to In.x + 1 refinement levels labeled'?
[ =0,...,hx each with grid spacing

Ax; = ZImQ‘X*[Ax[nm = Ax0/2[. (37)

GRCHOMBO uses block-structured AMR, so each refinement level is split into boxes which are
distributed between the CPUs as described in appendix D.

At regridding or initial grid creation, on a given refinement level /, cells are tagged for
refinement according to a tagging criterion C = C(i). In a given cell with indices i = (i, j, k)
and corresponding Cartesian coordinates?® x = (x;, y j,zk), if C(i) > 7g, where 7y is a pre-
specified threshold value (which may vary with /), then the cell is tagged for refinement.

17 Note that the stability analysis makes a number of assumptions and problems can begin to appear towards the upper
end of the range (36). We have observed that a typical symptom of an instability due to too large o is the appearance
of a checkerboard-like pattern in otherwise spatially homogeneous regions of the spacetime.

18 Also note that theorem 9.1 in [99] only refers to the order of the time stepping.

19 Note that the finest level that exists may be less than /.

20 Note that the indices here are of the discrete cells on the grid as opposed to spacetime components.

9
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We discuss techniques to design a suitable tagging criterion and aspects to consider in
section 3.

In block-structured AMR, the main challenge after tagging cells is finding an efficient
algorithm to partition the cells that require refinement into blocks or boxes. GRCHOMBO uses
CHoMBO’s implementation of the Berger—Rigoutsos grid generation algorithm [77] in order to
do this.

For this purpose, we define the block factor as the number of cells that must divide the side
lengths of all blocks; it is a specifiable parameter. Furthermore these side lengths must not
exceed the specified maximum box size. In order to enforce the block factor on level [ + 1,
starting with the tagged cells on level [, CHOMBO generates a temporary new set of tagged
cells on a virtual coarser level [ — n where n is chosen such that the length of one cell on
level [ — n corresponds to the block factor on level / + 1.2! The new set of coarser tags are
derived using a global OR operation, i.e. as long as any of the / level cells corresponding to the
coarser level cell is tagged, the virtual coarser level cell will be tagged. CHOMBO then applies
the Berger—Rigoutsos partitioning algorithm on this coarser level to construct boxes of grids
which obey both the desired block factor and maximum box size. We typically choose both to
be a multiple of the processor vector width for optimal performance.

For completeness, we next review the Berger—Rigoutsos algorithm (see also figure 1). We
find the minimum box that encloses all of the tagged cells on this level. Let 7(i) be the tagging
indicator function defined by

1, if CG) > &,
TG) = (38)
0, otherwise

and define the signatures or traces of the tagging by

Su(i):=> T(@) = / T(i)dydz, (39)
Jk

S,()=Y T = / T(i)dx dz, (40)
ik

S.(ky=>_T() = / T(i)dx dy. (41)
i.j

First, we look for ‘holes’ in the signatures i.e. if there exist i, j or k for which S,(i), S,())
or S, (k) vanish which corresponds to there being no tagged cells along the plane orthogonal
to the signature direction. If there are holes, we choose the one with largest index over all
the dimensions (since it is more efficient to have fewer big boxes than more small boxes) as
the plane of partition. If there are no holes, we next look for inflections (see [77] and their
discussion of figure 10 for details) in the signatures by computing their discrete Laplacian, for
example,

AS (i) = Sui = 1) = 28:(D) + Sc(i + 1), (42)

21 For example if the block factor is 4, then n = 1 since the refinement ratio is 2 and 2¢+D=¢-D — 4, Note that this
means the block factor must be a power of 2.

10
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and searching for zero-crossings in AS, (7). Heuristically, this corresponds to a rough bound-
ary between tagged and untagged regions; cf the partitioning in step (2) of figure 1. If there
are inflections, then, in each direction, we pick the inflection with the greatest difference, for
example,

[0(AS, ()] = |AS (i = 1) — AS(D)]. (43)

As for the holes, we then pick the greatest inflection index over all the dimensions as our plane
of partition. If there are no holes or inflections in the signatures, we simply split the box along
the midpoint of the direction with the longest side.

After partitioning, we check whether the partition is sufficiently efficient, specifically
whether the proportion of tagged cells to all cells in the partition exceeds a user-specified fill
ratio threshold, egg < 1 and that the lengths of the boxes are at most the pre-specified maxi-
mum box size (which we choose in order to ensure sufficient load balancing). If these tests are
passed then we accept the partition and, if not, we continue to partition recursively discarding
any boxes that do not contain tagged cells.

Note that, whilst a higher value of epg will result in a more efficient partition in the sense
that there will be a greater ratio of tagged to untagged cells, this is not always the most com-
putationally efficient choice as there are greater overheads with smaller boxes (for example,
there will be more ghost cells). There could also be more fluctuation in the structure of the
grids between consecutive regrids which may result in greater noise. Although the optimal fill
ratio depends on the particular physical problem and the computational resources, we typically
UusS€ €gr = 0.7.

Finally the boxes in the partition are refined, that is, they are defined on the next finer
level (I + 1) with twice the resolution (37). For newly created regions on this finer level, we
interpolate the data from the coarser level using fourth-order interpolation.

The regridding process starts on the finest level that currently exist (or at most level [, — 1)
and works up the hierarchy on increasingly coarse levels until the base level, from whose
timestep the regrid was called, is reached (which need not be / = 0). It is therefore only possible
to add a single extra level (up to /max) at each regrid. After the regrid on level /, the union of
the set of cells in the new boxes on this level (plus an additional pre-specified buffer region)
with the set of cells tagged on level [ — 1 is used as the final set of tagged cells on level [ — 1
in order to ensure proper nesting?> [101]. This also ensures that cells on coarser levels will be
tagged if any of their corresponding finer level cells are tagged.

The frequency of regridding is user-specifiable on each refinement level / < /., though,
since a regrid on level [ = I enforces a regrid on all levels ' < I < Ly,x, for problems without
rapidly varying (in time) length scales, it is usually sufficient to regrid every few timesteps
on one of the more coarse levels (e.g. for compact object binaries). Not only does reducing
the frequency of regridding reduce the computational cost, but since regridding introduces
errors/noise due to interpolation, we have also found that this can improve the accuracy of the
simulation.

22 By proper nesting we mean that
(a) The physical region corresponding to a level / — 1 cell must be fully refined or not refined at all, that is it must
be completely covered by level / cells and not partially refined.
(b) There must be at least one level / cell between the boundary of / + 1 and the boundary of level / except at the
boundary of the entire computational domain. In practice we even need two such buffer cells (corresponding to
four cells on level [/ + 1) for fourth and sixth-order spatial stencils.
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Figure 1. Schematic illustration of the partitioning algorithm. For simplicity, we show a
2D grid and only consider partitioning in the x direction. The cells tagged for refinement
are indicated with e. In (1), the signature S, is computed and two ‘holes’ are found
where the signature vanishes. The line (plane in 3D) of partition is then at the hole with
the largest index (rightmost). The result of the partitioning is shown in (2). To partition
the right box in (2), the signature is computed but this time there are no holes so the
algorithm looks for zero crossings of the discrete Laplacian of the signature AS,. The
zero-crossing with largest change is then selected. This algorithm terminates once all
boxes have reached the required fill ratio egr.

The Courant condition limits the size of the maximum time steps one can take on the finer
levels. Rather than evolving all refinement levels with the same timestep, we use subcycling
by following the Berger—Colella evolution algorithm [101], which we now review. As the
algorithm is recursive, we can consider evolving a set of coarser and finer grids at level / and
I + 1 respectively in the AMR grid hierarchy. First, one time step is taken on the coarser grids
(i.e. those at level /). One then evolves the finer (level [ + 1) grids for as many time steps until
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they have advanced to the same time as the coarse grid. As we have hard-coded the time steps
on each level, Az, so that Aty = Af;_1/2, the grids on level  + 1 will then take two time steps
after the grids on level [ take one time step. After level / + 1 has ‘caught up’ with level [, the
mean of the data in the [2* = 8] cells covering a single level  cell is calculated and this value
is copied back onto level [. Note that this particular procedure is only second-order accurate in
contrast to the restriction operation in a vertex-centered code which requires no approximation.
This may partially explain some of the difference in convergence orders we observed between
GRCHOMBO and the vertex-centered code LEAN in section 4.

The ghost cells at the interface between the finer and coarser grids are set by interpo-
lating the values of the coarser grid in both space (due to the cell centered grid) and time
(due to the requirement for intermediate values in the RK4 timestepping). The time interpo-
lation is achieved by fitting the coefficients of a third order polynomial in 7 using the values
obtained at each substep of the RK4 timestepping on the relevant cells of the coarser level (see
[102] for more detail)®.

2.2.3. Boundary conditions. GRCHOMBO implements several classes of boundary conditions,
including:

Periodic—evolution variables ¢ obey ¢(x 4+ L) = ¢(x) in some or all Cartesian directions.

e Static—boundary values are fixed at their initial values.

e Reflective—one uses the symmetry of the spacetime to reduce the volume evolved. For
example, in a simple equal mass head-on BH merger, one needs only 1/8 of the domain;
the rest can be inferred from the evolved values [103]. Note that each evolution variable
has a different parity across each reflective boundary.

e Extrapolating—both zeroth and first order schemes (by radial distance from a central
point). These are especially useful for variables which asymptote to a spatially uniform
but time varying value (see [104—106]).

e Sommerfeld/radiative—these permit (massless) outgoing radiation to leave the grid with-

out reflections by assuming a solution of the form ¢ = ¢, 4 u(r — 1) /r at the boundaries,

where u can be any arbitrary function and ¢, is a constant asymptotic value (see section 5.9

of [26]).

2.2.4. Interpolation and wave extraction. GRCHOMBO features an AMR interpolator which
allows the user to interpolate any grid variable, its first derivatives and any second derivative
at an arbitrary point within the computational domain. The AMR interpolator starts searching
for the requested points on the finest available level and then progresses down the hierarchy
to increasingly coarse levels until all requested points are found in order to ensure the most
accurate result. It supports interpolation via an arbitrary interpolation algorithm. The pro-
vided algorithms include Lagrange polynomial interpolation up to arbitrary order (although
this is limited by the number of available ghost cells), using the algorithm of [107] to calculate
the stencils on the fly and then memorizing them in order to increase efficiency, and ‘nearest
neighbour’ interpolation. By default, and in the remainder of this paper, we use fourth order
Lagrange polynomial interpolation.

GRCHOMBO includes tools for the extraction of data over an arbitrary user-defined 2D
surface, built on top of the AMR interpolator, with spherical and cylindrical surfaces being

23 An alternative approach would be the use of larger ghost zones in the finer level, with the outer ones discarded at
each RK step (for example, see section 2.3 of [10]). One disadvantage here is the extra memory use, especially beyond
the fixed-box-hierarchy case.
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implemented as examples. There is also a user-friendly interface for integrating arbitrary func-
tions of the extracted grid variables and their derivatives over the surface using either the
trapezium rule, Simpson’s rule, Boole’s rule or the midpoint rule in each surface coordinate
direction.

Often the most important outputs of a NR simulation are the calculated GWs. To that end,
GRCHoMBO uses the Newman—Penrose formalism [108]. We describe the formulae for cal-
culating the relevant Weyl scalar W, (including terms arising from the Z4 vector) in appendix
A. We use the extraction routines described above to interpolate the values of ¥, on multi-
ple spheres of fixed coordinate radius and then determine the modes ,,, with respect to the
spin-weight —2 spherical harmonics _,Y"" using the formula

Fex{im= 7{2 TexWalr=ry, sz’['”} do, (44)
S

where dQ = sin 6 df d¢ is the area element on the unit sphere S*. We use the trapezium rule for
the integration over ¢ (since the periodicity means that any quadrature converges exponentially
[109]) and Simpson’s rule for the integration over 6.

3. Considerations for tagging criteria used for grid generation

We have found that the choice of tagging criteria can greatly impact the stability and accuracy
of a given simulation. Here we mention several factors to consider when designing tagging
criteria for use in GRCHOMBO and other codes with similar AMR algorithms. We also provide
some explicit examples of tagging criteria and discuss their relative merits.

3.1. Buffer regions

One of the problems of many tagging criteria we have tried is that they can often introduce sev-
eral refinement levels over a relatively small distance in space. This leads to the boundaries of
these refinement levels being particularly close to one another. Due to the errors introduced by
interpolation at these boundaries, they can add spurious reflections or noise. This is exacerbated
when other refinement boundaries are nearby, allowing for this noise to be repeatedly reflected
and even amplified before it has time to dissipate (e.g. via KO dissipation—see section 2.2.1).
A particularly simple way to mitigate this problem is to increase the buffer regions, i.e. the
number of cells ng between refinement levels. Since the regridding algorithm starts at the finest
level and works up the hierarchy to coarser levels (see section 2.2.2), increasing this parameter
actually increases the size of the coarser levels rather than shrinking the finer levels in order to
enforce this buffer region restriction.

3.2. Considerations for black-hole spacetimes

Here we describe several techniques that we have used when creating tagging criteria to evolve
BH spacetimes. The major complication with evolving BHs is that they have an event horizon.
In practice, it is often challenging to find the true event horizon, which would require tracing
geodesics through the full evolution of the spacetime. Therefore NR simulations typically con-
sider the location of the apparent horizon instead, which always lies inside the event horizon
[110]. Mathematically, the region within an apparent horizon is causally disconnected from its
exterior. For a given numerical approximation, however, artifacts from the discretization can
propagate from behind the horizon and contaminate the rest of the computational domain.
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As a consequence of this superluminal propagation of numerical noise, we often find that
GRCHowmBo simulations of BHs are particularly sensitive to the presence of refinement bound-
aries. One should avoid adding refinement within the horizon (which in any case is unob-
servable and not usually of interest), but problems are particularly severe where a refinement
boundary intersects the apparent horizon. In such cases we have observed significant phase
inaccuracies and drifts in the horizon area (some even violating the second law of BH mechan-
ics). Similar problems may occur if a refinement boundary is close to but does not intersect
the horizon. In order to avoid these issues, we typically enforce the tagging of all cells within
the horizon plus a buffer radius up to a maximum level [5F* (which need not necessarily be
Imax and may differ for each BH in the simulation). If 7, is the coordinate distance from the
puncture of a BH of mass Mgy in a spacetime with total mass M ~ 2Mgp, then, forn ~ 1/Min
the moving puncture gauge (28)—(31), after the initial gauge adjustment the apparent horizon
is at approximately 1, = Mgy (see figure 4 in [18]). Guided by this approximation, we can tag
all cells with r, < Mgy + b, where b is a pre-specified parameter. Although one might think
choosing b o< Mpy for each BH might be the most sensible choice for unequal mass configura-
tions, we have found larger BHs less sensitive to the presence of refinement boundaries. Thus,
choosing b o< M the same for each BH in a binary usually works sufficiently well.

Increasing the size of the buffer regions between refinement boundaries by adjusting ng as
discussed in section 3.1 can help to keep refinement boundaries sufficiently spaced apart. How-
ever, we have also separately enforced the spacing out of refinement boundaries by doubling
the radius of the second and third finest levels covering a BH. This leads to tagging cells on
level [ (to be refined on level [ + 1) with

rp < (Mpy + b)2™* (it =112, (45)

In spacetimes where BH horizons are dynamical (often the target of AMR simulations), one
can in principle use the locations of apparent horizons to define tagged regions. However, rather
than incorporating the output of a horizon finder into the tagging criterion, a simpler and in most
cases equally effective method can be obtained from using contours of the conformal factor x
and tagging regions with x < x,, where Y, is a prespecified threshold value which may vary
on each refinement level. This gives a reasonably robust and general method of identifying the
approximate locations of horizons. Further details on precise values and their dependence on
the BH spin are given in appendix C.

3.3. Asymmetric grids

The grid-generation algorithm (section 2.2.2) is inherently asymmetric, for example, it picks
the ‘hole’ with largest index as the partition plane. This means that even if the tagging has sym-
metries, the grids themselves may not obey the same or any symmetries. For example, whilst
one might expect that, for tagging cells with (45), the grids would have reflective symmetry in
all three coordinate directions, this is often not the case, particularly for larger epr. This asym-
metry can lead to undesirable behaviour. For example, when simulating the head-on collision
of two BHs with no symmetry assumptions (as described in section 2.2.3) with the tagging of
(45), the punctures can deviate slightly from the collision axis. We can ‘fix’ this asymmetry by
replacing

rp — 0 = max(|x — xp|, [y — ¥pl, |2 — %)) (46)

in (45) so that the tagged regions are boxes rather than spheres (this tagging is similar to what
is done in some moving-box style mesh refinement codes). Whilst there is inevitably a loss of
efficiency from this choice, this is typically outweighed by the reductions in error achieved.
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Clearly, this approach pushes the AMR method in the direction of a moving boxes approach;
in practice, we therefore apply it predominantly to BH simulations but not for more complex
matter structures that require the full flexibility of AMR.

3.4. Using truncation error for tagging cells

Truncation error tagging was introduced by Berger and Oliger [31]. We have implemented trun-
cation error tagging in GRCHOMBO by using a shadow hierarchy (e.g. [111]). In this scheme,
we estimate the truncation error on a grid at level / by comparing the solution of a specially
chosen variable f on that level to the coarser level directly ‘beneath’ it on the grid:

7,0 = |fi(D) — fim1 ()] 47)

We note that the error (47) clearly must be computed before we average the finer grid values
onto the coarser grid. As CHOMBO uses a cell-centered scheme, in order to compare the values
of f on the two levels, we interpolate f from the coarser level onto the finer level using fourth
order interpolation. If we compute the truncation error of multiple grid variables, we combine
the error estimates for each variable at each point:

(48)

where L is a normalizing factor for each variable f. We then set this as our tagging criterion in
(38): C(i) = 7/(i). The free parameters in this scheme of tagging are the choice of grid variables
that one computes truncation error estimates for and the normalization factors for each variable.

The main advantages of truncation error tagging are that it allows for a conceptually straight-
forward way to implement convergence tests in AMR codes: as one increases the base grid
resolution, one should scale the truncation error tagging threshold for grid generation with the
expected convergence of the code. Additionally, truncation error tagging is a ‘natural’ tagging
criterion as it refines regions that are most likely to be under resolved.

3.5. Tagging criteria based on grid variables and derived quantities

Some physical problems lend themselves to other tagging criteria, and GRCHOMBO permits
the user to easily specify refinement criteria based on any properties of the local grid vari-
ables or derived expressions of them, for example, derivatives or curvature scalars. We caution
though that the tagging criteria we discuss below are not functions of geometric scalars, so the
performance of a given criterion will depend on the formulation and gauge conditions used.
Nevertheless, for the Bona-Masso-type slicing ((28)) and gamma-driver ((30) and (31)) condi-
tions we have the most experience with, these gauge conditions have proven to be reliable and
robust.

First we discuss tagging criteria based on the conformal factor of the spatial metric . Con-
tours of y can provide a good choice in dynamical BH cases as detailed in section 3.2 and
appendix C, to ensure that horizons are covered. Taking differences of y across a cell using
locally evaluated derivatives, i.e. using C = /60;x0,;xAx, also provides an efficient measure
to refine key areas?*. In particular, using the second derivative of x, i.e. C = /070,0,xAx,
is efficient because usually it is the regions in which gradients are changing most rapidly

2 Imposing simply that 9,y (without the factor of Ax) is higher that some threshold results in unlimited regridding,
since one does not reduce the local gradient in a variable by refinement, only the difference across the cell.
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that require greater resolution, rather than steep linear gradients. However, in practice any
derivative can be used provided the thresholds are tuned appropriately for the problem at
hand.

Alternatively, we find empirically that the sum of the absolute value of the different com-
ponents of the Hamiltonian constraint proves to be an efficient tagging criteria in dynamical
matter spacetimes. The condition is

o~ 2
C = Hups = [R| + [A%Ay| + SK* + 167[p| +2[A], (49)

where R = 7"/R;; is the Ricci scalar. As we will see in section 5.2, this quantity generally
remains constant in regions of spacetime where the individual metric and matter components
oscillate in a stable, time-invariant manner (as in the case of the stable axion star we present
later). Thus using this measure reduces the amount of spurious regridding that occurs, which
in turn reduces errors introduced by that process. Where it starts to grow in some region, this
generally reflects a decrease in the local dynamical timescales and thus physically motivated
regridding.

A disadvantage of using these more arbitrary criteria over error tagging is that convergence
testing is more challenging—one must ensure that similar regions are refined at the appropriate
resolutions in the convergence runs, which necessitates tuning of the threshold at each different
base resolution. Depending on the regridding condition, halving the threshold g, for example,
may not result in double the resolution being applied. Nevertheless, if one ensures that the
regions of most physical significance have an appropriate increase in refinement, convergence
can usually be demonstrated, as we show below.

In order to obtain convergent results and use resolution most efficiently in a physical
problem, it is often helpful to implement rules to enforce that given regions are refined for
a given amount of time at least to a given level. Whilst this may seem to go against the spirit
of AMR, it is easy to implement within that formalism as a secondary condition, and is often
required to avoid excessive or insufficient tagging in very dynamical cases. For example, when
one is not interested in resolving outgoing scalar radiation, one may choose to suppress regrid-
ding above a particular level outside of a particular radius. In the opposite sense, we often
enforce extra regridding over the extraction surfaces for the Weyl scalars, to ensure that they
have sufficient resolution and that noise is not introduced from grid boundaries crossing the
spheres.

Several examples of the application of these criteria to BH binary inspirals and matter field
evolutions are presented in the following, sections 4 and 5. These two examples cover the main
considerations when using AMR in NR codes. Spacetimes with singularities have particular
requirements related to the resolution of the horizons. Furthermore, in dynamical matter space-
times achieving an optimum frequency of regridding can be crucial in obtaining convergence.
In the matter case we focus on an isolated real scalar (axion) star, which provides a very good
test of AMR capabilities. In particular, it tests the ability to resolve stably oscillating mat-
ter configurations without excessive gridding and ungridding, and to follow the dynamical
timescales of gravitational collapse, which are the key challenges in many simulations of fun-
damental fields in NR, including the modeling of cosmic strings, inflationary spacetimes and
exotic compact objects. Fully AMR techniques are also likely to create significant challenges
for high-resolution shock capturing, but we leave this topic for future investigations.
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Table 1. A list of the parameter values (cf figure 2) for the BH binary configurations
simulated in this work. M = M| + M, denotes the total BH mass of the spacetime.

Label q d/M P/M P./M X; o Reference
gl-di2 1 1221358 0.08417 5.10846x10"¢ 0 — [112]
g2-dio 2 10 0.08566 O 0 —  [113]
gl-s09 1 11.01768 0.075 0 09 30° [114]

Figure 2. Schematic illustration of the parameters characterizing the BH binary config-
urations under consideration: the mass ratio ¢ = M, /M, > 1, the initial separation d,
the initial tangential linear momentum P4, the initial inward radial linear momentum P;,
the dimensionless spin of each BH y; = |S;|/M? and the angle of the spin in the orbital
plane « relative to the outward radial direction of the initial BH positions.

4. Binary black-hole simulations with adaptive mesh refinement

In this section, we demonstrate the efficacy of some of the techniques discussed in section 3
in the context of BH binaries. To do this, we select a representative sample of BH binary
configurations, analyze the accuracy of the resulting gravitational waveforms and compare the
results obtained with GRCHOMBO to that obtained with a more conventional moving boxes
style mesh refinement code, LEAN [14].

Before we present our results, we first provide details of the explicit tagging criteria used in
our GRCHOMBO simulations and the methods we use to analyze and compare our results.

4.1. Methods

We consider three different BH binary configurations with the parameters provided in table 1
and illustrated schematically in figure 2. All simulations include an inspiral, merger and
ringdown.

The first configuration consists of two equal-mass non-spinning BHs with a quasicircular
inspiral lasting about ten orbits; this configuration is labeled g1 -d12 (for mass ratiog = 1 and
distance d ~ 12). The parameters were computed in order to minimize the initial eccentricity
of the simulation using standard techniques [112].

The second configuration involves two BHs with mass ratio 2 : 1. The inspiral is about six
orbits and is approximately quasicircular. This is one of the configurations simulated in the
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1qg1 : 2 sequence of [113]%. Here we label this configuration g2 -d10 (for mass ratio ¢ = 2
and distance d = 10).

The final configuration consists of a mildly eccentric inspiral of two equal-mass highly-
spinning BHs. The spins lie in the plane as shown in figure 2, which is the ‘superkick’ con-
figuration [115—117]. Here, the quantity we analyze is the gravitational recoil of the remnant
BH. This configuration is taken from the sequence simulated in [114] and we label it g1 -s09
(for mass ratio ¢ = 1 and spin x = 0.9).

4.1.1. GRChombo setup and tagging criteria. For the GRCHOMBO simulations of the BH
binary configurationsin table 1, we use the CCZ4 equations (13)—(18) with the default damping
parameters (27) (note that in code units, M = 1). We use the moving puncture gauge (28)—(31)
with the default lapse parameters (29) and the shift parameters b; = 1,b, = 3/4, Mn = 1
for g1-d12 and g1-s09 and by = 1,b, = 3/4, My = 3 /4 for q2-d10. For g1-d12 and
g2-d10, we use reflective BCs along one boundary to impose bitant symmetry (i.e. sym-
metry across the equatorial plane) and Sommerfeld BCs for all other boundaries. Following
sections 3.2, 3.3 and 3.5, we use a tagging criterion of the following form

C = max (Cy, Cpunc, Cex) » (50)

where the quantities on the rhs are defined below. Note that we use the value +oo to denote a
large value that always exceeds the threshold 7x.

(a) C, tags regions in which the derivatives of the conformal factor x become steep. It is
the dominant criterion for the intermediate levels [ < I < lnax — 3, where [ is the
maximum extraction level (see item (c) below). It is given by

Cy=Axy [ (80px)° (51)

Lj

where Ax; is the grid spacing on refinement level .

(b) Cpunc includes parts of the tagging criterion that use the location of the punctures. It is the
dominant criterion on the finest three levels and is comprised of two parts, Cingp and Crerg
that are used depending on the coordinate distance between the punctures s, = [Xp,1 — Xp 2|

as follows:
Cinsps sp =M+ b
Counc = { Max(Cinsp> Crmere)» 107°<sy<M+b (52)
Crnerg» sp < 1073,

where M = M, + M, is the sum of the individual BH masses, b is a buffer parameter
(cf section 3.2), and 1073 is a choice in the cutoff for the distance between the punctures
sp which determines when the merger has completed. The inspiral criterion is given by

if 01 < (M + b)2 minlmax—1-12)
Cinsp = or oy < (M + b)2 mm(lmaxfl—l,z)’ 53)
0, otherwise,

25 Note that, in this paper, GRCHOMBO was not used to evolve this configuration.
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Table 2. GRCHOMBO grid parameters for the configurations in table 1 There are (/max +
1) refinement levels and the coarsest level has length (without symmetries applied) L.
The grid spacing on the finest level is Ax,,, and the minimum number of cells in
the buffer regions between consecutive refinement level boundaries is ng. The regrid
threshold for the tagging criterion (50) is 7r and the BH buffer parameter is b.

Configuration Imax L/M  Axy,, /M np TR b/M
gl-di2low 9 1024 1/80 20 0.016 0.7
gl-d12 medium 9 1024 1/96 24 0.0133 0.7
gl-di12 high 9 1024 1/128 32 0.01 0.7
g2-d10 low 7 512 1/88 48 0.01 0.467
g2-d10 medium 7 512 1/104 52 0.009 23 0.467
g2-d10 high 7 512 1/112 56 0.008 57 0.467
gl-s09 low 7 512 1/64 16 0.02 0.7
gl-s09 medium 7 512 1/96 24 0.0133 0.7
gl-s09 high 7 512 1/112 28 0.0114 0.7

where p; is the ‘max’ or ‘infinity’ norm (46) of the coordinate position vector relative to
puncture i. Similarly, the merger criterion is given by

. if pe < (M + b)2min(max—1-1,2)
Cmerg:{m o (54)

0, otherwise,

where ge is the max-norm (46) of the coordinate position vector relative to the center of
mass Xe.

(c) Cex ensures the U4 extraction spheres are suitably well resolved. It is the dominant tagging
criterion for 0 < / < I5** and is given by Cex = max{Cey}, where i labels the extraction
l

spheres and

+o00, if r < 12r;andl < lex;,
Cexi = ) (55)
0, otherwise,
where rex; and [ey; are the radius and level of the ith extraction sphere and /7™ = max lex ;.
1

The factor of 1.2 is present to add a 20% buffer radius around the extraction spheres in
order to reduce the effect of spurious reflections off the refinement level boundaries.

A summary of the grid configuration parameters is given in table 2.

4.1.2. Comparison code: Lean. The LEAN code [14] is based on the CAcTUS computational
toolkit [8] and uses the method of lines with fourth-order RK time stepping and sixth-order spa-
tial stencils. The Einstein equations are implemented in the form of the BSSNOK formulation
[118—120] with the moving-puncture gauge [3, 4] (cf equations (28)—(31)). The CARPET driver
[10] provides mesh refinement using the method of ‘moving boxes’. For the non-spinning
binary configurations g1 -d12 and g2 -d10, we use bitant symmetry to reduce computational
expense, whereas configuration g1-s09 is evolved without symmetries. The computational
domains used for these simulations are characterized by the parameters listed in table 3. The
domain comprises a hierarchy of /,,,« + 1 refinementlevelslabeled from/ =0, ..., g, .. ., lnax,
with grid spacing given by (37). Before applying the symmetry, for [ < Ir each level consists
of a single fixed cubic grid of half-length R, = Ry/ 2! and for Ir < [ < I, each level consists
of two cubic components of half-length R, = 2m» /R, centered around each BH puncture.
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Table 3. LEAN grid parameters for the configurations in table 1. There are (/n.x + 1)
levels of which the first (/z + 1) comprises a single box that covers both BHs with the
remaining levels consisting of two separate box components that cover each BH sepa-
rately. The half-width of the coarsest level is Ry and the half-width of a single component
on the finest level is Ry, . The grid spacing on the finest level for the three resolutions
used in the convergence analysis is Axy,,,. .

Configuration Imax Ir Ry/M Ry /M Axy, /M
ql-di2 9 5 512 1/2 1/64,1/96,1/128
q2-d10 8 4 256 1/3 1/84,1/96,1/108
ql-509 8 3 256 1 1/80,1/88,1/96

We adopt this notation for consistency with that used to describe GRCHomBoO. This translates
into the more conventional LEAN grid setup notation (cf [14]) as

{(Ro,....27"Rg) x 2Mm==l=IR o Rip)s Axp (56)

A CFL factor of 1/2 is used in all simulations, and apparent horizons are computed with
AHFinderDirect [121, 122].

For all our BH evolutions, with LEAN and GRCHOMBO, the initial data are constructed with
the TwoPunctures spectral solver [85].

4.1.3. Gravitational wave analysis. One of the most important diagnostics from our simula-
tions is the GW signal which we compute from the Weyl scalar ¥4. For GRCHOMBO, the
calculation of Wy is explained in appendix A and technical details of the extraction procedure
can be found in section 2.2.4. For LEAN, details can be found in [14]. Below, we describe
further analysis we have performed in order to compare the GW output from each code.

We start with the multipolar decomposition of the Weyl scalar,

00 14
Wa= D oY " (57)

1=2 m=—{
Next, we translate to the gravitational-wave strain A according to
U, =h=—ht+ih" (58)

wt-lich givgs us the strain mlllltipf)les as h;"m = —Re(?y,) and h = Im(1{)[m). To gvoisl sp.urim.ls
drift resulting from numerical inaccuracies, we perform the necessary integrations in time in
the Fourier domain [123]. We then rewrite the strain modes in terms of their amplitude and

phase

_hz;l + ih?m = h?m exXp (lh;)m) ’ (59
where multiples of 27 are added to h;’m
between consecutive data points.

The radiated quantities derived from Wy are affected by two main error sources; the dis-
cretization error due to finite resolution and an uncertainty arising from the extraction at finite
radii instead of null infinity. We determine the former by conducting a convergence analysis of
the quantities extracted at finite radius. In order to determine the second error contribution, we

appropriately in order to minimize the difference
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compute a given radiated quantity f at several finite extraction radii and extrapolate to infinity
by fitting a polynomial in 1/r of the form

N
fr) = 3 T, (60)

n=0

Here, r is the coordinate radius and u = ¢t — r* denotes the retarded time evaluated with the
tortoise coordinate

.
f oM ‘——1‘. 61
r r+ n2M 61)

We uniformly observe that time shifts in terms of r* result in slightly better alignment of
wave signals extracted at different coordinate radii r. If we take fy x(u#) as our estimate of
the extrapolated quantity, we then estimate the error € in our result from r = r, by computing

€fraN = |fUsred) = fon ()] - (62)

Typically, and unless stated otherwise, we set N = 1 and drop the N subscripts. Our total error
budget is then given by the sum of the discretization and extraction uncertainties.

We quantify the agreement between the two codes’ results in the context of GW analy-
sis by computing the overlap following the procedure of [124, 125]. In the following, we
restrict our analysis to the dominant (2, 2) quadrupole part of the signal and drop the subscript
‘¢ =2,m = 2’. Before computing the overlap, we extrapolate the strain to infinity using the
procedure explained above.

Given the power spectral density S,(f) of a detector’s strain noise as a function of frequency
f. the inner product of two signals g, h on the space of waveforms is given by?°

_ *g (Hh(f)
(gln) =4 Re{/o $.() df}, (63)
where the Fourier transform is defined by
8(f)= / e dr, (64)

We next define the overlap of the two signals as the normalized inner product maximized over
shifts Az, Ah? in time and phase,

p(g, h) = max (gl) (65)

Ah’»’),mm.

The quantity 1 — p(g, #) then provides a measure for the discrepancy between the two wave-
forms, analogous to the mismatch introduced as a measure for signal-to-noise reduction due to
model imperfections in GW data analysis [126, 127].

For g1-s09, we instead analyze the convergence of the linear momentum radiated in
GWs in the form of the BH recoil velocity or kick. First we compute the radiated momentum
P ysing equation (7) of [113] and then compute the recoil velocity—which must lie in the

26 We use in our calculation one-sided, as opposed to two-sided, spectral power densities, i.e. we only consider non-
negative frequencies, hence the factor 4 in (63).
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Figure 3. Convergence of the quadrupole mode of the strain Ay = —h;‘z +ih3, cal-
culated from the values of W, extracted for configuration g1-d12 at rex = 120M for
both GRCHoMBO with finest grid resolutions Ax;,,, = M /80, M/96 and M/128 (a) and
LEAN with finest grid resolutions Ax,,, = M /64, M/96 and M/128 (b). Top panels:
convergence of the amplitude /4%, = |hy|. The difference between the higher resolu-
tion results is rescaled according to fourth and fifth order convergence for LEAN and
according to second and third-order convergence for GRCHOMBO. In each case, the inset
shows an interval around the peak amplitude. Middle panels: convergence of the phase
hfz = Arg(ha,). The difference between the higher resolution results is rescaled accord-
ing to fifth and sixth order convergence for LEAN and third and fourth order convergence
for GRCHOMBO. Bottom panels: for reference we plot the amplitude 4%, and the phase
h$, of the highest resolution waveform on the same time axis. For the two lower resolu-
tion waveforms from each code, we have time-shifted each of them in order to maximize
the overlap (cf (65)) with the highest resolution waveform. Atz = 0 corresponds to the
maximum in /%, for the highest resolution waveform.
z-direction by symmetry—using v = —Pg“d /Mjy. Since the radiated momentum can be writ-

ten in terms of a sum, with each term involving several multipolar amplitudes 1/, (equation
(40) in [128]), analyzing this quantity has the benefit of additionally indirectly comparing the
agreement of higher order multipoles (i.e. £ > 2) between the codes.

4.2. Results

For each configuration in table 1, we have performed three simulations at different resolutions
with both GRCHOMBO and LEAN in order to calibrate their accuracy which we discuss below.
The respective grid configurations are given in tables 2 and 3.

For the first configuration g1 -d12 of an equal-mass binary, we show the convergence anal-
ysis in figure 3 with the analysis for GRCHOMBO on the left and for LEAN on the right. For
LEAN, we observe convergence of about fourth order in the amplitude and between fifth and
sixth order in the phase of the quadrupole mode /j, of the strain (59). For GRCHOMBO we
observe convergence of about second order in the amplitude and about fourth order in the
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Figure 4. The relative and absolute difference between the GRCHOMBO and LEAN out-
puts for the amplitude and phase of 4, respectively from the simulation of configuration
gl-di12. In both cases, the data comes from the simulations with finest grid spacing
AXipae = M /128 with W, extracted at rex = 120M. As for the convergence plots in
figure 3, the time has been shifted in order to maximize the overlap (cf (65)) between
the two waveforms and At = 0 at the peak in hp;"**".

phase of the same mode. We note that, as mentioned in [113], higher resolutions were required
with GRCHOMBO in order to enter the convergent regime.

By comparison with a Richardson extrapolation, we estimate the discretization errors in the
amplitude and phase of the finest resolution simulations from both codes as follows. Exclud-
ing the early parts of the signal dominated by ‘junk’ radiation and the late part of the ring-
down which is dominated by noise, we obtain a discretization error of Ahy,/h%, < 1% in
the amplitude assuming fourth order convergence for LEAN and second order convergence
for GRCHomMmBo. Up to the late ringdown where the phase becomes inaccurate, we estimate
the phase error is Ah;/’2 < 0.15 assuming sixth order convergence for LEAN and fourth order
convergence for GRCHOMBO.

Following the procedure in section 4.1.3, we estimate the error in the phase, due to finite-
radius extraction, is €46 120M < 0.4, and, in the amplitude is €4A 120m /hyy < 8% (although this
steadily decreases towards < 2% near merger) for both codes. Here we have ignored the early
part of the signal where the amplitude is dominated by the ‘junk’ radiation up to u = 300M.

We next directly compare the results of the two codes by computing the relative difference
in the amplitude 45, and the absolute difference in the phase hfz which is shown in figure 4.
Again, ignoring the early part of the signal and the late ringdown, the relative difference in the
amplitudes is < 1%, consistent with the individual error estimates from the two codes. The
discrepancy in phase remains O(10~%) or smaller throughout the inspiral, merger and early
ringdown-well within the error estimates of each code.

For the first asymmetric BH binary configuration, g2-d10, we proceed in the same way.
We study the convergence in analogy to figure 3. Ignoring again the contamination at early
times, we obtain third-order convergence in the amplitude and fifth-order convergence in the
phase for LEAN. For GRCHOMBO, we obtain fourth order convergence in the amplitude and
mild overconvergence of about eighth order in the phase?®’. This leads to uncertainty estimates

of Ahf, /h%, < 2.5% in the amplitude and Ah%, < 0.25 in the phase for both codes.

27'We assume fourth order convergence for our GRCHOMBO phase error.
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Figure 5. The discrepancy 1 — p between the (¢,m) = (2,2) mode of the GW sig-
nal from the g1-d12 (ten orbits, non-spinning, equal mass) and g2-d10 (six orbits,
non-spinning, 2 :1 mass ratio) BH binary configurations simulated with LEAN and
GRCHoMBO. For g1 -d12, we use the simulation with resolution Ax, , = M/128 for
both codes and for g2-d10, we use the simulation with resolution Ax;,,,. = M /96 for
both codes. For each configuration, we show the difference computed with the updated
Advanced LIGO sensitivity design curve (aLIGODesign.txt in [129]) and the zero
detuned, high power noise curve from the Advanced LIGO anticipated sensitivity curves
(ZERO_DET high P.txt in[130]).

The error due to finite-radius extraction in the amplitudes is €, 56 7)7/ h, < 10% in the

early inspiral decreasing down to < 2% in the late inspiral, and in the phase is € ~ 0.5

for both codes.

In figure 5, we display as a function of the total mass M the discrepancy 1 — p (where p is the
overlap given by (65)) between the GRCHOMBO and LEAN waveforms for both g1-d12 and
g2-d10, with the spectral noise density S,(f) given by (i) the updated Advanced LIGO sensi-
tivity design curve (aLIGODesign. txt in [129]) and (ii) the zero detuned, high power noise
curve from the Advanced LIGO anticipated sensitivity curves (ZERO DET high P.txtin
[130]). For g1-d12, the figure demonstrates excellent agreement of the two waveforms for
the entire range M = 10, ...,200M, with a discrepancy 1 — p &~ 0.03% or less, whereas for
g2-d10, the agreement is not quite as strong but nevertheless demonstrates very good consis-
tency with a discrepancy | — p & 0.7% or less. The larger difference for g2-d10 compared
to g1-d12 may be attributed to the slightly lower resolutions employed for this configuration,
especially near the smaller BH. To put these numbers into context, Lindblom ez al [127] esti-
mate that a mismatch of 3.5% would result in a reduction in the GW event detection rate by
about 10%.

Our final BH binary features asymmetry in the form of non-zero spins. This time, we focus
on the BH recoil velocity v calculated from the linear momentum radiated in GWs, and the
analysis is shown in figure 6. From the plots, we can see that LEAN exhibits convergence
between third and fourth order, whilst GRCHOMBO exhibits convergence between fourth and
fifth order. We illustrate our estimate of the total error for each code in figure 7. Here, the error
bands—around the curve from the highest resolution simulation in each case—correspond to
the difference with the Richardson extrapolated curve assuming fourth-order convergence plus

&
h}, 86.7M
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Figure 6. Convergence plots for the accumulated linear momentum radiated from con-
figuration g1 -s09 for GRCHOMBO with finest grid resolutions Ax;,, = M /64, M/96
and M/112 (a) and for LEAN with finest grid resolutions Ax;,,, = M/80, M/88 and
M/96 (b). This is shown in the form of the BH recoil velocity in the bottom pan-
els. For both codes, the radiated linear momentum is calculated from the extracted Wy
values at rox = 90M, and the extrapolated curve corresponds to a Richardson extrap-
olation assuming fourth order convergence. In the top panels, we show the difference
between the results from different resolutions with rescalings according to third and
fourth order convergence for LEAN and according to fourth and fifth order convergence
for GRCHOMBO.

the estimated error due to finite-radius extraction (about 1.5% + 2% for LEAN and 0.5% + 3%
for GRCHoMBO). This total error is about 3.5% for both codes.

As is not uncommon, the convergence orders obtained from NR simulations can be fickle
due to the various ingredients in the codes with differing orders of accuracy which can dominate
in certain regimes. This inherent complexity makes it difficult to attribute the difference in
convergence orders we obtain between the two codes and we therefore do not attempt to do so.

5. Comparing tagging criteria using axion stars

In order to demonstrate the application of our techniques to problems with matter fields and
dynamically varying length scales, we consider the evolution of a single axion star—a compact
object composed of a real scalar bosonic field. We analyze the evolution of a star that is stable
on the timescale of the simulation, as well as one in which the self-interaction is increased in
order to trigger gravitational collapse to a BH. As discussed previously, this simple example
tests many of the key requirements in using AMR to evolve fundamental fields coupled to
gravity, in particular, the ability to follow stable oscillations and to adapt to changing dynami-
cal timescales. Similar considerations apply, for example, to cosmological spacetimes, cosmic
strings and collisions of exotic compact objects.

We demonstrate the use of two effective tagging criteria; first, tagging by the magnitude
of terms in the Hamiltonian constraint (70), and second, by the numerical truncation error
between refinement levels (48).
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Figure 7. The accumulated radiated linear momentum at the end of the highest resolution
simulations of configuration g1-s09 from each code. The linear momentum is shown
in the form of the BH recoil velocity and the error bands show our estimate of the total
error coming from both discretization and finite-radius effects.

5.1 Methods

5.1.1. Setup. We consider the evolution of two different axion star configurations. Axion stars
are quasi-equilibrium configurations of a self-gravitating real scalar field ¢ [131] that is subject
to a periodic self-interaction potential V(¢). A canonical potential is

V($) = p*f2[1 — cos (¢/ f)l. (66)

where this form arises as a result of the spontaneously broken U(1) Peccei—Quinn symmetry
and subsequent ‘tilting’ of the potential due to instanton effects [132, 133]. The decay con-
stant f, quantifies the symmetry breaking scale and determines the strength of the scalar field
self-interactions (their strength for a given central amplitude is inversely related to f,) and
i = myc/his an inverse length scale related to the scalar mass?® m,. Axion stars on the main
stability branch are characterized by their central amplitude ¢, or equivalently their ADM mass
Mapm ~ p~'. They have a physical size R (defined as the radius containing 99% of the total
mass) that is approximately inversely related to their ADM mass, and thus a useful descriptor
is their compactness C = Mapm/R. Axion stars with C ~ 1/2 are highly relativistic and may
form BHs if they collapse or collide. For m, ~ 10~'# eV, they are of a mass and size compa-
rable to solar mass BHs, and thus potentially of astrophysical interest. Further details related
to the setup used here can be found in [95, 106], and a useful general review of axion physics
is provided in [134].

The equation of motion for the scalar field ¢ is given by the Klein—Gordon equation for a
real scalar field minimally coupled to gravity

V., Vi¢ — 3—; =0, (67)

28 Tn Planck units one can write y1 = m, /M3, where My is the Planck mass.

27



Class. Quantum Grav. 39 (2022) 135006 M Radia et al

and the system is completed with the Z4 equation (1) for the metric components. To
construct localised, quasi-equilibrium oscillatory (axion star) solutions, we solve the Ein-
stein—Klein—Gordon (EKG) system of equations with a harmonic field ansatz and appropriate
boundary conditions [131, 135].

Unlike the case of complex scalar boson stars, for axion star solutions the metric compo-
nents g, also oscillate in time, with energy being transferred between the matter and curvature
terms in the Hamiltonian constraint [106]. This makes them challenging targets for dynamical
refinement; simple criteria based solely on matter field gradients will fail to achieve a stable
grid structure, as the gradients change over time even in the quasi-stable case. If the gradi-
ents are close in value to a tagging threshold, frequent regridding will occur, which introduces
eITOrS.

The stability of the axion star solution comes from the balance of its tendency to disperse
due to gradient pressure from spatial field derivatives, with the tendency to collapse due to its
energy density. The relative strengths of these effects determines whether the axion star remains
stable, disperses through scalar radiation or collapses to a BH when perturbed. In particular, if
the self-interaction scale f;, is too low, this can cause the axion star to collapse to a BH [98].
In the last case, a key AMR challenge is determining tagging criteria that progressively track
the axion star collapse without triggering too frequent regridding from the more rapid field
oscillations.

We consider two cases, both with central amplitude ¢, = 0.020 and puM ,py = 0.4131:

(a) An axion star with weak self-interactions (f, = 1),%° where the scalar field and metric
oscillate over time in a localized configuration that is stable over time periods much longer
than that of the simulation. We would ideally like the refinement to remain constant,
despite the oscillations of the fields.

(b) Anunstable configuration where we increase the attractive self interaction by reducing the
self interaction scale to f, = 0.05, such that the axion star is destabilized and undergoes
collapse to a BH. We need the mesh refinement to follow this process sufficiently rapidly,
but without excessive regridding.

To evolve this system in GRCHOMBO, the EKG equation (67) is decomposed into two first
order equations in the 3 4 1 formulation

0 = 10,0 + all, (68)

Tl = BOTI + ay"(9,0;¢ + 9,00,0) + « (KH — TS0k — %) . (69)
and added to the CCZ4 evolution scheme (13)—(18). The initial data are set up as in the
previous study [98] using the numerically obtained axion star profile for an m?¢?* potential
[131, 135, 136]. We choose the initial hypersurface such that ¢ = 0 and hence V(¢) = 0 every-
where. The Hamiltonian constraint is thereby satisfied for both the V = m?¢? and the axion
potential (66) cases. Furthermore, if we impose the extrinsic curvature K;; = 0, the momen-
tum constraint is trivially satisfied and all the dynamical information is encoded in the kinetic
term of the field II. The system is evolved in the moving puncture gauge using the default
1 + log parameters (29) for the lapse evolution equation (28) with the exception of @; = 0 and
the default Gamma-driver shift parameters for (30) and (31) with n = p.

29 The decay constant f, is dimensionless in geometric units as used here; to obtain its value in Planck units one simply
multiplies by the Planck mass Mp,.
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5.1.2. Tagging criteria. 'We demonstrate the suitability of two different tagging methods for
tracking the axion star evolution in both the stable and unstable cases. In the case of collapse to
a BH, for both tagging methods, the threshold 7g must be chosen such that the apparent horizon
is covered entirely by the finest refinement level, as discussed in section 3.2. In our case, we
choose a maximum refinement level [, = 8, which covers up to ur > 0.5 > pM -

The first tagging criterion we consider is based on physical quantities in the simulation, as
outlined in section 3.5. We choose the absolute sum of the terms in the Hamiltonian constraint
Haps (49), setting the criterion

C() = Havs (70)

in the tagging indicator function (38).

We also show the efficacy of truncation error tagging, outlined in section 3.4. We choose
the variables f as defined in (47) to be x, K, ¢ and m, as these capture the information in the
Hamiltonian constraint 7. We use the tagging criterion (48), explicitly

ch = \/ (T (D)2 + (kD)) + (11,6(1))? + (71 (D))%, (71)
where 7, (i) is defined by (47) and we have set the normalizing factor Ly = 1 for all f.

5.1.3. Diagnostics and convergence testing. We perform convergence tests using several key
physical quantities from the evolution. The first quantity is the L?> norm of the Hamiltonian
constraint violations (33) || #||» over a coordinate volume V

[H]2 = \//d**x?#- (72)
v

For the case of a stable axion star, in order to exclude the constraint violation at the outer
boundaries, we choose V to be the volume enclosed by a sphere of fixed coordinate radius 7y,
B with a center that coincides with that of the star:

Tout?

V=8 (73)

Tout *

In the case of an unstable axion star that collapses to a BH, we furthermore excise the volume
enclosed by a smaller sphere of fixed coordinate radius ri, < roy With the same center in order
to exclude the constraint violations near the puncture that arises after the collapse. The radius
Tin 1s chosen such that the sphere will lie within the apparent horizon once it is formed. This
means that

V = Broul\Brin . (74)

For the stable axion star, we also test convergence using the total mass of the matter content
M. Within the same volume

My = — / $Ex AT = / &x /7 (ap — BiS*) (75)
14 1%

where p and §' are defined by (6), v = det(v;;) and «v and f3; are the lapse and shift as defined
by (2). Further details can be found in [106].
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Table 4. GRCHOMBO grid parameters for axion star configurations using different tag-
ging criteria. There are (/,,x + 1) refinement levels and the coarsest level has length
(without symmetries applied) L. The grid spacing on the coarsest level is Axy and the
minimum number of cells in the buffer regions between consecutive refinement level
boundaries is ng. The regrid thresholds for the different tagging criteria are given by 7g.
We consider two cases; a stable axion star (f, = 1) and an unstable collapse to a BH
(fa = 0.05), with 4 = myc/%i = 1 in code units.

fa Tagging Lnax uL 1AXxg ny TR

1.0 Ham 3 512 4 8 0.1

1.0 Ham 3 512 2 16 0.05

1.0 Ham 3 512 1 32 0.025
1.0 Trunc 3 512 4 8 0.0625
1.0 Trunc 3 512 2 16 3.91 x 1073
1.0 Trunc 3 512 1 32 2.44 x 1074
0.05 Ham 8 1024 4 8 0.1
0.05 Ham 8 1024 2.67 12 0.067
0.05 Trunc 8 1024 4 8 0.001
0.05 Trunc 8 1024 2.67 12 2.96 x 1074

5.2. Results

We have performed simulations of axion stars at different resolutions for each configuration in
table 4. We evolve with GRCHOMBO and investigate two different tagging criteria: refinement
using (i) the Hamiltonian constraint H,ps (70) and (ii) the truncation error of the variables Y,
K, ¢ and 7 as defined by (71).

As outlined in section 3.5, for the stable axion star configuration (f, = 1.0), we expect
Hamiltonian constraint tagging to generate stable refinement levels. We set 7 such that we
obtain an appropriate initial grid structure, which we choose to have a maximum refinement
level /.« = 3 with refinement concentrated on the axion star.

The middle panel of figure 8 shows M, for the finest grid configuration for a stable axion
star in table 4, where M, is calculated as defined in (75) for a coordinate sphere with radius
Uy = 25. We observe some initial gauge evolution of M, due to the transition from the
initial polar-areal gauge to puncture gauge, with subsequent regular oscillations over time,
which are physical. Given that M, includes only matter contributions and the mass of an
axion star is approximately constant (i.e. the total flux out of the outer spherical surface is
zero), these oscillations indicate the transfer of energy between curvature and matter terms as
discussed in section 5.1.1.

The upper panel of figure 8 shows the difference in mass AM,,, for the simulations in
table 4. This demonstrates convergence between third and fourth order in M,,,; at late times,
but second order near the beginning of the simulation. This agrees with expectations; the ini-
tial data used is accurate to second order, and this error dominates at early times, with the
fourth order convergence related to the evolution scheme only being recovered at later times.
Some error is also introduced by the interpolation of the initial conditions onto the grid, which
is first order (but with a high spatial resolution in the numerical solution so this is subdom-
inant). By comparing the highest resolution simulation with a Richardson extrapolation, we
obtain a discretization error estimate of AM .,/ Mpy S 4 X 1075 at late times (using third
order extrapolation).

The lower panel of figure 8 shows the L? norm of the Hamiltonian constraint violations || ||,
for the same simulations. Again, we measure between third and fourth order convergence at
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Figure 8. Convergence plots for the stable axion star configuration (f, = 1.0) with
Hamiltonian constraint tagging (70) and grid configurations given in table 4. The top
panel shows the difference in the calculated matter mass M, (75) within a sphere of
radius pr,, = 25 between the resolutions with rescalings according to second, third
and fourth order convergence. For reference, in the middle panel, we show M, for
the highest resolution simulation (with pAxy = 1). In the bottom panel, we plot the
L? norm of the Hamiltonian constraint ||#||> (72) for the two lower resolution simula-
tions (uAxo = 4, 2) in addition to rescalings according to second, third and fourth order
convergence. We omit the corresponding plots for the simulations with truncation error
tagging (71) as they are qualitatively very similar.

late times, and between first and second order initially. We obtain an error measure at late times
of VMapm A||H][2/167 < 8 x 1078, where we have normalized with the ADM mass to create
a dimensionless measure of the spurious energy density.

We perform the same analysis of My, and ||| for the stable axion star using trunca-
tion error tagging with the parameters in table 4. We obtain a very similar grid structure and
evolution behaviour to Hamiltonian tagging, with the same convergence and error estimates,
demonstrating that both methods can achieve equivalent, accurate results.
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Figure 9. Convergence plots of the L?> norm of the Hamiltonian constraint (72) con-
tained between spheres of radius pry, = 0.5 and pur,,, = 25 for the unstable axion star
configuration (f, = 0.05) with both Hamiltonian constraint tagging (70) (top panel) and
truncation error tagging (71) (bottom panel). The grid configurations are provided in
table 4 and we additionally plot rescalings according to second, third and fourth order
convergence.

For the unstable axion star configuration (f, = 0.05), we perform convergence testing on
|2 within the spatial volume with 0.5 < pr < 25, excising the region pur < 0.5 where a BH
is formed. We use the parameters given in table 4. We do not perform a convergence test of
Mnat, as the quantity oscillates with a high frequency about a mean value that rapidly decreases
to zero around the collapse, making such an analysis impractical.

The top panel of figure 9 shows the convergence analysis of ||#||, with Hamiltonian con-
straint tagging. We observe approximately third order convergence prior to collapse to a BH,
then approximately fourth order convergence at late time. We obtain a maximum error measure
on the finer grid of /MapmA||H]]2/167 < 0.021, with this value occurring approximately at
the collapse.

For the same configuration with truncation error tagging in the lower panel of figure 9,
we obtain similar convergence prior to the collapse with a maximum error measure
VMapmA||H|2/167 < 0.015. The convergence after the collapse is lower: between first and
third order. In general we see that the rapid regridding that occurs during a collapse (often
triggered at different times at the different resolutions) introduces errors which can reduce the
convergence order. This illustrates one of the main challenges of AMR, which is to obtain good
convergence in highly dynamical regimes.
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6. Conclusion

In this work, we have presented a detailed discussion of the use of fully AMR in NR simula-
tions with the GRCHOMBO code. To avoid confusion, we first summarize how the term ‘fully
adaptive’ is meant to distinguish AMR from the common (and often highly successful) box-
in-a-box approach. This distinction consists in two main features. First, we use the term AMR
in the sense that it allows for refined regions of essentially arbitrary shape. Second, it identifies
regions for refinement based on a point-by-point interpretation of one or more user-specifiable
functions of grid variables. Of course, a region of arbitrary shape will inevitably be approx-
imated by a large number of boxes on Cartesian grids; the distinction from a box-in-a-box
approach therefore consists in the large number of boxes used in AMR. Likewise, every box-
in-a-box approach will ultimately base its dynamic regridding on some function of the evolved
grid variables, as the apparent horizon. The key feature of AMR is the pointwise evaluation of
grid variables or their derived quantities.

We have laid the foundations for our study in sections 2 and 3 with a comprehensive sum-
mary of the formulation of the Einstein equations and the AMR infrastructure of GRCHOMBO.
In short, we employ the CCZ4 equations (13)—(18), on a Cartesian mesh with a user-specified
number of refinement levels with sixth or fourth-order spatial discretization and fourth-order
RK time stepping according to the method of lines. The tagging of grid points for refine-
ment and the corresponding regridding is performed according to the Berger—Rigoutsos AMR
algorithm summarized in section 2.2.2 and figure 1.

The advantages of AMR based simulations over the simpler box-in-a-box structure evi-
dently arise from its capability to flexibly adapt to essentially any changes in the shape or
structure of the physical system under consideration. These advantages, however, do not come
without new challenges; the identification of these challenges and the development of tools to
overcome them are the main result of our work.

The first and most elementary result of our study is the (hardly surprising) observation that
there exist no ‘one size fits all’ criterion for refinement that automatically handles all possi-
ble physical systems. Many of the challenges, however, can be effectively addressed with a
combination of a small number of criteria for tagging and refining regions of the domain. We
summarize these challenges and techniques as follows.

(a) In AMR it is more difficult to test for (and obtain) convergence, because of the loss of
direct control over the resolution in a given region of spacetime. While the refinement
in AMR is every bit as deterministic as it is in a box-in-a-box approach, the complexity
of the underlying algorithm makes it practically impossible for a user to predict when, if
and where refinement will take place. Consider for example the convergence analysis of
a simulation using the truncation-error based tagging criterion of (47); in some regions
of the spacetime a low resolution run may encounter a sufficiently large truncation error
to trigger refinement whereas a higher-resolution run will not. To counteract this effect,
one may adjust the tagging threshold in anticipation of the reduction in the truncation
error, but some experimentation is often necessary because different ingredients of the
code have different orders of accuracy. Additionally, one may enforce refinement using a
priori knowledge, as for example, through enforced tagging around the spheres of wave
extraction. An alternative approach would be to record the grid structure over time for
one simulation (e.g. the lowest resolution run) and then ‘replay’ this grid structure (or
as close as possible to it) for simulations at different resolutions as is done for the Had
code [137].
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(b) A further challenge arises from the use of too many refinement regions/boundaries over
a small volume in spacetime. The interpolation at refinement boundaries is prone to
generating small levels of high-frequency numerical noise that may bounce off neigh-
bouring boundaries if these are too close in space (or time). An effective way to han-
dle this problem is the use of buffer zones in space and to avoid unnecessarily frequent
regridding.

(c) In the case of BH simulations, we often observe a degradation of numerical accuracy
when refinement levels cross or even exist close to the apparent horizon. This typically
manifests itself as an unphysical drift in the horizon area and, in the case of binaries, a
loss of phase accuracy and/or a drift in the BH trajectory. These problems can be cured
by enforced tagging of all grid points inside the apparent horizon. In practice, we add an
additional buffer zone to ensure all refinement boundaries are sufficiently far away from
the apparent horizon(s).

(d) The Berger—Rigoutsos algorithm detailed in section 2.2.2 does not treat the x, y and z
direction on exactly equal footing; the partitioning algorithm (cf figure 1) inevitably han-
dles the coordinate directions in a specific order. This can lead to asymmetries in the
refined grids even when the underlying spacetime region is symmetric. In some simula-
tions of BHs, we noticed this to cause a loss in accuracy. A simple way to overcome this
problem is to enforce a boxlike structure around BHs.

(e) A single tagging variable (or one of its spatial derivatives) may not always be suitable to
achieve appropriate refinement throughout the course of an entire simulation; for example,
this may be due to gauge dependence or dramatic changes in the dynamics of the physical
evolution. GRCHOMBO allows for tagging regions based on arbitrary functions of multiple
variables and their derivatives to overcome problems of this kind.

In order to avoid the difficulties listed here, we often combine two or more tagging cri-
teria. The efficacy of this approach is demonstrated in sections 4 and 5 where we present in
detail AMR simulations of inspiraling BH binaries and stable as well as collapsing axion
stars. By comparing the BH simulations with those from the box-in-a-box based LEAN
code, we demonstrate that with an appropriate choice of tagging criteria, AMR simula-
tions reach the same accuracy and convergence as state-of-the-art BH binary codes using
Cartesian grids. While AMR does not directly bestow major benefits on the modeling of
vacuum BH binaries (and is typically more computationally expensive), it offers greater flex-
ibility in generalizing these to BH spacetimes with scalar or vector fields, other forms of
matter, or BHs of nearly fractal shape that can form in higher-dimensional collisions [36].
The simulations of rapidly oscillating or gravitationally collapsing scalar fields demonstrate
GRCHOMBO’s capacity to evolve highly compact and dynamic matter configurations of this
type.

Finally, we note the potential of AMR for hydrodynamic simulations. However, high-
resolution shock capturing methods present qualitatively new challenges for AMR and we
leave the investigation of this topic for future work.
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Appendix A. Calculation of the Weyl scalar ¥4
The Weyl tensor [139] in four spacetime dimensions is defined by
1
CH’/PU = (4)R/b1//10 - (glb[/? (4)RU]V — 8vlp (4)R0],u) + ggﬂ[ﬂgtf]’/ “R. (A.1)
It is completely determined by its electric and magnetic parts [140]

. 3
E/w =n"n C(vuﬁm (A.2)
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BMV = n“n‘ﬁ(*c)apﬂm (AS)

where the dual Weyl tensor (*C),,,, is given by

g = 3 0 Cus (Ad)
and €, is the volume form. Because of the symmetries of the Weyl tensor, the electric and
magnetic parts are symmetric, trace-free and purely spatial.

In the Newman—Penrose formalism [108], one introduces a complex null tetrad
(", k", m", m"), where we follow the notation of [26] in order to avoid confusion with the
normal n* to the foliation (3). The Newman—Penrose, or Weyl, scalar U, is defined by

Uy = Copsk®m’km’, (A.5)
which can be shown to reduce to [26]
\114 = (E,'j — i_Bij)ﬁ’liﬁ’lj. (A6)

We use the approach described in step (a) of section 5.1 of [141] to construct a null tetrad
with the inner products

Lk = ma® = 1, (A7)

and all others vanishing. Following [18, 142], we omit the null rotations in order to bring the
tetrad into a quasi-Kinnersley form (step (b) in section 5.1 of [141]). The expressions for the
electric and magnetic parts of the Weyl scalar in the 3 + 1 Z4 formulation are

E,'J': [R,'j*Kiijm+K;j(K7@)747TS,'j—|—D(,'@D , (AS)
B,'J' = Gmn(,'Dij) ”, (A9)

:|TF

where € = n“eqj is the volume form on the hypersurface. Note that unlike the usual 3
+ 1 expressions, for example (8.3.15) and (8.3.16) in [26], these expressions are manifestly
symmetric and trace-free.

Appendix B. Spatial derivative stencils

We use the formulae in [12] for the fourth order stencils. Using the conventional notation for
finite differences where,

F; = F|x:xia Fi,j = F‘x:x,-,y:yja (B.1)
and x; and y; are coordinates of the discrete points on a uniform grid, the centered stencils are

1

O F = Toh (Fizo — 8F;—1 + 8Fi41 — Fiya) (B.2)
1

O'F = o (—Fi—2+ 16F;_y — 30F; + 16F; 1 — Fi}2) . (B.3)
1

8)%_VF = Taam (Fiz.j2 — 8Fi 21 + 8F; 2 j41 — Fi_ajy2 — 8Fi_12

+64F;_1 i1 —64F;_1 j41 + 8F;_1j42 + 8Fit1 joo — 64F ;1 j—1
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+64F; 141 — 8Fiy1j42 — Fiyoj o+ 8Fiqpj 1 — 8Fiy2 11

+ Fit2j12) (B.4)

and, for the advection term, the lopsided stencils are

1

O.F = Th (—=3F;-y — 10F; + 18F; 1| — 6Fi42 + Fiy3) if 8*>0, (B.5)
1
O F = o (—=Fi3+6F;_5— 18F;_y + 10F; + 3F;;,) if 8*<0. (B.6)

We follow [100] for the sixth order stencils. The centered stencils are

1
O F = 6Oh (—Fi-3+9F; 5 — 45F;_; + 45F;11 — 9F;12 + Fiy3) , (B.7)
1
OUF = w5 (2Fi-3 = 27F;-2 + 270F - — 490F, + 270F 3. = 27Fi
+2Fi3) (B.8)
1
afyF = 3600% (Fi3j-3— 9F; 3j 2 +45F; 3,1 —45F; 3 11

+9Fi 342 — Fi3 43— 9Fi0j3+81F; 5

— 405F; 5 ;1 +405F, 3 ;11 — 81F i 42 + 9F 2 113

+45F; 13— 405F; 1 5+ 2025F; 1 ;1 — 2025F; 1 41
+405F;-1 j42 — 45F ;1 j43 — 45Fi11,j-3 + 405F 11 j2

— 2025F1,j1 + 2025F 41, j41 — 405F i1 1,j42 + 45F 41, j43
+9Fi12,j3—81Fy2; 2+ 405F; 5 ; 1 —405F ;15 j11

+81Fiy2j12 — YFiy2 13 — Fiyzj 3+ 9F 3,2

—A45F;y3; 1 +45F 341 — OFiq3 40 + Fi+3,j+3) , (B.9)

and, for the advection terms, the lopsided stencils are

1
OF = — (2F,',2 —24F;_y — 35F; + 80F; 11 — 30F ;7 + 8F ;13 — Fi+4)

60h
if 8¥ >0, (B.10)
1
O.F = O (Fi—s — 8Fi_3 + 30F;_ — 80F;_| + 35F; 4+ 24F | — 2F;15)
if 8 <0. (B.11)
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Figure C1. Plots illustrating the dependence of the value of the conformal factor y on the
apparent horizon surface H in the moving puncture gauge (28), (30) and (31) for different
values of the dimensionless spin j. For all plots, we use the quasi-isotropic Kerr initial
data described in section 2.1.2 and the default values of the gauge parameters (29) with
Mn = 1. Although we would expect the plots to vary for different gauge parameters
(in particular, as 7 is varied), these plots provide a rough rule-of-thumb. The left panel
shows the mean value of y as a function of time with the error bands around each curve
corresponding to the maximum and minimum on H. The right panel shows the mean
value of y over the interval /M € [40, 100] for each j with the error bars corresponding
to the minimum and maximum values of y over the same interval. Furthermore, we show
a fit of the mean value of  against j which takes the form (x)|x =~ 0.2666+/1 — j.

Appendix C. Approximate horizon locations as a tagging criteria

As noted in section 3, the use of the horizon location can be an essential part of an adaptive mesh
scheme for refinement. In particular, one does not usually want to put additional refinement
within a horizon (where effects are unobservable anyway), and should take care to avoid grid
boundaries overlapping the horizon, since this can lead to instabilities that strongly affect the
physical results. Whilst using an apparent horizon finder for this is a possibility, often a more
‘quick and dirty’ scheme using contours of the conformal factor can be just as effective, and
significantly easier to implement. Whilst in principle there is a dependence on simulation and
gauge parameters (in particular 7 [18]), in general the approximate values are quite robust.

The key dependence is on the (dimensionless) spin of the BH j, as illustrated in figure C1,
with a good fit obtained from the relation

()i = 0.26661/1 — j2. (C.1)

One key advantage is that one does not need to know a priori the mass of the BH spacetime
which forms, and it can be seen that simply using the j = 0 values will give a conservative
coverage of the horizon. These types of criteria were used extensively in the higher dimensional
black ring spacetimes studies in [36—39] and for the investigation into gravitational collapse
in a modified gravity theory in [35].

Appendix D. Parallelization in GRChombo

Like other NR codes and, more generally, scientific computing codes, GRCHOMBO exploits
parallelization at several different levels in order to achieve good performance and scaling on
modern supercomputers (see section 2.4 in [143] for scaling results).
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For each AMR level, GRCHOMBO splits the domain into boxes and these boxes are shared
between processes running on multiple distributed-memory nodes using the message passing
interface (MPI). In practice, even though the memory is shared within a node, we typically still
use multiple MPI processes per node in order to achieve optimal performance. For example, if
anode has n cores, we might choose to use between n/4—n /2 MPI processes per node. At every
regrid, we use a load balancing routine in CHOMBO in order to evenly distribute the boxes. We
sort the boxes using a Morton ordering, as this minimizes communication by increasing the
chance that neighbouring boxes are on the same or nearby MPI processes.

One of the most common operations in an NR code is looping through all the cells/points on
the grid, calculating some expression and then storing its value in a grid variable. An example
is the calculation of the rhs at every RK4 substep which is often where a code spends a large
proportion of its time. Within an MPI process, GRCHOMBO uses OpenMP to thread these
loops over the z and y coordinates of the boxes. For the x direction, GRCHOMBO relies on
SIMD (single instruction, multiple data) /vector intrinsics® in order to utilize the full vector-
width of the targeted architecture. We use intrinsics because the complexity of the CCZ4
equations (13)—(18) means that compilers will usually fail to auto-vectorize these loops. The
main disadvantage of using SIMD intrinsics is that they are complex and difficult to implement
properly. In order to hide the technical implementation from users, many NR codes rely on
code-generation scripts to convert more familiar Mathematica/Python expressions to optimized
and vectorized Fortran/C/C++ code, for example, Kranc [144] and NRPy+ [70]. GRCHOMBO
takes a different approach, keeping the programming at the lower level but relying on C++14
templates to provide a somewhat more user-friendly interface for writing optimized code. Vec-
torized expressions can be enforced by replacing the C++ type double with a template type
data_t, which represents a vector of values of the variables on the grid of arbitrary length
(e.g. the value of y at the points with x index i, = 0, 1,2, 3, ..., and constant y and 7). In order
to make this functionality work, the user is required to write their code in a compute class with
a compute member function which can then be instantiated as an object and then passed to
a loop function which calls the compute member function in each vector of cells. Multiple
compute objects can be combined into a compute pack which can then be called by the loop
function for added efficiency. For a more detailed description and examples, see section 2.5 in
[143].
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