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Abstract
Transcription and translation retrieve and operationalize gene encoded information
in cells. These processes are not instantaneous and incur significant delays. In this
paper we study Goodwin models of both inducible and repressible operons with state-
dependent delays. The paper provides justification andderivation of themodel, detailed
analysis of the appropriate setting of the corresponding dynamical system, and exten-
sive numerical analysis of its dynamics. Comparisonwith constant delaymodels shows
significant differences in dynamics that include existence of stable periodic orbits in
inducible systems and multistability in repressible systems. A combination of param-
eter space exploration, numerics, analysis of steady state linearization and bifurcation
theory indicates the likely presence of Shilnikov-type homoclinic bifurcations in the
repressible operon model.
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1 Introduction

The regulation of information encoding and transmission in biological systems has
intrigued and occupied mathematicians and physicists for decades. One of the earliest
published papers along these lines is Timoféeff-Ressovsky et al. (1935) which played
a major role in the motivation of Erwin Schrödinger to give the 1943 Dublin lectures
that are immortalized in Schrödinger (1944). The regulation of information retrieval
started to become understood very quickly after the seminal work of Jacob andMonod
(Jacob et al. 1960; Jacob and Monod 1961) elucidating the nature of the regulation of
lactose production in bacteria. The molecular apparatus carrying out this procedure
in bacteria, involving transcription of DNA to produce mRNA and the translation of
the mRNA to ultimately produce an effector protein, was named an ’operon’ by them.
In Fig. 1 we have illustrated the operon concept using the lactose (lac) operon as an
example (Jacob et al. 1960; Jacob and Monod 1961).

Rather astonishingly,mathematicalmodels of the process of transcription and trans-
lation rapidly appeared (Goodwin et al. 1963; Goodwin 1965). These first attempts
were swiftly followed by an analysis of a simple repressible operon (Griffith 1968a)
and an inducible operon (Griffith 1968b). These and other results were summarized
in the Tyson and Othmer (1978) review which is still relevant today.

Though Goodwin clearly noted the existence of significant delays in both transcrip-
tion and translation in Goodwin et al. (1963), and thought that the delays might have
significant dynamic influences,1 he did not examine their potential effects. Apparently
the first to incorporate constant transcriptional and translational delays into the Good-
winmodelwasBanks (1977) and thenMacDonald (1977) followed in rapid succession

1 Personal conversation with MCM, November, 1994.
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Fig. 1 A cartoon representation of the operation of the lac operon enabling bacteria to utilize lactose
as an energy source in the absence of glucose, as elucidated by Jacob et al. (1960), Jacob and Monod
(1961). The process starts (upper left) when the operator region (dark-blue) is free of active repressor
molecules so mRNA polymerase can attach to the DNA and start moving along the structural genes to
produce mRNA. Once the mRNA is fully formed, ribosomes start the translation process which, for the lac
operon, produces, in sequence, β-galactosidase, permease, and transacetylase. The permease facilitates the
transport of extracellular lactose to the intracellular space (bottom right), while the permease is essential
for the conversion of the internalized lactose into allolactose. Allolactose, in turn, is able to bind to active
repressor molecules thereby inactivating them and giving rise to the positive feedback nature of the lac
operon. Modified from Yildirim and Mackey (2003)

by Banks and Mahaffy (1978a, b), an der Heiden (1979, 1983) and Mahaffy and Pao
(1984). These were followed by a number of subsequent investigations.

Since the processes of transcription and translation are rather complicated, the
assumption of constant delaymay limit our ability to appreciate the richness of dynam-
ics that the process of protein production can impose on the cell. The goal of this paper
is to derive a Goodwin-like delay-differential equation (DDE)model with state depen-
dent delays that we feel may more closely correspond to biological reality, explore the
potential dynamics both in repressible and inducible cases and contrast these dynamics
with that of a system with constant delays.

This paper is rather long and detailed, and a summary of the contents may be of help
to the reader. Section2 outlines the basic operon equations starting with a summary of
the Goodwinmodel in Sect. 2.1 and a summary of the equations we derive in this paper
in Sect. 2.2. Section2.3 details the full derivation of the model equations we study here
while Sect. 2.4 summarizes the functional forms for the transcription initiation rates
that we use for inducible and repressible operons.
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Section 2.5 contains our arguments for the nature and form of the transcriptional
and translational velocities in the two types of operons that lead naturally to the state
dependent delays that are central to our study. Section2.6 deals with the quantitative
and qualitative nature of the possible equilibrium states of our model equations devel-
oped in Sect. 2.3, and the following Sect. 2.7 gives a linearization procedure in the
neighborhood of these steady states that is not fully justified mathematically but eas-
ily understood by most readers. (The analytically exact linearization is to be found in
“Appendix C” and leads to precisely the same result). These linearizations are needed
for stability determinations based on the eigenvalues evaluated at the equilibria.

Section 3 contains the details of the numerical methods we have used in our numer-
ical studies of this model, while the following Sect. 4 contains the extensive details
of our numerical studies for both the repressible (Sect. 4.1) and inducible (Sect. 4.2)
operon models. In both cases we have found that significant new types of dynamics
are introduced by the state dependency of the delays. In the inducible operon model
we found a stable periodic orbit as well as tristability between a periodic orbit and
two steady states. In the repressible operon model we found bistability between two
steady states as well as between a periodic orbit and a steady state. All of these results
are obtained with one state dependent delay and are not present in the correspond-
ing DDE model with a constant delay. In addition, in the repressible operon model
we found evidence of a homoclinic bifurcation of Shilnikov type (Shilnikov 1965;
Kuznetsov 2004), indicating the potential for complex dynamics. Finally, in both
types of operons there are stable periodic orbits, where a short burst of transcription
and translation is interspersed with longer periods of quiescence. These orbits repre-
sent a pulse-generating mechanism on a sub-cellular level and may be connected to
the phenomena of transcriptional bursting (Tunnacliffe and Chubb 2020). The main
body of the paper concludes with a discussion and summary in Sect. 5 and is followed
by three mathematical appendices. “Appendix A” treats the semiflows arising from
our basic model with state dependent delays, “Appendix B” considers some aspects
of the nature of the model solutions including positivity and the global attractor, while
“Appendix C” treats the linearization mentioned above.

2 Basic operon equations

2.1 The Goodwinmodel

The Goodwin (1965) model for operon dynamics considers a large population of cells,
each of which contains one copy of a particular operon, and we use that as a basis
for discussion. We let (M, I , E) respectively denote the mRNA, intermediate protein,
and effector protein concentrations. For a generic operon the dynamics are assumed
to be given by (Goodwin et al. 1963; Goodwin 1965; Griffith 1968a, b; Othmer 1976;
Selgrade 1979)
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dM

dt
(t) = F(E(t)) − γMM(t), (2.1)

d I

dt
(t) = βI M(t) − γI I (t), (2.2)

dE

dt
(t) = βE I (t) − γE E(t). (2.3)

It is assumed here that the flux F (in units of [concentration · time−1]) of initiation
of mRNA production is a function of the effector level E . Furthermore, the model
assumes that the flux of protein and metabolite production are proportional (at rates
βI , βE respectively) to the amount of mRNA and intermediate protein respectively.
All three of the components (M, I , E) are subject to degradation at rates γM , γI , γE .
The parmeters βI , βM , γM , γI and γE have dimensions [time−1].

2.2 The effects of cell growth and state dependent transcription and translation
delays

We will study an extended Goodwin model taking into account the effects of cell
growth and delays which are introduced by state dependent transcription and transla-
tion processes. The cell growth affects the volume and hence the concentrations of all
the molecules in the cell.

The following sections are devoted to the derivation of the generalization of the
Goodwin model:

dM

dt
(t) = βMe−μτM

vM (E(t))

vM (E(t − τM ))
f (E(t − τM )) − γ̄MM(t), (2.4)

d I

dt
(t) = βI e

−μτI
vI (M(t))

vI (M(t − τI ))
M(t − τI ) − γ̄I I (t), (2.5)

dE

dt
(t) = βE I (t) − γ̄E E(t). (2.6)

In Eqs. (2.4)–(2.6) there are several changes to be noted relative to the original
Goodwin model (2.1)–(2.3). The first is the introduction of the two delay terms E(t −
τM ) and M(t − τI ) indicating that E and M are now to be evaluated at a time in
the past due to the non-zero times required for transcription and translation. From a
dynamic point of view, the presence of these delays can have a dramatic effect.

The second change2 is the appearance of the terms e−μτM and e−μτI which
respectively account for an effective dilution of the maximal mRNA production and
intermediate protein fluxes because the cell is growing at a rateμ (in units of [time−1]).

The third change from (2.1)–(2.3) to (2.4)–(2.6) is the alteration of the decay rates
γi to γ̄i ≡ γi +μ because the dilution due to cell growth leads to an effective increase
in the rate of destruction.

2 We note that previous inclusions of cell growth and transcription/translation delays (Yildirim andMackey
2003; Yildirim et al. 2004) contained an error which we correct here. In the original Yildirim and Mackey
(2003) paper, the term e−μτM in (2.4) was mistakenly inserted within the argument of f instead of being
in front of f .
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A fourth change is the replacement of F in (2.1) by βM f in (2.4). Here βM is
the maximal production rate (in units of [concentration · time−1]) possible and f is
the fraction of free operator sites on the operon, a function that will vary between a
maximal value of 1 and aminimal value in [0, 1).We remark that βM thus has different
units than the linear rate constants βI and βE .

Finally, velocity ratio terms of the form
v j (w)

v j (w(t−τ))
appear in (2.4) and (2.5) as a

consequence of the delays τM and τI being non-constant and depending on the state
variables, as explained in Sect. 2.5.

2.3 Evolution equations incorporating state-dependent transcription and
translation rates

Transcription is initiated when RNA polymerase (RNAP) is recruited to the promoter
region by one or more transcription factors, partially unwinds the promoter DNA to
form the transcription bubble, and subsequently leaves the promoter region, moving
along the DNA. If multiple initiations take place in rapid succession, then transcribing
RNAPs start to interfere with each other, and as a result the average velocity of indi-
vidual RNAPs transcription events will decrease. This, in turn, leads to an increased
time of transcription.

Translation is initiated by assembly of the ribosome on the initiation region of
the mRNA. Ribosomes catalyze subsequent binding of codon specific transfer RNAs
(tRNA) to themRNAand transfer of the attached aminoacid to thenascent polypeptide.
Subsequent translocation of the ribosome completes the cycle.

The result is a bio-polymerization process whose velocity depends on current
demand for both ribosomes and tRNAs, which is affected both by the number of
actively translated mRNAs and the growth rate of the cell. Both transcription and
translation share key characteristics that lead to a common model of these processes.
The most basic model, from which other models are derived, is a stochastic Totally
Asymmetric Simple Exclusion Process (TASEP) model for particles hopping on a
strand with a finite number of discrete sites, that represent nucleotides (Derrida et al.
1993; Schütz and Domany 1993; Kolomeisky 1998; Shaw et al. 2003; Zia et al. 2011).

It should be noted that in eukaryotes (as opposed to our consideration in this paper
of prokaryotic gene regulation) transcription takes place in the nucleus while transla-
tion takes place in the cytoplasm and the consequent transport of intermediate from
cytoplasm into the nucleus gives rise to a transport delay that may, on occasion, be
considered as state dependent (Ahmed and Verriest 2017; Wang and Pei 2021).

mRNA dynamics

For the mRNA molecules we start with the mRNA transcripts and consider their
density r(t, a) at time t and location a along the DNA, so

∫ a2

a1
r(t, a)da
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is the number of mRNA molecules with positions between a1 and a2, 0 ≤ a1 < a2 ≤
aM , where aM is the end of the transcription region. The velocity of transcription
along the DNA is given by a function vM , and we assume that the actual velocity
of the process depends on the value w(t) of a function w, to be determined later. If
the transcription process takes place without any loss of mRNA transcripts, then the
evolution equation for the density r(t, a) is given by

∂r

∂t
(t, a) + vM (w(t))

∂r

∂a
(t, a) = 0. (2.7)

We look for a differential equation

dm

dt
(t) = p(t) − γMm(t)

for the number m(t) of complete mRNA molecules at time t , with a constant rate
γM > 0 of degradation and a production function p which describes the contribution
of the release of completed mRNA molecules at time t to the rate of change dm

dt (t).
In order to determine p(t) consider the number of mRNA molecules undergoing
transcription at time t , which is

J (t) =
∫ aM

0
r(t, a)da.

Using Eq. (2.7) we have a balance equation for J ,

d J

dt
(t) = vM (w(t))r(t, 0) − vM (w(t))r(t, aM ),

where the term vM (w(t)r(t, 0) represents the initiation rate of transcription of mRNA
molecules contribution to d J

dt (t), and −vM (w(t))r(t, aM ) is the release rate of
completed mRNA molecules. Therefore the term vM (w(t))r(t, aM ) is the desired
contribution p(t) to dm

dt (t). Using characteristics we obtain

p(t) = vM (w(t))r(t, aM ) = vM (w(t))r(t − τ, 0),

with the time τ = τM (t) needed for production of mRNA molecules which reach the
final length aM at time t ,

aM =
∫ t

t−τM (t)
v(w(s))ds =

∫ 0

−τM (t)
v(w(t + s))ds. (2.8)

We arrive at

p(t) = vM (w(t))r(t − τM (t), 0)

= vM (w(t))

vM (w(t − τM (t)))
[vM (w(t − τM (t)))r(t − τM (t), 0)],
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where the term [vM (w(t − τM (t)))r(t − τM (t), 0)] = F(t − τM (t)) stands for the
onset of transcription of mRNAmolecules at time t −τM (t). The differential equation
for m thus becomes

dm

dt
(t) = vM (w(t))

vM (w(t − τM (t)))
[vM (w(t − τM (t)))r(t − τM (t), 0)] − γMm(t)

= vM (w(t))

vM (w(t − τM (t)))
F(t − τM (t)) − γMm(t). (2.9)

We now switch to a description of transcription in terms of molecule concentration,
rather than numbers of molecules. Since the concentration M is related to the number
of molecules m by M = m/V , we have

dm

dt
(t) = dM

dt
(t)V (t) + M(t)

dV

dt
(t) = V (t)

dM

dt
(t) + μV (t)M(t),

under the assumption that the cells are growing exponentially with dV
dt (t) = μV (t).

Consequently, noting that V (t) = eμτM (t)V (t − τM (t)), we can rewrite (2.9) as

dM

dt
(t) = 1

V (t)

dm(t)

dt
− μM(t)

= vM (w(t))

vM (w(t − τM (t)))
e−μτM (t) F(t − τM (t))

V (t − τM (t))
− (γM + μ)M(t)

We express the initiation flux F(...)
V (...)

in concentration units as

F(t − τM (t))

V (t − τM (t))
=: βM f (w(t − τM (t)))

where βM is themaximal initiation flux (units of [concentration·time−1]) and f stands
for the fraction of free operator sites on the operon, a function that will vary between
a minimal value in (0, 1) and a maximal value of 1.

As derived in Mackey et al. (2016, Chapter 1), the initiation flux is a function of
concentration of the effector molecule E , and the velocity vM also depends on E
(Sect. 2.5). Therefore for the transcription process w = E and we obtain

dM

dt
(t) = vM(E(t))

vM(E(t − τM(t)))
e−μτM(t)βM f (E(t − τM(t))) − (γM + μ)M(t),

(2.10)

together with Eq. (2.8) for the delay τM (t), which depends on the function E .
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Intermediate dynamics

We assume that the initiation of the translational production of the mRNA into inter-
mediate protein is a relatively simple process and, unlike the transcription process, not
under regulatory control.

For the intermediate molecules, we use i(t, b) to describe their density at time t and
location b along the mRNA.We assume that the translation is proceeding at a velocity
vI (q) along the mRNA. This velocity may depend on q, where q is to be determined.
Analogous to the transcription process we arrive at

di

dt
(t) = vI (q(t))

vI (q(t − τI (t)))
βI m(t − τI (t)) − γI i(t). (2.11)

In Sect. 2.5 we argue that q = M , the concentration of mRNA. Therefore switching
to a concentration description using I (t) = i(t)

V (t) , following the derivation of (2.10)
we can rewrite (2.11) in the form

d I

dt
(t) = vI (M(t))

vI (M(t − τI (t)))
e−μτI (t)βI M(t − τI (t))) − (γI + μ)I (t). (2.12)

Effector dynamics

The effector dynamics are the easiest because there is neither transcription nor trans-
lation involved. Rather the production of the effector is assumed to be proportional to
the intermediate level i at a rate βE , while the effector is destroyed at a rate γE . Thus

de

dt
(t) = βEi(t) − γEe(t), (2.13)

and, changing the description from numbers to concentrations, we have simply that

dE

dt
(t) = βE I (t) − (γE + μ)E(t). (2.14)

Putting it all together

Denote the transcriptional velocity by vM (E(t)) and the translational velocity by
vI (M(t)). Further let γ̄M = γM + μ, γ̄I = γI + μ, γ̄E = γE + μ. Then we can write
the state dependent forms of (2.4)–(2.6) as

dM

dt
(t) = βMe−μτM (t) vM (E(t))

vM (E(t − τM (t)))
f (E(t − τM (t))) − γ̄MM(t), (2.15)

d I

dt
(t) = βI e

−μτI (t) vI (M(t))

vI (M(t − τI (t)))
M(t − τI (t)) − γ̄I I (t), (2.16)

dE

dt
(t) = βE I (t) − γ̄E E(t). (2.17)
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These equations are supplemented by the two additional equations which define the
delays τM and τI by threshold conditions, namely

aM =
∫ t

t−τM (t)
vM (E(s))ds =

∫ 0

−τM (t)
vM (E(t + s))ds (2.18)

aI =
∫ t

t−τI (t)
vI (M(s))ds =

∫ 0

−τI (t)
vI (M(t + s))ds. (2.19)

We write τM (t) and τI (t) for the state-dependent delays, but from (2.18) and (2.19)
it is clear that the value of each is determined by the values of E(t) orM(t) respectively
over thewhole integration interval. Using theBanach space notation of theAppendices
we ought to write τM (Et ) and τI (Mt ) for these delays where Et and Mt are functions
defined by Et (θ) = E(t − θ) and Mt (θ) = M(t − θ). But, to hopefully make the
presentation accessible to readers who are not comfortable with Banach spaces, we
will avoid any Banach space notation in the main body of the text and continue to
write τM (t) and τI (t) for the delays at time t .

Velocity ratio terms such as those appearing in (2.15) and (2.16) are ubiquitous
in distributed state-dependent DDE problems with either threshold conditions (Craig
et al. 2016) or with randomly distributed maturation times (Cassidy et al. 2019).
Bernard (2016) explains very clearly why they arise.

2.4 The control of transcription initiation rates

The determination of how effector concentrations modify the fraction of free operator
sites, f , has been dealt with by a number of authors. Here we merely summarize the
nature of f for inducible and repressible systems, see Mackey et al. (2016, Chapter
1) for details.

For a repressible operon, f is a monotone decreasing function

f (E) = 1 + K1En

1 + K En
, (2.20)

where K > K1, n > 1, so there is maximal repression for large E . For an inducible
system f is a monotone increasing function of the form

f (E) = 1 + K1En

K + K1En
, (2.21)

where K > 1, n > 1. Maximal induction occurs for very large E .
Note that both (2.20) and (2.21) are special cases of

f (E) = 1 + K1En

A + BEn
(2.22)

The constants A, B ≥ 0 are defined in Table 1.
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2.5 Transcriptional and translational velocities

In this section we discuss cellular processes that affect the transcriptional and trans-
lational velocities vM and vI . Both transcription and translation are polymerization
processes where small parts are associated by an enzymatic reaction catalyzed by a
large complex into a long polymer chain.

For the transcription process nucleotides A,C,G,T are incorporated by RNA poly-
merase (RNAP) into an mRNA chain, and for the translation process peptides are
incorporated by ribososomes into a polypeptide that, upon folding, becomes a func-
tional protein. Velocities of both processes depend on a sufficient and timely supply
of nucleotides and peptides, respectively. The availability, or paucity, of the parts may
result in changes in velocity from position to position along the strand (Zia et al. 2011).
The abundance of the parts reflects the overall growth rate of the cell: faster growth
leads to greater demand on resources and a slower transcription (vM ) and translation
(vI ) velocity. Therefore for an inducible operon, the transcription velocity vM (E) is a
decreasing function of the concentration of the effector E and for a repressible operon
vM (E) is an increasing function of the concentration of the effector E .

The velocity of translation depends on the number of initiations of the translation
process, which is directly proportional to the concentrationM ofmRNA. Since greater
demand on peptide availability results in a lower elongation velocity of ribosomes, the
translational velocity of ribosomes vI (M) is a decreasing function of M .

There is a second effect that may affect elongation velocity. This is the effect of
elongation interference by multiple RNAP or multiple ribosomes (Klumpp and Hwa
2008; Klumpp 2011). The velocity of elongation decreases with the number of RNAPs
and ribosomes that elongate at the same time. Since this number is proportional to the
initiation rate, the velocity vM = vM (E) is a decreasing function of the concentration
of E for an inducible operon and an increasing function of the concentration of E for
a repressible operon. The velocity vI (M) is a decreasing function of M .

Both availability of nucleotides and peptides and elongation interference support
the following assumptions on the velocities vM and vI :

vM = vM (E) is a decreasing function of E for an inducible operon

vM = vM (E) is an increasing function of E for a repressible operon

vI = vI (M) is always a decreasing function ofM .

There are no analytic expressions for the dependence of vM (E) and vI (M) on E and
M respectively, but we have made assumptions for modeling purposes and these are
detailed in Table 1. Specifically we have assumed that they can be represented by Hill
functions with parameters determining the maximum, minimum and half-maximal
values as well as a parameter (m or mI ) which controls the slope. We do not offer any
detailed stoichiometric justification for these assumptions, but rather assume that they
will capture the essential nature of their dependencies.

The parameters vmin
M , vmin

I describe minimal velocity of transcription and transla-
tion, respectively. While the individual polymerases and ribosomes may briefly pause
their elongation, in our model where M, I model concentrations in a large population
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Table 1 Summary of the form of the fraction f of free operators as determined by their stoichiometry, and
the Hill function forms we have assumed for the transcriptional and translational velocities

Quantity Repressible (e.g. tryp) Inducible (e.g. lac)

Fraction f (E) of free operators f (E) = 1 + K1E
n

1 + K En f (E) = 1 + K1E
n

K + K1En

Qualitative behaviour of f Monotone ↓ Monotone ↑
Max = 1 Min = 1/K < 1

Min = K1/K < 1 Max = 1

Transcription velocity vM (E) vM (E) = vmin
M Em

50 + vmax
M Em

Em
50 + Em vM (E) = vmax

M Em
50 + vmin

M Em

Em
50 + Em

Min at E = 0 is vmin
M Max at E = 0 is vmax

M

vM (E50) = 1
2 (vmax

M + vmin
M ) vM (E50) = 1

2 (vmax
M + vmin

M )

Max as E → ∞ is vmax
M > vmin

M Min as E → ∞ is vmin
M < vmax

M

Qualitative τM behaviour Monotone ↓ with E Monotone ↑ with E

Translation velocity vI (M) vI (M) = vmax
I M

mI
50 + vmin

I MmI

M
mI
50 + MmI

Max at M = 0 is vmax
I

vI (M50) = 1
2 (vmax

I + vmin
I )

Min as M → ∞ is vmin
I < vmax

I

Qualitative τI behaviour Monotone ↑ with M

of cells,l we assume vmin
I > 0 and vmin

M > 0. Violation of this assumption would
cause significant problems both with our theory and numerical simulations. The min-
imal velocity being strictly positive ensures that the maximal delay is bounded since
from (2.18) and (2.19)

τM (t) ≤ aM
vmin
M

, τI (t) ≤ aI
vmin
I

.

Similarly the maximal velocities define the minimal delays. Interesting dynamics can
occur when delays become large and in what follows we will often take vmin

M as a
bifurcation parameter and study what happens as vmin

M → 0 and consequently τM (t)
becomes large.

2.6 Equilibria

We next consider the steady states (M∗, I ∗, E∗) of (2.15)–(2.19). From (2.18) and
(2.19) at steady state the delays satisfy

τM = τ ∗
M (E∗) := aM

vM (E∗)
, τI = τ ∗

I (M∗) := aI
vI (M∗)

. (2.23)
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Then, at the steady state, equations (2.15)–(2.17) simplify to

0 = βMe−μτ∗
M (E∗) f (E∗) − γ̄MM∗, (2.24)

0 = βI e
−μτ∗

I (M∗)M∗ − γ̄I I
∗, (2.25)

0 = βE I
∗ − γ̄E E

∗. (2.26)

We rearrange (2.24) to obtain

M∗ = βM

γ̄M
e−μτ∗

M (E∗) f (E∗), (2.27)

and then substituting this and (2.26) into (2.25) we find that the steady state must
satisfy a single equation for E∗:

0 = gE (E∗) := βMβIβE

γ̄M γ̄I γ̄E
e−μ(τ∗

I (M∗)+τ∗
M (E∗)) f (E∗) − E∗ (2.28)

where the argument of τ ∗
I is given by (2.27).

With the functions vM , vI and f defined as in Table 1 then vM (E) ∈ [vmin
M , vmax

M ]
and vI (M) ∈ [vmin

I , vmax
I ], so

τM ∈ [aM/vmax
M , aM/vmin

M ] and τI ∈ [aI /vmax
I , aI /v

min
I ]

while f (E) ∈ (0, 1]. Thus gE (0) > 0 and

gE (E) ≤ βMβIβE

γ̄M γ̄I γ̄E
− E .

Therefore, gE (E) < 0 for all E sufficiently large, and by the intermediate value
theorem there is at least one solution E∗ > 0 to gE (E∗) = 0. This defines a steady
state (M∗, I ∗, E∗). It also follows that any steady-state solution must satisfy

E∗ ≤ βMβIβE

γ̄M γ̄I γ̄E
, I ∗ ≤ βMβI

γ̄M γ̄I
.

If there is no cell growth, and thus μ = 0, and/or if both delays are constant and
independent of the state-variables (vmax

M = vmin
M and vmax

I = vmin
I ) then equation

(2.28) reduces to the form

0 = gE (E) = Cβγ f (E) − E (2.29)

for a suitably defined constant Cβγ > 0. The solutions of (2.29) and similar equations
are well-studied in the context of monotone-cyclic feedback systems both with and
without constant delay (Othmer 1976; Tyson and Othmer 1978; Yildirim et al. 2004).
For the repressible case f (E) is monotone decreasing, hence gE (E) is also monotone
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(a) (b)

Fig. 2 Inducible constant delays with f as defined in Table 1. a Illustration of one or three solutions to
(2.29) for different values of Cβγ . b Because f ′ is unimodal g′(E) has at most two sign changes so (2.29)
cannot have more than three solutions

decreasing and there is a unique steady state. For the inducible case f (E) is non-
negative and monotone increasing. Here the number of steady states depends on the
exact form of f . With f defined as in Table 1, which has a unique inflection point with
f ′′(E) = 0 and E > 0, there will be at most three steady states as shown in Yildirim
et al. (2004) and illustrated in Fig. 2.

In many DDEs the delay(s) only appears in the state variables, and so do not affect
the computation of the steady states. This is also the case with our model whenμ = 0,
and the computation of the steady states from (2.24)–(2.26) is independent of the
delays in that case.

With state-dependent delays and cell growth, and thus μ > 0, the behaviour of
the model (2.15)–(2.19) is quite different. Now, the delays τI and τM enter explicitly
into (2.15)–(2.19) and hence (2.28). While the delay will be constant in time on any
steady-state solution, with state-dependent delays the value of the delaywill depend on
the state variable, which may change the structure of the phase-space of the dynamical
system.

As an example consider the repressible case with state-dependent transcription
velocity (but constant translation velocity). From Table 1 the transcription velocity
vM (E) is a monotonic increasing function of E , and hence at steady state (from
(2.23)) the transcription delay is a monotonic decreasing function of E . Then gE (E∗)
contains the product of a monotonic increasing function e−μτ∗

M (E∗) and monotonic
decreasing function f (E∗). The product in gE (E) need not be monotonic and we can
no longer conclude that there is a unique steady state for the repressible case. This is
illustrated in panel (a) of Fig. 3 which shows an example where gE (E) has three zeros
corresponding to three different steady states of the model for the repressible case.

For an inducible operon, the situation is reversed. The velocity vM (E) is a decreas-
ing function and so e−μτ∗

M (E∗)) a decreasing function of E∗, while the function f (E∗)
is an increasing function of its argument. This can again lead to additional steady
states and Fig. 3b shows an example where gE (E) has five zeros corresponding to
five different steady states in the model for the inducible case with state-dependent
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(a) (b)

(c) (d)

Fig. 3 Examples of the function gE (E) defined by (2.28) with functions defined in Table 1. a and b show
a repressible and an inducible example with a single state-dependent delay, and parameter values given in
Table 2. c and d show examples with two state-dependent delays with the same parameter values, except
for those stated in (2.30) and (2.31) respectively

transcription velocity, but constant translation velocity. The full parameter sets for
both of these examples are listed in Table 2.

In the previous examples we set vmin
I = vmax

I = vI so the translation velocity
vI (M) = vI was constant, as was the translation delay τI = aI /vI . If we allow
vmin
I < vmax

I then the translation delay τI (M) becomes a second state-dependent
delay, and in gE (E∗) the term e−τ∗

M (E∗)) f (E∗) is multiplied by an additional term
e−μ(τ∗

I (M∗)). With the translation velocity defined as in Table 1 we see that e−μ(τ∗
I (M∗))

is a monotonic increasing function of M∗. However, M∗ itself is defined by (2.27)
which again contains the product of e−τ∗

M (E∗)) and f (E∗) that we already discussed
above. Although a full analysis of this case is beyond the scope of this paper, we note
that by changing a few parameters from their values in Table 2 it is possible to obtain
additional steady states. For the repressible case with

K = 10, n = 10, vmin
I = 0.05, vmax

I = 0.5. (2.30)

andwith both the delays τ ∗
M (E∗) and τ ∗

I (M∗) state-dependent, we obtain 5 co-existing
steady states, as shown in Fig. 3c. For the inducible case with
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Table 2 Parameters used for
repressible and inducible
examples in a and b of Fig. 3a, b

Quantity Repressible Inducible

μ 0.05 0.034

βM 1.4 1

βI 1 2

βE 1 3

γ̄M 1 0.994

γ̄I 1 0.994

γ̄E 1 0.994

K 2 10

K1 1 1

n 5 4

m 3 10

aM 1 1

vmin
M 0.01 0.05

vmax
M 2 1

E50 1 1

mI 20 80

aI 1 1

vmin
I 1 2

vmax
I 1 2

M50 1 0.3374

vmin
I = 1.1. (2.31)

we obtain 7 co-existing steady states, where again both delays are state-dependent.
Taken together the examples of Fig. 3 suggest that there can be

1 + 2χI + 2nτ , χI =
{
0, repressible case
1, inducible case

(2.32)

steady states where nτ is the number of delays which are state-dependent. We cannot
prove that this is the maximum possible number of steady states, but we can construct
examples with this many steady states in a systematic way.

We illustrate this by showing how the example of the inducible operon with two
state-dependant delays and 7 steady states in Fig. 3d is constructed from the example
with one state-dependent delay and 5 steady states in Fig. 3b. The only difference
between the two examples is that in (2.28) the term e−μτ∗

I (M) is constant in the first
example, but not in the second. To make τI state-dependent we take vmin

I < vmax
I

and mI � 0, so that the translation velocity vI (M) is close to a step function, which
results in e−μτ∗

I (M∗) also being essentially a switching function. In Fig. 3 we identify
that for E ≈ 2 we have 0 < gE (E) � 1 with g′

E (E) > 0, and we set the switching
function to act at this point by using (2.27) to define M50 via
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(a) (b)

Fig. 4 a For the inducible model, the constant function e−μτI (M
∗) (broken line) as in Fig. 3b, and the state-

dependent function e−μτI (M
∗) (solid line) as in Fig. 3b. b The behaviour of the corresponding functions

gE (E) for E ≈ 2. The black vertical lines separate the intervals on which gE (E) is increasing or decreasing

M50 = βM

γ̄M
e−μτ∗

M (2) f (2).

Then using (2.27) directly we obtain e−μτ∗
I (M∗) as a function of E∗ as shown in Fig. 4a.

With this element included in gE (E∗) the function is modified so that g′
E (2) < 0, and

the function gains an additional maximum and minimum for E ≈ 2, as shown in
Fig. 4b. From there, parameters can be adjusted as needed to ensure gE (E) has a zero
between each sign change of g′

E (E).
The function gE can be used to effectively perform a one-parameter continuation of

the steady states by varying E and one other parameter, and plotting a single contour
of the function corresponding to gE = 0. In Fig. 5 we demonstrate four examples of
one-parameter continuation in the parameter vmin

M starting from the cases illustrated
in Fig. 3. Given that we obtained our examples with several co-existing steady states
by constructing the function gE (E) to have multiple nearby zeros, and hence multiple
local extrema close to zero, it should be no surprise to see that the steady states from
Fig. 3 only co-exist over a small interval of vmin

M values and that some of them are
destroyed in fold bifurcations. We note also that as vmin

M is increased, in the limit as
vmin
M → vmax

M the delay τM becomes constant, and by (2.32) the number of steady
states will be reduced. In particular in the cases of Fig. 5a, b when vmin

M = vmax
M there

is no state-dependency in the model and there can only be 1 or 3 steady states in the
repressible and inducible cases, respectively.

Figure 5 indicates that the steady states of (2.15)–(2.19) undergo fold bifurcations.
Hopf bifurcations are also ubiquitous in DDEs, and already known to occur in the
repressible casewith constant delays. Hence in the following sectionswewill study the
dynamics and bifurcations of the system (2.15)–(2.19) and will return to the examples
of this section.
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(a)

(b)

(c) (d)

Fig. 5 One parameter continuations of the steady states as the parameter vmin
M is varied, obtained by plotting

the zero contour of the function gE . All the other parameters take the same values as in the corresponding
panel of Fig. 3. The red circles indicate the co-existing steady states already seen in Fig. 3. In the limit as
vmin
M → vmax

M the delay τM ceases to be state-dependent (color figure online)

2.7 Linearization by expansion

To determine the stability of the steady states considered Sect. 2.6, we linearize the
system (2.15)–(2.17) with (2.18) and (2.19) in a neighborhood of each steady state
and examine the nature of the characteristic values.

This can be done rigorously using a functional analytic approach in an appropri-
ate Banach space, and this derivation is presented in “Appendix C”. However, that
approach will not be accessible to many readers, so here we present an alternative
heuristic derivation using elementary techniques which arrives at exactly the same
characteristic equation as in “Appendix C”.

Assuming linear behaviour of the solution for a small perturbation from the steady
state (M∗, I ∗, E∗), we begin by setting

M(t) = M∗ + EMeλt , (2.33)

I (t) = I ∗ + EI eλt , (2.34)

E(t) = E∗ + EEeλt . (2.35)
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We denote the delays at the steady state by τ ∗
M (E∗) and τ ∗

I (M∗), as defined in
(2.23), and again write τM (t) and τI (t) for the time varying delays on a solution close
to the steady state (even though as noted after (2.19) these delay terms are properly
functions in a Banach space).

From the threshold condition (2.18), Taylor expanding the integrand around the
steady state we obtain

vM (E∗)τ ∗
M (E∗) = aM =

∫ t

t−τM (t)
vM (E(s))ds =

∫ 0

−τM (t)
vM (E(s + t))ds

=
∫ 0

−τM (t)
vM (E∗ + EEeλ(s+t))ds

=
∫ 0

−τM (t)
vM (E∗) + v′

M (E∗)EEeλ(s+t) + O(E2
E )ds

= vM (E∗)τM (t) + EEv′
M (E∗)eλt

∫ 0

−τM (t)
eλsds + O(E2

E ). (2.36)

Note that for λ �= 0,

∫ 0

−a
eλs ds = 1

λ
(1 − e−aλ) (2.37)

while

lim
λ→0

1

λ
(1 − e−aλ) = a =

∫ 0

−a
e0s ds,

so (1 − e−aλ)/λ has a removable singularity at λ = 0. Therefore we can use (2.37)
for all λ ∈ C and (2.36) becomes

vM (E∗)τ ∗
M (E∗) = vM (E∗)τM (t)

+ EEeλt v
′
M (E∗)

λ
(1 − e−λτM (t)) + O(E2

E ). (2.38)

Notice that vM (E∗) > 0 is required for τM (E∗), defined by (2.23), to be finite; this is
ensured by the assumption that vmin

M > 0. Hence we may rearrange (2.38) as

τM (t) = τ ∗
M (E∗) − EEeλt v′

M (E∗)
λvM (E∗)

(1 − e−λτM (t)) + O(E2
E ).

Noting that this implies that τM (t) = τ ∗
M (E∗) + O(EE ), we obtain

τM (t) = τ ∗
M (E∗) − EEeλt v′

M (E∗)
λvM (E∗)

(1 − e−λτ∗
M (E∗)) + O(E2

E ). (2.39)

With (2.39), the factor e−μτM (t) in (2.15) behaves as
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e−μτM (t) = e−μτ∗
M (E∗)e

EE
μv′

M (E∗)

λvM (E∗)
eλt (1−e−λτ∗

M (E∗)
)
e−μO(E2

E )

= e−μτ∗
M (E∗)

[
1 + EE

μv′
M (E∗)

λvM (E∗)
eλt (1 − e−λτ∗

M (E∗)) + O(E2
E )

] [
1 + O(E2

E )
]

= e−μτ∗
M (E∗)

[
1 + EE

μv′
M (E∗)

λvM (E∗)
eλt (1 − e−λτ∗

M (E∗))

]
+ O(E2

E ). (2.40)

For the fraction term vM (E)/vM (E(t − τM (t))) in the differential equation, we apply
Taylor expansion around the steady state to vM (E) and 1/vM (E(t−τM (t))) separately
and then take the product, which gives:

vM (E) = vM (E∗) + v′
M (E∗)EEeλt + O(E2

E ),

1

vM (E(t − τM (t)))
= 1

vM (E∗)
+

(
− v′

M (E∗)
vM (E∗)2

)
EEeλ(t−τM (t)) + O(E2

E ).

Thus

vM (E)

vM (E(t − τM (t)))
= 1 + EE

v′
M (E∗)

vM (E∗)
eλt (1 − e−λτM (t)) + O(E2

E )

= 1 + EE
v′
M (E∗)

vM (E∗)
eλt (1 − e−λτ∗

M (E∗)) + O(E2
E ). (2.41)

Following the derivation of (2.40) and (2.41), similarly we have

e−μτI (t) = e−μτ∗
I (M∗)

[
1 + EM

μv′
I (M

∗)
λvI (M∗)

eλt (1 − e−λτ∗
I (M∗))

]
+ O(E2

M ), (2.42)

vI (M)

vI (M(t − τI (t)))
= 1 + EM

v′
I (M

∗)
vI (M∗)

eλt (1 − e−λτ∗
I (M∗)) + O(E2

M ). (2.43)

Now we use these expansions to linearize the system (2.15)–(2.17) equation by
equation. Substituting the perturbations (2.33) and (2.35) into (2.15) and using the
expansions (2.40) and (2.41) we have

EMλeλt = d

dt
(M∗ + EMeλt )

= βM

[
e−μτ∗

M (E∗)
(
1 + EE

μv′
M (E∗)

λvM (E∗)
eλt (1 − e−λτ∗

M (E∗))

)
+ O(E2

E )

]
×

[
1 + EE

v′
M (E∗)

vM (E∗)
eλt (1 − e−λτM (E∗)) + O(E2

E )

]
f (E∗ + EEeλ(t−τM (t)))

− γ̄M (M∗ + EMeλt )

= βMe−μτ∗
M (E∗)

[
1 + EE

v′
M (E∗)

vM (E∗)
eλt (1 − e−λτ∗

M (E∗))(1 + μ

λ
)

]
×

[
f (E∗) + EE f ′(E∗)eλ(t−τM (t))

]
− γ̄M (M∗ + EMeλt ) + O(E2

E )
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= βMe−μτ∗
M (E∗)

(
f (E∗) + EE f (E∗)

v′
M (E∗)

vM (E∗)
eλt (1 − e−λτ∗

M (E∗))(1 + μ

λ
)

+ EE f ′(E∗)eλ(t−τ∗
M (E∗))

)
− γ̄M (M∗ + EMeλt ) + O(E2

E ).

Using the equality (2.24) and multiplying by e−λt , this simplifies to

EMλ = EEβMe−μτ∗
M (E∗)

(
f (E∗)

v′
M (E∗)

vM (E∗)
(1 − e−λτ∗

M (E∗))(1 + μ

λ
)

+ f ′(E∗)e−λτ∗
M (E∗)

)
− EM γ̄M + O(E2

E ) (2.44)

For the second differential Eq. (2.16), substituting the perturbation (2.33) and (2.34)
and the expansion (2.42) and (2.43) we similarly find that

EIλeλt = d

dt
(I ∗ + EI eλt )

= βI e
−μτ∗

I (M∗)
(
M∗ + EMeλ(t−τ∗

I (M∗)) + EMM∗ v′
I (M

∗)
vI (M∗)

×

eλt (1 − e−λτ∗
I (M∗))(1 + μ

λ
)
)

− γ̄I (I
∗ + EI eλt ) + O(E2

M ).

Using the equality (2.25) and multiplying by e−λt we obtain

EIλ = EMβI e
−μτ∗

I (M∗)
(
e−λτ∗

I (M∗) + M∗ v′
I (M

∗)
vI (M∗)

(1 − e−λτ∗
I (M∗))(1 + μ

λ
)

)

− γ̄IEI + O(E2
M ). (2.45)

Lastly, the case of the differential equation (2.17) is simpler, since it is linear with
no delays. Substituting the perturbations (2.34) and (2.35) we have

EEλeλt = d

dt
(E∗ + EEeλt ) = βE (I ∗ + EI eλt ) − γ̄E (E∗ + EEeλt ).

Using the equality (2.26), and multiplying by e−λt this simplifies to

EEλ = EIβE − EE γ̄E . (2.46)

Combining (2.44), (2.45) and (2.46), and dropping the higher order terms gives the
linear system

A(λ)

⎛
⎝EM
EI
EE

⎞
⎠ =

⎛
⎝−γ̄M − λ 0 A13

A21 −γ̄I − λ 0
0 βE −γ̄E − λ

⎞
⎠

⎛
⎝EM
EI
EE

⎞
⎠ = 0 (2.47)
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where the A13 and A21 entries of the 3 × 3-matrix A(λ) are defined by

A13 = βMe−μτ∗
M(E∗)

(
f (E∗)

v′
M(E∗)

vM(E∗)
(1 − e−λτ∗

M(E∗))(1 + μ

λ
) + f ′(E∗)e−λτ∗

M(E∗)
)

,

A21 = βI e
−μτ∗

I (M∗)
(
M∗ v′

I (M
∗)

vI (M∗)
(1 − e−λτ∗

I (M∗))(1 + μ

λ
) + e−λτ∗

I (M∗)
)

.

The characteristic equation of (2.15)–(2.17) is

Δ(λ) = det(A(λ)) = 0, (2.48)

with Δ(λ) given by

Δ(λ) = (γ̄M + λ)(γ̄I + λ)(γ̄E + λ) + βMβIβEe
−μ(τ∗

I (M∗)+τ∗
M(E∗))k(λ), (2.49)

where

k(λ) =
(

v′
M (E∗)

vM (E∗)
f (E∗)(1 − e−λτ∗

M (E∗))
(
1 + μ

λ

)
+ f ′(E∗)e−λτ∗

M (E∗)
)

×
(

v′
I (M

∗)
vI (M∗)

M∗(1 − e−λτ∗
I (M∗))

(
1 + μ

λ

)
+ e−λτ∗

I (M∗)
)

(2.50)

Exactly the same characteristic equation is derived completely rigorously in
“Appendices A–C” culminating in equation (C.12).

In contrast to the rigorous variational approach used in the appendices, here we
assert without proof that all the quantities of interest can be written as functions of
the perturbation parameters EM , EI and EE . For example in Eq. (2.39) we have Taylor
expanded the state-dependent delay τM as a function of EE . To justify that rigorously
requires functional analysis, and this is done in Proposition A1 in “Appendix A”.

Another drawback of the derivation above is that there is no theory to show that
stability of steady states is determined by the characteristic Eq. (2.48). However, since
for our model both approaches lead to the same characteristic equation, the theory
relating stability to the characteristic equation applies (Hartung et al. 2006). Therefore
the stability of equilibria of the system (2.15)–(2.17) is determined by characteristic
values arising from (2.48).

3 Numerical methods

In this section, we describe numerical methods to study the distributed state-dependent
delay model (2.15)–(2.19). We would like to conduct one-parameter continuation of
steady states and periodic orbits and compute local stability and bifurcations in Mat-
lab (Mathworks 2020). The standard package for performing numerical bifurcation
analysis of DDEs in Matlab is DDE-BIFTOOL (Sieber et al. 2015). Unfortunately,
although it can handle constant or discrete state-dependent delays, DDE-BIFTOOL
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cannot be applied directly to problems with distributed state-dependent delays defined
by threshold conditions such as (2.18) and (2.19). Likewise, the built-in Matlab func-
tion ddesd for solving DDE initial value problems is also only implemented for
discrete delays.

In Eqs. (2.18) and (2.19) the delay τM or τI can be determined by adjusting the
lower limit of the integral until the integral has the desired value aM . Naive numerical
implementationswould use a bisection or secant iteration to determine the delay,which
would necessitate evaluating the integral at each step of the iteration. This would be
very slow to compute and would become the main bottleneck slowing down numerical
computations. Another problem in evaluating this integral is that the numerical DDE
solvers that have been implemented in Matlab are all written for discrete delays and
only give access to the value of the solution u(t − τ j ) at the discrete delays, whereas
to evaluate the integral in (2.18) or (2.19) we require the values of the integrand across
the whole interval.

We describe below two different implementations of (2.15)–(2.19) in DDE-
BIFTOOL, neither of which require an iteration to find the delays, and also show
how to apply ddesd to solve the initial value problem.

3.1 Steady state computations: linearization correction

As discussed in Sect. 2.6, we can obtain steady states of (2.15)–(2.19) from the scalar
function gE (E∗) defined in (2.28).Any solution to gE (E∗) = 0 gives the E component
of a steady state with corresponding M and I components given by (2.24) and (2.26).

We would like to conduct one-parameter continuation of steady states and compute
local stability using DDE-BIFTOOL, but as noted above it cannot be directly applied
to solve DDEs when the delay is defined by a threshold condition. Nevertheless, at
a steady state the threshold integral conditions (2.18) and (2.19) become integrals of
constant functions. Consequently, the delays are defined by (2.23) and can be treated as
discrete delays. Therefore we are able to implement the system (2.15)–(2.17) together
with (2.23) in DDE-BIFTOOL and use it to continue the steady states. This approach
also allows us to locate fold bifurcations of steady states. However, although replacing
(2.18) and (2.19) by (2.23) preserves the existence of the steady states, (as detailed
in Wang (2020) for a related model) characteristic values and hence stability of the
steady state are altered. The reason is that the integration of exponential perturbations
along the solution, see Sect. 2.7, are not included.

To recover the correct stability information when using the modified problem
(2.15)–(2.17) with discrete delays (2.23) we perform linearization correction using
the characteristic equation. The characteristic roots of the steady state of the modified
problem are taken as “seed values” which are then corrected by applying the Matlab
nonlinear system solver fsolve to the exact characteristic Eq. (2.48) for the origi-
nal model (2.15)–(2.19). This works well at a majority of points along continuation
branch; however, it behaves poorly at some points leading to spurious bifurcations.
In addition, sometimes the algorithm does not converge, while sometimes the solver
converges to an already found characteristic value. As well as creating duplicates of
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characteristic values, this leads to missing some characteristic values, and so does not
reliably classify bifurcations.

Todealwith these issues,we remove any characteristic values atwhich the algorithm
fails to converge, as well as any duplicate values. To resolve the issue of missing
characteristic values, we use the corrected characteristic values from the previous point
on the branch as a second set of “seed values” to compute additional characteristic
values, where again we remove duplicates. The removal of duplicate characteristic
values is somewhat dangerous, because it could result in missing genuine instances of
characteristic values with multiplicity larger than one. However, in practice, we did
not encounter this problem.

Once the corrected characteristic roots are computed at each steady state, we obtain
the correct stability information. Hopf bifurcations occurwhen two complex conjugate
characteristic values cross the imaginary axis, or equivalently when the number of
complex characteristic values with positive real part changes by two. Fold bifurcations
happen when a real characteristic value changes sign, which we can also detect by
the number of complex characteristic values with positive real part changing by one.
Because we obtain the stability from a modified problem and we did not alter any of
the DDE-BIFTOOL subroutines which use linearization inappropriate for our model,
we are not able to use additional DDE-BIFTOOL subroutines such as those that detect
criticality of Hopf bifurcations and perform normal form computations.

3.2 Steady state and periodic orbit computation: delay discretization

While the approach of Sect. 3.1 allows us to compute the stability of steady states
and hence to detect fold and Hopf bifurcations, it cannot be used to compute periodic
orbits, because the delays (2.18)–(2.19) would not be constant on periodic orbits.

The only way to tackle the full distributed state-dependent delay operon model
(2.15)–(2.19) is to evaluate the integrals in the threshold conditions (2.18)–(2.19).
While this cannot be done exactly in DDE-BIFTOOL, it is enough to evaluate the
integral to sufficient accuracy using a numerical quadrature scheme.

As the twodelays are of similar form,wewill describe themethod for approximating
τM by discretizing the integral in (2.18) using the composite trapezoidal method and
seeking the value of τM that satisfies (2.18). To do this we introduce extra “dummy”
delays as follows.

With aM fixed and vM (E) ∈ [vmin
M , vmax

M ], it follows that τM ∈ [aM/vmax
M ,

aM/vmin
M ]. To obtain the state-dependent delay τM that satisfies the threshold con-

dition (2.18), we discretize the interval
[
t − aM/vmax

M , t
]
uniformly with a sequence

of mesh points

t = x0 > x1 > · · · > xN = t − aM
vmax
M

and define N constant “dummy” delays

τ j = t − x j = t − j

N

aM
vmax
M

, j = 1, 2, . . . , N .
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In particular, as τM ≥ aM/vmax
M , there is no need for detection of the delay τM over

the interval [t − aM/vmax
M , t].

On the interval [t − aM/vmin
M , t − aM/vmax

M ] where the delay τM lies, we detect
it as follows. Divide the interval [t − aM/vmin

M , t − aM/vmax
M ] into N equal width

subintervals,

t − aM
vmax
M

= xN > xN+1 > · · · > x2N = t − aM
vmin
M

,

which implies that

xN+ j = t − aM
vmax
M

− j
aM
N

(
1

vmin
M

− 1

vmax
M

), j = 1, 2, . . . , N .

We then define another N constant “dummy” delays

τN+ j = t − xN+ j , j = 1, 2, . . . , N .

To compute τM , we take advantage of the functionality of DDE-BIFTOOL which
allows state-dependent delays to be defined as functions of the other delays and the
solution values at those delays. We let

J ( j) =
∫ x0

x j
vM (E(s))ds =

∫ t

t−τ j

vM (E(s))ds, j = 1, 2, . . . , 2N

and let Jh( j) be the numerical approximation of J ( j) using the composite trapezoidal
rule,

Jh( j) =
j−1∑
k=1

1

2
(vM (E(xk)) + vM (E(xk+1))) (xk − xk+1).

We look for the largest j such that Jh( j) ≤ aM . Since

aM >

∫ t

t−aM/vmax
M

vM (E(s))ds

≈ aM
Nvmax

M

⎡
⎣1

2
vM (E(t)) + 1

2
vM (E(t − aM

vmax
M

)) +
N−1∑
j=1

vM (E(t − τ j ))

⎤
⎦

= Jh(N ),

we successively add subintervals to the integral until we find j such that

aM ≥ Jh( j) and aM < Jh( j + 1). (3.1)
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With such a j , we have τM ∈ [τ j , τ j+1). To locate τM more precisely, consider

aM =
∫ t

t−τM

vM (E(s))ds =
∫ t−τ j

t−τM

vM (E(s))ds +
∫ t

t−τ j

vM (E(s))ds,

which implies

aM − Jh( j) ≈
∫ t−τ j

t−τM

vM (E(s))ds. (3.2)

Applying the trapezoidal rule again, we have

∫ t−τ j

t−τM

vM (E(s))ds ≈ τM − τ j

2
[vM (E(t − τM )) + vM (E(t − τ j ))], (3.3)

and using a linearization in the subinterval (which is consistent with the trapezoidal
method) we have

vM (E(t − τM )) = vM (E(t − τ j ))

+ (τM − τ j )[vM (E(t − τ j+1)) − vM (E(t − τ j ))]. (3.4)

Substituting (3.3) and (3.4) into (3.2) gives

aM − Jh( j) ≈ τM − τ j

2
[(2 + τ j − τM )vM (E(t − τ j ))

+ (τM − τ j )vM (E(t − τ j+1))].

Rearranging this we find that τM is given as the solution of k(τM ) = 0 where

k(τM ) = (τM − τ j )
2

2
[vM (E(t − τ j )) − vM (E(t − τ j+1))]
− (τM − τ j )vM (E(t − τ j )) + (aM − Jh( j)) (3.5)

Note that (3.5) is a quadratic function of τM and the condition (3.1) guarantees that
k(τM ) has a zero for τM ∈ [τ j , τ j+1]. Applying the quadratic formula to (3.5), we
obtain the solution

τM = τ j + vM(E(x j ))

vM (E(x j )) − vM (E(x j+1))

−
√

vM(E(x j )2 − 2(aM − Jh( j))(vM(E(x j )) − vM(E(x j+1)))

vM (E(x j )) − vM (E(x j+1))
(3.6)

where the minus sign in the quadratic formula ensures that the root τM ∈ [τ j , τ j+1]
when k(τM ) is either a concave up or concave down parabola.
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With this implementation we are able to apply DDE-BIFTOOL directly to an
approximation to the system (2.15)–(2.19). Since the stability computations are car-
ried out within DDE-BIFTOOL (as opposed to the linearization correction technique
described in Sect. 3.1) we are able to use the full functionality of DDE-BIFTOOL
which allows us to determine criticality of bifurcations and also to compute branches
of periodic orbits emanating from Hopf bifurcations.

The choice of parameters for the numerical discretization is somewhat delicate. If
the discretization is too coarse convergence issues arise in the branch continuation,
while finer discretizations allow for a smoother continuation of branches with larger
continuation steps, but at the cost of each step being very slow. This arises because the
numerical linear algebra problems at the heart of the approximate Newton method in
each DDE-BIFTOOL continuation step increase in complexity with both the number
of delays and the size of the collocation problem. The total number of delays in the
discretized problem is 2N + 2, composed of the 2N dummy delays, the (assumed
constant) delay τI , and the computed state-dependent delay τM given by (3.6).

For the computations in Sect. 4 we use degree 4 or 5 collocation polynomials and 20
to 40 mesh intervals resulting in 80 to 200 collocation points on the periodic orbit. For
stability computations of steady states we took N = 32 which results in 65 constant
delays and one state-dependent delay. For computation of periodic orbits we took
N = 48 resulting in close to one hundred delays in the discretized problem.

The computation of each step of the continuation is quite slow compared to the
implementation of Sect. 3.1. The algorithms give consistent results on problems for
which both can be applied (with bifurcation points agreeing to between 3 and 5 signif-
icant digits of accuracy), but the algorithm of this section is more widely applicable.
For the results shown in Sect. 4, we mainly use the discretization method described in
this section, with the linearization correction method of Sect. 3.1 used to validate the
results.

3.3 Solving initial value problems (IVPs)

Simulating IVPs allows us to investigate the dynamics in parameter regimes where
none of the steady states are stable. In Sect. 4 we find stable periodic orbits which do
not arise from Hopf bifurcations by following this procedure.

The Matlab routine ddesd solves DDE initial value problems with discrete state-
dependent delays. While we would like to use ddesd to study (2.15)–(2.19), we need
to address the issue of implicitly defined delays.

For simplicity, as in the preceding sections, we treat τI as a constant delay which
is defined by (2.23). We deal with the state-dependent delay τM defined by (2.18) by
differentiating the integral in (2.18) with respect to t to obtain

0 = vM (E(t)) −
(
1 − dτM

dt
(t)

)
vM (E(t − τM )),
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which implies that

dτM

dt
(t) = 1 − vM (E(t))

vM (E(t − τM ))
. (3.7)

We can thus solve the system (2.15)–(2.19) as an initial value problem by considering
the system of three equations (2.15)–(2.17) augmented by (3.7) to define the evolution
of the state-dependent delay τM along with the constant delay τI = aI /vI where
vI = vmin

I = vmax
I . The case where τI is state-dependent can be handled similarly.

Although this trick avoids the need to evaluate the integral in (2.18) during the
simulation, care needs to be taken since information is lost when differentiating and
while a solution of (2.18) also solves (3.7), the converse is not necessarily true. To
ensure our solution of (3.7) also solves (2.18), we specify history functions so that
(2.18) is satisfied at time t = t0. In particular, we require τM (t0) to satisfy

aM =
∫ t0

t0−τM (t0)
vM (E(s))ds. (3.8)

Thiswill dependon the choice of the history function E(t)defined for t ≤ t0. In general
we need to evaluate this integral only once. Even this can be avoided if E(t) = E0 is
constant for t ≤ t0 since then (3.8) simplifies to aM = τM (t0)vM (E0) which implies
that

τM (t0) = aM
vM (E0)

.

Although we do not need to solve the integral threshold condition (2.18) during
the numerical computation, after a numerical solution is computed, it is very easy to
evaluate the integral on the right hand side of (2.18) to check how close it is to aM . In
all the examples presented in Sect. 4, this defect is smaller that 10−5 at the final time
indicating 5 or more digits of accuracy in the computation of the threshold condition
across the interval of computation.

To find the period of a stable periodic solution, a simple technique is to take advan-
tage of the idea of the Poincaré section, and we implement an event function to detect
periodicity. While ddesd has a built-in event detection function which can be used
to detect periodicity, it slows down the numerical solution drastically. Instead, once
the simulation is complete, we fit a spline to the numerical solution and use the spline
functions within Matlab to obtain the crossings of the Poincaré section and maxima
and minima of solutions and hence period and amplitude information.

Oncewe find a stable periodic orbit, the solutionmay be continued as one parameter
is varied either by performing additional numerical IVP solves to find a periodic orbit
for a perturbed parameter set, or by importing the numerically computed periodic
solution into DDE-BIFTOOL and use the discretization of Sect. 3.2 to continue the
solution. The DDE-BIFTOOL discretization has the advantage that it can equally well
find stable and unstable periodic orbits, and we will use it in Sect. 4 to detect fold
bifurcations of periodic orbits where the stability of the periodic orbit changes.
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ddesd can only be used for the continuation of stable periodic orbits, which is
useful for validating theDDE-BIFTOOL results. To perform continuationwithddesd
we use the stable periodic solution at each iteration as the history function for the
next computation when the continuation parameter is slightly changed. With a small
perturbation in the continuation parameter value, we expect to converge to the stable
periodic solution as it should still lie in the basin of attraction. Care needs to be taken
when doing this, since when making a perturbation of the parameters we need to
recompute initial value of the state-dependent delay τM (t0) so that the integral (3.8)
is satisfied at the initial time t0 with the new parameter set and history function given
by the numerical solution with the previous parameter set.

4 Dynamics of repressible and inducible operons with
state-dependent delays

In this section, we explore the dynamics of the Goodwin operon model (2.15)–(2.19)
incorporating state-dependent delays. We will mainly focus on the case where the
transcription delay τM is state-dependent and the translation delay τI is constant.
Then equations (2.15)–(2.19) simplify to

dM

dt
(t) = βMe−μτM (t) vM (E(t))

vM (E(t − τM (t)))
f (E(t − τM (t))) − γ̄MM(t),

d I

dt
(t) = βI e

−μτI M(t − τI ) − γ̄I I (t),

dE

dt
(t) = βE I (t) − γ̄E E(t),

aM =
∫ t

t−τM (t)
vM (E(s))ds =

∫ 0

−τM (t)
vM (E(t + s))ds,

(4.1)

with τI = aI /vI where vI = vmin
I = vmax

I . The respective functions for a repressible
or inducible system are defined in Table 1. We will treat the minimum transcription
velocity, vmin

M , as a bifurcation parameter.

4.1 Repressible operon with one state-dependent delay

Recall that when there are no state-dependent delays there are only two possibilities
for a repressible system. Namely there is either a globally stable steady state, or a
globally stable limit cycle which arises through a supercritical Hopf bifurcation from
the steady state. We already showed in Sect. 2.6 (see Figs. 3a and 5a) that it is possible
for a repressible system with one state-dependent delay to have multiple steady states,
aswell as fold bifurcations of steady states. In this sectionwewill explore the dynamics
of the repressible system inmore depth to reveal the possible dynamics andbifurcations
that may arise.

We begin by returning to the example from Sect. 2.6 and consider the state-
dependent delay system (4.1) with the repressible parameter set defined in Table 2.
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Fig. 6 Bifurcation diagram of the model (4.1) for a repressible system, with parameters defined in Table 2
except vmin

M which is taken as the bifurcation parameter. Solid lines represent stable objects including
stable steady state (in green) and stable limit cycle (maximum amplitude in red and minimum amplitude in
blue). Steady states are represented using the E-component of the solution, and the amplitude of periodic
solutions is taken from the maximum and minimum of the E(t) on the periodic solution. Dashed lines
represent unstable objects including unstable steady states (depending on the number of eigenvalues with
positive real part, green for one, black for two and gray for three and more) and an unstable limit cycle.
Bifurcations are listed in Table 3 (color figure online)

(a) (b)

Fig. 7 Repressible system (4.1) with parameters as defined in Table 2 showing the orbits from Fig. 6 at
vmin
M = 0.01. a A projection of the phase-space dynamics into the M–E plane inR2 with curves formed by

the points (M(t), E(t)), t ∈ R along periodic solutions (M(t), I (t), E(t)), with squares denoting steady
states (colour-coded according to the dimension of their unstable manifold). b The three components of the
stable periodic solution (color figure online)

The bifurcation diagram in Fig. 6 was computed using DDE-BIFTOOL as detailed in
Sect. 3, and extends the diagram previously shown in Fig. 5a to show steady state solu-
tions, periodic orbits along with their stability, as well as Hopf and fold bifurcations.
These bifurcations are listed in Table 3.

When vmin
M = vmax

M both delays τM and τI are constant, and there can only be
one steady state. With the repressible parameter values in Table 2 this steady state is
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Fig. 8 Periodic orbits from the bifurcation diagramsin Fig. 6. Left column: stable periodic orbits. Right col-
umn: unstable periodic orbits. The colormap in each column indicates values of the continuation parameter
vmin
M (color figure online)
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Table 3 Steady state bifurcations seen on the branches in Fig. 6

Bifurcation Bifurcation parameter value Unstable eigenvalues E∗ value

Fold vmin
M = 0.017416 0 to 1 0.1109

Hopf vmin
M = 0.016193, period = 36.5348 1 to 3 0.1505

Hopf vmin
M = 0.017234, period = 12.8954 0 to 2 0.9090

stable. As vmin
M is decreased there is a fold bifurcation at vmin

M = 0.0174 giving rise to
a pair of additional steady states, one of which is stable. Therefore there is bistability
between steady states for the repressible model with τM state-dependent. However,
the bistability region is very narrow as at vmin

M = 0.0172 there is a Hopf bifurcation
from one of the steady states giving rise to a stable periodic orbit. Consequently, for
vmin
M < 0.0172 there is bistability between a steady state and a limit cycle.
There is another Hopf bifurcation at vmin

M = 0.0162 that gives rise to an unsta-
ble limit cycle. Unstable periodic orbits are unlikely to be detected via numerical
simulation, but it is possible to compute and follow the unstable periodic orbits in
DDE-BIFTOOL for vmin

M < 0.0162 as shown in Fig. 6. This Hopf bifurcation results
in the coexistence of a stable steady state, two unstable steady states, a stable limit
cycle and an unstable limit cycle.

Figure 7a shows these coexisting objects at vmin
M = 0.01 in a projection of phase

spaceonto theM–E plane. SinceDDEsdefine infinite dimensional dynamical systems,
low dimensional projections of phase space are often used to visualise dynamics, but
the projection will, in general, not be one-to-one. Therefore some orbits may appear
to intersect in the projection, even though that is impossible in phase space due to
uniqueness of solutions. As an illustration of the information that is lost in projection
consider the stable limit cycle at vmin

M which is shown over one period in Fig. 7b, but
is represented by the closed green curve in Fig. 7a and by just two points in Fig. 6.

Figure 8 shows the evolution of the stable and unstable limit cycles generated in the
Hopf bifurcations as vmin

M decreases. Illustrated are the E component of the limit cycle
for different values of vmin

M as well as the transcription velocity vM (E(t)) and the delay
τM as functions of t on the periodic solution. Comparing the two columns of Fig. 8
we see that the stable limit cycles remain fairly sinusoidal over the parameter range,
while the unstable limit cycles have larger period than the stable ones and also larger
ratios between the maximum and minimum values of the time-dependent components
shown.

Homoclinic bifurcation

Now we change two parameter values from the previous example and consider the
repressible model (4.1) with parameter values in Table 2 except for n = 15 and
vmax
M = 1. We again take vmin

M as the bifurcation parameter.
When vmin

M = vmax
M = 1 both delays τM and τI are constant with τM = τI = 1.

In this case the constant delay repressible model has an unstable steady state and
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Fig. 9 Bifurcation diagram of the model (4.1) for a repressible system with constant τI . Parameter values
are as in Table 2 except n = 15, vmax

M = 1 and vmin
M . Line specifications can be found in Fig. 6

Table 4 Steady state bifurcations seen in Fig. 9

Bifurcation Bifurcation parameter value Unstable eigenvalues E∗ value

Fold vmin
M = 0.019610 0 to 1 0.1546

Hopf vmin
M = 0.017963, period = 31.4290 1 to 3 0.2116

a globally stable limit cycle. This limit cycle can be found by simulating the DDE
system (as described in Sect. 3.3) using ddesd and then continuing the solution using
DDE-BIFTOOL (see Sect. 3.2).

When the parameter value vmin
M is decreased the delay τM becomes state-dependent

and the amplitude of the stable periodic orbit gradually increases as shown in the
bifurcation diagram in Fig. 9. Bifurcations are listed in Table 4. Similar to the previ-
ous example there is a fold bifurcation when vmin

M is very small which leads to two
additional steady states, one of which is stable. Thus in this example we obtain two
unstable steady states which co-exist with a single stable steady state. There is also
an unstable limit cycle generated by a Hopf bifurcation, also similar to the previous
example. We are not able to find stable limit-cycles that co-exist with the stable steady
state.

This example differs from the previous example in the behaviour of the stable limit
cycle. We are able to find the limit cycle only for vmin

M ≥ 0.0197 with the period
increasing dramatically as vmin

M → 0.0197 as shown in Fig. 10a, which suggests that a
homoclinic bifurcation may occur. For vmin

M = 0.03 the stable limit cycle is shown in
Fig. 10b, and appears to behave like a relaxation oscillator with (M(t), I (t), E(t)) ≈
(0, 0, 0) for much of the time, with one burst of production each period. This periodic
solution may have an interesting biological interpretation (see Sect. 5). Namely, the
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(a)

(c)

(b)

(d)

Fig. 10 a The period of the stable periodic orbit (shown in Fig. 9) grows dramatically as vmin
M decreases.

b Periodic orbit at vmin
M = 0.03. c Projection of the phase space dynamics into the M–E plane at vmin

M =
0.0197. The open square marks the steady state (M∗, E∗) at the fold bifurcation. d Periodic orbit at
vmin
M = 0.0197

burst of transcription is followed in short succession by burst of protein production,
and this protein represses the initiation of mRNA transcription for a majority of the
period. Only when this repression is released, a burst of transcription follows.

The last limit cycle that we are able to compute for vmin
M = 0.0197 is shown in

Fig. 10c, d. If there is a homoclinic orbit then the limit cycle would have to approach
a saddle-like steady state. However, in the phase space plot in panel (c), the periodic
orbit is always far from the only steady state (denoted by the solid square) that exists
for vmin

M = 0.0197. On the other hand, we do observe that the orbit does pass through
the region of phase space containing the ‘ghost’ of the saddle steady state destroyed
in the fold bifurcation at vmin

M = 0.01961. Panel (d) also shows the solution close to
this ghost steady state for t ∈ (20, 180) which is for most of the period.

In this example it seems that a homoclinic bifurcation occurs very close to the fold
bifurcation where the steady state with saddle stability is destroyed. This suggests that
our parameter set is close to a higher co-dimension bifurcation where the homoclinic
and saddle bifurcations coincide. We investigate this further in the next example.
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(a) (b)

Fig. 11 Bifurcation diagram of the model (4.1) for a repressible system with constant τI . Parameter values
are as in Table 2 except m = n = 15, vmax

M = 1 and vmin
M . a Line specifications can be found in Fig. 6. b

The same as a except the stable and unstable periodic orbits are represented as a solid red and blue dashed
curve respectively using the 1-norm (4.2) of the periodic solution (color figure online)

Table 5 Bifurcation information associated with Fig. 11

Bifurcation Bifurcation parameter value Unstable eigenvalues E∗ value

Hopf vmin
M = 0.072792, period = 54.7357 0 to 2 0.6885

Fold vmin
M = 0.076976 2 to 1 0.7548

Hopf vmin
M = 0.050745 1 to 3 0.8711

Fold vmin
M = 0.047485 3 to 4 0.8871

Hopf vmin
M = 0.067602 4 to 2 0.9116

Zero-Hopf bifurcation and 3DL transition

Next we change a single parameter value from the example shown in Figs. 9 and 10
to consider the model (4.1) in the repressible case with the Hill coefficient in the
transcription velocity m = 15 (in both the previous examples we took m = 3). All
the other parameter values remain the same as in the previous example, so n = 15,
vmax
M = 1 and the rest of the parameters as defined Table 2. The resulting bifurcation

diagram is shown in Fig. 11, and the bifurcations are listed in Table 5.
There are several significant differences between the bifurcation diagram in Fig.11

and the previous case in Fig. 9. Considering first just the steady states, we see that
there is an additional fold bifurcation and that all the steady states now lie on a sin-
gle continuous branch of steady states with two fold bifurcations. As in the previous
example there is a single segment of stable steady states, but it loses stability in a
subcritical Hopf bifurcation at vmin

M = 0.072792 whereas in the previous example the
stable steady state was destroyed in a fold bifurcation. Comparing the insets in Figs. 9
and 11 we see that the Hopf and the fold bifurcation both occur in each example but,
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(a)

(c)

(b)

(d)

Fig. 12 a, b Stable, and, c, d unstable branches of periodic orbits from the bifurcation diagram in Fig. 11

importantly, their order on the branch is reversed. Therefore there must be an inter-
mediate value of m ∈ (3, 15) where the two bifurcations will coincide in a so-called
zero-Hopf or fold-Hopf bifurcation. The codimension-two zero-Hopf bifurcation is
known to generate homoclinic orbits and bifurcations (Kuznetsov 2004), which is
further evidence for the existence of homoclinic orbits in the state-dependent delay
operon model (4.1).

Consideration of the periodic orbits shown in Fig. 11 provides further evidence sup-
porting existence of homoclinic orbits. While we could imagine that the two branches
of periodic orbits shown in Fig. 11a might join up to form one continuous branch that
is not what happens. A different representation of the periodic solutions on the bifur-
cation diagram is appropriate when considering periodic orbits close to homoclinic.
In Fig. 11a the periodic orbits are represented by two curves, representing their ampli-
tude. Figure11b shows exactly the same bifurcation diagram, except that a periodic
orbit of period T is now represented by the 1-norm of its E(t) component:

‖ · ‖1 = 1

T

∫ T

0
E(t)dt (4.2)

This representation of periodic orbits is useful because the 1-norm of a periodic orbit
approaches the value of E∗ as a periodic orbit approaches either a Hopf bifurcation
or a homoclinic bifurcation at the steady state (M∗, I ∗, E∗). In Fig. 11b the stable
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(a)

(c)

(b)

(d)

Fig. 13 Stable periodic orbit for repressible system (4.1) with vmin
M = 0.071577, vmax

M = 1, m = n = 15,
and other parameters as in Table 2. a The unstable periodic solution. b The part of the periodic orbit very
close to the middle steady state. c A projection of the phase-space dynamics into the M–E plane showing
the unstable periodic solution and steady states (colour coded according to the dimension of their unstable
manifold). d Detail of the phase space showing periodic orbit passing very close to middle steady state.
Also shown is the projection of the linear unstable manifold (in dashed blue) and the leading linear stable
manifold (in dashed green) of this steady state (color figure online)

and unstable periodic orbits are each represented by a single curve using (4.2), and
in the inset the periodic solution branches can be seen to both be approaching the
intermediate steady state.

Figure 12 shows the evolution of both the amplitude and period of the branch of
stable and branch of unstable periodic orbits. The rapidly increasing period at the end
of each branch suggests that both terminate in homoclinic bifurcations. This can be
seen even more clearly by viewing the periodic orbits in phase space.

Figure 13 shows the last limit cycle that we are able to compute on the branch of
stable periodic orbits with vmin

M = 0.071577. Panel (a) shows all three components of
the periodic orbit as well as the unstable steady state from the middle segment of the
branch of steady states. This shows that the system spends most of the time close to
this steady state with just a short burst of production once per period.

Recall that DDEs define infinite dimensional dynamical systemswhose phase space
consists of function segments defined over a time interval equal to the largest delay.
It follows that for two solutions to be close in phase space, it is necessary that they
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are close in coordinate space for a time interval longer than the largest delay. With the
parameters in this example τI = 1 and at the steady state E∗ = 0.81 and τM = 9.155.
Thus the largest delay is close to 10. Figure13b shows a zoomed view on the part
of the periodic orbit closest to the steady state just before the burst. This shows that
all three components of the periodic solution agree with the steady state values to
three significant digits over a time interval several times larger than the delay, thus
confirming that the periodic orbit passes close to the steady state in phase space.

Figure 13c shows a projection of the phase space dynamics on to the M–E plane
showing the stable periodic orbit and the three coexisting steady states at vmin

M =
0.071577. The periodic orbit appears to pass close to all three steady states, but that is
an illusion created partly by the projection from infinite dimensions to R

2 and partly
by the scale which is very compact to show the large amplitude bursting periodic orbit.
Also note that one of the steady states is asymptotically stable and so it is impossible
for a periodic orbit to lie in its basin of attraction.

Figure 13d shows that the periodic orbit passes close to just the middle steady
state, and also shows the behaviour of the solution near to this steady state. The
leading characteristic values of the intermediate unstable steady state (M∗, I ∗, E∗) =
(0.8515, 0.8100, 0.8100) at vmin

M = 0.071577, where stable periodic orbits cease to
exist, are obtained from (2.48) as

λ1 = 0.49051,

λ2 = −0.017729,

λ3,4 = −0.018217 ± 0.70175i .

Following the theory of Sect. 2.7 this leads to linearized solutions close to the steady
state (M∗, I ∗, E∗) of the form

⎛
⎝ M(t)

I (t)
E(t)

⎞
⎠ =

⎛
⎝ M∗

I ∗
E∗

⎞
⎠ + Ceλt

⎛
⎝EM

EI
EE

⎞
⎠

where the constant eigenvector (EM , EI , EE ) lies in the nullspace of the matrix A(λ)

defined in (2.47). The corresponding eigenvectors for λ1 and λ2 are computed as

v1 =
⎛
⎝ 1
0.39077
0.26222

⎞
⎠ , v2 =

⎛
⎝ 1
0.98572
1.0035

⎞
⎠ .

Since λ1 is the only characteristic value with positive real part the linear unstable
manifold of the steady state is defined by eλ1tv1. When projecting phase space into
the M–E plane this line has slope EE/EM . The stable manifold of the steady state is
infinite-dimensional and so cannot be represented in the M–E plane, but the dominant
part of the linear stable manifold (with slowest decay) is given by eλ2tv2.

The projections of both the dominant part of the linear stablemanifold and the linear
unstable manifold are shown in Fig. 13d. The stable periodic orbit is seen to approach
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(a)

(c)

(b)

(d)

Fig. 14 Unstable periodic orbit for repressible system (4.1)with vmin
M = 0.071622, and the other parameters

the same as in Fig. 13. Panels a to d as described in caption to Fig. 13

(a) (b) (c)

Fig. 15 Configuration of leading negative real and complex-conjugate eigenvalues as vmin
M varies. A 3-

dimensional transition (Kalia et al. 2019) occurs on the middle branch of unstable steady states as in Fig. 11

the steady state along a direction that is tangential to the dominant stable manifold
before leaving along a direction that is tangential to the unstable manifold. Since the
orbit passes very close to the steady state, the passage through the neighbourhood of
the steady state takes a very long time. This results in the large period of the orbit.

Figure 14 is similar to Fig. 13 but shows the last periodic orbit that we are able to
compute on the branch of unstable periodic orbits with vmin

M = 0.071622. Comparing
the two figures we see that the unstable periodic orbit is quite different to the stable
orbit. Figure14a, b show that again the periodic orbit is close to the intermediate
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steady state for most of the period except for a short burst (or antiburst) of depressed
production.

The characteristic values and corresponding eigenvectors can also be computed for
the unstable periodic orbit, but the value of vmin

M only differs in the third significant
digit between the two examples. The characteristic values and eigenvectors agree with
those above to the third significant digit. The phase space plots in Fig. 14c, d again show
a periodic orbit close to homoclinic approaching the steady state near the dominant
linear stable manifold and leaving tangential to the linear unstable manifold.

There are two significant differences from the stable periodic orbit. Firstly, the
unstable periodic orbit leaves the neighbourhood of the steady state in the opposite
direction to the stable periodic orbit, which results in the production being decreased
rather than increased during the burst. Secondly it is apparent in Fig. 14b, d that the
periodic orbit is not tangential to the dominant part of the linear stable manifiold but
rather oscillates about it. This seems to arise because there is only a small difference in
the real parts between λ2 and the next characteristic values which occur as a complex
conjugate pair λ3,4. Furthermore, as shown in Fig. 15, for a very nearby value of
vmin
M , the leading negative real eigenvalue λ2 and complex-conjugate eigenvalues λ3,4

exchange order. Such a transition in a system also having one real positive eigenvalue
is called a 3-dimensional or 3DL transition and is associated with rich Shilnikov
homoclinic bifurcation structures (Kalia et al. 2019).

4.2 Inducible operon with one state-dependent delay

We now turn to consider the Goodwin model (4.1) with one-state dependent delay in
the case of an inducible operon with functions defined in Table 1. Recall that with both
delays constant (and also in the absence of delays) an inducible system with n > 1
can have either a single globally stable steady state, or there can be two locally stable
steady states and an unstable intermediate steady state. There are no other possibilities
when using the functions in Table 1 (Yildirim et al. 2004).

We will show that an inducible operon with state-dependent transcription delay
τM can support stable and unstable periodic orbits and that these can be generated in
supercritical or subcritical Hopf bifurcations, or in fold bifurcations of periodic orbits.

Inducible supercritical hopf bifurcation

We begin by considering the inducible operon model (4.1) with parameters defined
in Table 6. With this parameter set and vmin

M = vmax
M = 1, both delays are constant

and the model has a single globally stable steady state. For vmin
M < 1 the transcription

delay becomes state-dependent and several bifurcations occur, as shown in Fig. 16 and
listed in Table 7.

As vmin
M is decreased there is first a fold bifurcation which creates two additional

steady states. This results in bistability between two stable steady states for vmin
M ∈

(0.08, 0.354) separated by an intermediate unstable steady state. This configuration
is well known for inducible operons with constant delays, but here the bifurcation to
three steady states is induced by varying the state-dependency of the delay τM .
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Fig. 16 Bifurcation diagram of the model (4.1) for an inducible system with parameter values as defined
in Table 6 and vmin

M treated as a continuation/bifurcation parameter. Line specifications can be found in

Fig. 6. The amplitudes of E-component of periodic solutionsR → R
3 are shown. The vertical dotted line at

vmin
M = 0 separates the biologically realistic case vmin

M > 0 from the biologically unrealistic case vmin
M < 0

(see text). Bifurcations occurring for vmin
M > 0 are detailed in Table 7

(a) (b)

Fig. 17 Inducible system (4.1) with parameters as defined in Table 6 showing the orbits from Fig. 16 at
vmin
M = 0.01. a A projection of the phase space dynamics into the M–E plane showing periodic orbits

represented by closed curves, and steady states by squares (whose colour indicates the number of unstable
eigenvalues as in Fig. 13). b The three components of the stable periodic solution

Reducing vmin
M further, an unexpected event occurs; the upper steady state loses

stability in a supercritical Hopf bifurcation which creates a stable periodic orbit which
exists for vmin

M < 0.08. This stable periodic orbit coexists with one stable and two
unstable steady states. Thus we have an interval of bistability between a limit cycle
and a steady state for an inducible operon.

The stable periodic orbit and a projection of phase space into the M–E plane
are shown in Fig. 17 for vmin

M = 0.01. We suspect that the periodic orbit exists for
all vmin

M > 0, but the numerical discretization of the threshold integral described in
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Table 6 Parameters for
inducible operon example of
Fig. 16

Quantity Value

μ 0.05

βM 1

βI 1.8

βE 1.5

γ̄M 1

γ̄I 0.97

γ̄E 1

K 4

K1 1

n 4

m 2

aM 1

vmax
M 0.2

E50 1

τI 0.5

Table 7 Bifurcation information associated with Fig. 16

Bifurcation Bifurcation parameter value Unstable eigenvalues E∗ value

Hopf vmin
M = 0.080031, period = 6.2271 0 to 2 1.8571

Fold vmin
M = 0.35409 1 to 0 0.9052

Those bifurcations occurring for vmin
M < 0 are not displayed due to lack of physiological meaning

Sect. 3.2 requires vmin
M bounded away for zero, and we only compute periodic orbits

for vmin
M ≥ 0.01.

The linearization correction method of Sect. 3.1 avoids discretizing the integral and
is applicable even when vmin

M < 0. Though vmin
M < 0 leads to negative transcrip-

tion velocities which is not physiological, this can be computationally useful. This is
demonstrated inFig. 16where continuation throughnegative values ofvmin

M reveals that
the different branches of steady states are joined at a fold bifurcation with vmin

M < 0.
This allows computation of all the physiological steady states by continuation of a
single branch.

Inducible subcritical hopf bifurcation

We now change just one parameter value from the previous example and consider the
inducible state-dependent transcription delay operon model (4.1) with parameters as
in Table 6, except for the Hill coefficient in the transcription velocity function which
we now set to m = 4.

Comparing Fig. 18 with the previous example in Fig. 16 we see that changing the
value of m from 2 to 4 results in two important changes in the bifurcations. Firstly, in
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Fig. 18 Bifurcation diagram of the inducible operon model (4.1) with m = 4 and all other parameters as
defined in Table 6. Bifurcations are listed in Table 8

Table 8 Steady state and Periodic Orbit Bifurcation information for the Example shown in Fig. 18

Bifurcation Bifurcation parameter value Unstable eigenvalues E∗ value

Hopf vmin
M = 0.19603, period = 6.4488 0 to 2 1.7609

Fold vmin
M = 0.063903 2 to 3 1.2317

Hopf vmin
M = 0.12279, period = 4.7796 3 to 1 1.0759

Fold vmin
M = 0.28543 1 to 0 0.9249

Fold of periodic orbits vmin
M = 0.20812, period = 5.8831 1 to 0 –

Fig. 18 both the fold bifurcations on the branch of steady states now occur for positive
values of vmin

M . Consequently for vmin
M ∈ (0.064, 0.285) there are three co-existing

steady states, while for both larger and smaller values of vmin
M > 0 there is a unique

stable steady state.
The second important difference between the two examples is that the Hopf bifur-

cation on the upper segment of steady states at vmin
M = 0.196 in Fig. 18 is subcritical

resulting in a branch of unstable periodic orbits. The change in the criticality of this
Hopf bifurcation between the two examples implies that for some intermediate value
m ∈ (2, 4) there is a Bautin bifurcation at which the criticality switches. Bautin bifur-
cations are well studied (Kuznetsov 2004) and in a two-parameter unfolding generate
a branch of fold bifurcations of periodic orbits.

The branch of unstable periodic orbits emanating from the subcritical Hopf
bifurcation terminates in the fold bifurcation of periodic orbits seen in Fig. 18 at
vmin
M = 0.20812, at which the periodic orbit becomes stable. As a consequence of

the subcritical Hopf bifurcation and fold of periodic orbits there are stable periodic
orbits for vmin

M < 0.208 (to the left of the fold bifurcation of periodic orbits) and
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(a) (b)

(c) (d)

(e) (f)

Fig. 19 Stable and unstable periodic orbits on the branch of periodic orbits emanating from the subcritical
Hopf bifurcation in Fig. 18. The colormap indicates the value of the continuation parameter vmin

M . The
periodic orbits are shown in a amplitude of E−component, b period, c profile in E , d profile in M, e delay
τM . Panel f shows a projection of phase space onto the M–E plane when vmin

M = 0.2 and tristability occurs.
Periodic orbits are represented by closed curves, and steady states by squares (whose colour indicates the
number of unstable eigenvalues as in Fig. 13) (color figure online)

co-existing stable steady states for vmin
M ∈ (0.196, 285) (to the right of the Hopf bifur-

cation). This creates a small parameter interval of tristability for vmin
M ∈ (0.196, 0.208)

between the Hopf bifurcation and fold of periodic orbits bifurcation for which a stable
periodic orbit coexists with two stable steady states. Figure19f shows the dynamics
when vmin

M = 0.2 in the tristability region, in a projection of phase space onto the
M–E plane. The branch of periodic orbits emanating from the Hopf bifurcation at
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Fig. 20 Bifurcation diagram of the model (4.1) for an inducible system with parameters defined in Table 2
except vmin

M which is taken as the bifurcation parameter. Red circles denote the five co-existing steady states

at vmin
M = 0.05. All other lines and symbols are defined as in Figs. 6 and 9 (color figure online)

vmin
M = 0.19603 crosses vmin

M = 0.2 twice and both the stable and unstable periodic
orbit are shown in the phase portrait.

The other panels of Fig. 19 show the evolution of the periodic orbit from the Hopf
bifurcation on this branch with separate colour maps for the stable and unstable legs
of the branch.

For vmin
M ∈ (0.20812, 0.28543) there is bistability between two steady states, and

for vmin
M < 0.19603 there is bistability between a periodic orbit and a steady state.

There is also a second Hopf bifurcation at vmin
M = 0.1228 which generates small

amplitude unstable periodic orbits shown on the bifurcation diagram in Fig. 18.

Fold bifurcation of periodic orbits

For our final example of inducible operon dynamics we return to the example from
Sect. 2.6 and consider the one state-dependent delay system (4.1) with the inducible
parameter set defined in Table 2.

The bifurcation diagram in Fig. 20 extends the diagram previously shown in Fig. 5b
to show steady state solutions and periodic orbits along with their stability, as well as
Hopf and fold bifurcations. The bifurcations are listed in Table 9.

We already saw in Sect. 2.6 that when vmin
M = vmax

M and thus both delays are
constant, there are three co-existing steady states. Two of these are stable and the
intermediate steady state is unstable. When vmin

M is reduced the delay τM becomes
state-dependent and a number of bifurcations may occur. The lower stable steady state
remains stable and does not undergo any bifurcations. The intermediate steady state
remains unstable for all vmin

M > 0 but does undergo a Hopf bifurcation. The upper
branch of steady states loses stability in a fold bifurcation. There is also another fold
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Table 9 Bifurcation information associated with Fig. 20

Bifurcation Bifurcation parameter value Unstable eigenvalues E∗ value

Hopf vmin
M = 0.09624, period = 4.1286 1 to 3 0.9270

Fold vmin
M = 0.055205 6 to 7 1.5229

Hopf vmin
M = 0.051247, period = 7.1786 7 to 5 1.8245

Hopf vmin
M = 0.049356, period = 11.4903 5 to 3 2.0162

Hopf vmin
M = 0.048868, period = 23.539 3 to 1 2.1697

Fold vmin
M = 0.048865 1 to 0 2.1830

Fold of periodic orbits vmin
M = 0.1597, period = 7.6675 1 to 0 –

bifurcation and several Hopf bifurcations on this branch. Considering all the branches
together theremay be up to five co-existing steady states, but as the bifurcation diagram
shows, there are only ever one or two co-existing stable steady states.

The fold bifurcation at which the steady state loses stability (at vmin
M = 0.048865) is

immediately followed by a Hopf bifurcation (at vmin
M = 0.048868), indicating that this

inducible operon is close to a zero-Hopf bifurcation (in Sect. 4.1 we inferred existence
of a zero-Hopf bifurcation for a repressible operon).

The branch of periodic orbits emanating from the Hopf bifurcation is shown in
Fig. 21. The bifurcation is a supercritical Hopf bifurcation from an unstable steady
state, which gives rise to a branch of unstable periodic orbits bifurcating to the right.
The amplitude and period of these orbits are shown in Fig. 21a, b. Interestingly,moving
along the branch away from the Hopf bifurcation the period decreases as the amplitude
increases until there is a fold bifurcation of periodic orbits at vmin

M = 0.1597 creating a
segment of stable periodic orbits on thebranch.Theperiodic orbit at the fold bifurcation
is shown in Fig. 21c, d. For vmin

M > 0.1597 there is no longer a periodic orbit, but it
is still possible to have transient oscillatory dynamics. Figure21e, f show an example
of this for vmin

M > 0.1605, where an initial function close to the unstable intermediate
steady state generates a solution with large oscillations for 200 time units before the
solution converges to the stable steady state. When the phase space projection of this
solution in Fig. 21f is compared to the periodic orbit at the fold of periodic orbits (in
Fig. 21d) it is clear that we are seeing a ghost of the periodic orbit.

For vmin
M ∈ (0.048865, 0.1597) the branch of stable periodic orbits coexists with

two stable steady states, creating another example of tristability of solutions. The stable
periodic orbit at the left end of the branch with vmin

M = 0.0001 is shown in Fig. 22.
The transcription velocity is essentially zero for nearly all of the period, with just

a short burst of transcription when E is close to its minimum. This sudden release of
mRNA gives the M component of the solution the characteristic form of a relaxation
oscillator, even though the other components of the solution are smooth.

The variation of the delay as a function of time seen in Fig. 22d shows that the
delay is very far from being constant. The delay is increasing linearly on the segment
of the orbit for which the transcription velocity is zero, and so no transcripts are
being completed. During this time the effector E concentration is high and thus the
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(a) (b)

(c) (d)

(e) (f)

Fig. 21 a Amplitude and b Period for the branch of periodic orbits from Fig. 9. c The solution components
and d the projection into phase space of the periodic orbit at the fold bifurcation vmin

M = 0.1597. e E

component and f phase space projection for a simulation with vmin
M = 0.1605 and initial function close to

the intermediate steady state

transcription initiation rate f (E) is high; at the same time though, the delay τ(E) is
also increasing. Only when the concentration of the effector E drops sufficiently, does
transcription proceed during the last quarter of the period.

Finally, we remark that it is highly delicate to numerically compute a branch of peri-
odic orbits emanating from a Hopf bifurcation close to a co-dimension two zero-Hopf
bifurcation in the system (4.1) with the threshold integral discretized as in Sect. 3.2.
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(a) (b)

(c) (d)

Fig. 22 Stable periodic orbit at vmin
M = 0.0001 seen in Fig. 20. The periodic orbit is shown in a solution

in all three components over one period, b projection of phase space into M–E plane, c velocity vM (E(t))
and d delay τM (t)

Table 10 Bifurcation information associated with Fig. 23a

Bifurcation Bifurcation parameter value Unstable eigenvalues E∗ value

Fold vmin
M = 0.017832 1 to 0 0.1130

Hopf vmin
M = 0.014483, period = 34.8874 3 to 1 0.1768

For this reason we were not able to compute this branch starting from the Hopf bifur-
cation. Instead, noting that for small values of vmin

M there are three steady states, but
only the lower one is stable, we performed a numerical simulation of dynamics as
described in Sect. 3.3 starting close to the upper unstable steady state. This simula-
tion converged to the stable periodic orbit. This periodic orbit was then continued in
DDE-BIFTOOL to find the fold bifurcation of periodic orbits and follow the branch
of unstable periodic orbits back to the Hopf bifurcation.

4.3 Two state-dependent delays

We briefly return to the model (2.15)–(2.19) with two state-dependent delays. Fig-
ure23 shows the stability of the steady states and also the steady state bifurcations
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(a)

(b)

Fig. 23 Bifurcation diagram of the model (2.15)–(2.19) with τM and τI both state-dependent. aRepressible
case with same parameters as in Fig. 5c. b Inducible case with same parameters as in Fig. 5d. Symbols and
lines are as defined in Fig. 6, except for the red circles which denote the co-existing steady states shown in
Fig. 3c, d (color figure online)

for the two examples first considered in Fig. 5c, d in Sect. 2.6. The principal bifurca-
tions are listed in Tables 10 and 11. For the inducible case our numerical code found
many pairs of complex conjugate characteristic values crossing the imaginary axis
indicating the possibility of many Hopf bifurcations. In Table 11 we only list with
Hopf bifurcations that generate steady states with three or fewer unstable eigenvalues,
as Hopf bifurcations with more unstable directions will never change the stability of
the stability of the steady state and will only generate periodic orbits with multiple
unstable Floquet multipliers.
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Table 11 Bifurcation information associated with Fig. 23b

Bifurcation Bifurcation parameter value Unstable eigenvalues E∗ value

Hopf vmin
M = 0.096224, period = 4.1287 1 to 3 0.9270

Fold vmin
M = 0.055205 6 to 7 1.5230

Fold vmin
M = 0.049743 15 to 14 1.9858

Fold vmin
M = 0.05006 12 to 13 2.0558

Hopf vmin
M = 0.049879, period = 23.5795 3 to 1 2.1751

Fold vmin
M = 0.049877 1 to 0 2.1841

Compared to the examples from the preceding sections we see that allowing the
seconddelay to also be state-dependent can result in additional co-existing steady states
(consistent with (2.32)), however these extra steady states are unstable and there do
not seem to be additional stable invariant objects. In Fig. 23a there are four unstable
and one stable equilibrium, suggesting existence of one or more stable periodic orbits.
In Fig. 23b for low vmin there are two unstable and one stable equilibrium, again
suggesting existence of a stable periodic orbit.

5 Discussion and summary

This paper studies the Goodwin model of operon dynamics in the presence of state
dependent delays in the processes of transcription and translation. The dependence
of delays on the state of the system was considered previously (Monk 2003; Verdugo
and Rand 2007; Ahmed and Verriest 2017; Wang and Pei 2021) and justified by the
existence of transportation delays of mRNA export through the nuclear membrane.
We argue that the availability of building blocks for mRNA and protein synthesis,
as well as traffic jams of transcribing polymerases and translating ribosomes, affect
the velocity of these processes and depend on the state of the cell. In contrast with
membrane transportation delays, these effects may influence also prokaryotic operons.

The focus of the paper is on exploring potential operon dynamics in the presence of
state dependent delays both in transcription and translation and contrasting its richness
with the dynamics of constant delay systems. We consider two different situations of
repressible and inducible operon.

In the repressible case with state dependent transcriptional delay τM and constant
translational delay τI we find bistability either between two steady states or a steady
state and a stable periodic orbit (Figs. 5, 6, 11). This periodic orbit has the characteristic
of a relaxation oscillator, where the velocity of transcription is very low for a majority
of the period, only to produce a brief ’spike’ of transcriptionwhich results in subsequent
spikes of the translated protein and the effector protein, Fig. 10.

We also found compelling evidence for the existence of complicated dynamics in
the repressible case. In particular, by tracing the trajectory of the stable periodic orbit
just before it disappears, we found that it passes very close to a saddle point which
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it approaches along the dominant linearized stable direction and leaves along the
one-dimensional unstable manifold (Fig. 13). An unstable periodic orbit behaviours
very similarly at a near identical paranmeter value, except it leaves along the one-
dimensional unstable manifold in the opposite direction (Fig. 14). This suggests that
these periodic orbits disappear in a homoclinic bifurcation. Furthermore, lineariza-
tion at the saddle point at nearby parameters shows that the dominant stable real
eigenvalue becomes a dominant complex pair (Fig. 15) whose magnitude satisfies the
assumptions guaranteeing existence of Shilnikov type chaotic set (Shilnikov 1965;
Kuznetsov 2004). We found two parameter values near each other such that at one
the stable periodic orbit loses stability through a Hopf bifurcation and at the other at
a fold bifurcation and inferred that at some intermediate parameter value those two
bifurcations will coincide in a codimension-two zero-Hopf bifurcation.

When both τM and τI are variable we show that the system can admit 5 steady
states, Figs. 5c and 23a. Further exploration of the range of dynamics in this case is
left for future studies.

In the inducible case when the delays are constant we can have either a single steady
state or bistability between two steady states. The dynamics are richer in presence of
variable delays.

We start with two situations when τM and τI are constant: either (1) there is a unique
steady state or (2) there are 3 steady states, two of which are stable. We then allow τM
to vary while τI remains constant. In case (1) we find coexistence of the steady state
with a stable periodic orbit, or another steady state, Fig. 16; and in case (2) we find
there are an additional 2 equilibria for a total of 5. This results in tristability between
two equilibria and a period orbit (Figs. 18 and 20). The stable periodic orbit in (1) has
features of a relaxation oscillator; the velocity of transcription remains close to zero
for the majority of the period, only to show a rapid increase in a short burst Figs. 22.

When both τM and τI are variable the system can have up to 7 steady states, Figs. 5d
and 23b. Further exploration of the dynamics in this case is again left for future studies.

The presence of relaxation type oscillations in both inducible and repressible oper-
ons provides an intriguing source of pulse generation on a subcellular level. Among
several periodic behaviors that have been experimentally observed we focus on tran-
scriptional bursting (Chong et al. 2014; Lenstra et al. 2016; Tunnacliffe and Chubb
2020). The production of mRNA from some genes does not produce a steady stream
of mRNAs, but rather proceeds in bursts of production interspersed by periods of
quiescence. The most popular model that describes this phenomena is the telegraph
model (Peccoud and Ycart 1995) where, during the periods when the transcription fac-
tor (TF) binds to promoter RNA, polymerases repeatedly initiate transcription, while
when transcription factor is off the promoter, the initiation stops. While the data sup-
ports temporal coupling between TF binding and initiation of transcriptional bursts,
the durations of the binding times and bursts are not equal. For instance, in yeast, an
average TF (GAL4) binding time of 34s initiates a mean burst duration of around
2.5min (Tunnacliffe and Chubb 2020).

We propose that the bursting periodic solutions that we observed in this paper
may be one of the mechanisms supporting or enhancing transcriptional bursting. This
may be in addition to other proposedmechanisms related to DNA supercoiling (Chong

123



    2 Page 52 of 74 T. Gedeon et al.

et al. 2014), chromatin opening, scaffold presence at initiation site or pulses of nuclear
localization (Lenstra et al. 2016).
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Appendices

A The semiflow of differentiable solution operators generated by the
system (2.15)–(2.17) and (2.18)–(2.19)

For delay differential equations a familiar state space is given by continuous functions
on a compact interval, see e.g.Hale andLunel (1993);Diekmannet al. (1995). In case of
variable, state-dependent delays, however, there is a specific lack of smoothness which
means that in general the initial value problem is not well-posed for only continuous
initial data, not to speak of, say, smoothness of solutions with respect to initial data
and linearization Walther (2003); Hartung et al. (2006).

In this section we reformulate the system (2.15)–(2.19) as a delay differential equa-
tion

x ′(t) = G(xt ) (A.1)

with a vector-valued functional G : C1
3 → R

3 on the Banach space C1
3 =

C1([−r , 0],R3) of continuously differentiable maps [−r , 0] → R
3, for some r > 0

which is to be determined. The norm on C1
3 is given by

|φ|1 = max−r≤t≤0
|φ(t)| + max−r≤t≤0

|φ′(t)|,

with a chosen norm on R
3. The argument xt ∈ C1

3 in (A.1) is defined for t ∈ R with
[t−r , t] in the domain of the solution x and given by xt (s) = x(t+s) for−r ≤ s ≤ 0.
In other words, xt is the restriction of x to [t − r , t] shifted to the interval [−r , 0].

In the sequel shifted segments yt of maps y from an interval I ⊂ R into a set M are
defined accordingly: For r > 0 and t ∈ Rwith [t−r , t] ⊂ I themap yt : [−r , 0] → M
is given by yt (s) = y(t + s), −r ≤ s ≤ 0.

In addition to the space C1
3 we also need the Banach space C3 ⊃ C1

3 of continuous
maps [−r , 0] → R

3, with the norm given by

|φ| = max−r≤t≤0
|φ(t)|,

and the Banach spaces C1 and C of scalar functions [−r , 0] → R which are defined
analogously to C1

3 and C3.
We shall verify the hypotheses from Walther (2003, 2004); Hartung et al. (2006)

which guarantee existence, uniqueness, and differentiability with respect to initial data
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of solutions to an initial value problemwhich is associated with (A.1) in a submanifold
of the space C1

3 .
First we rewrite the system (2.15)–(2.19) in a form which is more convenient for

our purpose. Let positive constants

ck and bk for k = 1, 2, 3, a1 and a2, μ

and a continuously differentiable function g : R → R be given, either with

g(0) = 1 and g decreasing on [0,∞) with lim
y→∞ g(y) > 0,

or

0 < g(0) < 1 and g increasing on [0,∞) with lim
y→∞ g(y) = 1.

Let also continuously differentiable functions

vk : R → [vk,min,∞)

with 0 < vk,min be given, for k = 1, 2.
In place of (2.15)–(2.19), we consider the system

x ′
1(t) = c1

v1(x3(t))

v1(x3(t − τ1(t))
e−μτ1(t)g(x3(t − τ1(t))) − b1x1(t), (A.2)

x ′
2(t) = c2

v2(x1(t))

v2(x1(t − τ2(t))
e−μτ2(t)x1(t − τ2(t)) − b2x2(t), (A.3)

x ′
3(t) = c3x2(t) − b3x3(t), (A.4)

a1 =
∫ t

t−τ1(t)
v1(x3(s))ds =

∫ 0

−τ1(t)
v1(x3(t + s))ds, (A.5)

a2 =
∫ t

t−τ2(t)
v2(x1(s))ds =

∫ 0

−τ2(t)
v2(x1(t + s))ds. (A.6)

Assume

r >
ak

vk,min
for k = 1, 2.

Notice that r is an a-priori bound for both delays τk(t), k ∈ {1, 2}. Using segment
notation the equations (A.5)–(A.6) become

a1 =
∫ 0

−τ1(t)
v1(x3,t (s))ds and a2 =

∫ 0

−τ2(t)
v2(x1,t (s))ds
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with segments xk,t ∈ C , k ∈ {1, 3}. More generally, we consider the equations

ak =
∫ 0

−u
vk(φ(s))ds (A.7)

for u ∈ [0,∞) and φ ∈ C , k ∈ {1, 2}. Using positivity of the functions vk and the
Intermediate Value Theorem we infer that for every k ∈ {1, 2} and for every φ ∈ C
there is a uniquely determined solution u = δk(φ) ∈ (0, r) of Eq. (A.7). This yields
maps δk : C → (0, r), k ∈ {1, 2}. The next proposition guarantees that these maps
are continuously differentiable and provides formulae for the derivatives.

Proposition A1 Let a > 0 and vmin > 0 be given with a
vmin

< r , and let v : R →
[vmin,∞) be continuously differentiable. Then the map δ : C → (0, r) given by
δ(φ) = u with

a =
∫ 0

−u
v(φ(s))ds (A.8)

is continuously differentiable with

Dδ(φ)χ = −
∫ 0
−δ(φ)

v′(φ(s))χ(s)ds

v(φ(−δ(φ)))
.

In case φ(s) = ξ for all s ∈ [−r , 0],

δ(φ) = a

v(ξ)
, and Dδ(φ)χ = −v′(ξ)

v(ξ)

∫ 0

−a/v(ξ)

χ(s)ds.

Before giving the proof recall from Walther (2003, p. 47) or Hartung et al. (2006,
p. 466) the elementary facts that the evaluation map

evC : C × [−r , 0] � (χ, u) �→ χ(u) ∈ R.

is continuous (but not locally Lipschitz continuous, let alone differentiable), and that
the restricted evaluation map

ev : C1 × (−r , 0) � (φ, u) �→ φ(u) ∈ R

is continuously differentiable with

D ev(φ, u)(φ̂, û) = D1ev(φ, u)φ̂ + D2ev(φ, u)û = φ̂(u) + φ′(u)û (A.9)

where D1 and D2 denote partial derivatives with respect to the argument in C1 and
in (−r , 0), respectively. For v : R → R continuously differentiable the substitution
operator

V : C � φ �→ v ◦ φ ∈ C
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is continuously differentiable with

(DV (φ)φ̂)(s) = v′(φ(s))φ̂(s) for all φ̂ ∈ C, s ∈ [−r , 0],

see for example Diekmann et al. (1995, Appendix IV, Lemma 1.5).

Proof of Proposition A1 For every φ ∈ C the value u = δ(φ) is the unique solution of
the equation

h(u, φ) = 0

where h : (0, r) × C → R is given by

h(u, φ) = a −
∫ 0

−u
v(φ(s))ds = a − ev(I (V (φ))),−u)

with the continuous linear integration operator

I : C → C1, (Iψ)(t) =
∫ 0

t
ψ(s)ds.

The map h is continuously differentiable with

D1h(u, φ)1 = −v(φ(−u)) < 0

and

D2h(u, φ)χ = −D1ev(I (V (φ)),−u)DI (V (φ))DV (φ)χ

= −(DI (V (φ))DV (φ)χ)(−u)

= −(I (DV (φ)χ))(−u) = −
∫ 0

−u
v′(φ(s))χ(s)ds.

The Implicit Function Theorem applies at every (δ(φ), φ) ∈ (−r , 0) × C and yields
that locally, δ is given by a continuously differentiable map. Differentiation of the
equation h(δ(φ), φ) = 0 gives

Dδ(φ)χ = −D2h(u, φ)χ

D1h(u, φ)1
(for u = δ(φ))

= −
∫ 0
−u v′(φ(s))χ(s)ds

v(φ(−u))
.

In case φ is constant with value ξ ∈ R Eq. (A.8) gives a = δ(φ)v(ξ), and by the
previous formula,
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Dδ(φ)χ = −v′(ξ)

v(ξ)

∫ 0

−a/v(ξ)

χ(s)ds. ��
Using the delay functionals δk : C → (0, r), k ∈ {1, 2} the system (A.2)–(A.6) is

reduced to the system

x ′
1(t) = c1

v1(x3(t))

v1(x3(t − δ1(x3,t )))
e−μδ1(x3,t )g(x3(t − δ1(x3,t ))) − b1x1(t), (A.10)

x ′
2(t) = c2

v2(x1(t))

v2(x1(t − δ2(x1,t )))
e−μδ2(x1,t )x1(t − δ2(x1,t )) − b2x2(t), (A.11)

x ′
3(t) = c3x2(t) − b3x3(t). (A.12)

with segments x3,t ∈ C and x1,t ∈ C . The right hand side of these equations is of the
form GC (xt ) ∈ R

3 with the map GC : C3 → R
3 given by

GC,1(φ) = c1
v1(φ3(0))

v1(evC (φ3,−δ1(φ3)))
e−μδ1(φ3)g(evC (φ3,−δ1(φ3))) − b1φ1(0),

(A.13)

GC,2(φ) = c2
v2(φ1(0))

v2(evC (φ1,−δ2(φ1)))
e−μδ2(φ1)evC (φ1,−δ2(φ1)) − b1φ2(0),

(A.14)

GC,3(φ) = c3φ2(0) − b3φ3(0). (A.15)

We observe that GC is continuous. The restriction G of GC to C1
3 is continuously dif-

ferentiable because, for φ ∈ C1
3 ⊂ C3, we have evC (φ3,−δ1(φ3)) = ev(φ3,−δ1(φ3))

and evC (φ1,−δ2(φ1)) = ev(φ1,−δ2(φ1)). Here ev : C1×(0, r) → R is continuously
differentiable, the maps δ1 and δ2 are continuously differentiable, and the projections
C1
3 → C1 to components as well as the evaluation map ev0 : C � χ �→ χ(0) ∈ R are

linear and continuous.
In order to simplify calculations below we now introduce the continuous maps

EC,31 : C3 → R, EC,31(φ) = evC (φ3,−δ1(φ3)),

and

EC,12 : C3 → R, EC,12(φ) = evC (φ1,−δ2(φ1)),

and the continuously differentiable maps

E31 : C1
3 → R, E31(φ) = ev(φ3,−δ1(φ3)),

and

E12 : C1
3 → R, E12(φ) = ev(φ1,−δ2(φ1)),
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with derivatives at φ ∈ C1 given by

DE31(φ)φ̂ = D1ev(φ3,−δ1(φ3))φ̂3 + D2ev(. . .)D(−δ1)(φ3)φ̂3

= φ̂3(−δ1(φ3)) − φ′
3(−δ1(φ3))Dδ1(φ3)φ̂3,

DE12(φ)φ̂ = D1ev(φ1,−δ2(φ1))φ̂1 + D2ev(. . .)D(−δ2)(φ1)φ̂1

= φ̂1(−δ2(φ1)) − φ′
1(−δ2(φ1))Dδ2(φ1)φ̂1

for all φ̂ ∈ C1
3 . Notice that the right hand sides of these equations make sense also for

arguments χ ∈ C3 instead of φ̂ ∈ C1
3 . Thus they define linear extensions DeE31(φ) :

C3 → R of DE31(φ) : C1
3 → R and DeE12(φ) : C3 → R of DE12(φ) : C1

3 → R.
Using the continuity of themap evC , and the fact that differentiationC1 � φ �→ φ′ ∈ C
is linear and continuous we obtain the next result.

Proposition A2 The maps C1
3 × C3 � (φ, χ) �→ DeE31(φ)χ ∈ R and C1

3 × C3 �
(φ, χ) �→ DeE12(φ)χ ∈ R are continuous.

Incidentally, in the case φ ∈ C1
3 is constant with value (ξ1, ξ2, ξ3) ∈ R

3 we have

E31(φ) = ξ3, DE31(φ)φ̂ = φ̂3(−a1/v1(ξ3))

and

E12(φ) = ξ1, DE12(φ)φ̂ = φ̂1(−a2/v2(ξ1))

With the linear continuous evaluation map ev0 : C � φ �→ φ(0) ∈ R we obtain
for the restriction G of GC

G1(φ) = c1
v1(ev0φ3)

v1(E31(φ))
e−μδ1(φ3)g(E31(φ)) − b1ev0φ1, (A.16)

G2(φ) = c2
v2(ev0φ1)

v2(E12(φ))
e−μδ2(φ1)E12(φ) − b2ev0φ2, (A.17)

G3(φ) = c3ev0φ2 − b3ev0φ3. (A.18)

For GC we have analogous formulas, with EC,31 and EC,12 instead of E31 and E12,
respectively. In the sequel we will show that the initial value problem

x ′(t) = G(xt ) for t > 0, x0 = φ (A.19)

is well-posed on the set

XG = {φ ∈ C1
3 : φ′(0) = G(φ)}

which is a continuously differentiable submanifold of codimension 3 in the space
C1
3 . This result follows from results in Walther (2003, 2004); Hartung et al. (2006)
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provided that the following two assertions are verified:

XG �= ∅

and

(e) each derivative DG(φ) : C1
3 → R

3, φ ∈ C1
3 , has a linear extension DeG(φ) :

C3 → R
3, and the map

C1
3 × C3 � (φ, φ̂) �→ DeG(φ)φ̂ ∈ R

3

is continuous.

Property (e) is a version of being almost Fréchet differentiable from Mallet-Paret
et al. (1994).

We now proceed to the verification of XG �= ∅. Choose φ3 ∈ C1 to be a constant
with value 1. Then a1δ1(φ3) = v1(1). Choose ξ1 > 0 with 0 = c1e−μv1(1)/a1g(1)− ξ1
and define φ1 ∈ C1 to be constant with value ξ1. Define ξ2 > 0 by 0 = c3ξ2 − b3.
There exists φ2 ∈ C1 such that φ2(0) = ξ2 and φ′

2(0) = c3ξ2 − b3. Then φ ∈ C1
3 with

the components φ1, φ2, φ3 satisfies the equation φ′(0) = G(φ) defining the set XG ,
so XG �= ∅.

To prepare for the proof of extension property (e) we compute the derivatives
DG(φ), φ ∈ C1

3 . For φ̂ ∈ C1
3 we have

DG(φ)φ̂ = (DG1(φ)φ̂, DG2(φ)φ̂, DG3(φ)φ̂) ∈ R
3.

For δ1 : C → R and δ2 : C → Rweuse the fact that restrictions of differentiablemaps
m : C → R to C1 remain differentiable, with derivatives D(m|C1)(φ) : C1 → R

being restrictions of the derivatives Dm(φ) : C → R, φ ∈ C1 ⊂ C , and obtain

DG1(φ)φ̂ = −b1φ̂1(0) + c1

{
1

[v1(E31(φ))]2
×

[
v′
1(φ3(0))φ̂3(0) · v1(E31(φ)) − v1(φ3(0))v

′
1(E31(φ))DE31(φ)φ̂

]
· e−μδ1(φ3)g(E31(φ))

+ v1(φ3(0))

v1(E31(φ))
·
[

− μe−μδ1(φ3)Dδ1(φ3)φ̂3 · g(E31(φ)) + e−μδ1(φ3)Dg(E31(φ))DE31(φ)φ̂
]}

(A.20)

and

DG2(φ)φ̂ = −b2φ̂2(0) + c2

{
1

[v2(E12(φ))]2
×

[
v′
2(φ1(0))φ̂1(0) · v2(E12(φ)) − v2(φ1(0))v

′
2(E12(φ))DE12(φ)φ̂

]
· e−μδ2(φ1)E12(φ)

+ v2(φ1(0))

v2(E12(φ))

[
− μ e−μδ2(φ1)Dδ2(φ1)φ̂1 · E12(φ) + e−μδ2(φ1)DE12(φ)φ̂

]}

and

DG3(φ)φ̂ = −b3φ̂3(0) + c3φ̂2(0).
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Now we are ready to verify property (e). In the formula for DG(φ)φ̂, φ

and φ̂ in C1
3 , just obtained replace the real numbers DE31(φ)φ̂, DE12(φ)φ̂ by

DeE31(φ)χ, DeE12(φ)χ , respectively, with χ ∈ C3, and replace the functions φ̂3, φ̂1
by χ3 and χ1, respectively. This defines DeG(φ)χ ∈ R

3 for φ ∈ C1
3 and χ ∈ C3

so that the maps DeG(φ) : C3 → R
3, φ ∈ C1

3 , are linear. Using the continuous
differentiability of δ1 : C → R and δ2 : C → R, and Proposition A2, one shows that
the map C1

3 × C3 � (φ, χ) �→ DeG(φ)χ ∈ R
3 is continuous. This finishes the proof

of property (e).
With XG �= ∅ and property (e) verified, results fromWalther (2003, 2004); Hartung

et al. (2006) apply and yield the following. The set XG is a continuously differentiable
submanifold of the Banach space C1

3 , with codimension 3. Each φ ∈ XG uniquely
determines a maximal continuously differentiable solution x : [−r , tx ) → R

3, 0 <

tx ≤ ∞, of the initial value problem (A.19). That is, x is continuously differentiable
and satisfies x0 = φ and x ′(t) = G(xt ) for all t ∈ (0, tx ), and any other continuously
differentiable function y : [−r , ty) → R

3, 0 < ty ≤ ∞, which satisfies y0 = φ and
y′(t) = G(yt ) for all t ∈ (0, ty) is a restriction of x . All segments xt , 0 ≤ t < ∞,
belong to XG (because of the differential equation). Write xφ = x and tφ = tx . Let

ΩG = {(t, φ) ∈ [0,∞) × XG : 0 ≤ t < tφ}.

The equation

SG(t, φ) = xφ
t

defines a continuous semiflow SG : ΩG → XG . For each t ≥ 0 the set

ΩG,t = {φ ∈ XG : t < tφ}

is an open subset of XG (possibly empty), ΩG,0 = XG , and each map

SG,t : ΩG,t � φ �→ SG(t, φ) ∈ XG , t ≥ 0,

on a non-empty domain is continuously differentiable.
Moreover, the restriction of the semiflow SG to the open subset {(t, φ) ∈ ΩG : r <

t} of the manifold R × XG is continuously differentiable Walther (2004).
We end this sectionwith remarks about linearization at stationary points (equilibria)

of the semiflow, for which tφ = ∞ and SG(t, φ) = φ for all t ≥ 0. Such φ are constant

since for every t ≥ 0, xφ(t) = xφ
t (0) = SG(t, φ)(0) = φ(0), hence

φ(s) = SG(r , φ)(s) = xφ
r (s) = xφ(r + s) = φ(0) for each s ∈ [−r , 0].

So assume φ ∈ C1
3 is constant with value (ξ1, ξ2, ξ3) ∈ R

3, and φ̂ ∈ C1
3 . We compute

DG(φ)φ̂, using Proposition A1 for the values and for the derivatives of themaps δ1, δ2
in case of constant arguments, and using the calculations right after Proposition A2
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for DE31(φ)φ̂, DE12(φ)φ̂ in case of constant arguments. The result is

DG1(φ)φ̂ = −b1φ̂1(0) + c1

{
1

[v1(ξ3)]2
[
v′
1(ξ3)φ̂3(0) · v1(ξ3)

− v1(ξ3)v
′
1(ξ3)φ̂3(−a1/v1(ξ3))

]
· e−μa1/v1(ξ3)g(ξ3)

+ v1(ξ3)

v1(ξ3)

[
− μe−μa1/v1(ξ3)

(
−v′

1(ξ3)

v1(ξ3)

∫ 0

−a1/v1(ξ3)
φ̂1(s)ds

)
· g(ξ3)

+ e−μa1/v1(ξ3)g′(ξ3)φ̂3(−a1/v1(ξ3))

]}

= −b1φ̂1(0) + A1φ̂3(0) + μA1

∫ 0

−a1/v1(ξ3)
φ̂3(s)ds

+
(
c1e

−μa1/v1(ξ3)g′(ξ3) − A1

)
φ̂3(−a1/v1(ξ3)) (A.21)

with

A1 = c1
v′
1(ξ3)

v1(ξ3)
e−μa1/v1(ξ3)g(ξ3) (A.22)

and

DG2(φ)φ̂ = −b2φ̂2(0) + c2

{
1

[v2(ξ1)]2
[
v′
2(ξ1)φ̂1(0) · v2(ξ1)

− v2(ξ1)v
′
2(ξ1)φ̂1(−a2/v2(ξ1))

]
· e−μa2/v2(ξ1)ξ1

+ v2(ξ1)

v2(ξ1)

[
− μ e−μa2/v2(ξ1)

(
−v′

2(ξ1)

v2(ξ1)

∫ 0

−a2/v2(ξ1)
φ̂1(s)ds

)
· ξ1

+ e−μa2/v2(ξ1)φ̂1(−a2/v2(ξ1))

]}

= −b2φ̂2(0) + A2φ̂1(0) +
(
c2e

−μa2/v2(ξ1) − A2

)
φ̂(−a2/v2(ξ1))

+ μA2

∫ 0

−a2/v2(ξ1)
φ̂1(s)ds (A.23)

with

A2 = c2
v′
2(ξ1)

v2(ξ1)
e−μa2/v2(ξ1)ξ1 (A.24)

and

DG3(φ)φ̂ = −b3φ̂3(0) + c3φ̂2(0). (A.25)
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B Positivity, dissipativity, global attractor

Recall that the function g in Eqs. (A.10) and (A.16) has a positive infimum gmin > 0,
and

gmin ≤ g(ξ) ≤ 1 for all ξ ∈ R.

In addition to the hypotheses made in the preceding Sect.A we assume in the present
section that the functions vk , k ∈ {1, 2}, are also bounded from above by real numbers
vk,max > 0. Using Eq. (A.7) we infer

ak
vk,max

≤ δk(φ) ≤ ak
vk,min

for k = 1, 2 and for all φ ∈ C .

Proposition B1 For every c > 0 there exists c′ > 0 so that for all φ ∈ XG with
|φ(t)| ≤ c on [−r , 0] and for all t ∈ [−r , tφ) we have |xφ(t)| ≤ c′.

Proof Let φ ∈ XG with |φ(t)| ≤ c on [−r , 0] be given, set x = xφ . The first term on
the right hand side of Eq. (A.10) is positive and bounded by the constant

d>
1 = c1

v1,max

v1,min
.

The variation-of-constants formula yields

|x1(t)| =
∣∣∣∣x1(0)e−b1t

+
∫ t

0
e−b1(t−s)

[
c1v1(x3(s))

v1(x3(s − δ1(x3,s)))
e−μδ1(x3,s )g(x3(s − δ1(x3,s)))

]
ds

∣∣∣∣
≤ c + e−b1t

d>
1

b1

(
eb1t − 1

)
for 0 ≤ t < tφ

≤ c + d>
1

b1
for 0 ≤ t < tφ.

Set d1 = c+ d>
1
b1
. With |x1(t)| = |φ1(t)| ≤ |φ| ≤ c on [−r , 0] we get |x1(t)| ≤ d1 for

all t ∈ [−r , tφ). Next, the first term on the right hand side of Eq. (A.11) is bounded
by

d>
2 = c2

v2,max

v2,min
d1.

Using the variation-of-constants formula as above, and |x2(t)| = |φ2(t)| ≤ |φ| ≤ c

on [−r , 0] we obtain that x2 is bounded by d2 = c + d>
2
b2

for all t ∈ [−r , tφ). We turn
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to Eq. (A.12) where the first term on the right hand side is bounded by

d>
3 = c3d2.

Using the variation-of-constants formula once more, and |x3(t)| = |φ3(t)| ≤ |φ| ≤ c

on [−r , 0] we obtain that x3 is bounded by d3 = c + d>
3
b3

on [−r , tφ). ��
We continue with an observation. For any (continuously differentiable) solution

x : [−r , tx ) → R
3 of the system (A.10)–(A.12) and for any t ∈ [0, tx ) the first term

on the right hand side of Eq. (A.10) belongs to the interval

[d<
1 , d>

1 ] =
[
c1

v1,min

v1,max
e−μa1/v1,min gmin, c1

v1,max

v1,min

]

and in case

x1(t) >
d>
1

b1
we have x ′

1(t) ≤ d>
1 − b1x1(t) < 0

while in case

x1(t) <
d<
1

b1
we have x ′

1(t) ≥ d<
1 − b1x1(t) > 0.

Set

d<
2 = c2

v2,min

v2,max
e−μ a2/v2,min

d<
1

b1
and d>

2 = c2
v2,max

v2,min
e−μ a2/v2,max

d>
1

b1
,

d<
3 = c3

d<
2

b2
and d>

3 = c3
d>
2

b2
,

and

Q =
[
d<
1

b1
,
d>
1

b1

]
×

[
d<
2

b2
,
d>
2

b2

]
×

[
d<
3

b3
,
d>
3

b3

]
⊂ R

3

and

R = {φ ∈ C1
3 : φ([−r , 0]) ⊂ Q}.

Proposition B2 (Global existence, absorption and positive invariance, positivity)

(i) For all φ ∈ XG, tφ = ∞.
(ii) For every neighbourhood N of Q in R

3 and for each φ ∈ XG there exists
t(φ, N ) ∈ [0,∞) with xφ(t) ∈ N for all t ≥ t(φ, N ).

(iii) If φ ∈ XG ∩ R then xφ(t) ∈ Q for all t ≥ 0.
(iv) If all 3 components of φ ∈ XG are strictly positive then xφ

k (t) > 0 for all t ≥ −r ,
k ∈ {1, 2, 3}.
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Proof 1. On assertion (i). Let φ ∈ XG be given. Due to Proposition B1 the solution
x = xφ is bounded. Using this and the system (A.10)–(A.12) we infer that x ′ is
bounded. It follows that x is Lipschitz continuous. Assume now tφ < ∞. Then
Lipschitz continuity yields that x has a limit ξ ∈ R

3 at t = tφ . x extends to a
continuous map x̂ : [−r , tφ] → R

3. From uniform continuity on the compact
interval [−r , tφ] it follows that the curve [0, tφ] � t �→ x̂t ∈ C3 is continuous.
Using this and the equation

x ′(t) = G(xt ) = GC (x̂t ) for 0 ≤ t < tφ

with the continuous map GC : C3 → R
3 we also conclude that x ′ has a limit

η ∈ R
3 at t = tφ . It follows that x̂ is continuously differentiable (with x̂ ′(tφ) = η),

and x̂ ′(tφ) = GC (x̂tφ ) = G(x̂tφ ). In particular, ψ = x̂tφ belongs to XG , and
defines a maximal solution xψ : [0, tψ) → R

3 of Eq. (A.1), with 0 < tψ ≤ ∞.
By means of the semiflow properties it follows that in case tψ = ∞ we have
tφ = ∞, in contradiction to the assumption above, while in case tψ < ∞ we get
tφ ≥ tφ + tψ , which contradicts tψ > 0.

2. On assertion (ii). Let a neighbourhood N of Q in R
3 and φ ∈ XG be given. Set

x = xφ . There exists ε > 0 so that for

d1,−ε = d<
1
b1

− ε, d∗
2,−ε = c2

v2,min
v2,max

e−μ a2/v2,min · d1,−ε, d2,−ε = d∗
2,−ε

b2
− ε,

d1,+ε = d>
1
b1

+ ε, d∗
2,+ε = c2

v2,max
v2,min

e−μ a2/v2,max · d1,+ε, d2,+ε = d∗
2,+ε

b2
+ ε

we have

d1,−ε > 0 and d2,−ε > 0 and
c3 · d2,−ε

b3
− ε > 0,

and

N ⊃ [d1,−ε, d1,+ε] × [d2,−ε, d2,+ε] ×
[
c3 · d2,−ε

b3
− ε,

c3 · d2,+ε

b3
+ ε

]
.

2.1. Proof that in case x1(t) ≤ d1,+ε for some t ≥ 0 we have

x1(s) ≤ d1,+ε for all s ≥ t .

Otherwise x1(s) > d1,+ε = d>
1
b1

+ ε for some s > t . For the smallest u ∈ [t, s]
with x1(u) = x1(s) we have 0 ≤ x ′(u) and, on the other hand,

x ′
1(u) < d>

1 − b1x1(u) = d>
1 − b1x1(s) < −ε b1 < 0.

2.2. Proof that in case x1(s) > d1,+ε for some s ≥ 0 there exists t > s with

x1(t) ≤ d1,+ε .
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Otherwise x1(t) > d1,+ε = d>
1
b1

+ ε on [s,∞). Hence

x ′
1(t) < d>

1 − b1x1(t) < −ε b1 < 0 on [s,∞),

and consequently x1(t) → −∞ as t → ∞, in contradiction to the assumption.
2.3. It follows that there exists t∗1 ≥ 0 with

x1(t) ≤ d1,+ε for all t ≥ t∗1 .

Similarly one finds t1 ≥ t∗1 with

x1(t) ≥ d1,−ε for all t ≥ t1.

Hence

x1(t) ∈ [d1,−ε, d1,+ε] for all t ≥ t1.

2.4. We proceed to x2. The result of Part 2.3 yields that for t ≥ t1 + r the first term
on the right hand side of Eq. (A.11) is contained in the interval

[
c2

v2,min

v2,max
e−μa2/v2,min · d1,−ε, c2

v2,max

v2,min
e−μa2/v2,max · d1,+ε

]
= [d∗

2,−ε, d
∗
2,+ε].

Arguing as in Parts 2.1–2.3 we find t2 ≥ t1 + r so that for all t ≥ t2 we have

x2(t) ∈ [d2,−ε, d2,+ε].

2.5. Consider x3. For t ≥ t2 the first term on the right hand side of Eq. (A.12) is
contained in the interval

[c3 · d2,−ε, c3 · d2,+ε].

Arguing as in Parts 2.1–2.3 we find t3 ≥ t2 so that for all t ≥ t3 we have

x3(t) ∈
[
c3 · d2,−ε

b3
− ε,

c3 · d2,+ε

b3
+ ε

]
.

2.6. For all t ≥ t3,

x(t) ∈ [d1,−ε, d1,+ε] × [d2,−ε, d2,+ε] ×
[
c3 · d2,−ε

b3
− ε,

c3 · d2,+ε

b3
+ ε

]
⊂ N .

3. The proof of assertion (iii) beginswith the assumption that for a givenφ ∈ XG∩R

there exists s > 0 with xφ(s) >
d>
1
b1

and is then accomplished by a simplified
version of arguments as in Part 2.
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4. On assertion (iv). Let φ ∈ XG be given with strictly positive components. Set
x = xφ . The assumption x1(t) ≤ 0 for some t > 0 leads to a smallest t > 0 with
x1(t) = 0. Necessarily, x ′

1(t) ≤ 0 while Eq. (A.10) yields x ′
1(t) > 0. It follows

that x1(t) > 0 for all t ≥ −r . Using this and Eq. (A.11) and strict positivity of φ2
one shows in the same way that also x2 is strictly positive. From this one deduces
that x3 is strictly positive. ��

The solutionmanifold XG is a closed subset of the spaceC1
3 , and thereby a complete

metric spacewith respect to themetric given by the normonC1
3 . The next result implies

that the semiflow SG on the complete metric space XG is point dissipative as defined
in Hale (1988), which means that there exists a bounded set B such that for every
ε > 0 and for each φ ∈ XG there exists tB,ε,φ ≥ 0 with SG(t, φ) contained in the
ε-neighbourhood Uε(B) = ∪b∈BUε(b) of B.

Corollary B3 There is a bounded open subset BG of the submanifold XG ⊂ C1
3 , with

φk(t) > 0 for all φ ∈ BG, t ∈ [−r , 0], k ∈ {1, 2, 3},

such that for every φ ∈ XG there exists t(φ) ≥ 0 with

SG(t, φ) ∈ BG for all t ≥ t(φ).

Proof Choose c > 0 so that N = (0, c)3 is a neighbourhood of Q. Set R̃ = {φ ∈
C1
3 : φ([−r , 0]) ⊂ N }. Le φ ∈ XG be given. Choose t(φ, N ) according to Proposi-

tion B1(ii). From Eqs. (A.10)–(A.12)we see that the map G sends the set R̃ (which is
not a bounded subset of C1

3 ) into a bounded subset of R
3, say, into {x ∈ R

3 : |x | < b}
for some b > 0. It follows that for all t ≥ t(φ, N ) + r we have |(xφ)′(t)| < b. For
t ≥ t(φ, N )+2r weobtain xφ

t ∈ {φ ∈ XG∩ R̃ : |φ′| < b} = BG . The set BG is an open
and bounded subset of XG , with 0 < φk(t) for all φ ∈ BG, k ∈ {1, 2, 3}, t ∈ [−r , 0].

��
Recall from Hale (1988) the definition of a global attractor of a semiflow, which

in case of our semiflow SG is equivalent to saying that a subset AG ⊂ XG is a global
attractor if it is compact, and invariant in the sense that for every φ ∈ AG there exists a
complete flowline3 with ξ(0) = φ and ξ(R) ⊂ AG , and if AG attracts every bounded
set B ⊂ XG in the sense that given an open neighbourhood U ⊃ AG of AG in XG

there exists tB,U ≥ 0 such that

SG([tB,U ,∞) × B) ⊂ U .

Hale (1988, Theorem 3.4.8) guarantees the existence of such a global attractor
provided the semiflow is point-dissipative and there exists t1 ≥ 0 so that the semiflow
SG is completely continuous for t ≥ t1. The property of being completely continuous
(for t ≥ t1) is explained after Hale (1988, Lemma 3.2.1). It means that

3 A complete flowline is a curve ξ : R → XG with ξ(t + s) = SG (t, ξ(s)) for all t ≥ 0 and s ∈ R.
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(1) SG is conditionally completely continuous for t ≥ t1 in the sense that for every
t ≥ t1 and for each bounded set B ⊂ XG for which SG([0, t] × B) is bounded
the set SG(t, B) is precompact (has compact closure), and that

(2) for each bounded set B ⊂ XG and for all t ≥ 0 the set SG([0, t]× B) is bounded.

Theorem B4 The semiflow SG has a global attractor AG ⊂ XG, with φk(t) > 0 for
all φ ∈ AG, t ∈ [−r , 0], k ∈ {1, 2, 3}.
Proof 1. We first show that for every bounded subset B ⊂ XG there exists cB > 0

with

|xφ(t)| ≤ cB and |(xφ)′(t)| ≤ cB for all φ ∈ B, t ≥ −r .

Let B ⊂ XG be a bounded subset which is bounded with respect to the norm of
the space C1

3 . Proposition B1 guarantees a constant cB,0 with |xφ(t)| ≤ cB,0 for all

φ ∈ B, t ≥ −r . Then the formulae (A.16)–(A.18) show that the set {G(xφ
t ) ∈ R

3 :
φ ∈ B, t ≥ 0} is bounded, and Eq. (A.1) gives that the set {(xφ)′(t) ∈ R

3 : φ ∈
B, t ≥ 0} is bounded. Also the set {φ′(t) ∈ R

3 : φ ∈ B,−r ≤ t ≤ 0} is bounded.
2. Claim: For every bounded subset B ⊂ XG the set SG(r , B) ⊂ XG has compact

closure in C1
3 .

Proof: (a) Let B ⊂ XG be a bounded subset of C1
3 . Due to Part 1 the sets {xφ(t) ∈

R3 : φ ∈ B,−r ≤ t ≤ r} and {(xφ)′(t) ∈ R
3 : φ ∈ B,−r ≤ t ≤ r} are

bounded. Using the Mean Value Theorem we see that in particular the set SG(r , B)

is equicontinuous. As it also is bounded in C3 the Ascoli-Arzèla Theorem implies
that its closure in C3 is compact.
(b) We turn to the set {SG(r , φ)′ ∈ C3 : φ ∈ B} of derivatives, which is bounded
in C3, and proceed to show that it is also equicontinuous. As in Part (a) one sees
that the closure K of the set

{SG(t, φ) ∈ C3 : φ ∈ B, 0 ≤ t ≤ r}

in the space C3 is compact. The map G : C1
3 → R

3 is the restriction of the
continuous map GC : C3 → R

3 which is uniformly continuous on the compact set
K ⊂ C3. Using the boundedness of the set {(xφ)′(t) ∈ R

3 : φ ∈ B,−r ≤ t ≤ r}
and the Mean Value Theorem one finds that the curves

[0, r ] � t �→ SG(t, φ) ∈ C3, φ ∈ B,

are uniformly Lipschitz continuous, hence equicontinuous. Now let t0 ∈ [0, r ] and
ε > 0 be given. There exists δ > 0 with

|GC (φ) − GC (ψ)| ≤ ε for all φ,ψ in SG([0, r ] × B) with |φ − ψ | ≤ δ,

due to uniform continuity of GC on K . Due to equicontinuity there exists η > 0
with

|SG(t, φ) − SG(t0, φ)| ≤ δ for all φ ∈ B and t ∈ [0, r ] with |t − t0| < η.
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Hence

|(xφ)′(t) − (xφ)′(t0)| = |G(SG(t, φ)) − G(SG(t0, φ))|
= |GC (SG(t, φ)) − GC (SG(t0, φ))| < ε

for all φ ∈ B and t ∈ [0, r ] with |t − t0| < η.
(c) The Ascoli-Arzèla Theorem implies that the closure of {SG(r , φ)′ ∈ C3 : φ ∈
B} inC3 is compact. For the closure of SG(r , B) inC1

3 to be compact it is sufficient
to show that every sequence of points φ j ∈ SG(r , B), j ∈ N, has a subsequence
which converges in C1

3 . Let a sequence (φ j )
∞
1 in SG(r , B)be given. Part a) yields

that there is a subsequence (φα( j))
∞
j=1 which converges in C3 to some φ ∈ C3. Part

b) yields that there is a further subsequence (φα(β( j)))
∞
j=1 so that the derivatives

(φ′
α(β( j))) ∈ C3 converge to some ψ ∈ C3. It follows that φ ∈ C1

3 with φ′ = ψ ,

which in turn yields φα(β( j)) → φ in C1
3 as j → ∞.

3. We now show that for every bounded subset B ⊂ XG and for every t ≥ r the set
SG(t, B) ⊂ XG has compact closure inC1

3 . Let B ⊂ XG be bounded and let t > r .
Then

SG(t, B) = SG(t − r , SG(r , B)).

Use that the closure of SG(r , B) in C1
3 is compact and belongs to XG (sinces XG

is a closed subset of C1
3 ), and that the map SG(t − r , ·) is continuous, and conclude

that the closure of SG(t, B) in C1
3 is contained in a compact subset of XG ⊂ C1

3 .
4. According to the remark preceding Corollary B3 the semiflow SG is point dissipa-

tive. The results of Parts 1 and 3 combined yield that SG is completely continuous
for t > r as stated before Theorem B4. Using (Hale (1988), Theorem 3.4.8) we
infer that SG has a global attractor.

5. We now show that for all φ ∈ AG , t ∈ [−r , 0], k ∈ {1, 2, 3}we have φk(t) > 0. Let
φ ∈ AG be given. There exists a solution x : R → R

3 of the system (A.10)–(A.12)
with x0 = φ and all segments xs , s ∈ R, in AG . It follows that x is bounded.

(a) We now show that x1(t) > 0 for all t ∈ R. Assume x1(t) ≤ 0 for some t ∈ R.
In case x1(t) = 0 Eq. (A.10) yields x ′

1(t) > 0 − b1x1(t) = 0. It follows that
x1(u) < 0 for some u ∈ (−∞, t). In case x1(t) < 0 set u = t . For every s ≤ u
the variation-of-constants formula yields

x1(u) ≥ x1(s)e
−b1(u−s) + 0,

hence

x1(s) ≤ x1(u)eb1(u−s) (→ −∞ as s → −∞),

and we arrive at a contradiction to the boundedness of x1.
(b) Using Part (a) and Eq. (A.11) and arguing as in Part (a) one finds x2(t) > 0

for all t ∈ R. Using this and Eq. (A.12) and arguing once more as in Part (a)
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we get x3(t) > 0 for all t ∈ R. In particular, φk(t) > 0 for all t ∈ [−r , 0] and
every k ∈ {1, 2, 3}. ��

C Linearization

We turn to linearization. The subsequent description is based on results proved in
Hartung et al. (2006, Sections 3.2 and 3.4) and Walther (2003), Walther (2004). At a
point φ ∈ XG the tangent space of the manifold XG is given by

TφXG = {χ ∈ C1
3 : χ ′(0) = DG(φ)χ}.

For φ ∈ ΩG,t the derivative

DSG,t (φ) : TφXG → TSG,t (φ)XG

is given by

DSG,t (φ)χ = w
φ,χ
t

where wφ,χ = w is the unique continuously differentiable solution [−r , tφ) → R
3 of

the IVP

w′(t) = DG(SG(t, φ))wt for t > 0, (C.1)

w0 = χ ∈ TφXG . (C.2)

Equation (C.1) is called the linear variational equation along the solution xφ or along
the flowline

SG(·, φ) : [0, tφ) � t �→ SG(t, φ) ∈ XG .

Suppose now that φ ∈ XG is a stationary point of the semiflow SG . Then φ is
constant with value, say, ξ = (ξ1, ξ2, ξ3) ∈ R

3. The variational equation (C.1) along
the constant solution xφ : [−r ,∞) � t �→ ξ ∈ R

3 becomes

w′
1(t) = −b1w1(t) + A1w3(t) +

(
c1e

−μa1/v1(ξ3)g′(ξ3) − A1

)
w3(t − a1/v1(ξ3))

+ μA1

∫ 0

−a1/v1(ξ3)
w3(s)ds (C.3)

w′
2(t) = −b2w2(t) + A2w1(t) +

(
c2e

−μa2/v2(ξ1) − A2

)
w1(t − a2/v2(ξ1))

+ μA2

∫ 0

−a2/v2(ξ1)
w1(s)ds (C.4)

w′
3(t) = −b3w3(t) + c3w2(t) (C.5)
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The derivatives TG,t = DSG,t (φ), t ≥ 0, form a strongly continuous semigroup
on the closed subspace TφXG of the space C1

3 . This semigroup is given by TG,tχ =
TG,e,tχ where TG,e,t : C3 → C3 is the solution operator associated with the classical
initial value problem

w′(t) = DeG(φ)wt for t > 0, (C.6)

w0 = χ ∈ C3, (C.7)

with a continuous linear vector-valued functional L : C3 → R
3, L = DeG(φ), as in

the monographs, e. g., Hale and Lunel (1993); Diekmann et al. (1995). Recall that by
definition the solution w : [−r ,∞) → R

3 of the initial value problem (C.6)–(C.7) is
only continuous, with the restrictionw|[0,∞) continuously differentiable and satisfying
(C.6).

The extended derivative DeG(φ) : C3 → R
3 in the case just considered where

φ ∈ XG is a stationary point with value ξ is given by (A.21)–(A.25), now for φ̂ ∈
C3. Therefore the Eq. (C.6) coincides with the system (C.3)–(C.5), considered for
continuous maps [−r ,∞) → R

3 whose restrictions to [0,∞) are differentiable and
satisfy (C.3)–(C.5) for all t ≥ 0.

The stability of the zero solution of the linear variational Eqs. (C.3)–(C.5) is deter-
mined by the spectrum σ ⊂ C of the generator of the semigroup (TG,t )t≥0 on
TφXG ⊂ C1

3 , which coincides with the spectrum σe ⊂ C of the generator of the
semigroup on C3.

The spectrum σe consists of the solutions λ ∈ C of the characteristic equation,
which is obtained from the Ansatz R � t �→ eλ t z ∈ C

3, z ∈ C
3 \ {0}, for a complex-

valued solution of the system (C.3)–(C.5) as follows. We write down the system for
w : t �→ eλt z, multiply by e−λt , and obtain a linear equation of the form

(M(λ) − λ · I3)z = 0 (C.8)

with a 3× 3-matrix M(λ) (complex coefficients) and with I3 denoting the 3× 3-unit
matrix. We then set

Δ(λ) = det(M(λ) − λ · I ) = 0. (C.9)

Following this recipe we get the linear system

λ z1 = −b1z1 + A1z3 +
(
c1e

−μ a1/v1(ξ3)g′(ξ3) − A1

)
z3e

−λ a1/v1(ξ3)

+ μ A1

∫ 0

−a1/v1(ξ3)
eλsds z3

λ z2 = −b2z2 + A2z1 +
(
c2e

−μ a2/v2(ξ1) − A2

)
e−λ a2/v2(ξ1)z1

+ μ A2

∫ 0

−a2/v2(ξ1)
eλ sds z1

λ z3 = −b3z3 + c3z2,
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and with the functions k1 : C → C and k2 : C → C given by

k1(λ) = A1 +
(
c1e

−μ a1/v1(ξ3)g′(ξ3) − A1

)
e−λ a1/v1(ξ3) + μA1

∫ 0

−a1/v1(ξ3)
eλsds,

k2(λ) = A2 +
(
c1e

−μ a2/v2(ξ1) − A2

)
e−λ a2/v2(ξ1) + μA2

∫ 0

−a2/v2(ξ1)
eλsds,

respectively, we obtain

M(λ) =
⎛
⎝ −b1 0 k1(λ)

k2(λ) −b2 0
0 c3 −b3

⎞
⎠ (C.10)

for λ ∈ C, which yields

Δ(λ) = det(M(λ) − λI3) = (b1 + λ)(b2 + λ)(b3 + λ) + k1(λ)k2(λ)c3.

So the characteristic equation associated with the stationary point φ with value ξ is

Δ(λ) = (b1 + λ)(b2 + λ)(b3 + λ) + k1(λ)k2(λ)c3 = 0. (C.11)

Next we rewrite (C.11) in the original notation of (2.15)–(2.19). In terms of the
parameters and functions in the system (2.15)–(2.19) the parameters and functions in
the system (A.10)–(A.12) are μ and

ξ1 = M∗
ξ2 = I ∗
ξ3 = E∗

c1 = βM

c2 = βI

c3 = βE

b1 = γ̄M
b2 = γ̄I
b3 = γ̄E

g = f
v1 = vM
v2 = vI
a1 = aM
a2 = aI .

The equilibria of the systems (2.15)–(2.19) and (A.10)–(A.12) are given by the
solutions (M∗, I ∗, E∗) = (ξ1, ξ2, ξ3) ∈ R

3 of the systems

0 = βMe−μaM/vM (I ∗) f (E∗) − γ̄MM∗
0 = βI e−μaI /vI (M∗)M∗ − γ̄I I ∗
0 = βE I ∗ − γ̄E E∗.

⇐⇒
0 = c1e−μa1/v1(ξ3)g(ξ3) − b1ξ1
0 = c2e−μa2/v2(ξ1)ξ1 − b2ξ2
0 = c3ξ2 − b3ξ3.

From (A.22) and (A.24) we can rewrite A1 and A2 in the notation of (2.15)–(2.19)
as

A1 = βM
v′
M (E∗)

vM (E∗)
e−μaM/vM (E∗) f (E∗), A2 = βI

v′
I (M

∗)
vI (M∗)

e−μaI /vI (M∗)M∗.

123
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and hence

k1(λ) = A1 +
(
βMe−μaM/vM (E∗) f ′(E∗) − A1

)
e−λaM/vM (E∗) + μA1

0∫

−aM/vM (E∗)

eλsds,

k2(λ) = A2 +
(
βI e

−μaI /vI (M∗) − A2

)
e−λaI /vI (M∗) + μA2

∫ 0

−aI /vI (M∗)
eλsds.

For λ �= 0 we evaluate the integrals and obtain

k1(λ) = A1 +
(
βMe−μaM/vM(E∗) f ′(E∗) − A1

)
e−λaM/vM(E∗) + μA1

λ

(
1 − e−λaM/vM(E∗)

)

= A1(1 − e−λaM/vM (E∗))
(
1 + μ

λ

)
+ βMe−μaM/vM (E∗) f ′(E∗)e−λaM/vM (E∗)

= βMe−μτM (E∗)

(
v′
M (E∗)

vM (E∗)
f (E∗)(1 − e−λτM (E∗))

(
1 + μ

λ

)
+ f ′(E∗)e−λτM (E∗)

)

and

k2(λ) = A2 +
(
βI e

−μaI /vI (M
∗) − A2

)
e−λaI /vI (M

∗) + μ

λ
A2(1 − e−λaI /vI (M∗))

= A2(1 − e−λaI /vI (M∗))
(
1 + μ

λ

)
+ βI e

−μaI /vI (M∗)e−λaI /vI (M∗)

= βI e
−μτI(M∗)

(
v′
I (M

∗)
vI (M∗)

M∗(1 − e−λτI (M∗))
(
1 + μ

λ

)
+ e−λτI (M∗)

)
.

In terms of the parameters and functions of the system (2.15)–(2.19) the characteristic
Eq. (C.11) becomes Δ(λ) = 0 for

Δ(λ) = (γ̄M + λ)(γ̄I + λ)(γ̄E + λ) + βEk1(λ)k2(λ), (C.12)

which is identical to (2.49), (2.50).
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