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Abstract

Social sensing has become an emerging and pervasive sensing paradigm to

collect timely observations of the physical world from human sensors. In this

paper, we study the problem of geolocating abnormal traffic events using social

sensing. Our goal is to infer the location (i.e., geographical coordinates) of the

abnormal traffic events by exploring the location entities from the content of

social media posts. Two critical challenges exist in solving our problem: i) how

to accurately identify the location entities related to the abnormal traffic event

from the content of social media posts? ii) How to accurately estimate the

geographic coordinates of the abnormal traffic event from the set of identified

location entities? To address the above challenges, we develop a Social sensing

based Abnormal Traffic Geolocalization (SAT-Geo) framework to accurately

estimate the geographic coordinates of abnormal traffic events by exploring the

syntax-based patterns in the content of social media posts and the geographic

information associated with the location entities from the social media posts. We

evaluate the SAT-Geo framework on three real-world Twitter datasets collected

from New York City, Los Angeles, and London. Evaluation results demonstrate
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that SAT-Geo significantly outperforms state-of-the-art baselines by effectively

identifying location entities related to the abnormal traffic events and accurately

estimating the geographic coordinates of the events.

Keywords: Syntax-based Learning, Abnormal Detection, Geolocalization,

Social Sensing

1. Introduction

With the proliferation of mobile devices and the ubiquitous network connec-

tions, social sensing has become an emerging and pervasive sensing paradigm to

collect timely observations of the physical world from human sensors [1]. Exam-

ples of social sensing applications include post-disaster damage assessment with

social media user posts [2], urban environment monitoring using input from citi-

zen scientists [3], and smart health condition tracing using wearable devices [4].

Real-time traffic monitoring is an important application of social sensing in

intelligent transportation systems (ITS), where timely social media posts are

collected to acquire real-time traffic situation awareness (e.g., road congestion,

traffic accident) of an urban area. Comparing to traditional infrastructure-based

solutions (e.g., surveillance cameras, radar sensors), social sensing provides an

infrastructure-free solution that is more pervasive and scalable [5]. In this pa-

per, we focus on the problem of identifying the geographic coordinates (i.e.,

latitude and longitude coordinates) of abnormal traffic events reported on so-

cial media. We refer to this problem as social sensing based abnormal traffic

event geolocalization. The identified geographic coordinates information of ab-

normal traffic events can be utilized to provide effective precautions (e.g., traffic

accident alerts) and timely responses (e.g., emergency medical rescue for severe

traffic accidents) for improving traffic safety and efficiency [6].

Many efforts have been made to study the problem of event localization us-

ing social media data [7, 8, 9, 10, 11, 12, 13, 14]. These solutions can be mainly

categorized into two categories: geotagging-based solutions [7, 8, 15] and content-

based solutions [9, 10, 11, 12, 13, 14]. However, these solutions are insufficient to
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fully address the problem of fine-grained abnormal traffic event geolocalization.

First, the geotagging-based solutions that leverage the geotagging information

associated with social media posts (e.g., “coordinates” field of a tweet1) often

suffer from two critical limitations. On one hand, the geotagging information

of social media posts is sparse due to the privacy concerns of users (e.g., fewer

than 0.5% tweets have geotags [16]). On the other hand, the geotagging infor-

mation of a social media post may not always represent the real geolocation of

the reported event (e.g., a user may travel a few blocks away from the accident

site after he/she finishes editing the post) [17]. Second, existing content-based

solutions are also impractical to solve our problem. This is because these so-

lutions often require auxiliary information that is not always available (e.g.,

private user activities, user’s previous posts), and the inferred event locations

are often inaccurate (e.g., the estimated event location in current solutions can

only reduce the average error distance to about 10 km [15]). Therefore, the

problem of geolocalizing abnormal traffic events using social sensing data feeds

remains to be a challenging problem to be addressed.

In this paper, we develop a social sensing based solution to directly infer

the geographic coordinates of abnormal traffic events from the content of social

media data (e.g., tweets). Our design is to first identify the location entities in

the social media post (i.e., the named entities in a social media post that indicate

the location of the abnormal traffic event) by exploring the syntax of the post

content. We then leverage the identified location entities to accurately infer

the geographic coordinates of the abnormal traffic event by investigating the

geographic information of these location entities and their relations. An example

of our abnormal traffic event geolocalization problem is shown in Figure 1. Our

goal is to infer the event geolocation (e.g., the geographic coordinates marked

with the red pin in Figure 1(b)) using the location entities identified in the text

of the tweet (e.g., the location entities highlighted in red boxes in Figure 1(a)).

However, it is not a trivial task to accurately geolocate the abnormal traffic

1https://developer.twitter.com/en/docs/tutorials/filtering-tweets-by-location.html
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event from the content of social media posts due to two important challenges

that are elaborated on below.

(a) Location Entities Extraction (b) Accident Geolocation Estimation

Figure 1: Example of Abnormal Traffic Event Geolocalization

Content-only Location Entity Inference. The first challenge lies in how we

can accurately identify the location entities related to the abnormal traffic event

from the content of social media posts. A possible approach to address the afore-

mentioned issue of sparse geotagging information is to infer the event location

by analyzing the content of social media posts [18]. However, the limited and

unstructured content in a social media post (e.g., 280 characters in a tweet)

makes the location entity inference problem challenging [19]. For example, the

essential location entity “FDR DR NB” in Figure 1(a) is misidentified as “NB”

(in blue box) by the state-of-the-art entity extraction method Google Named

Entity Detection service2 and leads to the inaccurate geolocation (i.e., the blue

pin in Figure 1(b)). In addition, existing solutions for event localization often

require external information (e.g., using the content of abnormal traffic event

posts to retrieve the geotagging information in geotagged tweets with similar

content [8]). However, such external information may not always be available.

For example, our case study in New York City shows that most traffic incidents

are only reported by a single tweet. Therefore, these solutions are insufficient

to fundamentally address the content-only location entity inference challenge in

2https://cloud.google.com/natural-language/
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abnormal traffic event geolocalization.

Fine-grained Geolocation Estimation. The second challenge lies in how to

accurately estimate the geographic coordinates of the abnormal traffic event by

leveraging the location entities identified in a social media post. Existing solu-

tions for geolocation estimation often utilize a grid-based method that divides

the map area of interest into a set of grids of equal size and estimates the event

geolocation in terms of the grid (e.g., the center of the estimated grid) [20, 15].

However, the estimated geolocation of interest is often coarse-grained and is

not precise enough for estimating the geographic coordinates of abnormal traf-

fic events. For example, a single grid in an urban area (e.g., New York City

in Figure 1(b)) could contain more than a hundred roads and intersections. It

is challenging to accurately identify the geographic coordinates of the abnor-

mal traffic event given such a non-trivial amount of roads and intersections in

the grid. Therefore, it remains a challenging task to accurately estimate the

fine-grained geolocation of the abnormal traffic event.

To address the above challenges, we develop a Social sensing based Abnormal

Traffic Geolocalization framework (SAT-Geo) that can accurately estimate the

geographic coordinates of abnormal traffic events using syntax-based probabilis-

tic learning. In particular, to address the first challenge, we design a syntax-

based pattern learning module to extract the syntax-based patterns and encode

the extracted patterns using a novel probabilistic representation method. To

address the second challenge, we develop a distance-aware geolocation estima-

tion module to effectively estimate the geographic coordinates of the abnormal

traffic event location using a point-based map representation. We evaluate SAT-

Geo on three real-world Twitter datasets collected from the three large cities in

the world: New York City, Los Angeles, and London. Evaluation results show

that SAT-Geo significantly outperforms state-of-the-art baselines by effectively

extracting location entities related to the abnormal traffic events and accurately

estimating the corresponding geolocation.

A preliminary version of this work has been published in ASONAM 2019 [21]

to study the problem of identifying location entities for abnormal traffic event
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localization which is an initial step in geolocating abnormal traffic events. This

paper is a significant extension of our conference paper (i.e., SyntaxLoc) in the

following aspects. First, we focus on an abnormal traffic event geolocalization

problem where the goal is to infer the geographic coordinates from the fuzzy de-

scription in social media posts instead of only extracting the location entities as

we studied in the conference paper (Section 1 and 3). Second, we develop a new

SAT-Geo framework to address the fine-grained geolocation estimation challenge

by developing a distance-aware geolocation estimation model to accurately es-

timate the geographic coordinates of the abnormal traffic events (Section 4).

Third, we conduct a set of new experiments to comprehensively evaluate the

geolocation estimation performance of the proposed SAT-Geo framework com-

paring to the state-of-the-art baseline methods (Section 5). Fourth, we extend

the related work by reviewing recent works on intelligent transportation systems

(Section 2).

2. Related Work

2.1. Social Sensing

Social sensing has become as an emerging sensing paradigm to observe the

physical world by exploring the “wisdom of the crowd” on social media [5, 22].

Social sensing has been adopted in a wide range of application domains [23,

24, 25, 26, 27, 28], including damage assessment in the aftermath of a disaster

using social media data [25], cross-modal data fusion using crowdsourcing intel-

ligence [26], and environment and urban infrastructure monitoring with inputs

from citizen scientists [28]. The problem of abnormal traffic event geolocaliza-

tion remains to be an important challenge that has not been well-addressed in

social sensing applications. Specifically, the goal of abnormal traffic event ge-

olocalization is to accurately identify the geographic coordinates of abnormal

traffic events reported on social media. The identified geographic coordinates

can be leveraged to provide effective precautions and timely responses for en-

hancing the safety and performance of the traffic systems. In this paper, we
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develop SAT-Geo, a social sensing approach to effectively estimate the location

entities associated with the abnormal traffic events and accurately estimate the

corresponding geographic coordinates.

2.2. Location Inference in Social Sensing

A good amount of efforts have been made towards addressing the location

inference problems in social sensing [16, 9, 10, 11, 29, 12, 13, 14]. For example,

Li et al. designed a unified discriminative influence scheme that utilizes users’

social network activities to estimate their home location [10]. Kinsella et al. de-

veloped a probabilistic-based language model to infer the city-level locations of

social media posts using a training dataset of geotagged tweets [11]. Shahrakia et

al. proposed an event localization solution that leverages Dempster–Shafer the-

ory to estimate event locations on social media using a combination of user

profiles, post content, and geotagging information [15]. However, the above so-

lutions cannot be adapted to address our problem of geolocating abnormal traffic

events since they either require prior knowledge or external information (e.g.,

users’ private online activities, complete gazetteer database), or are insufficient

to perform fine-grained geolocation estimation (e.g., average error distance is

about 10-100 miles). In contrast to existing solutions, we design a novel SAT-

Geo scheme that focuses on exploring the syntax patterns in the textual content

of social media posts and estimates the geographic coordinates of the reported

abnormal traffic event via a probabilistic-based learning approach.

2.3. Probabilistic Learning Technique

Our SAT-Geo framework is related to the probabilistic learning method in

machine learning. Probabilistic learning has been applied to a wide range of

studies, including natural language processing, computer vision, and informa-

tion retrieval [30, 31, 32]. For example, Li et al. developed a probabilistic image

annotation framework to estimate the image-to-word correlation using multi-

correlation probabilistic matrix factorization [30]. Zettlemoyer et al. proposed
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a structured classification model that leverages probabilistic categorical gram-

mars to learn the mapping from sentences to logical forms [31]. Danelljan et

al. designed a probabilistic regression approach to track the state of the tar-

get object in visual frames of video [33]. However, none of these approaches is

designed to study the syntax patterns in the short and informal text of social

media posts for geolocating abnormal traffic events. In contrast, the proposed

SAT-Geo framework develops a syntax-based probabilistic learning approach to

explicitly explore syntax patterns of social media content and effectively identify

the relevant location entities for the accurate estimation of the abnormal traffic

event’s geographic coordinates.

2.4. Intelligent Transportation Systems

Our proposed work for abnormal traffic event geolocalization is closely re-

lated to intelligent transportation systems (ITS) [34] and can benefit many

applications in ITS (e.g., improving traffic management efficiency [35], enhanc-

ing public transportation safety [36]). Examples of intelligent transportation

systems include traffic monitoring, traffic congestion/accident detection, and

public transportation management in urban planning [37]. For example, Barm-

pounakis et al. designed an urban traffic monitoring system using the sensing

data collected from drones to monitor traffic congestion in the urban area [38].

Celesti et al. developed an Internet-of-Things (IoT) cloud system that utilizes

mobile traffic sensors installed in public transportation and volunteer vehicles to

monitor traffic conditions and detect vehicular accidents [39]. Tian et al. devel-

oped an infrastructural traffic monitoring solution to estimate traffic conditions

by combining the Light Detection and Ranging (LiDAR) data with visual in-

formation captured by surveillance cameras [40]. Kalamaras et al. designed a

unified interactive visual analytic platform for ITS management in urban plan-

ning [41]. To the best of our knowledge, the SAT-Geo framework is the first

infrastructure-free solution to address the problem of geolocating abnormal traf-

fic events at a fine-grained level using social media data.
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3. Problem

We present the problem of geolocating abnormal traffic event in social sens-

ing. First of all, we define a few key terms in our problem formulation.

Definition 1. Social Media Posts (P): We define the social media posts

P as a set of S social media posts (e.g., tweets) that are posted by social

media users to report abnormal traffic events. Specifically, we define P as

P = {P 1, P 2, ..., PS} where P s, ∀ 1 ≤ s ≤ S, denotes a social media post

reporting abnormal traffic event.

Definition 2. Location Entities (L): The location entities (L) is defined as

a set of named entities that are associated with the geolocation of the abnormal

traffic event reported in a social media post. For example, “FDR Dr NB”, “49th

St”, and “34th St” are the location entities in the social media post shown in

Figure 1(a). Specifically, we define Ls = {Ls
1, L

s
2, ..., L

s
C} to be the set of C

location entities from the post P s.

Definition 3. Event Geographic Coordinates (G): We define the Event

Geographic Coordinates (G) to be the longitude and latitude coordinates of the

abnormal traffic event depicted in a social media post. In particular, we define

Gs = (gslat, g
s
long) to be the geographic coordinates of the abnormal traffic event

in post P s.

The goal of our problem is to precisely estimate the abnormal traffic event

geolocation by accurately identifying all location entities from a social media

post. We formally formulate our problem as below:

arg min
Ĝs

D(Ĝs, Gs | P s), ∀ 1 ≤ s ≤ S (1)

where Ĝs and Gs are the estimated and ground-truth geographic coordinates

of the traffic event reported in social media post P s, respectively. D(·) is the

application-specific distance measurement.
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4. Solution

In this section, we present the SAT-Geo framework to address the problem

of geolocating abnormal traffic events using social sensing. An overview of the

SAT-Geo framework is shown in Figure 2. In particular, SAT-Geo consists of

three modules: i) a Syntax-based Pattern Learning (SPL) module that effec-

tively learns the syntax-based patterns in social media posts and embeds the

learned patterns with two novel probability representations; ii) a Probabilistic-

based Entity Extraction (PEE) module that identifies the location entities of

an input social media post utilizing the syntax-based patterns from the SPL

module using a principled probabilistic model; iii) a Distance-aware Geoloca-

tion Estimation (DGE) module that estimates the geographic coordinates of

the abnormal traffic event location. We elaborate on the above modules in

detail below.

Figure 2: An Overview of SAT-Geo Framework

4.1. Syntax-based Pattern Learning (SPL)

The SPL module is designed to effectively learn the syntax-based patterns in

social media posts for identifying the location entities. First, we define several

key terms that will be used in this module.

Definition 4. Entity (e): We define an entity e to be a sequence of words

that belongs to the same part-of-speech (e.g., “Conduit Ave”). In particular,
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Table 1: Example of Syntax Model of a Tweet

Social Media Post S “Accident on Conduit Ave approaching Sutter Ave”

Entity e (Syntax)
“Accident (NOUN )”, “on (ADP)”, “Conduit Ave (NOUN )”,

“approaching (VERB)”, “Sutter Ave (NOUN )”

2-Syntax Model M (2)

T
(2)
1 : NOUN+ADP [“Accident (NOUN )”,“on (ADP)”]

T
(2)
2 : ADP+NOUN [“on (ADP)”, “Conduit Ave (NOUN )”]

T
(2)
3 : NOUN+VERB [“Conduit Ave (NOUN )”, “at (VERB)”]

T
(2)
4 : VERB+NOUN [“approaching (VERB)”, “Sutter Ave (NOUN )”]

3-Syntax Model M (3)

T
(3)
1 : NOUN+ADP+NOUN

[“Accident (NOUN )”, “on (ADP)”, “Conduit Ave (NOUN )”]

T
(3)
2 : ADP+NOUN+VERB

[“on (ADP)”, “Conduit Ave (NOUN )”, “approaching (VERB)”]

T
(3)
3 : NOUN+VERB+NOUN

[“Conduit Ave (NOUN )”, “approaching (VERB)”, “Sutter Ave (NOUN )”]

4-Syntax Model M (4)

T
(4)
1 : NOUN+ADP+NOUN+VERB

[“Accident (NOUN )”, “on (ADP)”, “Conduit Ave (NOUN )”, “at (ADP)”]

T
(4)
2 : ADP+NOUN+VERB+NOUN

[“on (ADP)”, “Conduit Ave(NOUN )”, “approaching (ADP)”, “Sutter Ave (NOUN )”]

we use the state-of-the-art natural language tool3 to annotate the part-of-speech

for each social media post.

Definition 5. n-Syntax Pattern (T (n)): We define an n-Syntax Pattern T (n)

to be a contiguous syntax sequence of n entities in a given social media post.

For example, the 3-entity sequence “Accident+on+Conduit Ave” has a 3-syntax

pattern of “NOUN+ADP+NOUN ”.

Definition 6. n-Syntax Model (M (n)): We define an n-Syntax Model M (n)

as the set of all possible n-Syntax patterns T (n).

Table 1 shows a simplified example that includes a social media post and the

related entities, n-Syntax patterns, and n-Syntax models as defined above. In

addition, we also define two types of probabilities that will be used to extract

location entities from the social media post.

Definition 7. Pattern Probability: Pattern probability represents the prob-

ability of an n-Syntax pattern T (n) in an n-Syntax model M (n) that is defined

3https://cloud.google.com/natural-language/docs/analyzing-syntax
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as:

Pr(T (n)|M (n)) =
|T (n)|
|M (n)|

(2)

where |T (n)| is the number of occurrences of the n-Syntax pattern T (n) in a given

set of social media posts. |M (n)| is the total number of all n-Syntax patterns.

Definition 8. Index Probability: Index probability represents the proba-

bility of a location entity index i(n) in an n-Syntax pattern T (n) which is defined

as:

Pr(i(n)|T (n)) =
|i(n)|
|T (n)|

(3)

where |i(n)| is the number of the location entities in the ith entity given the

n-Syntax pattern T (n).

With the key concepts defined above, our next goal is to leverage the learned

pattern probability Pr(T (n)|M (n)) and index probability Pr(i(n)|T (n)) to effec-

tively extract location entities in the unlabeled social media posts in next sub-

section.

4.2. Probabilistic-based Entity Extraction (PEE)

The PEE module aims to effectively extract the location entities from the

content of the social media posts using the pattern probability and index proba-

bility learned in the SPL module. In particular, we first measure the likelihood

of entity e to be a location entity from the pattern probability and index probabil-

ity defined in Equation 2 and Equation 3, respectively. Formally, the likelihood

of entity e being a location entity is as follows.

Pr(e ∈ L|i(n), T (n),M (n)) = Pr(i(n)|T (n)) × Pr(T (n)|M (n)) × Pr(M (n)) (4)

where Pr(i(n)|T (n)) and Pr(T (n)|M (n)) denote the index probability and pattern

probability, respectively. Pr(M (n)) is the weight of n-Syntax model that repre-

sents the importance of each n-Syntax model in extracting the location entities.

Pr(M (n)) is often set to be a small value if we do not have prior knowledge.
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In addition, we note that an entity e often appears in multiple n-Syntax

patterns T (n) with different index i(n) in different n-Syntax model M (n). For

example, “Conduit Ave (NOUN )” occurs in different n-Syntax patterns (i.e., 2,

3 and 4 syntax patterns), as the example shown in Table 1. Thus, we aggregate

the likelihood of each entity over different n-Syntax patterns as below:

Pr(e ∈ L) =
∑
M(n)

∑
(i(n),T (n))

Pr(e ∈ L|i(n), T (n),M (n)) (5)

Finally, an entity e is classified to be a location entity if the likelihood Pr(e ∈

L) is greater than a predefined threshold ∆4. Specifically,

 1 : {Pr(e ∈ L) > ∆}

0 : {Pr(e ∈ L) ≤ ∆}
(6)

where “1” (i.e., true) indicates entity e is classified as a location entity and “0”

(i.e., false) otherwise. The classified location entities are to be used as the input

to effectively estimate the corresponding geographic coordinates in the DGE

module that will be elaborated in next subsection.

4.3. Distance-aware Geolocation Estimation (DGE)

The DGE module is developed to accurately estimate the geographic co-

ordinates of the abnormal traffic event using the location entities identified in

the PEE module. First, we design a point-based map representation method to

accurately extract the geographic coordinates of the location entities associated

with the abnormal traffic event. Current solutions for geolocation estimation

often adopt a grid-based approach that divides the geological areas of interest

into grids and identifies the grid covering the abnormal traffic event [15, 8].

However, the precision of such an approach is limited by the size/area of the

grid, which often ranges from 1 square mile (e.g., event location identification

using social media data [15]) to 1000 square miles (e.g., global localization for

4∆ is an application specific parameter. We present a robustness study of the variation

of ∆ in the evaluation section.
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the origin of social media posts [20]). In addition, the grid-based approach of-

ten uses the center of the grid to represent the estimated geographic coordinates

for the identified location and is sub-optimal to effectively geolocate abnormal

traffic events in urban areas with dense traffic where each grid contains multiple

roads and intersections. For example, there are more than 100 intersections per

square mile in Manhattan, New York [42].

In light of such a limitation, we design a point-based map representation

approach to effectively model the geographic coordinates associated with the

location entities identified in PEE. We first define the point-based map database

that will be used in the DGE module to estimate the geographic coordinates of

the abnormal traffic event.

Definition 9. Map Database (Q): We define the map database as a set of

H road entities, Q = {R1, R2, · · · , RH}, where each road entity is associated

with a location entity identified in PEE.

In particular, we formally define the road entity in the map database Q as

follows.

Definition 10. Road Entity (Rh): We define a road entity Rh ∈ Q to

be a sequence of Kh geographic points sampled from the road that is asso-

ciated with each location entity in L. In particular, for a social media post

P s, we define Rs = {Rs
1, R

s
2, · · · , Rs

C} to be the set of C road entities associ-

ated with the location entities in Ls. Formally, each road entity is defined as

Rh = [v1, v2, · · · , vKh ] ∀ 1 ≤ h ≤ H, where each geographic point vk ∈ Rh is

denoted as its geographic coordinates (i.e., vk = (gklat, g
k
long)).

With the map database Q defined above, our goal is to find the geographic

point that is closest to the abnormal traffic event location from a set of candidate

geographic points sampled from the road entities corresponding to the location

entities of the reported abnormal traffic event. However, it is not a trivial task

to accurately infer a geographic point that is closest to the abnormal traffic

event location from multiple road entities (i.e., multiple sequences of geographic
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points) identified in the social media post. We observe that the abnormal traffic

events reported on social media often contain more than two location entities

(e.g., the location entities “FDR DR NB”, “49TH ST”, and “34TH ST” shown

in Figure 3). Therefore, we assume there are at least two road entities in Rs.

Otherwise, we output the geographic point at the midpoint of the road entity

as the estimated event geographic coordinates Gs. However, the coordinates

of the estimated geographic point cannot be automatically identified by simply

finding the geographic coordinates of the intersections of road entities. This is

especially true when two or more intersections exist. For example, as Figure 3

shows, there are two intersections that exist among the road entities associated

with the abnormal traffic event reported on social media (i.e., the intersection

of “FDR Dr NB” and “49th St”, and the intersection of “FDR Dr NB” and

“34th St”). However, only the intersection of “FDR Dr NB” and “49th St” is

the accurate estimation of the geographic coordinates of the reported abnormal

traffic event.

Figure 3: Example of an Abnormal Traffic Event

To address such a challenge, we design a distance-aware geolocation esti-

mation method to accurately infer the geographic coordinates of the abnormal
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traffic event. We jointly consider the distance between each geographic point

and its neighborhood road entities (i.e., the road entities that co-appear in the

same social media post), and the syntax-based relations of road entities related

to the abnormal traffic event. In particular, we define the distance-driven weight

of each geographic point in the identified road entities of the abnormal traffic

event.

Definition 11. Distance-driven Weight: For each road entity Rs
i ∈ Rs, the

distance-driven weight wki of each vki
i ∈ ri is defined as

wki =
∑

Rs
j∈Rs

Rs
j ̸=Rs

i

1

δ(vki
i , Rs

j) + ϵ
(7)

where δ(·) is distance function that measures the shortest Euclidean distance

between a geolocation node vki
i and road entity Rs

j , and ϵ is a small constant to

avoid the zero value in the denominator.

We observe that the location of the abnormal traffic event location often

appears to be also close to the road entities describing the location of the ab-

normal traffic event in the social media post. For example, the traffic event

location in Figure 3 (marked with a pink star) has the shortest distance to the

road entities “FDR Dr” and “49th St” and is reasonably close to the road entity

“34th St”. Therefore, we compute the distance-driven weight of each geographic

point to measure the distance between the geographic point and the geographic

coordinates of the abnormal traffic event.

In addition, we observe that relations between the location entities are also

critical in inferring the traffic event geolocation. For example, in the social

media post (i.e., “Accident on Conduit Ave approaching Sutter Ave”) shown

in Table 1, we can effectively infer that the traffic event geographic coordinates

belong to the road entity “Conduit Ave” according to the adposition “on” in

the 2-syntax pattern “on+Conduit Ave”. Therefore, we further identify the

important location entities from the location entities in a tweet based on the

adpositions in the syntax patterns. In particular, we add a relation indicator τi
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to the distance-driven weight wki and update wki as follow:

wki
τ = τi · wki (8)

where τi = 1 if the location entity associated with ri co-appears with an ad-

position (ADP) in the 2-syntax and 3-syntax pattern, otherwise τi = 0. In

particular, we focus on the adpositions on, at, approaching, after based on the

empirical observation. Finally, the geographic point with the highest distance-

driven weight is output as the estimated traffic event geographic coordinates

Ĝs.

A summary of the distance-aware geolocation estimation (DGE) module is

summarized in Algorithm 1. The input to the DGE module is the set of location

entities L̂s of a social media post P s from the PEE module. The output of the

DGE module is the estimated abnormal traffic event geographic coordinates Ĝs.

Algorithm 1 Distance-aware Geolocation Estimation (DGE)

1: for each e in P̂ s do

2: retrieve the road entity r from Q

3: add r to the road entity set Rs

4: end for

5: for each ri in Rs do

6: for each vki
i in ri do

7: compute wki and wki
τ

8: end for

9: end for

10: if max(wki
τ ) ̸= 0 then

11: assign the geolocation node vki
i corresponds to max(wki

τ ) to Ĝs

12: else

13: assign the geolocation node vki
i corresponds to max(wki) to Ĝs

14: end if

15: output Ĝs for P s
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4.4. Summary of SAT-Geo Framework

The pseudocode of the SAT-Geo framework is summarized in Algorithm 2.

The input of our SAT-Geo framework is a set of social media posts P that

depict abnormal traffic events on social media. The output of our SAT-Geo

framework is the estimated geographic coordinates Gs of the abnormal traffic

event reported in each social media post P s.

Algorithm 2 Summary of the SAT-Geo Framework

1: input: a set of N social media posts P , a map database Q

2: output: the estimated geolocation Ĝs for each P s ∈ P

3: compute pattern probability Pr(T (n)|M (n)) and index probability Pr(i(n)|T (n)) us-

ing SPL

4: for each P s in P do

5: for each e in P s do

6: classify e using PEE

7: if e is a location entity then

8: Ls ← e

9: end if

10: end for

11: estimate the geolocation Ĝs from Ls using DGE module

12: output Ĝs for P s

13: end for

v

5. Evaluation

In this section, we evaluate the performance of the proposed SAT-Geo frame-

work on three real-world Twitter datasets collected from three cities. In par-

ticular, we first compare the location entity identification accuracy of SAT-Geo

in comparison to state-of-the-art baseline methods. In addition, we also eval-

uate the geolocation estimation performance of SAT-Geo. Evaluation results

show that SAT-Geo achieves significant performance gains compared to state-

of-the-art baselines in terms of accurately identifying location entities associated
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with abnormal traffic events and estimating the geographic coordinates of the

abnormal traffic event.

5.1. Dataset

First, we describe the real-world Twitter datasets we collected from three

major cities in the world, namely New York City (NYC), Los Angeles (LA), and

London. In particular, the social media posts (i.e., tweets) on abnormal traf-

fic events are collected from Twitter using the crawler Get Old Tweets5 with

a set of keywords and hashtags (e.g., “slow traffic”, “accident”, city names).

We manually select 200 tweets from each dataset for our study, and verify that

each tweet contains a unique abnormal traffic event (i.e., 1 tweet per event)6.

The reported abnormal traffic events in our datasets can be mainly categorized

into the following types: traffic accidents (e.g., collision, broken down vehicles),

infrastructure incidents (e.g., out-of-order traffic signal, falling trees), and un-

usual road conditions (e.g., road closure, road construction). Each dataset is

randomly split into 80% training set and 20% testing set. We manually anno-

tate the location entities and the traffic event’s geographic coordinates in each

post to obtain the ground-truth annotations.

A summary of these three datasets are reported in Table 2. In particular,

there are 2,412 entities in the NYC datasets and 20.4% of them are location

entities. The LA dataset contains 2,851 location entities and 16.7% of them

are location entities. The London dataset contains 2,483 location entities and

19.6% of these entities are location entities. We observe similar syntax patterns

in social media posts among different English-speaking countries (e.g., United

States and United Kingdom). For example, “Accident on Grand Ave SB at

CR-12” and “Collision on Greenford Road Northbound at Daryngton Drive”

are reported on social media in New York and London, respectively. We also

show the distribution of the abnormal traffic events across each studied city

5https://github.com/Mottl/GetOldTweets3
6The number of tweets is mainly limited by the human labor of annotation.
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by presenting the heatmap of the abnormal traffic event geolocations in Figure

4. Additionally, since the geotagging information associated with each tweet in

our dataset is not necessarily available (due to privacy and legal concerns), we

also invited independent human annotators to annotate the geographic coordi-

nates associated with each tweet for evaluating the performance of geographic

coordinates estimation. In particular, we annotate the ground-truth geographic

coordinates by manually assessing the abnormal traffic event described in each

tweet and finding the geographic coordinates of the traffic event location using

an online map service7.

Table 2: Data Trace Statistics

City New York City Los Angeles London

Number of Abnormal Traffic Events 200 200 200

Number of Abnormal Traffic Events Related to Traffic Accident 144 151 142

Number of Abnormal Traffic Events Related to Infrastructure Incident 25 11 28

Number of Abnormal Traffic Events Related to Unusual Road Conditions 31 38 30

Number of Entities 2,412 2,851 2,483

Number of Location Entities 492 476 487

5.2. Baselines

We compare SAT-Geo with a set of state-of-the-art baseline methods in

location entity identification and geolocation estimation.

• Google Named Entity Detection8 (GoogleNE): Google Named En-

tity Detection is the advanced commercial entity recognition service that

extracts entities with the corresponding entity types (e.g., location entity)

using a set of pre-trained natural language models.

• Stanford CoreNLP (StanfordNLP) [12]: Stanford CoreNLP is an

integrated natural language processing toolkits that can be applied to

7https://www.google.com/maps
8https://cloud.google.com/natural-language/
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(a) New York City (b) Los Angeles

(c) London

Figure 4: Heatmap of Abnormal Traffic Event Location

identify location entities from text documents.

• Spacy [43]: Spacy is an industrial natural language processing framework

that detects named entities in text document with a set of well-trained

entity recognition models.

For all the baseline methods, we use the Google Maps Geocoding API9

(Geocoding API) to convert the extracted location entities to the geographic

coordinates of the corresponding traffic event location. In particular, we first

concatenate the extracted location entities and pass them to the Geocoding

API. The geographic coordinates returned by the Geocoding API are used as

9https://developers.google.com/maps/documentation/geocoding/overview
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the estimated geographic coordinates for each corresponding baseline.

5.3. Evaluation Metrics

In evaluating the performance of location entity identification (i.e., location

entity v.s. non-location entity), we adopt the following metrics that are com-

monly used for binary classification: Accuracy, Precision, Recall, and F1-score.

In evaluating the performance of geolocation estimation, we adopt the Mean

Error Distance and Median Error Distance that are commonly used to evaluate

the error distance in geolocation estimation [20]. In particular, the error distance

d (in miles) between the estimated and ground-truth geographic coordinates is

computed using the Haversine formula [44] as:

d = 2r sin−1

(√
sin2

( ĝblong − gblong
2

)
+ cos(ĝblong) cos(gblong) sin2

( ĝblat − gblat
2

) )
(9)

where r is the radius of the earth. (ĝblat, ĝ
b
long) and (gblat, g

b
long) are the estimated

and ground-truth geographic coordinates of the abnormal traffic event reported

in social media post Sb, respectively. If the ground-truth geographic coordinates

of the traffic event is a single point, we measure the error distance in terms of

the distance between the estimated and ground-truth event geographic coordi-

nates. If the ground-truth geolocation is a road segment, we measure the error

distance in terms of the perpendicular distance (in miles) between the estimated

geographic coordinates and the road segment.

5.4. Evaluation Results

5.4.1. Location Entity Identification Performance

In the first set of experiments, we evaluate the performance of location entity

identification. In particular, we vary the threshold ∆ (defined in Equation 6)

from 0.4 to 0.6 for the SAT-Geo scheme (e.g., SAT-Geo0.6 represents the SAT-

Geo scheme with ∆ = 0.6). The evaluation results on the NYC, LA, and

London datasets are reported in Table 3, Table 4, and Table 5, respectively.
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Table 3: Evaluation Results (NYC)

Accuracy Precision Recall F1-Score

SAT-Geo0.4 0.8568 0.6147 0.8152 0.7009

SAT-Geo0.5 0.8702 0.6545 0.7826 0.7128

SAT-Geo0.6 0.8724 0.6881 0.6956 0.6918

GoogleNE 0.7807 0.4659 0.4456 0.4555

StanfordNLP 0.7203 0.1333 0.0652 0.0875

Spacy 0.7897 0.4838 0.3260 0.3896

We observe that the SAT-Geo scheme consistently outperforms all baselines

under all evaluation metrics on all datasets. In particular, SAT-Geo achieves

performance gains of 9.2%, 22.2%, 36.9%, and 25.7% comparing to the best-

performing baseline in NYC (i.e., GoogleNE) in terms of accuracy, precision,

recall, and F1-score, respectively. We observe similar performance gains on the

LA and London datasets. The significant performance gains achieved by SAT-

Geo demonstrate the effectiveness of judicious syntax patterns learning and

the accurate location entity extraction in the principled probabilistic learning

framework. We also note that SAT-Geo also outperforms all baseline methods

as the ∆ value varies in all datasets. Such consistent performance improvements

again show the robustness of SAT-Geo with respect to the ∆ parameter in the

PEE module.

We also evaluate the performance of the SAT-Geo framework by varying the

training set ratio from 60% to 80% for the NYC, LA, and London datasets. The

results of SAT-Geo are shown in Figure 5. We observe a stable performance of

SAT-Geo over different sizes of the training set across all cities in our study.

5.4.2. Geolocation Estimation Performance

We also study the geolocation estimation accuracy of SAT-Geo and the com-

pared baselines. The results of the geolocation estimation performance on the

NYC, LA, and London datasets are shown in Table 6, Table 7, and Table 8,
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Table 4: Evaluation Results (LA)

Accuracy Precision Recall F1-Score

SAT-Geo0.4 0.8648 0.5447 0.7790 0.6411

SAT-Geo0.5 0.8846 0.6122 0.6976 0.6521

SAT-Geo0.6 0.8918 0.6444 0.6744 0.6590

GoogleNE 0.8342 0.4680 0.5116 0.4889

StanfordNLP 0.7873 0.1190 0.0581 0.0781

Spacy 0.8162 0.3571 0.2325 0.2816

Table 5: Evaluation Results (London)

Accuracy Precision Recall F1-Score

SAT-Geo0.4 0.8379 0.5618 0.7529 0.6439

SAT-Geo0.5 0.8526 0.6014 0.7221 0.6562

SAT-Geo0.6 0.8687 0.6473 0.7138 0.6788

GoogleNE 0.7633 0.4182 0.3379 0.3738

StanfordNLP 0.7062 0.2175 0.1627 0.1863

Spacy 0.7735 0.4317 0.3308 0.3746

respectively. We observe that SAT-Geo consistently outperforms all the base-

line methods on all datasets. In particular, the SAT-Geo framework achieves a

mean error distance of 2.26 miles (i.e., SAT-Geo0.6) on the NYC dataset which is

56.8% less than the mean error distance of the best performing baseline method

(i.e., GoogleNE). Similarly, the mean error distance of the SAT-Geo framework

is 37.2% and 58.1% less than the best-performing baseline method (i.e., Goog-

leNE) on the LA and London datasets, respectively. In addition to the effective

entity extraction in SAT-Geo, we also attribute the performance gains to the

accurate distance-aware geolocation estimation that jointly models the distance

between each geographic point and the road entities reported in the same post,

and the different syntax-based relation between the road entities related to the
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(a) New York City

(b) Los Angeles

(c) London

Figure 5: Performance of SAT-Geo with Different Training Ratio

abnormal traffic event location.
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Table 6: Geolocation Estimation Results (NYC)

Mean Error Distance (mile) Median Error Distance (mile)

SAT-Geo0.4 2.7231 0.6337

SAT-Geo0.5 2.3172 0.6021

SAT-Geo0.6 2.2613 0.5964

GoogleNE 5.2346 1.0107

StanfordNLP 10.3018 4.7173

Spacy 6.3055 3.6543

Table 7: Geolocation Estimation Results (LA)

Mean Error Distance (mile) Median Error Distance (mile)

SAT-Geo0.4 4.2634 1.5733

SAT-Geo0.5 4.1509 1.3061

SAT-Geo0.6 3.9328 1.1275

GoogleNE 6.2598 2.6154

StanfordNLP 10.7582 10.3306

Spacy 8.4526 6.5121

5.4.3. Ablation Study for Geolocation Estimation

Finally, we carry out an ablation study to investigate the geolocation estima-

tion effectiveness of the DGE module in the SAT-Geo framework. In particular,

we consider the following variations of SAT-Geo and the baseline methods: i)

with DGE: using DGE as the geolocation estimation module to estimate the

traffic event geographic coordinates using location entities identified by SAT-

Geo and the baseline methods; ii)without DGE: using Google Map Geocoding

as the geolocation estimation module to estimate the traffic event geographic

coordinates using location entities identified by SAT-Geo and the baseline meth-

ods. The evaluation results are summarized in Figure 6 for the NYC, LA, and

London datasets. We observe that the SAT-Geo with DGE achieves the best

performance on all three datasets in terms of the mean error distance. In addi-
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Table 8: Geolocation Estimation Results (London)

Mean Error Distance (mile) Median Error Distance (mile)

SAT-Geo0.4 3.2091 0.7276

SAT-Geo0.5 2.9762 0.6949

SAT-Geo0.6 2.6138 0.6852

GoogleNE 6.2351 1.5913

StanfordNLP 9.6765 4.8502

Spacy 6.9336 4.1537

tion, we also observe that the incorporation of the DGE module also enhances

the performance of all baselines by effectively measuring the distance-aware

weight of each geographic point in the road entities related to the abnormal

traffic event.

(a) New York City (b) Los Angeles

(c) London

Figure 6: Performance for Ablations of DGE Module
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6. Discussion

In this study, we focus on estimating the abnormal traffic event geolocation

associated with social media posts. In our experiments, we only use a single

tweet to geolocate each abnormal traffic event due to the high manual label

cost [45]. However, the performance of the proposed SAT-Geo framework can

be further enhanced by leveraging multiple data sources (e.g., multiple social

media users reporting the same abnormal traffic event) to improve SAT-Geo’s

robustness against misinformation on social media [46, 47]. One critical chal-

lenge to leverage multiple data sources to geolocate the abnormal traffic event

is that the reliability of different data sources are often unknown a priori, where

the tweets posted by the unreliable social media users could lead to inconsistent

and inaccurate geolocating results [1]. To address this challenge, we plan to

leverage the estimation theoretical truth discovery solutions [23, 48] that are

designed to jointly estimate the reliability of each studied social media user as

well as the credibility of their posts to help us cross-validate the geolocating

results and improve the abnormal traffic location estimation accuracy.

In addition, we collect tweets from both traffic authority accounts (i.e., the

Twitter accounts managed by traffic authorities to publish traffic-related infor-

mation) and general Twitter user accounts. Our current framework does not

explicitly explore the authoritativeness of the Twitter accounts as we manually

verify the abnormal traffic events reported in the collected tweets and choose

the credible ones as the input to SAT-Geo. This is mainly due to the high

labor cost of manually verifying the authoritativeness of all Twitter accounts

involved in the study [45]. It will also be interesting to further investigate the

authoritativeness of Twitter accounts by modeling the reliability of these ac-

counts as well as the credibility of their posts about abnormal traffic events.

However, it is not a trivial task to rigorously model the reliability of different

Twitter accounts in the SAT-Geo framework. The reason is that the reliability

is often not known for all Twitter accounts a priori, and the Twitter accounts

with unknown/uncertain reliability may report inconsistent or conflicting infor-

28



mation about the same abnormal traffic event [1]. To address such a challenge,

we plan to utilize the estimation theoretical methods in truth discovery [23]

[48] to jointly estimate the reliability of the studied Twitter accounts and the

credibility of posts associated with these accounts to improve the geolocation

estimation performance of the SAT-Geo framework. As this line of effort is

beyond the scope of this paper, we plan to implement it in our future work.

We also acknowledge that there is a limitation of using an identified set

of tweets relevant to abnormal traffic events in our experiments that is labor-

intensive and not scalable. In our future work, we plan to integrate the SAT-Geo

framework with abnormal traffic event detection methods [49, 50] to automate

the process of retrieving traffic-related tweets from real-time data streams. In

particular, the social media posts retrieved by keywords/hashtags can be fed

into a pre-trained abnormal traffic event detection model to classify whether a

tweet contains the description related to an abnormal traffic event. The identi-

fied tweets will then be used as the input to our SAT-Geo framework for esti-

mating the geolocation of abnormal traffic events. However, such a pre-trained

abnormal traffic event detection model often requires a non-trivial amount of

annotated ground-truth labels of the social media posts that report a diverse

set of abnormal traffic events across different cities [50]. We plan to implement

the abnormal traffic event detection model in our future work by leveraging

the crowdsourcing platforms (e.g., Amazon MTurk) to collect sufficient ground-

truth labels to train the detection model.

We note that the scalability of the SAT-Geo framework in the inference

phase is expected to be linear to the size of the dataset. In particular, the time

complexity of location entity extraction in the PEE module is O(N) where N

is the total number of social media posts [51]. The time complexity of geolo-

cation estimation in the DGE module is also O(N) given the time complexity

of estimating the geolocation of each tweet is O(1) (i.e., the time complexity

of retrieving road entity from the map database is O(1) and the time complex-

ity of computing the max distance-aware weight is also O(1)) [52] . Therefore,

the SAT-Geo framework can be deployed to efficiently estimate geolocations of
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abnormal traffic events for a large-scale dataset. In addition, the efficiency of

estimating abnormal traffic event geolocation for a large amount of tweets can

be further boosted by deploying the trained SAT-Geo model at different com-

puting nodes in distributed systems or cloud computing platforms to perform

the geolocation estimation in parallel. In particular, our SAT-Geo framework

does not involve any model training during the geolocation estimation phase.

Instead, it utilizes the learned optimized model instance to infer the geoloca-

tion from each tweet. Hence, we can distribute the learned model instances to

different computing nodes to process multiple subsets of the entire dataset in

parallel to significantly improve the computational efficiency.

In this work, we focus on the social sensing based abnormal traffic event

geolocation problem in large cities with high traffic volume (e.g., New York

City, Los Angeles, London). In general, our model is more feasible for cities

of a large size and population. This is because a large city is more likely to

have a higher occurrence of different types of abnormal traffic events and there

are more active social media users in a large city to post different abnormal

traffic events in time [53]. As a result, our SAT-Geo model can be trained to

detect different abnormal traffic events by leveraging the rich set of reported

abnormal traffic events in the studied cities. For small or middle size cities, we

expect the detection accuracy of our scheme would decrease because both the

occurrence of abnormal traffic events and the chances of them being reported

on social media decrease as the size of the city shrinks, leading to insufficient

training data for our SAT-Geo model. One possible solution to address the

above problem is to apply the transfer learning techniques [54] [55] to train our

SAT-Geo model in a large city (e.g., NYC) and transfer the trained model to

locate abnormal traffic events in a smaller city (e.g., El Paso, TX). However, it is

challenging to effectively adapt the trained model across cities of different sizes.

This is especially the case when the training data at the smaller city is sparse or

unavailable [54]. To address this challenging problem, we plan to leverage the

deep transfer learning techniques (e.g., adversarial transfer learning) to capture

the latent feature of the syntax patterns from the social media posts reported
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in the large city (e.g., NYC). The extracted latent features can then be applied

to identify location entities in the posts reporting abnormal traffic events at the

smaller city (e.g., El Paso, TX).

The training phase of our SAT-Geo framework in a new city (i.e., different

from the city that SAT-Geo is trained with) will depend on the availability

of the training data in the new city. In the case that a sufficient amount of

training data is available in the new city, SAT-Geo can be re-trained to achieve

the desired performance. However, if the amount of training data of the new

city is sparse or insufficient, we can use the limited training data to fine-tune the

SAT-Geo framework that has been pre-trained with the training data from the

original city. Lastly, if the training dataset of the new city is not available at all,

we can integrate SAT-Geo with the aforementioned transfer learning techniques

[54, 55] to transfer the syntax pattern features learned from the original city

with sufficient training data to geolocate the abnormal traffic events in the new

city.

Another limitation of our work lies in the adaptability of our scheme to ge-

olocate abnormal traffic events reported in regions where the primary language

is not English (e.g., Arabic countries, Germany, Portugal, China). Our model

does not directly apply to languages other than English. This is mainly due

to the fundamental difference of grammar and syntax patterns between English

and other languages [56]. For example, descriptive adjectives are often placed

after nouns in Spanish which is opposite to the syntax pattern in English. In

our future work, we consider two possible solutions to address the above prob-

lem. The first solution is to leverage the state-of-the-art machine translations

models to translate the non-English posts to English and apply the SAT-Geo

framework to geolocate the abnormal traffic events reported in the translated

posts. Alternatively, our second solution aims to modify the n-Syntax Pat-

terns and n-Syntax Models in the SPL module of SAT-Geo to accommodate the

language-specific patterns in non-English languages [57]. We will investigate

both solutions and compare their performance on non-English case studies. In

particular, we plan to further evaluate the performance of SAT-Geo in geolo-
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cating abnormal traffic events in Arabic-speaking countries (e.g., Saudi Arabia)

and Portuguese-speaking countries (e.g., Portugal) in our future work.

7. Conclusion

In this paper, we develop SAT-Geo, a syntax-based probabilistic learning ap-

proach to geolocate abnormal traffic events using social sensing. The SAT-Geo

framework is designed to estimate the geographic coordinates of the abnormal

traffic events from the content of social media posts. In particular, we first

identify the location entities associated with the abnormal traffic event location

in social media posts by developing a syntax-based probabilistic learning ap-

proach. In addition, we design a distance-aware geolocation estimation method

to accurately estimate the geographic coordinates associated with the reported

abnormal traffic event. We evaluate the SAT-Geo framework on two real-world

Twitter datasets. Results show that our SAT-Geo framework achieves signifi-

cant performance gains comparing to state-of-the-art baseline methods in terms

of accurately estimating the geographic coordinates of abnormal traffic events

using social media data. The SAT-Geo framework can be further generalized

and applied to a broader range of applications in fine-grained geolocalization

using social media input (e.g., geolocating natural disasters or public safety

events).
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