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ABSTRACT 
An automated and accurate fabric defect inspection system is in high demand as a replacement for slow, 
inconsistent, error-prone, and expensive human operators in the textile industry. Previous efforts focused 
on certain types of fabrics or defects, which is not an ideal solution. In this paper, we propose a novel 
one-class model that is capable of detecting various defects on different fabric types. Our model takes 
advantage of a well designed Gabor filter bank to analyze fabric texture. We then leverage an advanced 
deep learning algorithm, autoencoder, to learn general feature representations from the outputs of the 
Gabor filter bank. Lastly, we develop a nearest neighbor density estimator to locate potential defects and 
draw them on the fabric images. We demonstrate the effectiveness and robustness of the proposed model 
by testing it on various types of fabrics such as plain, patterned, and rotated fabrics. Our model also 
achieves a true positive rate (a.k.a recall) value of 0.895 with no false alarms on our dataset based upon 
the Standard Fabric Defect Glossary. 
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1. INTRODUCTION 
Fabric inspection plays a critical quality control role in the textile industry. Trained human 
inspectors conduct quality inspections to find any potential fabric defects. However, due to the 
inherent limitations of human labor such as eye fatigue and distraction, the process is considered 
time-consuming, inconsistent, error-prone, and expensive. Thus, in order to improve this 
important process, an automated and accurate inspection system is highly desired. However, 
developing such an automated inspection system is technically challenging mainly due to the 
following two challenges. 

Challenge 1: Defects in fabrics vary in their size and shape. Further, fabric defects are usually 
caused by machine malfunctions such as weaving and painting issues, and they are relatively 
rare in practice, implying that the number of error-free fabrics (referring as non-defective, 
positive, or normal) is significantly larger than the number of defective fabrics (referring as 
defective or negative). 
To deal with many different types of defects, researchers have built detection systems based on 
multi-class classification [1] [2]. However, such systems do not work well beyond the pre-
defined classes and suffer from inherent unbalanced dataset issues (e.g., the number of instances 
of some defects is larger than that of other defects). 
Challenge 2: In addition to the variations in defects, background textures also vary in their 
patterns, based on different weaving methods and painting patterns (e.g., plain, patterned, etc). 
They are categorized into over 70 kinds [3]. Building a system that analyzes all kinds of fabrics 
is a challenging task. 



Some researchers took advantage of Gabor filters to analyze specific types of fabrics with 
optimized filter parameters [4] [5]. However, different optimization approaches and objectives 
yield different results, making it difficult to apply in the real world. More importantly, an 
optimized Gabor filter only works for one or a few types of fabrics. In other words, covering a 
wide range of fabrics requires an optimized Gabor filter bank. 

To address the aforementioned challenges, this paper proposes a novel one-class model for 
fabric inspection. The model is based on one-class classification (OCC) and Gabor filters. For 
challenge 1, we leverage one-class classification, which is helpful when negative samples are 
absent or not well-defined. In OCC, an efficient classifier is able to define a classification 
boundary with only the knowledge of the positive class [6]. Therefore, OCC simplifies the 
problem to focusing only on positive fabrics. This eliminates the need to collect, deal with 
various fabric defects and worry about imbalanced datasets or lack of negative samples. For 
challenge 2, we carefully design a Gabor filter bank with different orientations and bandwidths 
to analyze different fabric textures. By doing so, we ease the development of an optimized 
Gabor filter design for each fabric texture. In order to define a good classification boundary, we 
design an autoencoder to maximize representative features from the output of the Gabor filter 
bank. Finally, we leverage a nearest neighbor density estimator to locate defects and draw 
detective areas on fabric images. To validate our proposed one-class model, we extensively test 
the model from different aspects. We focus on the effectiveness of the model on plain, 
patterned, and rotated fabric images, and also the advantages of the autoencoder as a feature 
selector compared against a hand-crafted method, a Principal Component Analysis (PCA) 
method, and another advanced deep learning algorithm. We also investigate the model’s 
performance when parameters of our model change. The experiments show that our proposed 
model effectively detects defects on fabric images with various background textures and 
achieves a true positive rate value of 0.895 with no false alarms on a selected dataset from the 
Standard Fabric Defect Glossary [7]. 

The rest of the paper is organized as follows. Section 2 summarizes efforts on the problem, 
Section 3 details the overall design of our model, Section 4 shows our experiments from 
different aspects, and Section 5 concludes our paper. 

2. RELATED WORKS 
Researchers have proposed numerous systems and algorithms to automate the fabric defect 
detection problem. These methods can be generally classified into four types of approaches - 
statistical, structural, model-based, and spectral. We briefly introduce these approaches with 
more focus on relevant spectral approaches. We also introduce several advanced deep learning 
algorithms for the problem toward the end of this section.  

Statistical approaches [8] [9] usually leverage first- (e.g., mean and standard deviation) or 
second-order statistics (e.g., correlation method). These statistics are used to represent the color 
information of fabrics. However, statistical information extracted only from raw images (color 
or grey-level images) is not enough to fully represent fabric features, not being able to 
distinguish between fabric features and defects, especially in patterned cases. Secondly, the 
structural approach [10] works well only on plain fabrics as the patterns of plain fabrics are 
easier to analyze and retrieve. When encountering complex patterns, the structural approach is 
not a viable solution. Thirdly, model-based approaches (e.g., Markov random field) usually 
explore the relation among pixels of fabric images. As with the statistical approaches, model-
based approaches tend to ignore small defects, which degrades the applicability of the approach. 
Lastly, spectral approaches based on Fourier, wavelet, or Gabor transforms are superior to other 
approaches as they can extract texture features by analyzing fabrics in the frequency domain, 
which in return, are less sensitive to noise compared to ones in the spatial domain (e.g., 
statistical approach). 



Gabor filters have gained popularity for texture analysis due to their ability to model the human 
visual cortex cells. In the literature, Gabor filter-based approaches for fabric defect detection are 
based either on optimized Gabor filters or on a set of Gabor filters called a Gabor filter bank. 
Tong et al. [4] optimize a few Gabor filters by utilizing composite differential evolution. In 
return, the algorithm can successfully segment the defects from the fabric images. Mak et al. [5] 
also optimize Gabor filters by a genetic algorithm. It should be noted, however, optimized filters 
work only on certain types of fabrics. Kumar et al. [11] propose a Gabor filter bank with 
different scales and orientations. The Gabor filter bank covers multi-resolution and can detect 
the features of defects by fusing outputs of Gabor filters. Even though a Gabor filter bank deals 
with different types of fabrics, simply fusing the outputs of filters may intensify noise in normal 
fabrics since each filter extracts features from one pair of scales and orientations. Unfortunately, 
the outputs of a Gabor filter bank are significantly bigger (e.g., the dimension of feature vectors 
is large). Bissi et al. [12] perform Principal Component Analysis (PCA) on the outputs of a 
Gabor filter bank which greatly reduces the dimension of feature vectors. However, during the 
process, information loss can occur if the number of principal components is not selected 
carefully. 
Researchers have also tried to solve the fabric defect detection problem by utilizing advanced 
deep learning algorithms. Some treat the problem as an object detection problem. Zhou et al. [2] 
build a system by incorporating several techniques to the vanilla Faster RCNN to locate and 
classify defects. Zhang et al. [1] build a detection system based on YOLO by extensively 
comparing among different YOLO frameworks. These algorithms are supervised, which implies 
that in order to obtain a well-trained model, a balanced and large dataset is a must. However, 
this is difficult to achieve in practice. Moreover, defect variations in terms of size and shape, 
and texture background make these algorithms vulnerable.  

 

Fig. 1: Overall model design. 

3. DESIGN 
In this section, we overview the design of our proposed model for the fabric defect detection 
problem. As shown in Fig. 1, the model has two stages - training and testing stages. The model 
in the training stage takes normal images (i.e., images without defective areas) as input, and 
applies a Gabor filter bank with different orientations and bandwidths. The filtered images then 



are cropped into small image patches (e.g., k image patches) and a technique of feature selection 
is applied on these images patches. Each feature vector is D�dimension and the generated 
feature vectors are saved for the testing stage. In the testing stage, the model takes a raw image 
(either a normal or a defective image) as input, applies the same Gabor filter bank to the image, 
and crops the filtered images into image patches. After the same feature selection, a density 
estimator takes the saved feature vector and the new feature vector to determine an image patch 
is either normal or defective. Lastly, the determined defective image patches are painted on the 
raw image. In the rest of this section, we detail our Gabor filter bank, the feature section 
technique, and our density estimator. 

3.1. Gabor Filter Bank 
Gabor filter is a good model of simple cells in the human visual cortex and is capable of 
representing textures very well [13]. A Gabor filter is the product of a sinusoid and a Gaussian: 

 

where λ is the wavelength of the Gabor filter (e.g., the number of cycles/pixel), θ is the 
orientation of the Gabor filter (e.g., the angle of the normal to the sinusoid), ϕ is the phase (e.g., 
the offset of the sinusoid), γ represents aspect ratio, σ is the spatial envelope of the Gaussian and 
is controlled by the bandwidth (e.g., σ = 0.56λ), x′ = x cos θ + y sin θ, and y′ = −x sin θ + y cos 
θ. 

In the fabric defect detection problem, the wavelength λ and orientation θ are more important as 
fabrics can be orientated differently and the width of yarns varies. So, the design challenge is to 
find a good pair of λ and θ. However, due to the varieties of fabrics, it is not possible to find a 
perfect pair of λ and θ that works well for all types of fabrics. Recently, researchers tried to 
optimize Gabor filters for each type of fabrics [4] [14], but it is unrealistic when considering a 
real-world situation where a type of unseen fabric continuously presents. Without losing 
generality, we propose a Gabor filter bank with different wavelengths and bandwidths that can 
cover most fabrics. We have a set of wavelengths {λ: λ = 2m where 2 ≤ m ≤ 6} and a set of 
orientations {θ: θ = 10n, where 0 ≤ n ≤ 18}. Thus, our Gabor filter bank G consists of a total of 
90 Gabor filters (e.g., g0, g1, ..., g89). When filtering the input image I, with the Gabor filter bank 
G, the magnitude responses G′ can be represented as the following. 

{G′: G′i = I ⊛ gi}, 

where 0 ≤ i ≤ 89. Note that the filtered images G′ have the same size as the image I (512×512 in 
our dataset). 

3.2. Feature Selection 
Magnitude responses G′ are the features filtered by the Gabor filter bank and their sizes are 
large (e.g., 512×512) since we propose a Gabor filter bank to increase the generality. It is 
possible that some filters have the same or similar effects when filtering the input image. In this 
case, the magnitude responses would present redundant features, which decreases the 
performance and increases testing time in our model. So in order to speed up the model, 
especially the density estimation process (e.g., determining defective image patches), more 
general and representative features are needed. To this end, we propose an autoencoder feature 
learning neural networks method, inspired by the development of deep learning algorithms [15]. 



 
Fig. 2: Structure of autoencoder. 

In our model, instead of manually determining what statistical data we use or what features are 
more general, we rely on autoencoder neural networks to find the more representative features 
from the magnitude responses. We found that an autoencoder with a simple structure is capable 
of finding the representative features from the magnitude responses. The structure is shown in 
Fig. 2. By trying to reconstruct G′ik and minimizing the distance between G′ik and G′′ik over and 
over again, the autoencoder neural network is able to learn the best code to represent the input 
response. Note that we train the autoencoder neural network only with the responses from 
normal fabric images. After training, whenever input is fed to the autoencoder, the code is the 
representative feature vector of the input. 

One may question why we don’t apply autoencoders on fabric images directly, or why we don’t 
take advantage of transfer learning [16]. One reason we don’t directly train autoencoders on 
fabric images is that we don’t have a large and balanced dataset. If we train an autoencoder 
directly on fabric images, the convergence of our autoencoder is an issue. Transfer learning 
might be a good solution since the previous study [17] shows that the weights of the first layer 
in convolutional neural networks are indeed quite similar to Gabor filters. However, one reason 
we don’t transfer weights from well-trained models is that the choice of models is limited and 
some requirements (e.g., input size, number of layers, etc.) must be met. Moreover, to our best 
knowledge, there are no pre-trained models for the problem of fabric defect detection so that 
transferring weights from quite different datasets might hurt the performance of our design as 
well. 

3.2. Nearest Neighbor Density Estimator 
By carefully observing fabric images, one can easily find that most defects are different from 
the fabric’s background. This provides us a good opportunity to classify fabric image patches 
into either defective or normal ones. To this end, we propose a Nearest Neighbor Density 
Estimator (NNDE). NNDE is able to identify defective fabric patches at the testing stage based 
on the saved feature vectors from the training stage as in Fig. 1. Given a feature vector f′i (note 
that a feature vector represents an image patch) and the saved feature vector set F, the estimator 
can be mathematically defined as the following. 

 



where Dist(·) returns the distance between the feature vector and its nearest neighbor in F and si 
is proportional to the likelihood ratio. Furthermore, a feature vector f′i is classified into either the 
normal or the defective class based on a threshold τ as the following. 

 
Note that τ must be equal to or greater than one. Having a bigger value indicates the model 
allows more defective patches to be classified as normal patches. Empirically, we set τ to 1.05. 

4. RESULTS AND EVALUATION 
We conducted experiments to validate the effectiveness of the proposed model. First, we 
introduce our experiment environment, dataset, and metrics we used for quantitative analysis. 
Then, we present accuracy results along with output visualization. Next, we present the 
effectiveness of our model on two different choices of feature selection - hand-crafted [8], PCA 
[18], and residual neural networks [19] methods. We also explore the impact of two important 
parameters - image patch size and Gabor filter bank parameters on speed and accuracy 
(conditioned true positive rate). Last, we demonstrate the robustness of our proposed model by 
testing rotated fabric images. 

 
Fig. 3: Visual outputs of plain fabric defect detection (1st, 3rd, 5th columns present input 

images and 2nd, 4th, 6th columns show defects detected in black). 

4.1. Experiment environment, dataset, and metrics 
We implement the model in Python. The testing environment is configured with AMD A10-
6800K APU with a 2.5 GHz frequency. Our dataset contains fabric images that are collected 
from the Standard Fabric Defect Glossary (SFDG) [7] dataset that consists of more complex 
fabric images than other simple datasets such as the TILDA Textile Texture Database [20]. 
Because the SFDG dataset contains a lot of duplicated fabric images, we then select 31 
representatives that cover most of cases in the SFDG dataset (i.e., every 512×512 fabric image 
differs in fabric backgrounds, defects, colours, etc). We hope that our proposed model can solve 
the defect detection problem on these images so that we show the generosity of our model when 
compared with other models that work for certain types of fabrics. In the experiments, we use 



several metrics to quantify the performance of our model, such as true positive rate (TPR), false 
positive rate (FPR), and receiver operating characteristic curve (ROC curve). TPR is defined as 
TP/(TP + FN) and FPR is defined as FP/(TP + FN) where TP, TN, FP, FN indicate true positive 
(defect samples classified as defects), true negative (normal samples classified as normal), false 
positive (normal samples classified as defects), and false negative (defect samples classified as 
normal), respectively. By these metrics, we are able to measure the model’s ability to 
distinguish between the classes. In particular, we focus on TPR (recall) when FPR (ratio of false 
alarm) is equal to 0. We call this metric a conditioned TPR (cTPR). We value this metric since 
it can represent the real-world situation where a small portion of false alarms results in 
significant economic losses. 

 
Fig. 4: Visual outputs of patterned fabric defect detection (1st, 3rd, 5th columns present input 

images and 2nd, 4th, 6th columns show defects detected in black). 

4.2. Visualized Results 
We visualize the defect detection results of plain and patterned fabric images selected from the 
dataset in Fig. 3 and Fig. 4 respectively. Our proposed one-class model successfully detects all 
defects successfully regardless of different fabric textures and shapes/sizes of defects. Fig. 4 
shows our model works for patterned fabric as well as plain fabric. We analyze the reasons as 
follows. First, our Gabor filter bank is capable of extract texture features from different 
dimensions, which makes the model less insensitive to the changes in motif size. Second, our 
feature learning autoencoder makes the features extracted from the Gabor filter bank outputs 
more versatile. It makes the model effective in locating different kinds of defects. 

Note that the defects detected are slightly larger in size than actual defects. This is because our 
proposed model predicts defects on the basis of image patches instead of pixels. Therefore, as 
the patches are larger in size, the defects marked tend to get larger. We don’t see this level of 
discrepancy as a problem in real world as defects would be cut off with some margins for safe 
quality control when found. 

4.3. Comparison of different feature learning techniques 
We compare the performance of our proposed autoencoder with the other two traditional feature 
selection methods, the hand-crafted [8] and PCA [18], to demonstrate the effective�ness of our 
proposed autoencoder. Regardless of the kinds of fabrics, our model achieves a higher value of 
cTPR and AUC (area under ROC curve) as shown in Table 1. Specifically, our autoencoder 
improves overall cTPR and AUC by 12.9% and 2.9% respectively. This suggests that by 



utilizing an autoencoder, our model can learn more representative and general features from the 
magnitude responses of the designed Gabor filter bank. The defective feature vectors, therefore, 
are more easily detected by the nearest neighbor density estimator. One may notice that AUCs 
don’t change much. Indeed, AUC measures the performance of the model across all different 
FPR values. Stable AUCs suggest that our model improves cTPR a lot by allowing some 
positive samples to be predicted as negative samples (FPR only increases a bit). This also 
implies some defects are very close to defective fabrics, making them very difficult to classify 
correctly (e.g., the fabric located at the 2nd row and the 5th column in Fig. 3). Our proposed 
model can still predict defects very well on all kinds of fabrics when there are no any false 
alarms arise. 

Table 1: Comparison between different feature selections. Note that the numbers are averaged 
over all cTPRs and AUCs of 31 fabric images respectively. 

 Hand-crafted [8] PCA [18] Ours 

cTPR for plain fabrics 0.807 0.803 0.907 

AUC for plain fabrics 0.953 0.951 0.980 

cTPR for patterned fabrics 0.779 0.774 0.882 

AUC for patterned fabrics 0.945 0.944 0.974 

cTPR for al fabrics 0.793 0.788 0.895 

AUC for all fabrics 0.949 0.947 0.977 

 

4.4. Comparison against deep learning algorithms 
Besides traditional feature learning methods, we also com�pare our autoencoder with broadly-
used residual neural networks (ResNet) [19]. By end-to-end training a ResNet and a binary 
classifier using all 31 fabrics in our dataset, the ResNet model is able to perform fabric defect 
detection on all 31 fabrics with a 93.5% recall and an 83.6% precision. However, when coming 
to cTPR (i.e., no false alarms exist), the cTPR of the ResNet model is only about 0.217, which 
is far worse than ours (0.895). We conclude three reasons for it. Firstly, it is no doubt that the 
ResNet and its variants have gained lots of success in all kinds of computer vision tasks due to 
the powerful representation learning. It is also a fact that the bedrock for these successes is 
datasets where the number of samples and accurate labels are superior to our dataset (hundreds 
of thousands vs. 31). The quality of representation learning, thus, cannot be ensured. For 
example, unlike our Gabor filter bank and simple autoencoder, the convolutional filters of 
ResNet are learnable and these large number of parameters are unlikely to learn well without 
sufficient samples. Secondly, the sizes of defects are usually small compared with 512×512 
images. Without having special attention to defects, ResNet models could just learn the 
representations of fabrics instead of defects. Also, defects have different types and to our best 
knowledge, there is no concrete number that says how many types of fabric defects exist. This 
makes training a deep learning classifier hard since current models are still learning from 
existing data and cannot infer well outside of the scope. However, our one-class model shows 



its strength by only learning from fabrics patterns. Lastly, the number of normal samples is way 
larger than that of defective samples, an unbalanced dataset makes training even harder as 
trained models can be misleading by just predicting all samples to be normal, which is also the 
main reason the cTPR is low. 

 
Fig. 6: The performance impact of patch size on cTPR and speed. 

4.5. Impact on parameters 
1) Image patch size: Image patch size is important in our design. Bigger image patches contain 
more information than smaller image patches. To find an appropriate size, we test our model on 
various image patch sizes to see how it affects cTPR and speed. Fig. 6 shows that cTPR 
increases as the patch size increases then decreases back. We believe that bigger image patch 
sizes may have more information which simply gets redundant after a certain size. Our 
autoencoder is able to process redundant information fairly well. Therefore, there is little gain 
overall unless it is too small. Fig. 6 also shows the speed decreases by a very limited amount as 
the patch size increases. If we take the speed of patch size 32 as a baseline, the difference is 
only about 0.6% (existing when cropping an image to patches and compressing by the 
autoencoder). So we claim that the speed is little affected by the patch size. Also bigger patch 
sizes make defects visualized larger than actual size. Therefore, we choose 32 as our patch size 
in the following experiments. However, one should know that the speed can be greatly 
improved if the number of patches per image decreases. 

 
Fig. 7: The performance impact of parameters of Gabor filter bank on cTPR and speed. 

2) Orientations and bandwidths of Gabor filter bank: One common issue of applying the 
Gabor filter bank is speed. While more orientations and bandwidths introduce more outputs of 



the Gabor filter bank, the processing speed increases. In order to make our model applicable and 
practical, we extensively tested our model on various orientations and bandwidths. In Fig. 7a, 
we decrease the number of bandwidths by one so the total number of filters in our Gabor bank is 
decreased by 18 (e.g., 18 orientations in total). We also decrease the number of orientations by 
setting an interval from 10 to 25 as in Fig. 7b. One can see that when having more bandwidths 
and orientations, the metric, cTPR, increases but the processing time also increases. Since 
accuracy has the top priority in the problem, we keep all 90 filters in the experiments. 

 
Fig. 8: cTPR impact of rotated fabric images at different angles. Note that the images are rotated 

in counter-clock wise. 

4.6. Tests on fabric distortion (rotation) 
Previous research tests proposed models only on fabric images without any distortion. However, 
in reality, fabrics are easily distorted while traveling from one process to another (In fact, 
distortion detection/correction machines are placed between some processes in factory). To 
simulate it, we test our model on manually rotated fabric images at different angles (e.g., 0.02, 
0.05, 0.2, 2, and 5 degrees). Fig. 8 shows that the cTPR decreases as the rotation angle grows. 
The performance decreases since when classifying a rotated image patch, the classification 
boundary is not as clear as the one without rotations. Even with the decrease in performance, we 
think our model still holds its robustness very well as one can see from the visualized results of 
Fig. 5. We believe the robustness of our model not only credits to the Gabor filter bank but also 
the autoencoder. The Gabor filter bank provides magnitude responses from different 
orientations and then the autoencoder is able to learn more general features. 

5. CONCLUSIONS 
In this paper, we propose a one-class model with a carefully designed Gabor filter bank, an 
autoencoder as a general feature learner, and the nearest neighbor density estimator, to solve the 
fabrics defect detection problem. Our proposed model does not need defective samples, which is 
a significant practical advantage. The Gabor filter bank contains 90 Gabor filters at numerous 
scales and orientations, which saves our efforts on optimizing Gabor filters for any specific 
fabric, and also show the advantage when compared with a ResNet model that was trained on a 
limited dataset. In order to increase the applicability of our model, we design an autoencoder to 
better learn general features from the outputs of the Gabor filter bank. The experiments show 
the proposed autoencoder improves the performance by over 12.9% when compared against the 
hand-crafted and PCA feature selection methods. We also extensively test our model at different 



parameter settings. Moreover, we demonstrate applicability by showing our model can work 
well on plain, patterned, and rotated fabric images. 
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