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Abstract

Existing quantum compilers optimize quantum circuits by
applying circuit transformations designed by experts. This
approach requires significant manual effort to design and
implement circuit transformations for different quantum
devices, which use different gate sets, and can miss optimiza-
tions that are hard to find manually. We propose Quartz, a
quantum circuit superoptimizer that automatically generates
and verifies circuit transformations for arbitrary quantum
gate sets. For a given gate set, Quartz generates candidate
circuit transformations by systematically exploring small
circuits and verifies the discovered transformations using an
automated theorem prover. To optimize a quantum circuit,
Quartz uses a cost-based backtracking search that applies
the verified transformations to the circuit. Our evaluation
on three popular gate sets shows that Quartz can effectively
generate and verify transformations for different gate sets.
The generated transformations cover manually designed
transformations used by existing optimizers and also include
new transformations. Quartz is therefore able to optimize a
broad range of circuits for diverse gate sets, outperforming or
matching the performance of hand-tuned circuit optimizers.
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1 Introduction

Quantum computing comes inmany shapes and forms. There
are over a dozen proposals for realizing quantum computing
in practice, and nearly all these proposals support different
kinds of quantum operations, i.e., instruction set architec-
tures (ISAs). The increasing diversity in quantum processors
makes it challenging to design optimizing compilers for quan-
tum programs, since the compilers must consider a variety
of ISAs and carry optimizations specific to different ISAs.
To reduce the execution cost of a quantum circuit, the

most common form of optimization is circuit transformations

that substitute a subcircuit matching a specific pattern with a
functionally equivalent new subcircuit with improved perfor-
mance (e.g., using fewer quantum gates). Existing quantum
compilers generally rely on circuit transformations manu-
ally designed by experts and applied greedily. For example,
Qiskit [5] and t|ket⟩ [28] use greedy rule-based strategies
to optimize a quantum circuit and perform circuit transfor-
mations whenever applicable. voqc [15] formally verifies
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circuit transformations but still requires users manually spec-
ify them. Although rule-based transformations can reduce
the cost of a quantum circuit, they have two key limitations.

First, because existing optimizers rely on domain experts
to design transformations, they require significant human
effort and may also miss subtle optimizations that are hard
to discover manually, resulting in sub-optimal performance.

Second, circuit transformations designed for one quantum
device do not directly apply to other devices with different
ISAs, which is problematic in the emerging diverse quantum
computing landscape. For example, IBMQX5 [12] supports
the 𝑈1, 𝑈2, 𝑈3 and 𝐶𝑁𝑂𝑇 gates, while Rigetti Agave [26]
supports the𝑅𝑥 (±𝜋

2 ),𝑅𝑥 (𝜋),𝑅𝑧 (𝜆), and𝐶𝑍 gates. As a result,
circuit transformations tailored for IBMQX5 cannot optimize
circuits on Rigetti Agave, and vice versa.

Recently, Quanto [25] proposed to automatically discover
transformations by computing concrete matrix representa-
tions of circuits. Its main restriction is that it does not dis-
cover symbolic transformations, which are needed to deal
with common parametric quantum gates in a general way.

This paper presents Quartz, a quantum circuit superop-
timizer that automatically generates and verifies symbolic
circuit transformations for arbitrary gate sets, including para-
metric gates. Quartz provides two key advantages over ex-
isting quantum circuit optimizers. First, for a given set of
gates, Quartz generates symbolic circuit transformations and
formally verifies their correctness in a fully automated way,
without any manual effort to design or implement trans-
formations. Second, Quartz explores a more comprehensive
set of circuit transformations by discovering all possible
transformations up to a certain size, outperforming existing
optimizers with manually designed transformations.

ECC sets. We introduce equivalent circuit classes (ECCs)
as a compact way to represent circuit transformations. Each
ECC is a set of functionally equivalent circuits, and two cir-
cuits from an ECC form a valid transformation. We say that
a transformation is subsumed by an ECC set (a set of ECCs)
if the transformation can be decomposed into a sequence
of transformations, each of which is a pair of circuits from
the same ECC in the ECC set. We use (𝑛, 𝑞)-completeness to
assess the comprehensiveness of an ECC set—an ECC set
is (𝑛, 𝑞)-complete if it subsumes all valid transformations
between circuits with at most 𝑛 gates and 𝑞 qubits.

Overview. Figure 1 shows an overview of Quartz, which
uses an interleaving approach: it iteratively generates can-
didate circuits, eliminates redundancy, and verifies equiv-
alences. In the 𝑗-th iteration, Quartz generates a ( 𝑗, 𝑞)-
complete ECC set based on the ( 𝑗−1, 𝑞)-complete ECC set
from the previous iteration. The generated ECC set may con-
tain redundant transformations. We introduce RepGen, a
representative-based circuit generation algorithm that uses
a ( 𝑗−1, 𝑞)-complete ECC set to generate circuits for a ( 𝑗, 𝑞)-
complete ECC set with fewer redundancies. The circuits are

Circuit Generator (§3)

Equivalence Verifier (§4)

Circuit Optimizer (§6)

(𝒋, 𝒒)-complete ECC Set (§2)

𝑗: = 𝑗 + 1

𝑗 < 𝑛
𝑗 = 𝑛

Gate Set
𝑛, 𝑞

Optimized 
Circuit

Input 
Circuit

Transformation Pruning (§5)

𝑗: = 1

Figure 1. Quartz overview.

sent to the circuit equivalence verifier, which formally verifies
equivalence between circuits and produces a ( 𝑗, 𝑞)-complete
ECC set. After generating an (𝑛, 𝑞)-complete ECC set, Quartz
employs several pruning techniques to further eliminate re-
dundancies. Finally, Quartz’s circuit optimizer applies the
discovered transformations to optimize an input circuit.

Circuit Generator. Given a gate set and a circuit size 𝑛,
Quartz’s circuit generator generates candidate circuits of size
at most 𝑛 using the RepGen algorithm, which avoids gener-
ating all possible circuits (of which there are exponentially
many) while ensuring (𝑛, 𝑞)-completeness. To this end, Rep-
Gen iteratively constructs ECC sets, from smaller to larger.
For each ECC, RepGen selects a representative circuit and
constructs larger circuits by extending these representatives.
To discover equivalences between circuits, RepGen uses

random inputs to assign a fingerprint (i.e., a hash) to each
circuit and checks only the circuits with the same fingerprint.
We prove an upper bound on the running time of RepGen
in terms of the number of representatives generated. For the
gate sets considered in our evaluation, RepGen reduces the
number of circuits in an ECC set by one to three orders of
magnitudes while maintaining (𝑛, 𝑞)-completeness.

Circuit Equivalence Verifier. Quartz’s circuit equiva-

lence verifier checks if two potentially equivalent circuits
are indeed functionally equivalent. A major challenge is
dealing with gates that take one or multiple parameters (e.g.,
𝑈1,𝑈2, and𝑈3 in IBMQX5, and 𝑅𝑧 in Rigetti Agave). For can-
didate equivalent circuits, Quartz checks whether they are
functionally equivalent for arbitrary combinations of param-
eter assignments and quantum states. To this end, Quartz
computes symbolic matrix representations of the circuits.
The resulting verification problem involves trigonometric
functions and, in the general case, a quantifier alternation;
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Quartz soundly eliminates both and reduces circuit equiva-
lence checking to SMT solving for quantifier-free formulas
over the theory of nonlinear real arithmetic. The resulting
SMT queries are efficiently solved by the Z3 [10] SMT solver.

Circuit Pruning. Having generated an (𝑛, 𝑞)-complete
ECC set, Quartz optimizes circuits by applying the transfor-
mations specified by the ECC set. To improve the efficiency of
this optimization step, described next, Quartz applies several
pruning techniques to eliminate redundant transformations.

Circuit Optimizer. Quartz’s circuit optimizer uses a cost-
based backtracking search algorithm adapted fromTASO [17]
to apply the verified transformations. The search is guided by
a cost model that compares the performance of different can-
didate circuits (in our experiments the cost is given by num-
ber of gates). Quartz targets the logical optimization stage in
quantum circuit compilation. That is, Quartz operates before
qubit mapping where logical qubits are mapped to physical
qubits while respecting hardware constraints [11, 31].

Evaluation. Our evaluation on three gate sets derived
from existing quantum processors shows that Quartz can
generate and verify circuit transformations for different gate
sets in under 30 minutes (using 128 cores). For logical cir-
cuit optimization, Quartz matches and often outperforms
existing optimizers. On a benchmark of 26 circuits, Quartz
obtains average gate count reductions of 29%, 30%, and 49%
for the Nam, IBM, and Rigetti gate sets; the corresponding
reductions by existing optimizers are 27%, 23%, and 39%.

2 Symbolic Quantum Circuits

To support parametric gates, Quartz introduces symbolic

quantum circuits and circuit transformations. The latter are
represented compactly using equivalent circuit classes (ECCs).
This section introduces these concepts.

Quantum circuits. Quantum programs are represented
as quantum circuits [24], as shown in Figure 2a, where each
horizontal wire represents a qubit, and boxes on these wires
represent quantum gates. The semantics of a quantum cir-
cuit over 𝑞 qubits is given by a 2𝑞 × 2𝑞 unitary complex
matrix. This matrix can be computed from matrices of indi-
vidual gates in a compositional manner, using matrix mul-
tiplications (for sequential composition of subcircuits that
operate on the same qubits) and tensor products (for par-
allel composition of subcircuits that operate on different
qubits). For example, the matrix for the circuit of Figure 2a
is (𝐶𝑁𝑂𝑇 ⊗ 𝐼 ) · (𝑈2 ( 𝜋2 , 𝜋) ⊗ 𝐶𝑁𝑂𝑇 ) · (𝑈1 (−𝜋) ⊗ 𝐻 ⊗ 𝐻 ).
A circuit 𝐶 ′ is a subcircuit of 𝐶 if, for some qubit permu-

tation, the matrix computation for 𝐶 can be structured as
_ · (𝑀𝐶′ ⊗ 𝐼 ⊗ · · · ⊗ 𝐼 ) · _, where𝑀𝐶′ is the matrix for𝐶 ′. For
example, the green box in Figure 2a highlights a subcircuit,
while the red dashed area is not a subcircuit. The subcircuit
notion is invariant under qubit permutation; e.g., the 𝑋 and

𝑞!

𝑞"

𝑞# 𝑈"(−𝜋) 𝑈!(
𝜋
2 , 𝜋)
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H

(a) Quantum circuit.
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(b) Symbolic Quantum circuit.
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(c) Transformation fusing two 𝑅𝑧 gates across 𝐶𝑍 and 𝑋 gates.

Figure 2. Quantum circuits and transformations. The green
highlighted box in (a) is a subcircuit, while the red dashed
area is not; the𝑈1 (−𝜋) and 𝑋 gates also form a subcircuit.

𝑈1 gates in Figure 2a also form a subcircuit. A circuit’s matrix
is invariant under replacing one subcircuit with another that
has the same matrix (but possibly different gates), which
underpins peephole optimization for quantum circuits.
Many gates supported by modern quantum devices take

real-valued parameters. For example, the IBM quantum de-
vice supports the𝑈1 gate which takes one parameter and ro-
tates a qubit about the 𝑥-axis (on the Bloch sphere), and the
𝑈2 gate which takes two parameters for rotating about the
𝑥- and 𝑧-axes. The matrix representations of𝑈1 and𝑈2 are:

𝑈1 (𝜃 ) =
(
1 0
0 𝑒𝑖𝜃

)
𝑈2 (𝜙, 𝜆) =

1
√
2

(
1 −𝑒𝑖𝜆
𝑒𝑖𝜙 𝑒𝑖 (𝜙+𝜆)

)
(1)

Symbolic circuits. To support superoptimization of cir-
cuits with parametric gates, Quartz discovers transforma-
tions between symbolic quantum circuits, as shown in Fig-
ure 2b, which include (symbolic) parameters (𝜃 , 𝜙 , 𝜆, 𝛿 , etc.)
and arithmetic operations on these parameters, and are for-
malized below. Using such circuits, Quartz can represent
transformations such as the one illustrated in Figure 2c.

The semantics of a symbolic quantum circuit, denoted ⟦·⟧,
has type ⟦𝐶⟧ : R𝑚 → C2

𝑞×2𝑞 where 𝐶 is a circuit over 𝑚
(symbolic) parameters and 𝑞 qubits. For a vector of parame-
ter values ®𝑝 ∈ R𝑚 , ⟦𝐶⟧( ®𝑝) is a 2𝑞×2𝑞 unitary complexmatrix
representing a (concrete) quantum circuit over 𝑞 qubits. For
example, eq. (1) can be seen as defining the semantics of𝑈1
and𝑈2 as single-gate symbolic quantum circuits. The seman-
tics of a multi-gate symbolic circuit (e.g., Figure 2b) is derived
from that of single-gate circuits using matrix multiplications
and tensor products exactly as for concrete circuits. Hence-
forth, we use circuits to mean symbolic quantum circuits.

Circuit equivalence and transformations. In quantum
computing, the states |𝜓 ⟩ and 𝑒𝑖𝛽 |𝜓 ⟩ (𝛽 ∈ R) are equivalent
up to a global phase, and from an observational point of view
they are identical [24]. This leads to the following circuit-
equivalence definition that underlies Quartz’s optimization.
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(b)Above optimization as a circuit rewriting using transformations.
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(c) An ECC set that includes the transformations used above.

Figure 3. Illustrating optimization via transformations.

Definition 1 (Circuit Equivalence). Two symbolic quantum

circuits 𝐶1 and 𝐶2 are equivalent if:

∀®𝑝 ∈ R𝑚 . ∃𝛽 ∈ R. ⟦𝐶1⟧( ®𝑝) = 𝑒𝑖𝛽⟦𝐶2⟧( ®𝑝). (2)

That is, two circuits are equivalent if for every valuation of
the parameters they differ only by a phase factor. The phase
factor may in some cases be constant, but generally it may
be different for different parameter values. For example, the
equivalence between 𝑈1 and 𝑅𝑧 gates (𝑈1 (𝜃 ) = 𝑒𝑖𝜃/2𝑅𝑧 (𝜃 ))
requires a parameter-dependent phase factor. Crucially for
peephole optimization, circuit equivalence is invariant under
replacing a subcircuit with an equivalent subcircuit.

A circuit transformation (𝐶𝑇 ,𝐶𝑅) is a pair of distinct equiv-
alent circuits, where𝐶𝑇 is a target circuit to be matched with
a subcircuit of the circuit being optimized, and𝐶𝑅 is a rewrite
circuit that can replace the target circuit while maintaining
equivalence of the optimized circuit and the input circuit.
Figure 2c illustrates a circuit transformation.

Equivalent Circuit Classes. Quartz uses equivalent cir-
cuit classes (ECCs), to represent many circuit transformations
compactly. An ECC is a set of equivalent circuits. A transfor-
mation is included in an ECC if both its target and rewrite
circuits are in the ECC. ECCs provide a compact represen-
tation of circuit transformations: an ECC with 𝑥 circuits
includes 𝑥 (𝑥 − 1) transformations.
A circuit rewriting is a sequence of applications of cir-

cuit transformations, which Quartz uses for optimization
as illustrated in Figure 3. Figure 3a shows a common op-
timization that removes four Hadamard gates (i.e., 𝐻 ) by
flipping a 𝐶𝑁𝑂𝑇 gate. Figure 3b shows how to perform this
optimization as a circuit rewriting consisting of three (more

basic) circuit transformations, which are instances of the two
transformations specified by the ECC set in Figure 3c.

Completeness for ECC sets. For any number of gates 𝑛,
qubits 𝑞, and parameters𝑚, we assume a finite set C (𝑛,𝑞,𝑚)

of circuits that can be constructed with at most 𝑛 gates over
𝑞 qubits and𝑚 parameters. The collection {C (𝑛,𝑞,𝑚) }𝑛,𝑞,𝑚∈N
is determined by the gate set G (finite set of possibly para-
metric gates) as well as a specification Σ of how parameter
expressions may be constructed; e.g., a finite set of arithmetic
operations and some bounds on the depth of expressions or
the number of times each parameter can be used, ensuring
finiteness of every C (𝑛,𝑞,𝑚) . Henceforth, we fix the gate set
G, the parameter-expression specification Σ, and the number
of parameters𝑚; and elide𝑚 by writing C (𝑛,𝑞) .
A transformation (𝐶𝑇 ,𝐶𝑅) is subsumed by an ECC set if

there is a circuit rewriting from 𝐶𝑇 to 𝐶𝑅 that only uses
transformations included in the ECC set.

Definition 2 ((𝑛, 𝑞)-Completeness). Given G, Σ, and𝑚 as

above, an ECC set is (𝑛, 𝑞)-complete (for G, Σ, and 𝑚) if it

subsumes all circuit transformations over C (𝑛,𝑞)
.

An (𝑛, 𝑞)-complete ECC set can be used to rewrite any
two equivalent circuits with at most 𝑛 gates over 𝑞 qubits
to each other. Any ECC set is by default (0, 𝑞)-complete
because any transformation involves at least one gate in
the target or rewrite circuits. An ECC set is (1, 𝑞)-complete
if it subsumes all possible transformations between single
gates. Sections 3 to 5 describe our approach for constructing
a verified (𝑛, 𝑞)-complete ECC set.

3 Circuit Generator

Quartz builds an (𝑛, 𝑞)-complete ECC set using the RepGen
algorithm, developed in this section, which interleaves circuit
generation and equivalence verification (see Figure 1).

3.1 The RepGen Algorithm

A straightforward way to generate an (𝑛, 𝑞)-complete ECC
set is to examine all circuits in C (𝑛,𝑞) , but there are exponen-
tially many such circuits. To tackle this challenge, RepGen
uses representative-based circuit generation, which signifi-
cantly reduces the number of circuits considered. The key
idea is to extend a ( 𝑗, 𝑞)-complete ECC set to a ( 𝑗 + 1, 𝑞)-
complete one by selecting a representative circuit for each
ECC and using these representatives to build larger circuits.

Sequence representation for circuits. RepGen repre-
sents a circuit as a sequence of instructions that reflects
a topological ordering of its gates (i.e., respecting dependen-
cies). E.g., a possible sequence for the circuit in Figure 2b is:
U1 𝜃 0; U2 2𝜙 𝜆+𝛿 0; H 1; X 2; CNOT 1 2; CNOT 0 1.
We write () for the empty sequence and 𝐿.(𝑔 𝜄) for appending
gate 𝑔 ∈ G with arguments 𝜄 (parameter expressions and
qubit indices) to sequence 𝐿; e.g., for the second instruction
above 𝑔 = U2 and 𝜄 = (2𝜙, 𝜆+𝛿, 0). Different sequences may
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Algorithm 1 RepGen.
1: Input: Number of gates 𝑛 and qubits 𝑞.
2: Output: (𝑛, 𝑞)-complete ECC set.
3: D = ∅ // Hash table of circuit sets indexed by fingerprint

4: D[FingerPrint(())] = {()} // Initialize with empty circuit

5: R0 = {()} // Representatives with 0 gates

6: S0 = ∅ // (0, 𝑞)-complete ECC set

7: for 𝑗 = 1 to 𝑛 do

8: // Step 1: construct circuits (sequences) with 𝑗 gates

9: for each circuit 𝐿 ∈ R 𝑗−1 such that |𝐿 | = 𝑗 − 1 do
10: for each gate 𝑔 ∈ G do

11: for each 𝜄 such that 𝐿′ = 𝐿.(𝑔 𝜄) satisfies Σ do

12: if DropFirst(𝐿′) ∈ R 𝑗−1 then
13: add 𝐿′ to D[FingerPrint(𝐿′)]
14: // Step 2: examine circuits with equal fingerprints

15: S𝑗 =
⋃{Eccify(𝛾) : 𝛾 = D[𝑓 ] for some 𝑓 }

16: R 𝑗 = {min(E) : E ∈ S𝑗 } // Under ≺ (Definition 3)
17: return {E ∈ S𝑛 : |E | ≥ 2} // Ignore singleton ECCs

18:
19: // Partition circuits into verified ECCs

20: function Eccify(𝛾 )
21: Ŝ = ∅ // Set of ECCs for circuits in 𝛾

22: for each circuit 𝐶 ∈ 𝛾 do

23: if 𝐶 is equivalent to a circuit in ECC E ∈ Ŝ then

24: Ŝ = Ŝ \ {E} ∪ {E ∪ {𝐶}} // Add 𝐶 to E
25: else

26: Ŝ = Ŝ ∪ {{𝐶}} // Create a new ECC for 𝐶

27: return Ŝ

represent the same circuit; e.g. the U2 and X instructions
above can be swapped. RepGen eliminates some of this rep-
resentation redundancy by the same mechanism it uses for
avoiding redundancy due to circuit equivalence.
We use |𝐿 |, DropFirst(𝐿), and DropLast(𝐿) to denote

the number of gates in a circuit 𝐿, its suffix with |𝐿 | − 1 gates,
and its prefix with |𝐿 | − 1 gates. Note that each of the latter
two represents a subcircuit.

We fix an arbitrary total order over single-gate circuits (i.e.,
C (1,𝑞) ), and lift it to a total order of circuits (i.e., sequences).

Definition 3 (Circuit Precedence). We say 𝐿1 precedes 𝐿2,
written 𝐿1 ≺ 𝐿2, if |𝐿1 | < |𝐿2 |, or if |𝐿1 | = |𝐿2 | and 𝐿1 is

lexicographically smaller than 𝐿2.

Algorithm 1 lists the RepGen algorithm, which proceeds
in rounds and maintains a database D of circuits grouped
by fingerprints (defined below), a ( 𝑗, 𝑞)-complete ECC set
S𝑗 , and a representative set (set of representatives) R 𝑗 for
ECCs in S𝑗 . The 𝑗-th round produces a ( 𝑗, 𝑞)-complete ECC
set from the ( 𝑗 − 1, 𝑞)-complete ECC set generated in the
previous round. Each round proceeds in two steps.

Step 1: Constructing circuits. Before the first round,
the initial ECC set is S0 = ∅ and the representative set
is R0 = {()}, i.e., a singleton set consisting of the empty
circuit (over 𝑞 qubits). In the 𝑗-th round, RepGen uses the

( 𝑗−1, 𝑞)-complete ECC set S𝑗−1 and its representative set
R 𝑗−1 computed previously, and constructs possible size- 𝑗
circuits by appending a single gate to each circuit in R 𝑗−1
with size 𝑗 − 1. RepGen enumerates all possible gates 𝑔 and
arguments 𝜄 according to G and Σ. For each generated circuit
𝐿′, RepGen checks if DropFirst(𝐿′) is a representative from
the previous round. If so, RepGen concludes that 𝐿′ extends
existing representatives and must be considered in gener-
ating S𝑗 . Otherwise, circuit 𝐿′ is considered redundant and
ignored. We prove the correctness of RepGen in Theorem 2.
To identify potentially equivalent circuits, RepGen com-

putes circuit fingerprints, and uses them as keys for storing
circuits in the hash table D. The fingerprint is computed us-
ing fixed, randomly selected parameter values and quantum
states. Recall that for a circuit 𝐶 over 𝑞 qubits and𝑚 param-
eters, and parameter values ®𝑝 ∈ R𝑚 , ⟦𝐶⟧( ®𝑝) is a (concrete)
2𝑞 × 2𝑞 complex matrix. The fingerprint of a circuit 𝐶 is

FingerPrint(𝐶) =
��⟨𝜓0 | ⟦𝐶⟧( ®𝑝0) |𝜓1⟩

�� , (3)

where the parameter values ®𝑝0 and quantum states |𝜓0⟩ and
|𝜓1⟩ are fixed and randomly selected, and | · | denotes modulus
of a complex number. With infinite precision, eqs. (2) and (3)
ensure that equivalent circuits have identical fingerprints.
This section presents and analyzes RepGen assuming infinite
precision, while Section 7.1 presents an adaptation for finite-
precision floating-point arithmetic.

Step 2: Examining circuits with equal fingerprints.
In Step 1, RepGen generates circuits and stores them in the
hash table D grouped by their fingerprints. In Step 2, Rep-
Gen partitions each set 𝛾 = D[𝑓 ] of potentially equivalent
circuits into a verified ECC set using the function Eccify.
Eccify considers each circuit in 𝛾 and checks if it is equiv-
alent to some existing ECC in 𝛾 by querying the verifier
(Section 4); the circuit is then either added to the match-
ing ECC, or becomes a new singleton ECC. RepGen then
combines the ECC sets for each 𝛾 to get the ECC set S𝑗 .

Having constructed an ECC setS𝑗 , RepGen computesS𝑗 ’s
representative set R 𝑗 , which is the set of representatives of
the ECCs in S𝑗 (Algorithm 1 line 16). The representative of
an ECC is its ≺-minimum circuit (Definition 3). During the
operation of RepGen, singleton ECCs are important: their
representatives must be considered when generating circuits
in the next round, and they may grow to non-singleton ECCs
as more circuits are generated. However, singleton ECCs in
S𝑛 ultimately yield no transformations, so we remove them
from the result of the RepGen algorithm (line 17).

3.2 Correctness of RepGen

When constructing circuits of size 𝑗 (in round 𝑗 ), RepGen
only considers circuits 𝐿′ that extend previously constructed
representatives, i.e., DropLast(𝐿′) ∈ R 𝑗−1, and only when
the extension leads to DropFirst(𝐿′) ∈ R 𝑗−1. In this section
we prove that in spite of that, RepGen always generates
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an (𝑛, 𝑞)-complete ECC set. Below we use D𝑗 to denote
the value of D after Step 1 in RepGen’s 𝑗-th round (i.e., at
Algorithm 1 line 15) andD0 for the initial value ofD (line 4).

Lemma 1. Algorithm 1 maintains the following invariants

(for any 1 ≤ 𝑗 ≤ 𝑛, and writing ⊑ for Hoare ordering, i.e.,

X ⊑ Y ≡ ∀𝑋 ∈ X. ∃𝑌 ∈ Y . 𝑋 ⊆ 𝑌 ):

1. D𝑗−1 ⊑ D𝑗 , S𝑗−1 ⊑ S𝑗 , and R 𝑗−1 ⊆ R 𝑗 ;

2. for any 𝐿 ∈ C (𝑛,𝑞)
, 𝐿 ∈ ⋃D𝑗 iff |𝐿 | ≤ 𝑗 and either

𝐿 = () or DropFirst(𝐿),DropLast(𝐿) ∈ R 𝑗−1; and
3. for any 𝐿 ∈ C (𝑛,𝑞)

, 𝐿 ∈ R 𝑗 iff |𝐿 | ≤ 𝑗 and 𝐿 does not

have a ≺-smaller equivalent circuit in C (𝑛,𝑞)
.

Proof. For item 1,D𝑗−1 ⊑ D𝑗 and S𝑗−1 ⊑ S𝑗 follow from the
monotonic updating of D (i.e., circuits are only added), and
from monotonicity (w.r.t. Hoare ordering) of Eccify. To see
that R 𝑗−1 ⊆ R 𝑗 , observe that in the 𝑗-th round, all circuits
constructed are of size 𝑗 , so any circuit added to an existing
ECC has more gates than its representative in R 𝑗−1, which
will therefore remain its representative in R 𝑗 (recall that if
|𝐿 | < |𝐿′ | then 𝐿 ≺ 𝐿′).
We prove item 2 by induction on 𝑗 . Both the base case

( 𝑗 = 1) and the induction step follow from Algorithm 1
lines 9–13, combined with item 1 and either the definition
of D0 or the induction hypothesis.
We prove item 3 by induction on 𝑗 . Slightly generalizing

from the statement above, we take the base case to be 𝑗 = 0,
which follows from line 5. In the induction step, for suffi-
ciency, consider a circuit 𝐿, 1 ≤ |𝐿 | ≤ 𝑗 , with no ≺-smaller
equivalent circuit. (The |𝐿 | = 0 case follows from line 5 and
item 1.) Both DropFirst(𝐿) and DropLast(𝐿) are of size
≤ 𝑗 − 1 with no ≺-smaller equivalent circuits (if either had
a ≺-smaller equivalent circuit, we could use it to construct
a ≺-smaller equivalent circuit for 𝐿). By the induction hy-
pothesis, DropFirst(𝐿),DropLast(𝐿) ∈ R 𝑗−1, so by item 2,
𝐿 ∈ ⋃D𝑗 . By lines 15–16, R 𝑗 includes the ≺-minimal ele-
ment of each class of equivalent circuits in

⋃D, so it must
include 𝐿. Necessity follows from sufficiency, combined with
the fact that two circuits in R 𝑗 cannot be equivalent and that
R 𝑗 does not contain circuits of size greater than 𝑗 . □

Theorem 2 (RepGen). In Algorithm 1, every S𝑗 (0 ≤ 𝑗 ≤ 𝑛)

is a ( 𝑗, 𝑞)-complete ECC set, and the algorithm returns an

(𝑛, 𝑞)-complete ECC set.

Proof. We proceed using proof by contradiction. Let 𝑗 be the
smallest such that S𝑗 is not ( 𝑗, 𝑞)-complete. We must have
𝑗 > 0, with S𝑗−1 ( 𝑗−1, 𝑞)-complete, and by Lemma 1 item 1
S𝑗 is also ( 𝑗−1, 𝑞)-complete. (As S𝑗−1 ⊑ S𝑗 , S𝑗 only includes
more transformations.) Let (𝐿, 𝐿′) be the minimal (under
the pairwise lexicographic lifting of ≺) pair of equivalent
circuits of size ≤ 𝑗 that cannot be rewritten to each other
using transformations included in S𝑗 . We must have |𝐿′ | = 𝑗 ,
since otherwise |𝐿 |, |𝐿′ | ≤ 𝑗 − 1, but S𝑗 is ( 𝑗−1, 𝑞)-complete.

If DropFirst(𝐿′) has a ≺-smaller equivalent circuit, then
S𝑗 can rewrite 𝐿′ to a ≺-smaller equivalent circuit, which

it must also not be able to rewrite to 𝐿, contradicting the
minimality of 𝐿′. Therefore, DropFirst(𝐿′) does not have
a ≺-smaller equivalent circuit; The same argument works
for DropLast(𝐿′). Therefore, by using Lemma 1 item 3 we
get DropFirst(𝐿′),DropLast(𝐿′) ∈ R 𝑗−1, and by Lemma 1
item 2, 𝐿′ ∈ D𝑗 . But if 𝐿′ ∈ D𝑗 then either S𝑗 includes
a transformation that rewrites 𝐿′ to a smaller equivalent
circuits, that it cannot rewrite to 𝐿, contradicting the min-
imality of 𝐿′; or 𝐿′ does not have a ≺-smaller equivalent
circuit, contradicting the definition of the pair (𝐿, 𝐿′). □

3.3 Complexity of RepGen

We analyze the time complexity of RepGen (its space com-
plexity is the same). First, observe that the number of single-
gate circuits |C (1,𝑞) | − 1, which is determined by the gate set
G, parameter-expression specification Σ, number of qubits 𝑞,
and parameters𝑚, provides an upper bound for the number
of single-gate extensions of any existing circuit. (The −1 is
due to () ∈ C (1,𝑞) .) This characteristic of G, Σ, 𝑞, and 𝑚,
denoted ch(G, Σ, 𝑞,𝑚) = |C (1,𝑞) | − 1, bounds the number of
iterations of the loops in Algorithm 1 lines 10 and 11 in each
round. (The bound may not be tight as Σ may impose more
restrictions, e.g., single use of parameters.)

While
∑𝑛

𝑗=0 ch(G, Σ, 𝑞,𝑚) 𝑗 provides a trivial upper bound
on the complexity of RepGen, the following theorem shows
that RepGen’s running time can be bounded using the num-
ber of resulting representatives |R𝑛 |. In practice, this number
is significantly smaller than ch(G, Σ, 𝑞,𝑚)𝑛 (see Table 5).

Theorem 3 (Complexity of RepGen). The time complexity

of Algorithm 1, excluding the verification part (line 15), is

𝑂
(
|R𝑛 | · ch(G, Σ, 𝑞,𝑚) · 𝑛

)
.

Proof. The 𝑗-th round of Algorithm 1 considers circuits from
R 𝑗−1 with size 𝑗 − 1, and for each one it considers at most
ch(G, Σ, 𝑞,𝑚) possible extensions. It takes𝑂 (𝑛) to construct
a new circuit and add it to D. (We assume 𝑂 (1) complexity
for hash table insert and lookup, i.e., we use average and
amortized complexity.) Summing over all rounds of Algo-
rithm 1, and recalling that R 𝑗 ⊆ R𝑛 (Lemma 1 item 1):

𝑛∑
𝑗=1

|{𝐿 ∈ R 𝑗−1 : |𝐿 | = 𝑗 − 1}| · ch(G, Σ, 𝑞,𝑚) · 𝑛

≤ |R𝑛 | · ch(G, Σ, 𝑞,𝑚) · 𝑛.
□

Note that if G, Σ, 𝑞, and𝑚 are considered as constant then
the time complexity of Algorithm 1 is 𝑂 ( |R𝑛 | · 𝑛).

Table 5 lists some empirical ch(G, Σ, 𝑞,𝑚) and |R𝑛 | values.

4 Circuit Equivalence Verifier

Given two circuits 𝐶1 and 𝐶2 over 𝑞 qubits and 𝑚 param-
eters, the verifier checks if they are equivalent (i.e., up to
a global phase). Recalling eq. (2), that means checking if
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∀®𝑝 ∈ R𝑚 . ∃𝛽 ∈ R. ⟦𝐶1⟧( ®𝑝) = 𝑒𝑖𝛽⟦𝐶2⟧( ®𝑝). Note that the
equality here is between two 2𝑞 × 2𝑞 complex matrices.

There are two challenges in automatically checking eq. (2).
One is the quantifier alternation, which may be needed to ac-
count for global phase; the other is the use of trigonometric
function, which is common in quantum gates’ matrix repre-
sentations. For example, the𝑈3 gate supported by the IBM
quantum processors has the following matrix representation:

⟦𝑈3⟧(𝜃, 𝜙, 𝜆) =
©­«

cos
(
𝜃
2

)
−𝑒𝑖𝜆 sin

(
𝜃
2

)
𝑒𝑖𝜙 sin

(
𝜃
2

)
𝑒𝑖 (𝜙+𝜆) cos

(
𝜃
2

)ª®¬ . (4)

While some SMT solvers support quantifiers and trigono-
metric functions [8, 9], our preliminary attempts showed
they cannot directly prove eq. (2) for the circuit transfor-
mations generated by Quartz. Our verification approach is
therefore to reduce eq. (2) to a quantifier-free formula over
nonlinear real arithmetic by eliminating both the quantifica-
tion over 𝛽 and the trigonometric functions. The resulting
verification conditions are then checked using the Z3 [10]
SMT solver. This approach can efficiently verify all circuit
transformations generated in our experiments (Section 7.4).

Phase factors. To eliminate the existential quantification
over the phase 𝛽 , we search over a finite space of linear com-
binations of the parameters ®𝑝 for a value that can be used for
𝛽 . We consider 𝛽 ( ®𝑝) = ®𝑎 · ®𝑝 + 𝑏, where ®𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 for
some finite sets 𝐴 ⊆ R𝑚 and 𝐵 ⊆ R. (Our experimentation
with various combinations of quantum gates suggested that
®𝑎 ≠ ®0 is sometimes needed, so we develop the mechanism
with this generality; however, in the experiments reported
in Section 7, constant phase factors, i.e. ®𝑎 = ®0, turned out to
be sufficient for the three gate sets and the parameter speci-
fications used.) Given circuits 𝐶1 and 𝐶2, we find candidates
for the coefficients ®𝑎 and 𝑏 using an approach similar to the
one we use for generating candidate transformations. We
select random parameter values ®𝑝0 and quantum states |𝜓0⟩
and |𝜓1⟩ and find all combinations of ®𝑎 and 𝑏 as above that
satisfy the following equation up to a small floating-point
error (note that unlike eq. (3), | · | is not used):

⟨𝜓0 | ⟦𝐶1⟧( ®𝑝0) |𝜓1⟩ = 𝑒𝑖 ( ®𝑎 · ®𝑝+𝑏) · ⟨𝜓0 | ⟦𝐶2⟧( ®𝑝0) |𝜓1⟩ , (5)

For every such candidate coefficients ®𝑎 and 𝑏, we then at-
tempt to verify following equation,

∀®𝑝 ∈ R𝑚 . ⟦𝐶1⟧( ®𝑝) = 𝑒𝑖 ( ®𝑎 · ®𝑝+𝑏)⟦𝐶2⟧( ®𝑝), (6)

which unlike eq. (2), does not existentially quantify over 𝛽 .
If eq. (6) holds for some candidate coefficients, then 𝐶1 and
𝐶2 are verified to be equivalent. Otherwise, we consider the
transformation given by 𝐶1 and 𝐶2 to fail verification, but
that case did not occur in our experiments.

Trigonometric functions. Matrices of parametric quan-
tum gates we encountered only use their parameters inside
arguments to sin or cos (after applying Euler’s formula).

𝑞!

𝑞" X

𝑞!

𝑞" X
target circuit rewrite circuit

(a) A circuit transformation.

𝑞!

𝑞" X

𝑞!

𝑞" X
target circuit rewrite circuit

(b) Redundant circuit transformation (common subcircuit).

Figure 4. Illustrating a redundant circuit transformation.

Under this assumption, we reduce eq. (6) to nonlinear real
arithmetic in three steps. First, we eliminate expressions
such as 𝜃

2 that occur in some quantum gates (e.g., eq. (4)) by
introducing a fresh variable 𝜃 ′ = 𝜃

2 and substituting 𝜃 ′ + 𝜃 ′
for 𝜃 . After this step, all arguments to sin and cos are linear
combinations of variables and constants (e.g., from phase
factors) with integer coefficients. Second, we exhaustively
apply Euler’s formula 𝑒𝑖𝜙 = cos𝜙 +𝑖 sin𝜙 , and trigonometric
identities for parity and sum of angles: sin(−𝑥) = − sin(𝑥),
cos(−𝑥) = cos(𝑥), sin(𝑥 + 𝑦) = sin(𝑥) cos(𝑦)+cos(𝑥) sin(𝑦),
and cos(𝑥 + 𝑦) = cos(𝑥) cos(𝑦) − sin(𝑥) sin(𝑦). After these
steps, sin and cos are only applied to atomic terms (variables
and constants). For each constant 𝑐 , we require precise sym-
bolic expressions for sin(𝑐) and cos(𝑐) (e.g., sin

(
𝜋
4
)
=

√
2
2 ),

and eliminate sin and cos over constants using these expres-
sions. Third, for every variable 𝑡 such that sin(𝑡) or cos(𝑡)
is used we substitute 𝑠𝑡 for sin(𝑡) and 𝑐𝑡 for cos(𝑡), where 𝑠𝑡
and 𝑐𝑡 are fresh variables with a constraint 𝑠2𝑡 +𝑐2𝑡 = 1, which
fully eliminates trigonometric functions.

Ultimately, Z3 can check the transformed version of eq. (6)
using the theory of quantifier-free nonlinear real arithmetic.
During the development of Quartz we occasionally en-

countered verification failures, but these were due to imple-
mentation bugs, and the counterexamples obtained from Z3
were useful in the debugging process. Thus, verification is
useful not only to ensure the ultimate correctness of the gen-
erated transformations, but also in the development process.

5 Pruning Redundant Transformations

Quartz applies two pruning steps after RepGen generates
an (𝑛, 𝑞)-complete ECC set to further eliminate redundancy.
These steps maintain (𝑛, 𝑞)-completeness while reducing the
number of transformations the optimizer needs to consider.

5.1 ECC Simplification

All ECCs generated by RepGen have circuits with exactly
𝑞 qubits. For each ECC, a qubit (or a parameter) is unused
if all circuits in the ECC do not operate on the qubit (or the
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parameter). An ECC simplification pass removes all unused
qubits and parameters from each ECC. After this pass, some
ECCs may become identical, among which only one is kept.
Because there is no specific order on parameters in a cir-

cuit, Quartz also finds identical ECCs under a permutation
of the parameters and maintains only one of them.

5.2 Common Subcircuit Pruning

Quartz eliminates transformations whose target and rewrite
circuits include a common subcircuit at the beginning or
the end. Figure 4 illustrates this common subcircuit pruning;
the common subcircuit is highlighted in grey. Theorem 4
explains why such transformations are always redundant.

Definition 4. A subset of gates𝐶 ′
in a circuit𝐶 is a subcircuit

at the beginning of𝐶 if all gates in𝐶 ′
are topologically before

all gates in𝐶 \𝐶 ′
. Similarly, a subset of gates𝐶 ′

in a circuit𝐶 is

a subcircuit at the end of 𝐶 if all gates in 𝐶 ′
are topologically

after all gates in 𝐶 \𝐶 ′
.

Theorem 4. For any two quantum circuits 𝐶1 and 𝐶2 with a

common subcircuit at the beginning or the end, if 𝐶1 and 𝐶2
are equivalent, then eliminating the common subcircuit from

𝐶1 and 𝐶2 generates two equivalent circuits.

Proof. Recall that ⟦𝐶⟧( ®𝑝) (for all ®𝑝—we elide ®𝑝 in this proof)
denotes the matrix representation of circuit 𝐶 . Let ⟦𝐶⟧† be
the conjugate transpose of ⟦𝐶⟧, and recall that as ⟦𝐶⟧ is
unitary, we have ⟦𝐶⟧†⟦𝐶⟧ = ⟦𝐶⟧⟦𝐶⟧† = 𝐼 . Let 𝐶𝑠 denote
the common subcircuit shared by 𝐶1 and 𝐶2. Let 𝐶 ′

1 and 𝐶
′
2

represent the new circuits obtained by removing 𝐶𝑠 from 𝐶1
and𝐶2. When𝐶𝑠 is a common subcircuit at the beginning of
𝐶1 and𝐶2, the matrix representations for the new circuits are
⟦𝐶 ′

𝑖⟧ = ⟦𝐶𝑠⟧†⟦𝐶𝑖⟧, where 𝑖 = 1, 2. Equivalence between 𝐶1
and 𝐶2 implies the existence of 𝛽 such that ⟦𝐶1⟧ = 𝑒𝑖𝛽⟦𝐶2⟧,
therefore ⟦𝐶 ′

1⟧ = 𝑒𝑖𝛽⟦𝐶 ′
2⟧. The case where 𝐶𝑠 is a common

subcircuit at the end is similar. □

Theorem 4 shows that every transformation pruned in
common subcircuit pruning must be subsumed by other
transformations (assuming initial (𝑛, 𝑞)-completeness).

Observe that if two circuits have a common subcircuit at
the beginning (resp. the end), then they must have a common
gate at the beginning (resp. the end). Therefore, to implement
common subcircuit pruning, Quartz only checks for a single
common gate at the beginning or the end.

6 Circuit Optimizer

Quartz’s circuit optimizer applies the verified transformations
generated by the generator to find an optimized equivalent
circuit for a given input circuit (see Figure 1).
A key step is computing Apply(𝐶,𝑇 ), the set of circuits

that can be obtained by applying transformation𝑇 = (𝐶𝑇 ,𝐶𝑅)
to circuit𝐶 . This involves finding all possible ways to match
𝐶𝑇 with a subcircuit of 𝐶 . Quartz’s optimizer uses a graph
representation for circuits, explained below, to implement

𝑞!

𝑞"

𝑞# 𝑈"(−𝜋) 𝑈!(
𝜋
2
, 𝜋)

X

H
CNOT

𝑞!

𝑞"

𝑞#

CNOT
C C

T T

C C

T T

Figure 5. Graph representation for Figure 2a’s circuit. The
green box (subcircuit, also convex subgraph) and red dashed
area (not a subcircuit, also non-convex subgraph) match
those of Figure 2a.

this operation. In the graph representation, subcircuits cor-
respond to convex subgraphs,1 and Quartz adapts the graph-
matching procedure from TASO [17] to find all matches
between 𝐶𝑇 and a convex subgraph of 𝐶 .
In the graph representation, a circuit 𝐶 over 𝑞 qubits is

represented as a directed graph 𝐺 , where each gate over 𝑑
qubits is a vertex with in- and out-degree𝑑 . Edges are labeled
to distinguish between qubits in multi-qubit gates (e.g., the
control and target qubits of a 𝐶𝑁𝑂𝑇 gate). 𝐺 also includes
𝑞 sources and sinks, one for each qubit. Figure 5 illustrates
the graph representation of Figure 2a’s circuit. As the figure
also illustrates, subcircuits correspond to convex subgraphs.
The optimizer first converts an (𝑛, 𝑞)-complete ECC set

into a set of transformations (in the graph representation).
For each ECC with 𝑥 equivalent circuits 𝐶1, . . . ,𝐶𝑥 , the opti-
mizer considers a pair of transformations between the rep-
resentative and each other circuit. For example, if 𝐶1 is the
representative circuit in the ECC, then the optimizer con-
siders transformations 𝐶1 → 𝐶𝑖 and 𝐶𝑖 → 𝐶1 for 1 < 𝑖 ≤ 𝑥 .
These 2(𝑥 − 1) transformations guarantee that any two cir-
cuits from the same ECC are reachable from each other.
To optimize an input circuit using the above transforma-

tions, the optimizer uses a cost-based backtracking search

algorithm adapted from TASO [17, 18]. The search is guided
by a cost function Cost(·) that maps circuits to real numbers.
In our evaluation, the cost is given by the number of gates
in a circuit, but other cost functions are possible.
Algorithm 2 shows the pseudocode of our search algo-

rithm. To find an optimized circuit, candidate circuits are
maintained in a priority queue Q. At each iteration, the
lowest-cost circuit 𝐶 is dequeued, and Quartz applies all
transformations to get equivalent new circuits 𝐶𝑛𝑒𝑤 , which
are enqueued into Q for further exploration. Circuits consid-
ered in the past are ignored using D𝑠𝑒𝑒𝑛 .
The search is controlled by a hyper-parameter 𝛾 . Quartz

ignores candidate circuits whose cost is greater than 𝛾 times
the cost of the current best circuit 𝐶𝑏𝑒𝑠𝑡 . The parameter 𝛾
trades off between search time and the search’s ability to
avoid local minima. For 𝛾 = 1, Algorithm 2 becomes a greedy

1For a graph𝐺 ,𝐺′ is a convex subgraph of𝐺 if for any two vertices 𝑢 and
𝑣 in𝐺′, every path in𝐺 from 𝑢 to 𝑣 is also contained in𝐺′.
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Figure 6.A transformation sequence applied by Quartz that reduces the total gate count in the gf2ˆ4_mult circuit by swapping
the control and target qubits of three 𝐶𝑁𝑂𝑇 gates. Note that the first three transformations do not reduce gate count.

Algorithm 2 Cost-Based Backtracking Search Algorithm.
1: Inputs: Verified transformations T , a cost model Cost(·), a

hyper-parameter 𝛾 , and an input circuit 𝐶𝑖𝑛 .
2: Output: an optimized circuit 𝐶𝑏𝑒𝑠𝑡
3: // Q is a priority queue of circuits sorted by their Cost(·).
4: Q = {𝐶𝑖𝑛}
5: 𝐶𝑏𝑒𝑠𝑡 = 𝐶𝑖𝑛
6: D𝑠𝑒𝑒𝑛 = {𝐶𝑖𝑛}
7: while Q ≠ ∅ and the search has not timed out do
8: 𝐶 = Q.dequeue()
9: if Cost(𝐶) < Cost(𝐶𝑏𝑒𝑠𝑡 ) then
10: 𝐶𝑏𝑒𝑠𝑡 = 𝐶

11: for each transformation 𝑇 ∈ T do

12: for each 𝐶𝑛𝑒𝑤 ∈ Apply(𝐶,𝑇 ) \ D𝑠𝑒𝑒𝑛 do

13: if Cost(𝐶𝑛𝑒𝑤) < 𝛾 · Cost(𝐶𝑏𝑒𝑠𝑡 ) then
14: Q.enqueue(𝐶𝑛𝑒𝑤 )
15: D𝑠𝑒𝑒𝑛 = D𝑠𝑒𝑒𝑛 ∪ {𝐶𝑛𝑒𝑤 }
16: return 𝐶𝑏𝑒𝑠𝑡

search that only accepts transformations that strictly im-
prove cost. On the other hand, a higher value for 𝛾 enables
application of transformations that do not immediately im-
prove the cost, whichmay later lead to otherwise inaccessible
optimization opportunities. For example, Figure 6 depicts a
sequence of five transformations that reduce the total gate
count in the gf2ˆ4_mult (see Section 7.3) circuit by four, via
flipping three𝐶𝑁𝑂𝑇 gates; note that the first three transfor-
mations do not reduce the gate count at all.

Quartz’s circuit optimizer is designed to optimize circuits
before mapping. Circuit mapping converts a quantum circuit
to an equivalent circuit that satisfies hardware constraints
of a given quantum processor. These constraints include
connectivity restrictions between qubits and the directions
to perform multi-qubit operations. While transformations
discovered by Quartz are also applicable to circuits after map-
ping, applying them naively may break hardware constraints.
Therefore, we leave it as future work to build an optimizer
for after-mapping circuits using Quartz’s transformations.

Table 1. Gate sets used in our evaluation.

Name Supported Gates

Nam [15, 23] 𝐻, 𝑋, 𝑅𝑧 (𝜆), 𝐶𝑁𝑂𝑇

IBM [12] 𝑈1 (𝜃 ), 𝑈2 (𝜙, 𝜆), 𝑈3 (𝜃, 𝜙, 𝜆), 𝐶𝑁𝑂𝑇

Rigetti [26] 𝑅𝑥 ( 𝜋2 ), 𝑅𝑥 (−𝜋
2 ), 𝑅𝑥 (𝜋 ) = 𝑋, 𝑅𝑧 (𝜆), 𝐶𝑍

7 Implementation and Evaluation

We describe our implementation of Quartz and evaluate the
performance of the generator, the verifier, and the optimizer.
Quartz is publicly available as an open-source project [4]
and also in the artifact supporting this paper [32].

7.1 Implementation

Floating-point arithmetic. The RepGen algorithm as
presented in Section 3 uses real-valued fingerprints, where
two equivalent circuits always have the same fingerprint.
Our implementation of RepGen uses floating-point arith-
metic, which introduces some imprecision that can poten-
tially lead to different fingerprints for equivalent circuits. To
account for this imprecision, the implementation assumes
there exists an absolute error threshold 𝐸𝑚𝑎𝑥 , such that fin-
gerprints of equivalent circuits differ by at most 𝐸𝑚𝑎𝑥 when
computed with floating-point arithmetic. The implementa-
tion therefore computes, using floating-point arithmetic, the
integer

⌊
FingerPrint(𝐶)

2𝐸𝑚𝑎𝑥

⌋
, and uses it as the key for storing

circuit 𝐶 in D. Under our assumption, equivalent circuits
may still have different integer hash keys, but they may dif-
fer only by 1. Therefore, the implementation introduces an
additional step after line 15 of Algorithm 1, in which ECCs
that correspond to circuits with hash keys ℎ and ℎ + 1 are
checked for equivalence and merged if found equivalent. In
our experiments we set 𝐸𝑚𝑎𝑥 = 10−15 based on preliminary
exploration of the floating-point errors that occur in practice.

Supported gate sets. Quartz is a generic quantum circuit
optimizer supporting arbitrary gate sets, and it accepts a gate
set G as part of its input. In our experiments, input circuits
are given over the “Clifford + T” gate set: 𝐻 ,𝑇 ,𝑇 †, 𝑆 , 𝑆†, and
𝐶𝑁𝑂𝑇 ; and output (optimized) circuits are in one of the three
gate sets listed in Table 1: Nam, IBM, and Rigetti. Nam is a
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gate set commonly used in prior work [15, 23], IBM is derived
from the IBMQX5 quantum processor [12], and Rigetti is
derived from the Rigetti Agave quantum processor [3, 26].
To generate and verify circuit transformations for a new

gate set, Quartz only requires, for each gate, a specification
of its matrix representation as a function of its parameters,
such as eq. (1). To optimize circuits, a translation procedure
of input circuits to the new gate set is also required unless
input circuits are provided in the new gate set.

Rotation merging and Toffoli decomposition. Before
invoking Quartz’s optimizer, Quartz preprocesses circuits by
applying two optimizations: rotation merging and Toffoli de-

composition [23]. Our preliminary experiments showed that
an approach solely based on local transformations and a cost-
based search cannot reproduce these optimization passes for
large circuits. Rotation merging combines multiple 𝑅𝑧/𝑈1
gates that may be arbitrarily far apart (separated by 𝑋 or
𝐶𝑁𝑂𝑇 gates), and appears difficult to be represented as local
circuit transformations. Toffoli decomposition decomposes
a Toffoli gate into the Nam gate set, which involves simul-
taneous transformation of 15 quantum gates and interacts
with rotation merging [23, p. 11]. We therefore implement
these two optimization passes from prior work [23] as a pre-
processing step. Toffoli decomposition requires selecting a
polarity for each Toffoli gate, which is computed heuristi-
cally by prior work [23]. Instead, we use a greedy approach:
we process the Toffoli gates sequentially and for each gate
we consider both polarities and greedily pick the one that
results in fewer gates after rotation merging.
For the Nam and IBM gate sets, Quartz directly applies

rotation merging and Toffoli decomposition as a preprocess-
ing step before the optimizer. For the Rigetti gate set, which
includes𝐶𝑍 rather than𝐶𝑁𝑂𝑇 , the algorithm from the prior
work [23] is not directly applicable; therefore, Quartz uses
several additional preprocessing steps, as follows. Rather
than directly transpiling an input circuit to Rigetti, Quartz
first transpiles it to Nam and applies Toffoli decomposition
and rotationmerging. Next, Quartz rewrites each𝐶𝑁𝑂𝑇 gate
to a sequence of𝐻 ,𝐶𝑍 ,𝐻 gates, cancels out adjacent𝐻 or𝐶𝑍
pairs, and then fully converts the circuit to Rigetti by trans-
forming 𝑋 to 𝑅𝑥 (𝜋) and𝐻 to 𝑅𝑥 (𝜋) ·𝑅𝑧 ( 𝜋2 ) ·𝑅𝑥 (

𝜋
2 ) ·𝑅𝑧 (−

𝜋
2 ).

Ultimately, Quartz invokes the optimizer, using a suitable
(𝑛, 𝑞)-complete ECC set for Rigetti. Note that elimination of
adjacent 𝐻 or 𝐶𝑍 pairs during the translation from Nam to
Rigetti leads to more optimized circuits: a pair of adjacent 𝐻
gates (that are canceled out) would otherwise be transformed
into a sequence of eight 𝑅𝑥 and 𝑅𝑧 gates that cannot be can-
celed out by Quartz since the cancellation is only correct for
specific parameter values, while Quartz considers symbolic
transformations valid for arbitrary parameter values.

Symbolic parameter expressions. As explained in Sec-
tion 2, Quartz assumes a fixed number of parameters𝑚 and
a specification Σ for parameter expressions used in circuits.

Quartz takes𝑚 as input, and supports a flexible form for Σ
defined by a finite set of parameter expressions and either
allowing or disallowing parameters to be used more than
once in a circuit.
Our experiments use𝑚 = 2 for the Nam and Rigetti gate

sets, and 𝑚 = 4 for the IBM gate set because it contains
gates with up to three parameters. For Σ, we consider the
expressions 𝑝𝑖 , 2𝑝𝑖 and 𝑝𝑖 + 𝑝 𝑗 where 0 ≤ 𝑖 < 𝑚 and 𝑖 <

𝑗 < 𝑚 (recall that ®𝑝 ∈ R𝑚 is the vector of parameters), and
restrict each parameter to be used at most once in a circuit.
This restriction significantly reduces the number of circuits
RepGen considers, especially for the IBM gate set because
the𝑈3 gate requires three parameter expressions.
As explained in Section 4, the verifier searches for phase

factors of the form ®𝑎 · ®𝑝 + 𝑏. In our experiments we used 𝑎 ∈
{−2,−1, 0, 1, 2}𝑚 and 𝑏 ∈ {0, 𝜋4 ,

2𝜋
4 , . . . ,

7𝜋
4 }, which proved to

be useful and sufficient in our preliminary experimentation
with various gates. We later found that for the gate sets of
Table 1, ®𝑎 = ®0 is actually sufficient. That is, these gate sets do
not admit any transformations with parameter-dependent
phase factors for the circuits we considered; they do however
need various constant phase factors.

7.2 Experiment Setup

We compare Quartz with existing quantum circuit optimiz-
ers on a benchmark suite of 26 circuits developed by prior
work [6, 23]. The benchmarks include arithmetic circuits
(e.g., adding integers), multiple controlled 𝑋 and 𝑍 gates
(e.g., 𝐶𝐶𝑋 and 𝐶𝐶𝑍 ), the Galois field multiplier circuits, and
quantum Fourier transformations.We use Quartz to optimize
the benchmark circuits to the three gate sets of Table 1.
As in prior work [15, 23], we measure cost of a circuit in

terms of the total gate count. We therefore define the Cost
function in Algorithm 2 as the number of gates in a circuit.2

Setting 𝑛 and 𝑞 for generating an (𝑛, 𝑞)-complete ECC set
determines the resulting transformations. Our experiments
use:𝑛 = 6, 𝑞 = 3 for the Nam gate set;𝑛 = 4, 𝑞 = 3 for the IBM
gate set; and 𝑛 = 3, 𝑞 = 3 for the Rigetti gate set, which pro-
vided good results for our benchmarks. Sections 7.4 and 7.5
discuss the impact of 𝑛 and 𝑞 on Quartz’s performance.
Quartz’s backtracking search (Algorithm 2) is controlled

by the hyper-parameter 𝛾 and the timeout threshold. Our ex-
periments use 𝛾 = 1.0001, which yields good results for our
benchmarks. This value for 𝛾 essentially means we consider
cost-preserving transformations but not cost-increasing ones.
For the search timeout, we use 24 hours. Section 7.5 discusses
the timeout threshold and how it interacts with the settings
for 𝑛 and 𝑞. To stop the search from consuming too much
memory, whenever the priority queue of Algorithm 2 con-
tains more than 2,000 circuits we prune it and keep only the

2Quartz can in principle be used to optimize for other metrics, e.g. number
of𝐶𝑁𝑂𝑇 or𝑇 gates, but here we focus on total gate count.
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Table 2. Gate count results for the Nam gate set. The best
result for each circuit is in bold. “Quartz Preprocess” lists
gate count after Quartz’s preprocessor (Section 7.1).

Circuit Orig. Qiskit Nam voqc

Q
u
a
r
t
z

P
r
e
p
r
o
c
e
s
s

Q
u
a
r
t
z

E
n
d
-
t
o
-
e
n
d

adder_8 900 869 606 682 732 724
barenco_tof_3 58 56 40 50 46 38

barenco_tof_4 114 109 72 95 86 68

barenco_tof_5 170 162 104 140 126 98

barenco_tof_10 450 427 264 365 326 262

csla_mux_3 170 168 155 158 164 154

csum_mux_9 420 420 266 308 308 272
gf2ˆ4_mult 225 213 187 192 186 177

gf2ˆ5_mult 347 327 296 291 287 277

gf2ˆ6_mult 495 465 403 410 401 391

gf2ˆ7_mult 669 627 555 549 543 531

gf2ˆ8_mult 883 819 712 705 703 703

gf2ˆ9_mult 1095 1023 891 885 879 873

gf2ˆ10_mult 1347 1257 1070 1084 1062 1060

mod5_4 63 62 51 56 51 26
†

mod_mult_55 119 117 91 90 105 93
mod_red_21 278 261 180 214 236 202
qcla_adder_10 521 512 399 438 450 422
qcla_com_7 443 428 284 314 349 292
qcla_mod_7 884 853 -†† 723 727 719

rc_adder_6 200 195 140 157 174 154
tof_3 45 44 35 40 39 35

tof_4 75 73 55 65 63 55

tof_5 105 102 75 90 87 75

tof_10 255 247 175 215 207 175

vbe_adder_3 150 146 89 101 115 85

Geo. Mean

Reduction

- 3.9% 27.3% 18.7% 18.6% 28.7%

† Computed as the median of seven runs: 25, 26, 26, 26, 32, 32, 32.
†† Nam generates an incorrect circuit for qcla_mod_7 [19, Table 1].

top 1,000 circuits. Our preliminary experimentation with this
pruning suggested that it does not affect Quartz’s results.
All experiments were performed on an m6i.32xlarge

AWS EC2 instance with a 128-core CPU and 512GB RAM.

7.3 Circuit Optimization Results

Nam gate set. Table 2 compares Quartz to Qiskit [5],
Nam [23], and voqc [15] for the Nam gate set. (The per-
formance of t|ket⟩ [28] for this gate set is similar to Qiskit,
see [15].) The table also shows the gate count following
Quartz’s preprocessing steps (rotation merging and Toffoli
decomposition, see Section 7.1). Quartz outperforms Qiskit
and voqc on almost all circuits, indicating that it discov-
ers most transformations used in these optimizers and also
explores new optimization opportunities arising from new
transformations and from the use of a cost-guided backtrack-
ing search (rather than a greedy approach, e.g., see Figure 6).
Quartz achieves on-par performance with Nam [23], a

circuit optimizer highly tuned for this gate set. Nam applies
a set of carefully chosen heuristics such as floating 𝑅𝑧 gates

Table 3. Gate count results for the IBM gate set. The best
result for each circuit is in bold. “Quartz Preprocess” lists
gate count after Quartz’s preprocessor (Section 7.1).

Circuit Orig. Qiskit t|ket⟩ voqc

Q
u
a
r
t
z

P
r
e
p
r
o
c
e
s
s

Q
u
a
r
t
z

E
n
d
-
t
o
-
e
n
d

adder_8 900 805 775 643 736 583

barenco_tof_3 58 51 51 46 46 36

barenco_tof_4 114 100 100 89 86 67

barenco_tof_5 170 149 149 135 126 98

barenco_tof_10 450 394 394 347 326 253

csla_mux_3 170 153 155 148 164 139

csum_mux_9 420 382 361 308 364 340
gf2ˆ4_mult 225 206 206 190 186 178

gf2ˆ5_mult 347 318 319 289 287 275

gf2ˆ6_mult 495 454 454 408 401 388

gf2ˆ7_mult 669 614 614 547 543 530

gf2ˆ8_mult 883 804 806 703 703 692

gf2ˆ9_mult 1095 1006 1009 882 879 866

gf2ˆ10_mult 1347 1238 1240 1080 1062 1050

mod5_4 63 58 58 53 55 51

mod_mult_55 119 106 102 83 109 91
mod_red_21 278 227 224 191 246 205
qcla_adder_10 521 460 460 409 450 372

qcla_com_7 443 392 392 292 349 267

qcla_mod_7 884 778 780 666 726 594

rc_adder_6 200 170 172 141 186 151
tof_3 45 40 40 36 39 31

tof_4 75 66 66 58 63 49

tof_5 105 92 92 80 87 67

tof_10 255 222 222 190 207 157

vbe_adder_3 150 133 139 100 115 82

Geo. Mean

Reduction

- 11.0% 11.2% 23.1% 17.4% 30.1%

and canceling one- and two-qubit gates (see [23] for more de-
tail). While Quartz’s preprocessor implements two of Nam’s
optimization passes, the results of the preprocessor alone
are not close to Nam.3 By using the automatically generated
transformations, Quartz is able to perform optimizations
similar to some of Nam’s other hand-tuned optimizations,
and even outperform Nam on roughly half of the circuits.
For mod5_4, we observed significant variability between

runs, caused by randomness in ordering circuits with the
same cost in the priority queue (Q in Algorithm 2). Therefore,
Table 2 reports the median result from seven runs as well as
individual results. This variability also suggests that Quartz’s
performance can be improved by running the optimizer mul-
tiple times and taking the best discovered circuit, or by ap-
plying more advanced stochastic search techniques [21].

IBM gate set. Table 3 compares Quartz with Qiskit [5],
t|ket⟩ [28], and voqc [15] on the IBM gate set. Qiskit and
t|ket⟩ include a number of optimizations specific to this gate
3We observe that for the gf2ˆn_mult circuits, Quartz’ preprocessor outper-
forms Nam.We attribute this difference to our greedy Toffoli decomposition,
discussed in Section 7.1, which happens to work well for these circuits.
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Table 4. Gate count results for the Rigetti gate set. The best
result for each circuit is in bold. “Quartz Preprocess” lists
gate count after Quartz’s preprocessor (Section 7.1).

Circuit Orig. Quilc t|ket⟩

Q
u
a
r
t
z

P
r
e
p
r
o
c
e
s
s

Q
u
a
r
t
z

E
n
d
-
t
o
-
e
n
d

adder_8 5324 3345 3726 4244 2553

barenco_tof_3 332 203 207 256 148

barenco_tof_4 656 390 408 500 272

barenco_tof_5 980 607 609 744 386

barenco_tof_10 2600 1552 1614 1964 960

csla_mux_3 1030 614 641 864 654
csum_mux_9 2296 1540 1542 1736 1100

gf2ˆ4_mult 1315 809 827 1020 796

gf2ˆ5_mult 2033 1301 1277 1573 1231

gf2ˆ6_mult 2905 1797 1823 2235 1751

gf2ˆ7_mult 3931 2427 2465 3021 2371

gf2ˆ8_mult 5237 3208 3276 4033 3081

gf2ˆ9_mult 6445 4070 4037 4933 3986

gf2ˆ10_mult 7933 4977 4967 6048 5039
mod5_4 369 211 238 293 197

mod_mult_55 657 420 452 531 361

mod_red_21 1480 880 1020 1166 738

qcla_adder_10 3079 -† 1884 2464 1615

qcla_com_7 2512 1540 1606 1954 1095

qcla_mod_7 5130 3164 3202 4029 2525

rc_adder_6 1186 706 747 984 606

tof_3 255 150 160 201 135

tof_4 425 271 270 333 199

tof_5 595 354 380 465 271

tof_10 1445 878 930 1125 631

vbe_adder_3 900 534 557 705 366

Geo. Mean

Reduction

- 38.6% 36.3% 21.9% 49.4%

† Quilc supports up to 32 qubits while qcla_adder_10 has 36.

set, such as merging any sequence of 𝑈1, 𝑈2, and 𝑈3 gates
into a single gate [2] and replacing any block of consecutive
1-qubit gates by a single𝑈3 gate [1]. Quartz is able to auto-
matically discover some of these gate-specific optimizations
by representing them each as a sequence of transformations.
Overall, Quartz outperforms these existing compilers.

Rigetti gate set. Table 4 compares Quartz with Quilc [29]
and t|ket⟩ [28] on the Rigetti gate set. Quartz significantly
outperforms t|ket⟩ and Quilc on most circuits, even though
Quilc is highly optimized for this gate set. We also note that
while we employ some simplifications in the preprocessing
phase for the Rigetti gate set (see Section 7.1), most of the
reduction in gate count comes from the optimization phase.

7.4 Analyzing Quartz’s Generator and Verifier

We now examine Quartz’s circuit generator and circuit equiv-
alence verifier. Table 5 shows the run times of the entire
generation procedure, and also the time out of that spent
in verification, for each of the three gate sets and for vary-
ing values of 𝑛, while fixing 𝑞 = 3. The table also lists the

Table 5. Metrics for Quartz’s generator, when generating
(𝑛, 𝑞)-complete ECC sets for 𝑞=3 and varying values of 𝑛 for
the three gate sets. |T | is the resulting number of transfor-
mations, |R𝑛 | is the size of the resulting representative set,
and ch is the characteristic (see Algorithm 1 and Theorem 3).

𝑛 |T | |R𝑛 |
Verification

Time (s)

Total

Time (s)

Nam

ch = 27

2 62 397 1.2 1.3
3 196 4,179 2.6 3.7
4 1,304 36,177 8.5 21.4
5 8,002 269,846 49.5 174.7
6 56,152 1,777,219 370.3 1,400.4
7 379,864 10,432,127 2,673.6 10,461.2

IBM

ch = 1, 362

2 1,912 22,918 22.9 38.6
3 5,086 224,281 100.4 225.9
4 16,748 1,552,185 356.9 1,290.0
5 225,068 7,847,203 1,844.8 8,363.1

Rigetti

ch = 30

2 66 361 1.3 1.5
3 66 3,143 2.6 3.7
4 224 22,043 5.8 15.4
5 2,396 134,423 22.7 100.2
6 15,464 729,842 132.0 675.3

Table 6. Number of circuits considered when using Rep-
Gen with or without the pruning techniques of Section 5
to generate (𝑛, 𝑞)-complete ECC sets for 𝑞=3 and varying
values of 𝑛 for the three gate sets. Circuits are counted by
their sequence representation, as RepGen considers multi-
ple sequences for each actual circuit (Section 3). Parenthesis
shows reduction relative to the number of all possible cir-
cuits for 𝑛 and 𝑞. “RepGen” corresponds to RepGen without
additional pruning. “+ ECC Simplification” corresponds to
RepGen combined with ECC simplification. “+ Common Sub-
circuit” corresponds to RepGen combined with all pruning
techniques and ultimately represents Quartz’s generator.

𝑛
Possible

Circuits

RepGen

+ ECC Sim-

plification

+ Common

Subcircuit

N
a
m

2 604 400 (2×) 50 (12×) 50 (12×)
3 11,404 1,180 (10×) 231 (49×) 164 (70×)
4 198,028 5,178 (38×) 2,170 (91×) 1,199 (165×)
5 3,246,220 31,517 (103×) 18,244 (178×) 7,661 (424×)
6 51,021,964 195,466 (261×) 131,554 (388×) 54,538 (936×)
7 776,616,076 1,196,163 (649×) 875,080 (887×) 369,973 (2,099×)

I
B
M

2 35,005 23,413 (1×) 1,708 (20×) 1,708 (20×)
3 533,857 62,594 (9×) 10,287 (52×) 4,563 (117×)
4 6,446,209 185,315 (35×) 65,343 (99×) 15,746 (409×)
5 68,078,785 921,611 (74×) 512,975 (133×) 219,551 (310×)

R
i
g
e
t
t
i

2 778 469 (2×) 51 (15×) 51† (15×)
3 17,518 965 (18×) 117 (150×) 51† (343×)
4 367,843 2,293 (160×) 548 (671×) 203 (1,812×)
5 7,354,093 10,568 (696×) 4,949 (1,486×) 2,337 (3,147×)
6 141,763,468 58,193 (2,436×) 35,690 (3,972×) 15,240 (9,302×)

† For Rigetti, 𝑛 = 2 and 𝑛 = 3 result in identical transformations—each 3-gate
transformation is subsumed by 2-gate transformations in a way identified by Quartz.

number of resulting circuit transformations |T |, the size of
the resulting representative set |R𝑛 |, and the characteristic
(see Algorithm 1 and Theorem 3). For all gate sets, |T | and
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|R𝑛 | grow exponentially with 𝑛. In spite of this exponential
growth, the generator and verifier can generate, in a rea-
sonable run time of a few hours, an (𝑛, 𝑞)-complete ECC set
for values of 𝑛 and 𝑞 that are sufficiently large to be useful
for circuit optimization. The growth in the number of trans-
formations significantly affects the optimizer. For Nam and
IBM, our selected values of 𝑛 = 6 and 𝑛 = 4 result in a similar
order of magnitude for |T |. For Rigetti, we use 𝑛 = 2, result-
ing in much smaller T . This choice is related to the fact that
circuits in the Rigetti gate set are larger by roughly an order
of magnitude compared to Nam and IBM (compare “Orig.”
in Table 4 with Tables 2 and 3; see discussion in Section 7.5).
We now evaluate the effectiveness of RepGen and the

pruning techniques described in Section 5 for reducing the
number of circuits Quartz must consider (which is closely
correlated with the number of resulting transformations). To
evaluate the relative contribution of each technique, Table 6
reports the number of circuits considered when applying:
(i) RepGenwithout additional pruning, (ii) RepGen combined
with ECC simplification, and (iii) RepGen combined with
both ECC simplification and common subcircuit pruning;
and compares each of these to a brute force approach of gen-
erating all possible circuits with up to 𝑞 qubits and 𝑛 gates.
Both RepGen and the pruning techniques play an impor-
tant role in eliminating redundant circuits while preserving
(𝑛, 𝑞)-completeness. Ultimately, RepGen and the pruning
techniques reduce the number of transformations the opti-
mizer must consider by one to three orders of magnitude.

7.5 Analyzing Quartz’s Circuit Optimizer

We now examine Quartz’s circuit optimizer when using an
(𝑛, 𝑞)-complete ECC set for varying values of𝑛 and𝑞. For this
study we focus on the Nam gate set, and compare different
values for 𝑛 and 𝑞 by the optimization effectiveness they yield,
defined as the reduction in geometric mean gate count over
all circuits (as in the bottom line of Table 2). For mod5_4,
when 𝑞 = 3 and 3 ≤ 𝑛 ≤ 7, we use the median of 7 runs due
to the variability discussed in Section 7.3.
As we increase 𝑛 and 𝑞 we expect Quartz’s optimizer to:

(i) be able to reach more optimized circuits, and (ii) require
more time per search iteration. Both of these follow from the
fact that increasing 𝑛 and 𝑞 yields more transformations. Un-
der a fixed search time budget, we expect the increased cost
of search iterations to reduce the positive impact of larger
𝑛’s and 𝑞’s. Because each iteration (Algorithm 2) considers
a candidate circuit 𝐶 and computes Apply(𝐶,𝑇 ) for each
transformation 𝑇 ∈ T , the cost per iteration scales linearly
with the number of transformations |T |. Since |T | varies
dramatically as 𝑛 and 𝑞 change,4 we expect the second effect
(slowing down the search) to be significant, especially for

4For example: with 𝑞 = 3, |T | = 196 for 𝑛 = 3 and |T | = 56, 152 for 𝑛 = 6
(Table 5); with 𝑞 = 4, |T | = 208 for 𝑛 = 3 and |T | = 273, 532 for 𝑛 = 6 [33].
We were unable to generate a (7, 4)-complete ECC set using 512GB of RAM.
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Figure 7. Optimization effectiveness with (𝑛, 𝑞)-complete
ECC sets for varying 𝑛 and 𝑞 after a 24-hour search timeout.
For 𝑛 = 0 there are no transformations and the results match
the “Quartz Preprocess” column of Table 2.

large circuits which typically require more search iterations
(and additionally increase Apply’s running time).

Figure 7 shows optimization effectiveness (reduction in
geometric mean gate count) for varying values of 𝑛 and 𝑞,
under a search timeout of 24 hours. The figure supports
the tradeoff discussed above. Using too small values for 𝑛
and 𝑞 results in low effectiveness, and as we increase 𝑛 or
𝑞 effectiveness increases but then starts decreasing, as the
negative impact of the large number of transformations starts
outweighing their benefit. (See [33] for details about |T | for
each configuration.) As expected, the optimal setting for 𝑛
and𝑞 generally varies across circuits—smaller circuits tend to
be better optimized with larger values of 𝑛 [33]. Still, Figure 7
shows that there are several settings that yield good overall
results: 3 ≤ 𝑛 ≤ 6 for 𝑞 = 3, and 3 ≤ 𝑛 ≤ 4 for 𝑞 = 4.5

Figure 8 shows how the search time impacts optimization
for different choices for 𝑛 (focusing on 𝑞 = 3). For each
value of 𝑛, we observe a quick initial burst, followed by a
gentle increase. At the end of the initial burst, effectiveness
monotonically decreases as 𝑛 increases, for all 3 ≤ 𝑛 ≤ 6. As
time progresses the gaps diminish and eventually the order
is reversed: at around 21 hours 𝑛 = 6 surpasses 𝑛 = 3. The
settings 𝑛 = 2 and 𝑛 = 7 yield poor effectiveness: 𝑛 = 2
does not contain an adequate number of transformations
and quickly saturates the search time, while 𝑛 = 7 contains
too many transformations and progresses too slowly.
Figure 8 also shows the effectiveness of a hypothetical

run constructed by taking the best setting for each circuit at

each time. This “best” curve considerably outperforms the
others, because the best setting for 𝑛 varies across circuits
with different sizes.

5Interestingly, 𝑞 = 3; 3 ≤ 𝑛 ≤ 6 cover the best optimization results for all
circuits obtained among all configurations considered in Figure 7 [33].
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Figure 8.Optimization effectiveness over time (𝑞=3; 2≤𝑛≤7).
For each time point, “best” computes the reduction in geomet-
ric mean gate count obtained by selecting the most effective
value for 𝑛 at that time point for each circuit (i.e., different
circuits may use different 𝑛’s, and the same circuit may use
different 𝑛’s at different time points).

See [33] for more details, including plots akin to Figure 7
and Figure 8 for each circuit and a detailed results table.

8 Related Work

Quantumcircuit compilation. Several optimizing com-
pilers for quantum circuits have been recently introduced
and are being actively developed: Qiskit [5] and t|ket⟩ [28]
support generic gate sets; Quilc [29] is tailored to Rigetti
Agave quantum processors; voqc [15] is formally verified in
Coq. CertiQ [27] is a framework for writing and verifying
Qiskit compiler passes. Nam et al. [23] develop heuristics tai-
lored to the {𝐻,𝑋, 𝑅𝑧,𝐶𝑁𝑂𝑇 } gate set. Unlike Quartz, these
systems rely on quantum-computing experts to design, im-
plement, and verify transformations.
Quanto [25] automatically discovers transformations by

computing concrete matrix representations of circuits. It sup-
ports parameters only by considering concrete values, and
unlike Quartz, it does not discover or verify symbolic trans-
formations, which are the source of many of the challenges
Quartz deals with. Quanto uses floating-point matrix equal-
ity to identify equivalence between circuits, while Quartz
uses a combination of fingerprinting, SMT-based verification,
the RepGen algorithm, and other pruning techniques, which
are needed since symbolic parameters greatly increase the
number of possible circuits in the generation procedure.
Different from the aforementioned quantum optimizers

that consider circuit transformations, PyZX [20] employs
ZX-diagrams as an intermediate representation for quantum
circuits and uses a small set of complete rewrite rules in ZX-
calculus [13, 16] to simplify ZX-diagrams, which are finally
converted back into quantum circuits.

While our approach builds on some of the techniques de-
veloped in prior work, Quartz is the first quantum circuit
optimizer that can automatically generate and verify sym-
bolic circuit transformations for arbitrary gate sets.

Superoptimization. Superoptimization is a compiler op-
timization technique originally designed to search for an
optimal sequence of instructions for an input program [22].
Our approach to generating quantum circuit transforma-
tions by tracking equivalent classes of circuits is inspired by
prior work in automatically generating peephole optimiza-
tions for the X86 instruction set [7, 14] and generating graph
substitutions for tensor algebra [17, 30, 34].
TASO [17] is a tensor algebra superoptimizer that opti-

mizes computation graphs of deep neural networks using
automatically generated graph substitutions. TENSAT [34]
reuses the graph substitutions discovered by TASO and em-
ploys equality saturation for tensor graph superoptimization.
While Quartz draws inspiration from TASO and uses a simi-
lar search procedure, it is significantly different from prior
superoptimization works because it targets quantum comput-
ing, which leads to a different semantics (i.e., using complex
matrices) as well as a different notion of program equivalence
(i.e., up to a global phase). Verifying quantum circuit trans-
formations therefore uses different techniques compared to
other superoptimization contexts. Applying equality satura-
tion as in TENSAT [34] for optimizing quantum circuits is
an interesting avenue for future work.

9 Conclusion and Future Work

We have presented Quartz, a quantum circuit superoptimizer
that automatically generates and verifies circuit transforma-
tions for arbitrary gate sets with symbolic parameters. While
Quartz shows that a superoptimization-based approach to
optimizing quantum circuits is practical, we believe there are
many opportunities for further improvement. As discussed
in Section 7.5, Quartz’s current search algorithm limits the
number of transformations that can be effectively utilized.
Improving the search algorithm may therefore lead to bet-
ter optimization using (𝑛, 𝑞)-complete ECC sets for larger
values of 𝑛 and 𝑞, which may also require improving the
generator. Another limitation of Quartz that suggests an op-
portunity for future work is that it only targets the logical
circuit optimization stage and does not consider qubit map-
ping. Applying superoptimization to jointly optimize circuit
logic and qubit mapping is both challenging and promising.
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