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Abstract: Paper-based microfluidic technology is a relatively new field of research that provides
low-cost platforms and sensors for point-of-care diagnostics. While the majority of research in this
field has been for biomedical applications, more and more paper-based devices and platforms are
being designed and developed for environmental applications, such as water quality monitoring and
assessment. One such application is the detection of nitrate in water samples. Colorimetric detection
of nitrate by paper-based devices using the Griess assay requires the reduction of nitrate to nitrite
before undergoing the reaction. In this paper, we measured the performance of a paper-based dip
strip for detecting nitrate and nitrite by calculating its limit of detection and limit of quantification.
We also calculated the reduction efficiency of vanadium (III) chloride in the dip strip for detecting
nitrate. Our results show that the reduction time of nitrate via vanadium (III) chloride is much longer
than that when using zinc microparticles. Our results also show that the performance of the dip
strip using vanadium (III) chloride for nitrate detection is not as good as more intricate paper-based
devices that have a separate reaction zone with zinc microparticles. The limits of detection and
quantification calculated were 3.352 and 7.437 ppm, and the nitrate reduction efficiency varied over
the range of nitrate concentrations tested.

Keywords: nitrate reduction; zinc microparticles; vanadium (III) chloride; materials for chemical sensing;
nitrate detection; Griess reaction; colorimetric assay; paper-based devices; paper microfluidics;
point-of-care diagnostics

1. Introduction

Paper-based microfluidic technology has been gaining a lot of attention over the past
several years for the many advantages it provides. Most importantly, paper-based microflu-
idic technology allows the development of low-cost, portable and easy-to-use devices and
sensors that can be easily disposed of. These devices can also provide qualitative or quanti-
tative results and data at the point of care without the need for specialized equipment or
power sources. Several paper-based devices have been developed for various applications,
such as for water analysis [1–4], biomedical applications [5,6], food analysis [7–10], soil
analysis [11] and many other miscellaneous applications [12–15]. The field of paper-based
microfluidics is expected to continue garnering greater attention as more applications are
sought after or the performance improved for the ones already developed [16].

Paper-based devices are generally made up of several different sections that serve
different purposes. While more complex devices may include valves and actuators to
manipulate fluids and perform multistep reactions [17,18], simpler devices generally in-
clude a sample port, transport channels, reactions zones and a detection zone [19]. The
majority of paper-based devices use colorimetric detection since it is the simplest technique
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to produce a quantifiable signal [20,21]. Properties of the material used in paper-based
devices influence assay performance and have a substantial impact on the development of
paper-based sensors [22]. Therefore, proper material selection and optimization is critical
to enhancing the performance of assays in paper-based devices [23]. This is usually an
iterative and an ongoing process to learn and adapt different advancements in the field of
paper-based technology to check for the possibility of improving the output and perfor-
mance of paper-based sensors. An example is the selection of a suitable reducing agent to
be used in a paper-based device meant for detecting nitrate in water.

Nitrate is part of the nitrogen cycle [24] and is an essential nutrient needed for plant
growth; however, it plays a significant role in water nutrient pollution when present in
excessive amounts [25,26]. Nitrate is also the most stable form of nitrogen in oxygenated
systems, and all other forms of nitrogen-containing compounds can become a source for
it [27,28]. Ingesting nitrate has been linked to colorectal cancer, thyroid disease and central
nervous system birth defects [29]. Therefore, it is important to measure nitrate levels in
water for environmental monitoring purposes and to ensure its safety for consumption.
Different techniques are readily available to measure nitrate concentrations in water but are
either costly, time-consuming or may require trained personnel [30,31]. Several paper-based
sensors have been developed for the rapid and inexpensive detection of nitrate in water,
food and human saliva, and their limits of detection (LOD) and limits of quantification
(LOQ) are given in Table 1.

Table 1. Performance of paper-based sensors developed for detecting nitrate in different media.

Reference Media LOD (ppm) LOQ (ppm)

[32] Water 0.533 1.765
[33] Water 1.178 2.976
[9] Food Sample 3.6 12
[34] Food Sample 0.4 NA 1

[35] Food Sample 0.4 1.4
[36] Human Saliva 4.96 16.74

1 NA, not available.

All of the paper-based devices developed thus far for measuring nitrate levels have
used the Griess assay for detection since it is the most commonly used spectrophotometric
method for quantifying concentrations of nitrate and nitrite [37,38]. However, this assay is
specific to nitrite molecules and, therefore, nitrate molecules have to be reduced to nitrite
first before detection. There are several different reducing agents that can reduce nitrate
to nitrite, such as cadmium, copperized cadmium, zinc, nitrate reductase, irradiation by
ultraviolet light, hydrazine sulfate, titanium (III) chloride, vanadium (III), hydroxylamine,
tin chloride or ascorbic acid [36,39,40]. Some of these reducing agents are not suitable for
use in paper-based devices, while others have been tested and used in this type of sensors.

Nitrate reductase, irradiation by ultraviolet and hydrazine require lengthy reduction
times [41], which may not be suitable for paper-based sensors due to concerns of sample
evaporation. Titanium (III) chloride is violet in color and absorbs light in the same range
as the azo dye product of the Griess assay [41]. Ferreira et al. [36] tested tin chloride,
hydroxylamine, ascorbic acid and zinc microparticles. They used zinc microparticles in their
paper-based nitrate sensor since the other agents tested did not extensively reduce nitrate
to nitrite. Experimental results by Jayawardane et al. [33] showed that cadmium and zinc
microparticles produced similar results for nitrate reduction in their paper-based device.
They opted for zinc microparticles due to the higher toxicity of cadmium. Thongkam
et al. [35] developed a very simple paper-based device for measuring nitrate and nitrite
concentrations in food samples, and they used vanadium (III) chloride to reduce nitrate
before detection.

We had previously developed a sensitive paper-based nitrate sensor by testing differ-
ent device architectures and optimizing the different components of the device [32]. The
final device adopted a folding architecture with part of the detection chemistry immobilized
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at the detection zone. This improved the quality and uniformity of the signal developed.
The device also incorporated a new composite material made-up of zinc microparticles and
cellulose fibers to enhance nitrate reduction. A nitrate conversion efficiency of 27% was
achieved using this new composite material called Zinculose [42]. However, the results
obtained by Thongkam et al. [35] for nitrate detection in food samples by using vanadium
(III) chloride as a reducing agent are very promising. In this paper, we measure the perfor-
mance of a dip strip using vanadium (III) chloride for reducing nitrate by calculating its
limits of detection and quantifications. We also calculate the nitrate reduction efficiency of
vanadium (III) chloride and compare the results to those obtained when using Zinculose.

2. Methods

Thongkam et al. [35] studied the effect of the different parameters on nitrate detection.
They tested different concentrations of sulfanilic acid and N-(1-Naphthyl)ethylenediamine
dihydrochloride used in the Griess assay for detection. They also examined the effect of
different concentrations of vanadium (III) chloride and reaction times on the intensity of
the color produced in the detection zone. In this paper, we use the optimum concentrations
they have found when preparing the reagents to be used in our experiments.

2.1. Materials

The items below were used in preparing and running the experiments presented in this
paper. Whatman grade 1 filter paper (GE Healthcare Whatman 1-1001824), backing cards (DCN
Dx MIBA-050), sulfanilamide (98%, Alfa Aesar-A1300136), N-(1-Naphthyl)ethylenediamine
dihydrochloride (Alfa Aesar-J6321414), hydrochloric acid (Fisher Chemical-A142-212),
sodium nitrate (≥99.5%, Honeywell Fluka-31440), sodium nitrite (≥99%, Honeywell Fluka-
31443) and ASTM Type 1 deionized water (resistivity > 18 MΩ/cm, LabChem-LC267405).

2.2. Methods

Strips 1 × 8 cm were cut out from a 30 × 8 cm backing card using a guillotine paper
cutter. Three circles, 6 mm in diameter each, were punched out using a tissue biopsy from
the Whatman filter paper and stuck onto the backing card, Figures 1 and S1.
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Figure 1. (a) Schematic showing the components and dimensions of the dip strip used. (b) The
yellow circle shows the color analysis zone used in ImageJ to quantify the color intensity of one of
the detection zones; the diameter of the circle is about 125 pixels, which is approximately 5.3 mm.

Nitrate and nitrite solutions at concentrations of 1000 ppm were freshly prepared on
the day of testing by dissolving the required amount of nitrate or nitrite salt in deionized
water. These solutions were then diluted using deionized water into the following concen-
trations 0.5, 1, 2.5, 5, 10, 20 and 40 ppm. We followed the procedure outlined by Thongkam
et al. [35] in preparing the detection chemistry for nitrate and nitrite. For nitrite detection,
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the solution was called reagent “A” and consisted of equal parts (1:1 ratio) volume of sul-
fanilic acid and NED solution. For nitrate detection, the solution used was called reagent
“B” and consisted of equal parts (1:1:1 ratio) volume of the above sulfanilic acid, NED
solution and the reducing reagent solution. The sulfanilic acid used in reagents “A” and
“B” was prepared by dissolving 0.1 g of sulfanilamide in 100 mL of 2 mol L−1 hydrochloric
acid. The NED solution used in reagents “A” and “B” was prepared by dissolving 0.1 g
of N-(1-Naphthyl)ethylenediamine dihydrochloride in 100 mL of deionized water. The
reducing reagent solution used in reagent “B” was prepared by dissolving 3 g of vanadium
(III) chloride in 100 mL of 6 mol L−1 hydrochloric acid. 2 µL of reagent A or B was pipetted
onto each circle and allowed to air-dry for at least 30 min, Figure S2. Each dip strip was
then submerged into the appropriate nitrate or nitrite solution for 1 s, shaken to remove
excess fluid and then scanned using a desktop scanner (Canon TS6020) at a resolution of
600 DPI. The nitrate dip strips were scanned after 10 min, and the nitrite dip strips were
scanned after 5 min following the optimized scan times previously found by Thongkam
et al. [35]. The detection zones were analyzed using ImageJ in RGB mode, similar to how
they analyzed their results. We have previously shown that the green component of the
measured color intensity shows the largest difference in value over the concentration of
nitrate or nitrite for paper-based devices using the Griess assay [43]. Therefore, the data
for the different color intensities were provided in the supplementary file, Tables S1–S4.
A MATLAB code was used to fit the data to an exponential decay function of the form
y = a × exp (−x/b) + c, and the symbolic toolbox was used to calculate the limits of de-
tection and quantification. The limits of detection and quantification were obtained by
finding the analyte concentrations corresponding to yLOD or yLOQ on the calibration curves
developed. yLOD or yLOQ were calculated using the following equations [44]:

yLOD = yB − 3 σB

yLOQ = yB − 10 σB

where yB corresponds to the mean color intensity of the blank solution (0 ppm) and σB is
its respective standard deviation.

3. Results and Discussion

The detection zones of the nitrate dip strips showed little to no color change after
10 min, Figure S3, but color started to form after a much longer wait time, so the dip strips
were scanned after 1 h as well, Figure S4. The following section shows the results obtained
for the nitrate and nitrite dip strips.

3.1. Nitrate and Nitrite Analysis

Figure 2 shows the calibration curves developed for the detection of nitrate in deion-
ized water after a reaction time of 10 min and 1 h. The limits of detection and quantification
for nitrate after 10 min are 37.03 and 121 ppm, respectively. The limits of detection and
quantification for nitrate after 1 h are 3.352 and 7.437 ppm, respectively.

Figure 3 shows the calibration curves developed for the detection of nitrite in deionized
water after a reaction time of 5 min and 1 h. The limits of detection and quantification
for nitrite after 5 min are 0.522 and 0.854 ppm, respectively. The limits of detection and
quantification for nitrite after 1 h are 0.889 and 1.823 ppm, respectively.
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Figure 2. (a) An exponential decay calibration curve in the form y = a × exp (−x/b) + c, where a = 2741, b = 41,430 and
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The error bars represent the standard deviation.
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3.2. Reduction Efficiency

The reduction efficiency of vanadium (III) chloride was calculated using the data
obtained in the above experiments used to calculate the LOD and LOQ for nitrate and
nitrite. First, the results obtained from the nitrite experiment after 1 h were used to establish
the calibration curve using the method outlined in Section 2.2. Then the results obtained
from the nitrate experiment after 1 h were used to calculate the intersection of the measured
result with the calibration established for nitrite using the symbolic toolbox. Table 2 gives
the nitrate conversion efficiency calculated. As can be seen from the table, the conversion
efficiency varies between almost 0% and 27%.
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Table 2. Calculated nitrate conversion efficiency.

Nitrate Concentration (ppm) Normalized Nitrite Concentration
Calculated (ppm) 1

Reduction Efficiency
(%)

0 0 0
0.5 0.098 19.54 ± 0.80
1 0.006 0.61 ± 0.23

2.5 0.300 12 ± 0. 05
5 0.524 10.48 ± 0.08
10 1.086 10.86 ± 0.01
20 3.296 16.48 ± 0.03
40 10.896 27.24 ± 0.01

1 This concentration is normalized by subtracting the intensity calculated for 0 ppm from all other concentrations.

3.3. Discussion

The limits of detection and quantification obtained for nitrate and nitrite in our analysis
were much higher than those obtained by commercial dip strips using the Griess assay.
This can be attributed to one or more of the following reasons: using the RGB mode in
data analysis, not depositing enough reagent volume for reaction or using hydrochloric
acid since it evaporates completely without producing acidic conditions when rewet. The
reaction with the Griess assay should take place under acidic conditions [45].

A maximum reduction efficiency of 27% was obtained by vanadium (III) chloride.
This is similar to the reduction efficiency obtained by Zinculose (27%). However, this
reduction efficiency was only obtained for a high nitrate concentration of 40 ppm, while
lower concentrations resulted in a much lower reduction efficiency. This raises the question
of repeatability and uniformity of vanadium (III) chloride nitrate reduction when used in
paper-based devices.

Each of the two reducing agents, zinc microparticles and vanadium (III) chloride, has
its own set of advantages and should be used in specific applications with an appropriate
device design. Zinculose is a composite material that can be incorporated into any paper-
based device. The zinc microparticles in Zinculose are held in place by the matrix, which
allows the passage of more sample volume through the material and the reduction of more
molecules as they pass through it. This allows for signal amplification as more molecules
become available to be captured and detected. However, vanadium (III) chloride is not
immobilized and would wash away in any lateral flow paper-based device design. Nitrate
reduction using vanadium (III) chloride takes much longer than that by zinc microparticles.
That is why commercial dip strips generally use zinc microparticles in the detection zone
to reduce nitrate to nitrite before detection, Figure S5. Vanadium (III) chloride allows for
the development of simple dip strips since the reducing reagent can be mixed with the
detection chemistry and easily deposited in the detection zone. However, the limits of
detection and quantification achieved by dip strips utilizing vanadium (III) chloride are
not as good as those obtained in more intricate designs using zinc microparticles.

4. Conclusions

Paper-based microfluidic technology is a relatively new field of research that is gaining
a lot of attention and is producing a lot of innovation. In this paper, we measured the per-
formance of a dip strip utilizing vanadium (III) chloride to reduce nitrate before detection.
We observed that vanadium (III) chloride has some drawbacks that make it impractical for
use in paper-based devices meant for detecting nitrate. These include long reduction times
required and low limits of detection and quantification obtained. Therefore, we recommend
using zinc microparticles as the reducing agent for nitrate detection in paper-based devices.
Future work will include developing a suitable lightbox, similar to [46], that emits green
light for measuring nitrate and nitrite concentrations using paper-based devices utilizing
the Griess assay in the field.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/CSAC2021-10459/s1, Figure S1. Dip strip used in experiments, Figure S2. Dip strip used
in experiments after the solutions are dried on the detection zones, Figure S3. Color formed in the
detection zone vs. nitrate or nitrite concentrations after several minutes, Figure S4. Color formed
in the detection zone vs. nitrate or nitrite concentrations after 1 h, Table S1. ImageJ analysis of
nitrate detection zones after 10 min. Test order was randomized, Table S2. ImageJ analysis of nitrate
detection zones after 1 h. Test order was randomized, Table S3. ImageJ analysis of nitrite detection
zones after 5 min. Test order was randomized, Table S4. ImageJ analysis of nitrite detection zones
after 1 h. Test order was randomized, Figure S5. Zinc microparticles observed using an electron
scanning microscope with EDS analysis in the nitrate test fields of commercial dip strips (a) Quantofix
91313 (b) Quantofix 91351.
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