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ABSTRACT Salegentibacter sp. strain BDJ18 was isolated from a plankton-associated
seawater sample from the northeast Atlantic Ocean. We report its draft genome as-
sembly, which includes genes potentially important for microbial interactions in the
marine environment.

Salegentibacter spp., Gram-negative bacteria within Flavobacteria that require oxygen
and salt for growth, are known to associate with marine phytoplankton (1, 2) and have

been isolated from saline habitats, including hypersaline lakes, ocean sediments, and marine
animals (1). We report a Salegentibacter sp. isolate from the water column plankton commu-
nity, indicating its potential role in marine microbial interactions.

Salegentibacter sp. strain BDJ18 was isolated from seawater that had been collected
at the deep chlorophyll maximum (55 m; salinity, 36.8 practical salinity units [PSU];
23°C) in the northeast Atlantic Ocean (36.96294°N, 271.21921°W) onboard the R/V Neil
Armstrong in May 2017 (cruise AR16). Plankton-associated bacteria were grown by filtering
seawater onto a 5-mm-pore-size filter and stamping it onto an F/2 agar plate (1% agar with
filtered seawater, tryptone, yeast extract, and F/2 nutrients [3]). Colonies were assayed on
chrome azurol S plates (4), and those with halos indicating siderophore production were
restreaked and maintained on F/2 plates at 25°C. The Salegentibacter sp. strain BDJ18 colo-
nies were yellow and were stored in 30% glycerol at280°C in June 2017.

For genomic DNA isolation, BDJ18 was revived from a glycerol stock and grown in
the aforementioned F/2 medium without agar. DNA was purified with the NucleoSpin
DNA RapidLyse kit (Macherey-Nagel, Düren, Germany), quantified with a Qubit fluorometer
(Invitrogen, Waltham, MA, USA), and sheared with an ultrasonicator (Covaris, Inc., Woburn,
MA, USA). Sanger sequencing of the PCR-amplified 16S rRNA gene was used to identify
the isolate as Salegentibacter sp. The sequence library was prepared by the Rhode Island
Genomics and Sequencing Center (Kingston, RI, USA) using an Apollo next-generation
sequencing (NGS) library preparation system with the PrepX DNA library kit (TaKaRa Bio
USA, Inc., Mountain View, CA, USA), run on a Bioanalyzer DNA high-sensitivity chip (Agilent
Technologies, Inc., Santa Clara, CA, USA), and quantified by quantitative PCR (qPCR) in a
LightCycler 480 system (Roche Molecular Systems, Inc., Pleasanton, CA, USA) with an Illumina
kit (KAPA Biosystems, Woburn, MA, USA). Samples were sequenced (2 � 300 bp) with the
600-cycle reagent kit on a MiSeq system (Illumina, Inc., San Diego, CA, USA), yielding 2,614,628
paired-end reads. Paired-end reads were uploaded to the open-source U.S. Department of
Energy Systems Biology Knowledgebase (Kbase) (http://kbase.us) (5), where Trimmomatic
v1.2.14 (6) was used to remove NexteraPE-PE adapters (2 seed mismatches, 30 palindrome
clip, and 10 simple clip) and to perform quality filtering (4-bp sliding window with 15 mini-
mum quality, 20 leading and trailing minimum quality, and 20 bp minimum). SPAdes
v1.2.4 (7) with default settings was used to assemble contigs, with coverage ranging from
19� to 774�, after removal of contigs with ,1,000 bp or with zero coverage. The PATRIC
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v3.6.8 Similar Genome Finder (8) identified Salegentibacter sp. strain T436 (GenBank acces-
sion number PRJNA297197) as a good reference genome at a distance of 0.3937, support-
ing the designation of BDJ18 as Salegentibacter. The MAUVE Contig Mover (9) in Geneious
Prime v2021.0.1 ordered the BDJ18 contigs against Salegentibacter sp. strain T436. In
Kbase, Salegentibacter sp. strain BDJ18 was assessed with CheckM v1.4.0 (10) and QUAST
v0.0.6 (11). Annotations were performed using web-based RASTtk (https://rast.nmpdr.org/;
February 2021) with automatic error correction, as Salegentibacter sp. (NCBI taxonomy identi-
fier 903072) (12–14). FeGenie v1 (15) identified potential iron-related genes, and antiSMASH
v5.0 (16) predicted specialized metabolites.

The Salegentibacter sp. strain BDJ18 genome is 3,847,815 bp, with 41 contigs and a GC con-
tent of 36.87%. It is 99.4% complete, with an N50 value of 177,704 bp (10, 11). It has 3,510 cod-
ing sequences and 45 RNAs across 264 subsystems. Potential genes include those for resist-
ance to the antibiotic fluoroquinolone and transport of the siderophore enterobactin.
Bacterium-phytoplankton interaction genes include those for potential auxin biosynthesis,
which may increase phytoplankton growth (17), and those for mitigation of oxidative stress,
providing possible protection from phytoplankton-derived reactive oxygen species (18). Only
three potential biosynthetic gene clusters (a type III polyketide synthase [PKS] system, arylpo-
lyene, and terpene) were identified, suggesting a limited number of modular biosynthetic sys-
tems. This draft genome increases knowledge of howmarine bacteria are equipped to interact
with other microbes.

Data availability. This whole-genome shotgun project has been deposited in DDBJ/
ENA/GenBank under the accession number JAFLQX000000000. The version described in
this paper is version JAFLQX010000000. The associated raw sequencing reads have been
deposited under the SRA accession number SRR13857245 under the BioProject accession
number PRJNA706513.
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