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ABSTRACT: Ultraviolet (UV) absorption spectra are commonly used for characterizing the global structure of proteins. However,
the theoretical interpretation of UV spectra is hindered by the large number of required expensive ab initio calculations of excited
states spanning a huge conformation space. We present a machine-learning (ML) protocol for far-UV (FUV) spectra of proteins,
which can predict FUV spectra of proteins with comparable accuracy to density functional theory (DFT) calculations but with 3−4
orders of magnitude reduced computational cost. It further shows excellent predictive power and transferability that can be used to
probe structural mutations and protein folding pathways.

1. INTRODUCTION

Protein structure determination is vital for understanding their
function.1 Spectroscopy is a primary tool for accomplishing
this goal.2,3 Ultraviolet electronic absorption has the ability to
monitor the photoresponse of proteins with high sensitivity.4−7

The far-ultraviolet absorption (FUV, 180−240 nm) region
represents the n→ π* and π→ π* electronic transitions in the
peptide skeleton, is the basis for several powerful spectroscopy
techniques, including linear dichroism (LD) for measuring
orientation information,8 circular dichroism (CD) for identify-
ing the optical isomerism and secondary structures,9 and two-
dimensional ultraviolet absorption (2DUV) for tracking energy
transfer.10 However, the practical utilization of FUV spectros-
copy has been limited by the expensive required theoretical
effort.5 A major challenge has been the mapping between FUV
signals and protein structures under environmental fluctuations
which requires electronic structure calculations of thousands of
molecular dynamics (MD) conformations in order to properly
sample fluctuations of the proteins and the surrounding
solvent.

Accurate FUV spectra of molecules with hundreds of atoms
are accessible with the quantum mechanical (QM) method.
For example, the sTDA-xTB method is a fully QM method for
calculating UV−vis and CD spectra averaged along structures
from a short MD simulation for biomolecules with up to
thousands of atoms.11 However, repeated QM computations
for thousands of MD structures or more and environmental
fluctuations are still time demanding. In addition, for larger
proteins with tens of thousands of atoms, it is challenging for
QM calculation to simulate UV−vis and CD spectra. A Frenkel
exciton Hamiltonian that assumes local excitations in each
structural unit with pairwise coupling of excitations can be
employed. It has been widely employed in previous theoretical
studies of energy transfer within peptide backbones in the FUV
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region. However, computing the electronic couplings involves
expensive calculations of two-electron integrals.12 Approximate
semiempirical methods based on empirical parametrized
Hamiltonians derived from atomic coordinates are less
expensive.13 Maps are created by fitting polynomial functions
of the electric field or the electrostatic potential at reference
points obtained from either high-level theoretical simulations
or experiment.14 Some limitations of traditional spectroscopy
map methods include the fitting errors when applied to
structures that are too distant from the structures in the
training set, unreliable local electrostatics caused by the
unoptimized force-field charge, and the limitation of employing
simple models to represent highly complex spectra.15

Over the past decade, machine learning (ML) has shown
enormous potential in chemical science, including synthesis
prediction, drug design, materials discovery, and spectra
simulations.16−21 In particular, deep learning, which is a subset
of ML methods built on artificial neural networks (ANNs)
with feature learning, has been extensively used for solving
complex nonlinear problems in chemistry, such as the
prediction of spectra, dipole moments, and protein struc-
ture.22−24 ML holds clear advantages by carrying out a very
high-dimensional regression on many different features to map
molecular properties so as to construct structure−property
relationships. ML-driven generalization of spectroscopic
mapping procedures should provide an efficient high-
throughput framework for the FUV spectroscopy simulations
of proteins.
Here we develop a ML protocol for FUV spectra of proteins

in a fluctuating environment. A set of structural descriptors is
identified during the ML training process, which helps
establish structure−property relationships. Our protocol gives
a reasonably good prediction of FUV spectra for various
proteins with comparable accuracy to much more expensive
density-functional-theory (DFT)-based simulations and to
experiment. The computational cost is 3−4 orders of
magnitude lower than DFT. Structure changes caused by
protein mutations and folding pathways under environmental
fluctuations described by MD ensembles are predicted.

2. THEORETICAL METHODS
2.1. Theory of the Calculation of FUV Spectra. A

protein is made of a polypeptide backbone and multiple amino
acid residues (Figure 1a). Its FUV photoresponse is mostly
derived from electronic excitations of the peptide backbone
coupled with environmental fluctuations. Our divide-and-
conquer strategy uses the Frenkel exciton model Hamiltonian
for the electronic excitations.12,25

H B B J B B
ma

ma ma ma
ma nb

m n

ma nb ma nb
,

,∑ ∑ε̂ = ̂ ̂ + ̂ ̂†
≠

†

The indices m(n) run over the peptide bonds and a(b)
represents n → π* or π → π* transitions. B ma† and B ma are
creation and annihilation operators of excitations of the mth
peptide bond, respectively. εma is the excitation energy of
peptide m, Jma,nb is the resonant coupling between the ath
excited state of peptide m and the bth excited state of peptide
n. Here we used the dipole approximation to compute the
electrostatic interaction between two subjects;26,27 more details
can be found in the Supporting Information.
2.2. Simulation of FUV Spectra. The computational

bottleneck in simulations of FUV spectra is getting the

parameters ε0,ma, the electronic transition dipole moments of
the peptide bond (m, a) μT,ma, and the ground state dipole
moment of a residue l μG,l in eqs 4 and 5 in the Supporting
Information, which requires expensive DFT/time-dependent-
DFT (TDDFT) computations for various MD conformations.
We predict these three parameters from protein geometric
descriptors based on a large data set of DFT/TDDFT
calculations. The protocol involves five steps (Figure 1b):
(1) The data sets of 50 000 peptides and 200 000 residues
(10 000 residue structures for each type of amino acid, 20 in
total) are randomly harvested from 1000 different types of
proteins taken from the RCSB Protein Data Bank,28 which
ensure the data set diversity (Table S2). Each peptide bond in
this data set is modeled as a N-methylacetamide (NMA)
molecule. The residues are directly extracted from PDB files
and link the dangling bonds with hydrogen atoms. Here,
residues (H2N−CHR−COH) refer to the remaining parts of
each amino acid after their formation of protein-backbone
peptides and removing of waters. TDDFT simulations for the
data set based on n → π* or π → π* transitions at the PBE0/
cc-pVDZ level and phase correlation29 were performed for
each NMA molecule to obtain its excitation energy (ε0) and
transition dipole moments (μT). PBE0/cc-pVDZ has been
successfully used to calculate the excitation properties of NMA
molecules in previous work.30,31 The n → π* transition is
derived from the transition from the highest occupied
molecular orbital (HOMO) to the lowest unoccupied
molecular orbital (LUMO), for which the TDDFT excitation
energies are in agreement with experiment.32 The π → π*
transition exhibits a multireference feature involving higher
excited states, which is challenging even for a highly accurate
post Hartee−Fock method such as EOM-CCSD.30,33 More-
over, the calculated transition energy error of TDDFT is within
acceptable limits (0.3 eV).34,35 Given the limited computa-
tional resource and relative high accuracy of TDDFT, PBE0/
cc-pVDZ makes a reasonable choice for the simulations of
NMA molecules. (2) We further looked at individual residues
in this data set (Figure S6). In this work, we aim at obtaining
accurate ground state and excited state properties for amino
acid residues and peptide bonds, respectively, so we choose
different combinations of the DFT method and basis set to
handle different properties that they are best for. B3LYP is
widely used to calculate the ground state dipole moment and

Figure 1. (a) Protein structure and the two electronic transitions of
peptide (n → π* and π → π*) which contribute to FUV adsorption.
(b) Schematic of the machine-learning protocol for FUV protein
spectroscopy.
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tends to show a relatively small error.36,37 The diffuse function
is necessary for the calculation of ground state dipole moment,
and 6-311++G** is a cost-effective choice. Therefore, we used
the B3LYP/6-311++G** method to compute the ground state
dipole moments of all amino acid residues. All DFT/TDDFT
simulations are performed using the Gaussian 16 package.38

(3) ML (neural network, NN) training. Internal coordinates,
embedded density,39 and converted Cartesian coordinates are
chosen as the molecular descriptors for the input layer of a
deep learning NN. Starting with the DFT/TDDFT data sets,
we run the data-training process for the data set (80% for
training and 20% for validation) to build the correlation
between the descriptors and our prediction targets of ε0, μT
(for peptide), and μG (for residue). A deep learning protocol
containing three hidden layers (with 32, 64, and 128 neurons,
respectively) and L2 regularization is employed for data
training of ε0 for peptide and μG for residue. Embedded atom
neural networks (EANNs) which have been reported in our
previous work have been employed for the prediction of μT of
peptide.39 (4) ML prediction of the exciton Hamiltonian.
Using the trained ML protocol, we input the geometry of a
new protein outside the data set into the NN and predict ε0,
μT, and μG parameters without additional quantum chemistry
calculations. (5) The exciton Hamiltonian is diagonalized, and
the FUV spectrum of the selected protein is calculated using
the SPECTRON package.40 More details can be found in the
Supporting Information.

3. RESULTS AND DISCUSSION

3.1. Machine-Learning Prediction for Peptides and
Residues. The peptide n→ π* and π→ π* transitions appear
at ∼220 and ∼190 nm, respectively (Figure 1a). Four
molecular descriptors, including internal coordinates, Coulomb
matrix (CM),41 bag of bonds (BOB),42 and atom-centered
symmetry functions (ACSFs),43 have been tested for the

prediction of ε0, and the internal coordinates appear to be the
best (Figure S5). We chose internal coordinates as the
molecular descriptor for ε0 because they directly reflect the
fundamental structure−property relationship and only involve
nine internal coordinates for each peptide bone. The Pearson
relative coefficient (r) and the mean relative error (MRE) were
used to estimate the accuracy and robustness of the trained
ML model. TDDFT-based ε0 and μT and DFT-based μG are
used as reference values for ML training. ML gives excellent
predicted ε0 for both n → π* and π → π* transitions, with r
being 0.9616 and 0.9512 and MRE being 0.363 and 0.252%
(Figure 2a), respectively. For μT, we employed our previous
proposed embedded atom neural network (EANN) in which
we evaluate the density-like descriptors as the square of linear
combination of Gaussian type atomic orbitals.39 Similarly, we
obtained a good prediction from the ML model (Figure 2b), as
evident by r (>0.95) and MRE (<10%). μT are more
challenging for ML than ε0 because they are vectors rather
than scalars. For the μG simulations, we reoriented all
Cartesian coordinates to the same reference system before
ML predictions. Again, for all types of residues, ML models
give very good predictions (Figure 2c,d) with large r (>0.985)
and small MRE (<10%). These results indicate the accuracy
and robustness of our trained ML model.

3.2. Machine-Learning Prediction of FUV Spectra for
Proteins. We now apply the ML models for ε0, μT of the
peptide bond, and μG for the residue, to predict these
parameters for new proteins, construct the exciton Hamil-
tonian, and obtain FUV spectra. Note that the proteins
presented in Figure 3 and Figure S8 are not included in the
1000 proteins employed for extracting of peptide and residues
for ML training. We have first simulated FUV spectra of 12
proteins whose structures were randomly retrieved from the
RCSB Protein Data Bank. Our ML-based approach agrees well
with the DFT-based approach for all types of proteins (Figure

Figure 2. (a) From top to bottom: Data distribution and correlation plots of the TDDFT and ML predicted excitation energies of the n → π* and
π → π* transitions of peptides. The diagonal orange lines/dots in the bottom column represent excitation energies calculated with TDDFT. (b)
Same as part a but for transition dipole moments. The transition dipole moments in the x, y, and z directions are distinguished by pink, green, and
orange. In the bottom column, the diagonal pink, green, and orange lines/dots represent the μT,x, μT,y, and μT,z calculated with TDDFT,
respectively. (c) Pearson correlation coefficients (r) of 20 amino acid residues. (d) The mean relative errors (MREs) of 20 amino acid residues.
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3) in terms of positions of peaks and line shapes. This was
further demonstrated by high Spearman rank correlation
coefficients44 (ρ > 0.80), which reveals the quantitative
agreement between the predicted and reference spectra. We
then expanded the scope of investigation to a larger pool with
230 different proteins (Figure S8). For most proteins of
interest, ML gives comparable FUV spectra to DFT, indicating
the robustness and transferability of the trained ML model.
The good transferability can be rationalized as follows: (1)

The large training data set covers different types of proteins,
which ensures its diversity. (2) Each property has a favorable
molecular descriptor after careful selection of descriptors. The
domain parameters of FUV spectra are ε0 and μT of peptide.
The internal coordinate is selected as a molecular descriptor
for μT and can construct the fundamental structure−property
relationship very well. The EANN approach can effectively fit
the value and orientation of the transition dipole vector. (3)
We optimize the hyperparameters to create a unique NN for
each property, which have showed excellent prediction power
in our previous work. The present FUV spectra form the basis

for predicting the more informative LD, CD, and 2DUV
signals; extending the present protocol to LD, CD, and 2DUV
spectra is a future direction. ML is significantly (3 orders of
magnitude for most proteins with around 200 amino acid
residues) faster than DFT in generating the model
Hamiltonian needed for FUV spectra simulation (Table S1).
For larger proteins containing more than 1000 amino acid
residues (PDB: 3V03), the speed-up is even greater (4 orders
of magnitude).
To take the fluctuating environment into account, we

conducted classical MD simulations to generate trajectories for
equilibrated protein structures. We had harvested 1000 MD
conformations and computed their FUV spectra using our ML
protocol. The averaged spectra are in good agreement with
experiment (Figure 4a).45,46 FUV spectroscopy is extremely
sensitive to a variety of processes and excitation effects (σ → σ
transitions, π → π* electronic transitions, charge-transfer
transitions, Rydberg transitions, electronic transfer and
reaction process, etc.), solvents (water, oxygen, alkanes, and
alcohols), and the surrounding environment (concentration,

Figure 3. FUV spectra of 12 proteins (a: α-helix, β-sheet; b, c: α-helix + β-sheet) calculated with the DFT/TDDFT (black curves) and ML (red
curves) methods. The excitation energy (ε0), transition dipole moment (μT) of the peptide bond, and ground state dipole moment of each residue
(μG) are first calculated with the DFT/ML methods. They are then employed as inputs for the construction of an exciton Hamiltonian and further
diagonalized to acquire FUV spectra. ρ, Spearman rank correlation coefficients; f, time ratio (DFT/ML). Predicted FUV spectra of 230 proteins are
plotted in Figure S8.
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temperature, pH, etc.).4,30,33,47 These result in broad peaks,
which erodes its information. More distinguishable exper-
imental FUV features can be obtained at low temperatures.
Protein aggregation is essential in some human diseases and

functional amyloids.48 Wild type (WT) γS-crystallin plays an
important role in maintaining eye lens transparency, and its
aggregation leads to cataract or opacification of the lens. There
are two mutations in WT protein, including a symmetry related
G106V variant and G18V variant which are associated with
early onset cataract.49 These minor structural mutations cause
different aggregation tendencies in the order of WT < G106V
< G18V. Figure 4b shows the FUV spectra of WT and its
variants based on 100 MD conformations. As we can see, the
G106V variant shows stronger absorbance and its double peaks
become sharper compared with original WT. On the contrary,
the G18V variant shows more blunt double peaks. The results
suggest that FUV spectra are sensitive to minor structure
variation. This offers a possible path to correlate the tendency
of aggregation of different proteins with the specific structure
factors that are responsible for the FUV signals. FUV is the
foundation of CD and 2DUV spectra, which are more powerful
in minoring mutations of proteins.50

To support real-time tracking of protein dynamics using
time-resolved spectroscopy, we combined MD simulation and
ML-based FUV spectra simulation to reveal the time-
dependent evolution of FUV spectra of mini Trp-cage along
its folding path.51 Figure 4c is the ML predicted FUV spectra
based on 100 MD conformations for five states along the
folding path of Trp-cage (retrieved from our previous study).52

Table 1 shows the averaged secondary structure contents and

Figure 4. (a) Experimental (black curves) and ML predicted (red curves) FUV spectra based on 1000 MD conformations (β-sheet, α-helix, α-helix,
α-helix). (b) The ML simulated FUV spectra based on 100 MD conformations for minoring the mutation of protein. The original structure wild
type (WT), symmetry related G106V, and character related variant G18V. (c) The ML simulated FUV spectra of the Trp-cage protein along its
folding path (S1, the initial unfolded structure; S100, the final folded structures). Each state is based on 100 MD conformations.

Table 1. Averaged Secondary Structure Contents and Main
Peaks of the Five States of the Mini Trp-Cage along Its
Folding Processa

state S1 S25 S50 S75 S100

coil (%) 99.1 73.9 49.7 48.9 37.6
turn (%) 0.9 25 38.5 29.9 16.6
α-helix (%) 0 0 8.2 19.7 37.1
310-helices (%) 0 0 3.7 1.6 8.7
bridge (%) 0 1.1 0 0 0
main peak (nm) 188.9 189 191.2 194 194.1

aEach state is based on 100 MD conformations.
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main peaks of the corresponding five states. As we can see, the
initial unfolded S1 state with a coil structure shows a double
peak FUV spectrum. The S25 state is slightly folded along with
the decrease of coil content, leading to the decrease of the
shoulder peak of the FUV spectrum. The folding process
becomes faster from S25 to S50 states and helical structures
appear, accompanied by the narrowing of bandwidth. The
protein becomes a cage in the S75 state with the rapid increase
of α-helix, and the shoulder peak becomes even weaker and
finally is merged into one narrower peak in the final folded
structure (S100). It is worth noting that Trp-cage undergoes a
decrease of coil structure and increase of helical content during
its folding path, which results in a red shift of the dominant
peak of the FUV spectra. These results show the potential of
ML-based FUV simulations for monitoring the protein folding
process.

4. CONCLUSIONS
In summary, we report an efficient and powerful ML protocol
to predict the FUV spectra for proteins based on their
structure descriptors. The ML model presented here shows
good transferability and high performance for predicting
protein UV signals. It can be used to interpret experimental
spectra in solution, probe structural variations, and monitor
protein folding. This protocol can be applied to other related
electronic UV spectroscopies, such as ultraviolet resonant
Raman, circular dichroism (CD), and two-dimensional UV
spectroscopy. Spectral assignments, molecular interactions, and
structure−property relationships will be investigated in a future
study.
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Computational details
1.  Theory of the Calculation of FUV Spectra
The far-ultraviolet (FUV) absorption spectra of a protein is mostly derived from it 
electronic excitations of the peptide backbone coupled with environmental fluctuations, 
which can be described by the Frenkel exciton model.1-2

 𝐻 = ∑
𝑚𝑎𝜀𝑚𝑎𝐵

†
𝑚𝑎𝐵𝑚𝑎 + ∑𝑚 ≠ 𝑛

𝑚𝑎,𝑛𝑏𝐽𝑚𝑎,𝑛𝑏𝐵
†
𝑚𝑎𝐵𝑛𝑏     (1)

The indices m (n) run over the peptide bonds and a (b) represents n → π* or π → π* 
transitions.  and  are creation and annihilation operators of excitations of the m th 𝐵 †

𝑚𝑎 𝐵𝑚𝑎
peptide bond, respectively. The excitation energy εma can be described by summing over 
the excitation energy of an isolated peptide (ε0,ma) and environmental electrostatic 
interactions:

𝜀𝑚𝑎 = 𝜀0,𝑚𝑎 +     ∑
𝑙

1
4𝜋𝜀𝜀0

∬𝑑𝒓𝑚𝑑𝒓𝑙([𝜌𝑇,𝑚𝑎(𝒓𝑚) ― 𝜌𝐺,𝑚(𝒓𝑚)] ∙ 𝜌𝐺,𝑙(𝒓𝑙)
|𝒓𝑚 ― 𝒓𝑙| )     (2)

ρT,ma and ρG,m are the molecular charge density of the a th excited state and ground state 
of the peptide bond m, respectively. ρG,m is the charge density of a residue l (l runs over 
all residues). The resonant coupling (J) between a th excited state of peptide m and b th 
excited state of peptides n can be written as:

𝐽𝑚𝑎,𝑛𝑏 =
1

4𝜋𝜀𝜀0
∬𝑑𝒓𝑚𝑑𝒓𝑛

𝜌𝑇,𝑚𝑎(𝒓𝑚)𝜌𝑇,𝑛𝑏(𝒓𝑛)
|𝒓𝑚 ― 𝒓𝑛|     (3)

Applying the dipole approximation that computes electrostatic interaction between two 
subjects with the product of their electric dipole moments,3-4 we can calculate the 
excitation energy εma by summing over the excitation energy of an isolated peptide (ε0,ma) 
and its electrostatic interactions with surrounding environment.

𝜀𝑚𝑎 = 𝜀0,𝑚𝑎 +∑
𝑙

1
4𝜋𝜀𝜀0(𝝁𝑇,𝑚𝑎 ∙ 𝝁𝐺,𝑙

|𝐫𝑚𝑙|3 ― 3
(𝝁𝑇,𝑚𝑎 ∙ 𝐫𝑚𝑙)(𝝁𝐺,𝑙 ∙ 𝐫𝑚𝑙)

|𝐫𝑚𝑙|5 )   (4)

μT,ma and μG,l are the electronic transition dipole moments of the peptide bond (m, a) and 
the ground state dipole moment of a residue l (l runs over all residues), respectively. 
Using the dipole approximation, the resonant coupling (J) between the excited states a, b 
of peptides m, n can be computed as:

𝐽𝑚𝑎,𝑛𝑏 =
1

4𝜋𝜀𝜀0(𝝁𝑇,𝑚𝑎 ∙ 𝝁𝑇,𝑛𝑏

|𝒓𝑚𝑛|3 ― 3
(𝝁𝑇,𝑚𝑎 ∙ 𝒓𝑚𝑛)(𝝁𝑇,𝑛𝑏 ∙ 𝒓𝑚𝑛)

|𝒓𝑚𝑛|5 )   (5)

The J couplings come from transitions of peptide bonds (m≠n). The residues only 
contribute in Eq. (4) where they modify the excitation energies. 

2.  Data Preparation and Quantum Chemistry Simulations
In order to ensure the diversity of the dataset, 1000 PDB files cover almost all the typical 
types of proteins, including fibrous protein, globular protein, keratin, collagen, chaperone, 
myoglobin, hemoglobin and denaturation, are retrieved from RCSB Protein Data Bank. 
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The PDB ID can be found in Table S2. Afterwards, 50 000 peptides (NMA molecule is 
chosen as peptide model) and 200 000 amino acid residues are directly extracted in bulk 
from the downloaded PDB files with self-compiled codes. The numbers of 
peptides/residues randomly extracted from each proteins are roughly the same in order to 
ensure the diversity of the dataset. When extracting peptides, we also include the two 
connected C atoms, that is –C–CO–NH–C– rather than –CO–NH– since NMA molecule 
(–C–CO–NH–C–) is chosen as peptide model. The dangling bonds in extracted NMA 
molecules and residues are linked with hydrogen in bulk with Pymol package.5 Therefore, 
the coordinates of both NMA molecules and residues are exactly the same as they are in 
original proteins configurations except that positions of hydrogen atoms are uncertain in 
PDB files. The structures of NMA molecules and residues can be found in Figure S4 and 
Figure S6, respectively.

We didn’t carry out energy minimization for NMA molecules and residues for the 
following two reasons: (1) the coordinates of NMA molecules and residues are directly 
extracted from PDB files without any change, which are more consistent with the 
configurations of peptide bonds and amino acid residues in proteins. (2) The NMA 
molecules and residues directly extracted from proteins are unstable since they are 
dragged by each other when they are in proteins. The configurations of both NMA 
molecules and residues tend to be unified and the diversity will be reduced significantly 
after energy minimization, which would be adverse to machine learning training for 
structure-property relationships.

Time-dependent density functional theory (TDDFT) calculations at PBE0/cc-pVDZ 
level are employed to acquire the excitation energy (ε0) and transition dipole moments 
(μT) of peptides. All the peptides are converted to the same coordinate before TDDFT 
calculations as shown in Figure S1 and the NOSYMM keyword is required to prevent 
structural reorientation during TDDFT calculations. The lowest 10 excitation states are 
calculated and phase correlation 6 is performed with Multiwfn code.7 Density functional 
theory (DFT) calculations with B3LYP/6-311++G** method are performed to calculate 
the ground state dipole moments (μG) of amino acid residues. Polarizable continuum 
models (PCM) is used as solvent model and water is used as solvent for all the 
calculations. All the DFT/TDDFT simulations are carried out in Gaussian 16 package.8

Figure S1. The peptide orientation after conversion of structures to the same Cartesian 
coordinate system.
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3. Molecular dynamic simulations
Molecular dynamic (MD) simulations for seven proteins displayed in Figure 4a (1YJP, 
1CLG, 2D3E, 3V03) and Figure 4b (WT, G106V, G18V) are carried out to acquire MD 
conformations. The MD conformations of Figure 4c are retrieved from our previous 
reported work.9 The MD simulations in water of 2 ns with a time step of 2 fs are 
performed using OPLS-AA force field and TIP3P water at room temperature (300K) and 
pressure (1 atm) after NVT equilibration at 300 K in GROMACS package.10 Periodic 
boundary conditions are employed during MD simulations. The short-range coulomb 
interactions and vdW forces are truncated at 1.2 nm. Particle-mesh Ewald is used to take 
long-range electrostatics into consideration.

4. Selection of molecular descriptors
Rational selection of molecular descriptor is crucial for us to create the structures-
property relationship.11 We carefully select different molecular descriptors for different 
properties.

Excitation energy of peptide: We compared four molecular descriptors, including 
internal coordinates, coulomb matrix (CM),12 bad of bands (BOB),13 atom-centered 
symmetry functions (ACSF),14 in which the internal coordinates show the best result. 
Internal coordinates include the bond lengths, bond angles and dihedral angles of a 
molecule, which hold advantages in directly reflecting the fundamental structure-property 
relationship.

Figure S2. Internal coordinates of a peptide.

Coulomb matrix (CM) M is used to describe the local environment of a central atom k 
and can be written as follows:

𝑀𝑖𝑗(𝑘) = { 1
2𝑍2.4

𝑖 ∙ 𝑓2
𝑖𝑘                      𝑖 = 𝑗

𝑍𝑖𝑍𝑗

||𝑅𝑖 ― 𝑅𝑗||
𝑓𝑖𝑘𝑓𝑗𝑘𝑓𝑖𝑗           𝑖 ≠ 𝑗

    (6)

In which i，j and k indicate atom labels, Z is nuclear charge and R is coordinate,  is a 𝑓𝑖𝑗
function used to describe long range effect:
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 𝑓𝑖𝑗 = {            1                                         ||𝑅𝑖 ― 𝑅𝑗|| ≤  𝑟 ― ∆𝑟
1
2(1 + 𝑐𝑜𝑠 (𝜋 ||𝑅𝑖 ― 𝑅𝑗|| ― 𝑟 + ∆𝑟

∆𝑟 )) 𝑟 ― ∆𝑟 <   ||𝑅𝑖 ― 𝑅𝑗|| ≤  𝑟 ― ∆𝑟

0                                         ||𝑅𝑖 ― 𝑅𝑗|| > 𝑟
   (7)

Figure S3. Bad of bags of a peptide.

Bad of bags (BOB) is an expansion of CM molecular descriptor which groups CM 
elements into bags based on unique atom pairs and sorts them by values. Each bag 
represents a particular bond type (e.g. ‘C-C’, ‘C-O’, ‘C-N’, etc) in BOB. The self-
interactions part (e.g. ‘C’, ‘O’, ‘N’, etc) is constructed by diagonal CM elements:

1
2𝑍2.4

𝑖     (8)

The interaction between different atoms is created with the off-diagonal CM elements:
𝑍𝑖𝑍𝑗

||𝑅𝑖 ― 𝑅𝑗||
    (9)

where Zi and Zj are the nuclear charges, while Ri and Rj are the positions of the two 
atoms participating in a given bond.

Atom-centered symmetry functions (ACSF) employ a series of radial and angular 
symmetry functions to represent the local environment near a central atom to detect the 
structural features. The radial symmetry functions of a central atom i are given as:

𝑓𝑐(𝑅𝑖𝑗) = { 0.5 ∙ [𝑐𝑜𝑠(𝜋𝑅𝑖𝑗

𝑅𝑐 ) + 1]                      𝑅𝑖𝑗 ≤ 𝑅𝑐

                    0                                          𝑅𝑖𝑗 > 𝑅𝑐

      (10) 

𝐺1
𝑖 =∑

𝑗
𝑓𝑐(𝑅𝑖𝑗)      (11)

𝐺2
𝑖 =∑

𝑗
 𝑒 ―𝜂(𝑅𝑖𝑗 ― 𝑅𝑠)2

 ∙ 𝑓𝑐(𝑅𝑖𝑗)         (12)
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In which  is the cutoff function,  is the distance between atoms i and j,  is the 𝑓𝑐(𝑅𝑖𝑗) 𝑅𝑖𝑗 𝑅𝑐
cutoff radius.  radial symmetry function is the sum of cutoff functions.  radial 𝐺1

𝑖 𝐺2
𝑖

symmetry function is the product of a Gaussians and cutoff function, which can be used 
to describe a spherical shell of a central atom.  and  can are employed to describe the 𝜂 𝑅𝑠
width and shift of Gaussians. The  angular function can be written as: 𝐺4

𝑖

𝐺4
𝑖 = 21 ― 𝜉

𝑎𝑙𝑙

∑
𝑗,𝑘 ≠ 𝑖

(1 + 𝜆𝑐𝑜𝑠𝜃𝑖𝑗𝑘)𝜉    ∙  𝑒 ―𝜂(𝑅2
𝑖𝑗 + 𝑅2

𝑖𝑘 + 𝑅2
𝑗𝑘)2

∙ 𝑓𝑐(𝑅𝑖𝑗) ∙ 𝑓𝑐(𝑅𝑖𝑘) ∙ 𝑓𝑐(𝑅𝑗𝑘)   (13)

 is used to modify the distribution of angles centered of a reference atom. All the 𝜉
parameters of the equation describe above are directly derived from the best performing 
parameters reported by Marquetand et al.15

For transition dipole moment of peptide, we employ an embedded atom neural network 
(EANN) approach reported in our previous works, which introduces a Gaussian-type 
orbital based density vector into empirical embedded atom method to describe the 
complex relationship between the embedded density vector and atomic energy by neural 
networks. The successful construction of relationship between embedded density and 
atomic energy of EANN inspires us to extend its application to the prediction of dipole 
moment. The ground state dipole moment of μG of can be described as the sum of atomics 
contributions:

𝝁𝐺 =
𝑁

∑
𝑖 = 1

𝑞𝑖𝒓𝑖    (14)

Where N is the atom number,  is the atomic effective charge and can be easily fit with 𝑞𝑖
NN method. The coordinate vector  is oriented from the center of mass of 𝒓𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑇

a molecule to atom i.  can be easily acquired by multiplying  and . However, the 𝝁𝐺 𝑞𝑖 𝒓𝑖
transition dipole moment (μT) can be perpendicular to the molecular plane since it is 
associated with the transition between two states, which it different from that of  which 𝝁𝐺
is corresponding to only one state. For example, if a molecular plane is on xy plane and 
μT is perpendicular to xy plane (on z plane) and only μz is be nonzero. While Eq. (14) will 
give a zero μz since  is zero, which is apparently unreasonable. Here we define the 𝑟𝑧
transition dipole moment of peptide as follows to tackle this problem:

𝝁𝑗
𝑇 =

𝑁

∑
𝑖 = 1

𝑞𝑗
𝑖𝒓𝑖    (15)

Where j=1, 2 and  is the different output of atomic NN. Two vectors  and  can 𝑞𝑗
𝑖 𝝁1

𝑇 𝝁2
𝑇

define a plane (molecular plane), and the plane which perpendicular to the molecular 
plane can be defined as:

𝝁3
𝑇 =

𝑁

∑
𝑖 = 1

𝑞3
𝑖 (𝝁1

𝑇 × 𝝁2
𝑇)    (16)

Finally, the transition dipole moment μT can be written as the linear combination of the 
three transition dipole moment vectors:

𝝁𝑇 = 𝝁1
𝑇 + 𝝁1

𝑇 + 𝝁3
𝑇   (17)
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As a result,  can still be rationally described even when it is perpendicular to the 𝝁𝑇
molecular plane.

For the ground state dipole moment of the residue which is employed for the 
calculation of the perturbation term of excitation energy, we employ converted Cartesian 
coordinates which can directly reflect the structural feather and orientation of a molecule.

5. Machine learning (neural network)
Neural network (NN) implemented in TensorFlow is employed for all the training 
procedure. We manually optimize the hyperparameters of NN, including hidden layers, 
neurons of each hidden layers, activation functions, algorithms to against overfitting and 
the corresponding regularization coefficient, and learning rate, to create a favorable ML 
protocol. The hyperparameters of NN are determined after carefully optimization. NN 
with three hidden layers are used in all the NN training process. For excitation energy of 
peptide and the ground state dipole moment of residues, the neurons of three hidden 
layers are 32, 64 and 128, respectively. The Rectified Linear Unit is employed as 
activation function for each NN layer to speed up the NN training and resist the gradient 
disappearing. L2 regularization with a coefficient of 0.01 is used to mitigate overfitting. 
Adam algorithm with an exponentially decaying learning rate, which employs an initial 
learning rate of 0.001 and lets the learning rate decreased by 80% every 500 steps during 
the NN training, is used to avoid the local minima during the NN training. For transition 
dipole moments of peptides, we used an Embedded atom neural network (EANN) model 
which has been reported in our previous work.16 In this model, a neural network with 3 
hidden layers (33, 30, 30), early stopping in which the training will stop if the validation 
loss shows a consecutive increase in 6 epoch to prevent overfitting, and Levenberg-
Marquardt algorithm are employed for ML protocol.

For the validation procedure, we randomly select 80% of the peptide/residues data 
extracted from 1000 proteins for machine learning training and remaining 20% for 
validation. Our NN training results reveal that the NN model show favorable accuracy 
and transferability (Figure 2 & Figure S6). All the data are normalized with the following 
equation before NN training to avoid remarkably different range of raw input values:

𝝁𝑇 =
(𝑥𝑖 ― 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 ― 𝑥𝑚𝑖𝑛)    (18)

The mean relative error (MRE) is defined as follows:

𝝁𝑇 =
100%

𝑛

𝑁

∑
𝑖 = 1

|(𝑅𝑖 ― 𝑃𝑖)
𝑅𝑖 |    (19)

Where  and  are the reference values and predicted values of molecule i, respectively. 𝑅𝑖 𝑃𝑖
N is the molecular number.
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Figure S4. Peptide model and the corresponding electronic transitions. (a) The molecular 
structures of peptide model (N-methylacetamide, NMA). (b) n → π* transition mainly 
distributes in 220 nm and π → π* transition mainly locates in 190 nm in peptide.

Figure S5. Machine learning results of the excitation energies of peptide based on 
internal coordinates, coulomb matrix (CM), bad of bonds (BOB) and atom-centered 
symmetry functions (ACSF). Comparison of (a) the Pearson correlation coefficient (r) 
and (b) mean relative error (MRE) of the n → π* and π → π* transitions based on the 
four molecular descriptors described above. Internal coordinates exhibit the largest r and 
the smallest MRE.
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Figure S6. ML prediction of ground state dipole moments (μG) of twenty amino acid 
residues. μG_DFT was performed at the B3LYP/6-311G++(d,p) level. The purple star, 
green dot and orange pentagon represent the μ_NN in the x, y and z directions, 
respectively. 
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Table S1. Comparison of simulation time between DFT and ML methods for proteins in 
Figure 3 and Figure 4a.

PDB ID DFT / s ML / s DFT / ML ρ
2BMM, MET34-GLU156 15490 6 2582 0.922
4X0J, GLU37-LYS238 of Chain A 22689 8 2836 0.976
3FHH, THR1-TRP202 28135 8 3517 0.888
5W26, ASN200-ASP401 22874 8 2859 0.918
3Q6N, TRP297-THR498 of Chain A 24094 7 3442 0.906
5E84, SER24-LEU225 of Chain A 26781 8 3348 0.874
6S84, MET1-LYS202 of Chain C 21765 8 2721 0.896
5V28, MET1-ALA174 21460 7 3066 0.933
5H34, GLU666-ARG776 26179 8 3272 0.858
6P28, ARG4-ASN195 23697 8 2962 0.931
1WXR, GLY1-GLY202 22982 8 2873 0.895
5Y30, LYS41-ILE222 27789 8 3474 0.874
1YJP 810 5 162 0.999
1CLG 11284 5 2257 0.806
2D3E 70664 10 7066 0.992
3V03 152880 12 12740 0.994

Figure S7. Comparison of timing plot between DFT and ML methods for the four 
proteins in Figure 4a and Table S1. As we can see, the simulation time of a DFT 
calculation increases rapidly with the increases of residues number, while it remains 
almost the same for ML methods
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Figure S8. Far-ultraviolet spectra of 230 proteins calculated with DFT (black curves) and 
NN (red curves).
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Table S2. PDB ID of 1000 proteins downloaded from RCSB Protein Data Bank for 
extracting 50 000 peptides and 200 000 residues (20 types of residues and 10 000 
structures of each residue). The downloaded proteins cover different types of proteins, 
including fibrous protein, globular protein, keratin, collagen, chaperone, myoglobin, 
hemoglobin and denaturation.
1A00 1A01 1A0U 1A3O 1A4F 1A6G 1A6M 1ABY 1AH6 1AH8 1AJ9 1AMX

1ANB 1AOX 1B0B 1B86 1B9Q 1BBB 1BF8 1BIJ 1BKV 1BUW 1BUY 1BVC

1C40 1CBL 1CG5 1CG8 1CH4 1CK7 1CLG 1CMY 1CN4 1CO9 1COH 1CPZ

1DG4 1DGF 1DGH 1DKE 1DKG 1DKX 1DKY 1DLW 1DM1 1DXU 1DY2 1DZI

1ECD 1EER 1EZU 1F4J 1FAW 1FCS 1FDH 1FHJ 1FM1 1FSZ 1FUJ 1G08

1G0A 1G3J 1GCV 1GJN 1GR3 1GVL 1GXD 1GZX 1H1X 1HAB 1HBA 1HBH

1HBS 1HCO 1HGA 1HGB 1HGC 1HK7 1HX1 1HYL 1I6Z 1I7X 1IBE 1IRD

1IWH 1J14 1J3Z 1J52 1J7W 1J7Y 1JBK 1JJ9 1JWN 1JY7 1JZK 1JZL

1JZM 1K0V 1K0Y 1K9O 1KD2 1KHY 1KIU 1KKE 1KR7 1LFL 1LFQ 1LFT

1LFV 1LI1 1M3D 1M9P 1MBA 1MBD 1MBN 1MBO 1MBS 1MGN 1MKO 1MOH

1MWB 1MYH 1MYI 1MYM 1MYZ 1MZ0 1N9X 1NEJ 1NIH 1NPF 1NPG 1NQP

1NWI 1NWN 1O1I 1O1K 1O1N 1O91 1P9H 1PBX 1PMB 1Q5L 1Q7D 1QI8

1QPW 1QQW 1QUN 1QVR 1QXD 1R1X 1R1Y 1ROC 1RPS 1RTX 1RVW 1S5Y

1S69 1S6A 1SB6 1SDK 1SDL 1SHR 1SI4 1SLU 1SPG 1SS8 1SWM 1T08

1T60 1T7S 1THB 1U5M 1U7S 1U97 1UIW 1UMK 1US7 1USU 1UVY 1V4U

1V4W 1V4X 1V8X 1V9Q 1W09 1W0A 1W0B 1WG3 1WVP 1WXV 1X46 1X9F

1XUC 1XXT 1XYE 1XZ2 1XZY 1Y01 1Y09 1Y4P 1Y5J 1Y8H 1Y8I 1YCA

1YDZ 1YEO 1YEQ 1YGF 1YHU 1YIE 1YJP 1YKT 1YMB 1YOU 1YVQ 1YVT

1YZI 1Z2G 1Z8U 1ZAV 1ZE3 1ZTQ 1ZWH 2A3G 2AA1 2AKP 2AV0 2B7H

2BPR 2BRC 2BRE 2BW9 2BWH 2C0K 2CG9 2CGE 2D1N 2D2M 2D3E 2D5X

2D5Z 2D60 2D6C 2DHB 2DN1 2DN2 2DN3 2DXM 2E2D 2E2Y 2E3O 2E3R

2EKU 2EVP 2F6A 2FAM 2FRF 2FRJ 2FSE 2FXS 2G0S 2G12 2GTL 2H35

2H8D 2H8F 2HBC 2HBD 2HBF 2HBS 2HCO 2HHB 2HHD 2HHE 2HP8 2HUE

2HZ1 2IDC 2IN4 2IW2 2IWS 2JHO 2KHO 2LKV 2LLL 2LLP 2LM1 2LWP

2LYJ 2LYK 2LYL 2LYP 2LYQ 2LYR 2LYS 2M0M 2M6Z 2M8S 2MB5 2MGO

2MIQ 2MZE 2MZI 2N8R 2NB0 2ND2 2ND3 2ND5 2NRL 2NSR 2NX0 2O5L

2O5Q 2O5S 2OHB 2OJ5 2OKN 2PEI 2PEO 2PEQ 2PGH 2QIF 2QLS 2QSP

2QSS 2QU0 2R1H 2R80 2R9Y 2RAO 2SEB 2UUR 2V1E 2V1F 2V1I 2V1K

2V53 2V7Y 2VLY 2VW5 2W6V 2W6W 2W72 2XD6 2XI6 2XIF 2XIL 2XJ6

2XKI 2XX4 2YRS 2Z44 2Z46 2Z6S 2Z6T 2Z85 2Z9Y 2Z9Z 2ZLV 2ZLW

2ZLX 2ZSP 2ZSS 2ZSY 3A0G 3A2G 3A59 3AEH 3AK5 3AQ5 3ASE 3ASW

3B75 3BJ1 3BWU 3C11 3CIU 3D17 3D1K 3D7O 3DHR 3DLL 3DPO 3DPQ

3DUT 3EDA 3EJH 3ELM 3EOK 3EU1 3FH9 3FP8 3FS4 3FZH 3FZK 3GKV

3GLN 3GOU 3GQG 3GQP 3GYS 3H0X 3H3T 3HC9 3HF4 3HQV 3IA3 3IC0

3IC2 3IUC 3K8B 3KEK 3LDL 3LDN 3LDO 3LDP 3LDQ 3LJZ 3LQD 3LR7

3LW2 3M0B 3M38 3M3B 3MBA 3MJP 3MJU 3MVF 3N3F 3NL7 3NML 3O2X

3ODQ 3OGB 3OVU 3PEL 3PI8 3PI9 3QJE 3QL1 3QZL 3QZM 3QZN 3QZO

3RIK 3RJR 3RTL 3RUR 3S48 3S5C 3S5H 3S5K 3SDH 3SZK 3TFB 3TNU

3TVC 3UHI 3UT2 3V03 3V2V 3VFE 3VM5 3VM9 3VND 3VNW 3VQK 3VQL

3VQM 3W6L 3WFT 3WHM 3WI8 3WTG 3WV1 3WVL 3WYO 3ZHC 3ZHD 3ZHK

3ZHL 4A7B 4AIX 4AIZ 4AJ0 4AU2 4B2T 4B9Q 4BB2 4BJ3 4BKL 4BNR

4C0N 4C44 4CTD 4CUD 4CUE 4CUF 4D0E 4D2U 4D8N 4DC5 4DF3 4DOU
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4EO5 4EZN 4EZO 4EZP 4EZR 4EZW 4EZX 4F01 4F4O 4F68 4FC3 4FCT

4FCW 4FVL 4FWZ 4GR7 4H32 4HRR 4HRT 4HSE 4HWC 4I0C 4I0Y 4I1E

4I2S 4I37 4I3N 4I96 4IJ2 4JA7 4JA9 4JB0 4JB2 4JSD 4JSO 4K07

4K5Q 4K6G 4K6H 4K6K 4KJT 4L2A 4L2D 4LJ6 4LJA 4M4B 4M56 4M8U

4MA7 4MBN 4MKF 4MKG 4MKH 4MPB 4MPR 4MQK 4MTH 4N79 4N7P 4N8W

4NI0 4NSM 4NWE 4NWH 4O4T 4O4Z 4OF9 4OJ0 4OOD 4OW4 4PNJ 4QBY

4R1E 4RMB 4RRP 4RX9 4TQL 4TYU 4U3H 4U5T 4U8U 4UOS 4UOT 4UOX

4UOY 4URG 4URQ 4URS 4UZV 4W68 4W70 4W81 4W94 4WJG 4WUY 4XIF

4XS0 4Y00 4YU3 4YU4 4Z3V 4ZLY 4ZRY 5AKS 5AO6 5AQG 5AQI 5AQO

5AQT 5AUY 5AZQ 5B5O 5B85 5BOY 5BX0 5CE5 5CJB 5CMV 5CN5 5CNC

5CTD 5CTI 5CVA 5CVB 5D0Q 5D5R 5E83 5E84 5E85 5EII 5EIV 5F2R

5FFO 5FQD 5FWL 5FWP 5FXP 5GHU 5GW4 5GW5 5HCL 5HLY 5HQ3 5HY8

5IAT 5IAX 5IKS 5ILM 5ILP 5ILR 5J3P 5J3S 5J3Z 5JG9 5JHI 5JI4

5JOM 5KA0 5KER 5KI0 5KKK 5KRR 5KSI 5KSJ 5KVN 5KWX 5KWZ 5KX0

5KX1 5KX2 5M4G 5M4J 5M4L 5M9M 5MBY 5MC1 5MU0 5MV3 5MZU 5N30

5N4H 5NAX 5NI1 5NIR 5NJX 5NRO 5NX3 5O4P 5OBU 5OCX 5OFO 5OMP

5OMY 5OPW 5OPX 5OU8 5OU9 5OWI 5OWJ 5PKC 5Q5Z 5QEH 5R4J 5SV3

5SV7 5SXD 5THP 5TU7 5TU8 5TU9 5U2L 5U2U 5UCB 5UCU 5UE2 5UE5

5UEA 5UEK 5URC 5UT7 5UT9 5UWK 5UYX 5V4M 5V4N 5VPN 5VQP 5VY8

5VY9 5VZN 5VZO 5VZP 5VZQ 5W0S 5WOG 5X2R 5X2S 5XKV 5Y45 5YAN

5YCE 5YP8 5YPB 5YUP 5YZF 5Z5O 5ZBA 5ZHB 5ZUI 5ZYK 5ZZF 5ZZG

5ZZT 5ZZY 6A06 6A0H 6A0V 6A0Y 6A19 6A1W 6A23 6A2U 6A32 6A39

6A3C 6AHF 6AIT 6ASY 6AXB 6BB5 6BIN 6BJR 6BNR 6BWU 6CD2 6CF0

6CQG 6CQV 6D45 6D6S 6DDK 6DFM 6DJU 6DL9 6DTC 6E14 6E15 6E0F

6E0G 6E2J 6E7G 6E7H 6EC0 6ED3 6EOF 6F0Y 6F17 6F25 6FQF 6FSE

6FZW 6G5A 6G5T 6GCQ 6GZD 6H2P 6H2Q 6HAL 6HBI 6HBW 6HG7 6HV2

6IHX 6II1 6IWK 6J0A 6J81 6JBX 6JP1 6M8F 6MV0 6N02 6N8V 6N8Z

6NBC 6NBD 6ND8 6NDH 6O5V 6O69 6OG3 6QFF 6QFH 6QH9 6QI8 6REU

6S0F 6TSZ 6UUV 6VGK 6W75 6XV4 6Y6W 7ABP 7ACN 7AHL 7AME 7API

7BNA 7CA2 7CCP 7CEI 7CEL 7CGT 7DFR 7FAB 7FD1 7GAT 7GCH 7HSC

7HVP 7ICD 7ICE 7ICF 7ICN 7ICO 7ICQ 7ICR 7ICV 7INS 7KME 7LPR

7LYZ 7LZM 7MHT 7MSF 7NN9 7NSE 7PAZ 7PCK 7PTD 7R1R 7REQ 7RSA

7RXN 7STD 7TIM 7TLN 7WGA 7XIM 7YAS 7ZNF 821P 830C 8A3H 8AAT

8ABP 8ACN 8ADH 8AME 8API 8AT1 8ATC 8BNA 8CA2 8CAT 8CGT 8CHO

8CPA 8CPP 8DFR 8DRH 8EST 8FAB 8GCH 8GEP 8GPB 8GSS 8HVP 8I1B

8ICA 8ICZ 8JDW 8KME 8LDH 8LPR 8LYZ 8MHT 8MSI 8NSE 8OHM 8PAZ

8PCH 8PRK 8PRN 8PSH 8PTI 8RAT 8RNT 8RSA 8RUC 8RXN 8TFV 8TIM

8TLI 8TLN 8XIA 8XIM 9ABP 9AME 9ANT 9ATC 9CA2 9CGT 9DNA 9EST

9GAA 9GAC 9GAF 9GPB 9GSS 9HVP 9ICA 9ICC 9ICE 9ICH 9ICJ 9ICK

9ICM 9ICO 9ICQ 9ICS 9ICU 9ICV 9ICY 9ILB 9INS 9JDW 9LDB 9LDT

9LPR 9LYZ 9MHT 9MSI 9NSE 9PAI 9PAP 9PCY 9PTI 9RAT 9RNT 9RSA

9RUB 9WGA 9XIA 9XIM
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