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ABSTRACT: Ultraviolet (UV) absorption spectra are commonly used for characterizing the global structure of proteins. However,
the theoretical interpretation of UV spectra is hindered by the large number of required expensive ab initio calculations of excited
states spanning a huge conformation space. We present a machine-learning (ML) protocol for far-UV (FUV) spectra of proteins,
which can predict FUV spectra of proteins with comparable accuracy to density functional theory (DFT) calculations but with 3—4
orders of magnitude reduced computational cost. It further shows excellent predictive power and transferability that can be used to
probe structural mutations and protein folding pathways.

1. INTRODUCTION Accurate FUV spectra of molecules with hundreds of atoms
are accessible with the quantum mechanical (QM) method.
For example, the sSTDA-XxTB method is a fully QM method for
calculating UV—vis and CD spectra averaged along structures
from a short MD simulation for biomolecules with up to
thousands of atoms.'' However, repeated QM computations
for thousands of MD structures or more and environmental

Protein structure determination is vital for understanding their
function." Spectroscopy is a primary tool for accomplishing
this goal.”* Ultraviolet electronic absorption has the ability to
monitor the photoresponse of proteins with high sensitivity."~”
The far-ultraviolet absorption (FUV, 180—240 nm) region

represents the n — 7* and 7 — 7* electronic transitions in the fluctuations are still time demanding. In addition, for larger
peptide skeleton, is the basis for several powerful spectroscopy proteins with tens of thousands of atoms, it is challenging for
techniques, including linear dichroism (LD) for measuring QM calculation to simulate UV—vis and CD spectra. A Frenkel
orientation information,® circular dichroism (CD) for identify- exciton Hamiltonian that assumes local excitations in each
ing the optical isomerism and secondary structures,” and two- structural unit with pairwise coupling of excitations can be
dimensional ultraviolet absorption (2DUV) for tracking energy employed. It has been widely employed in previous theoretical
transfer.'"” However, the practical utilization of FUV spectros- studies of energy transfer within peptide backbones in the FUV
copy has been limited by the expensive required theoretical

effort.” A major challenge has been the mapping between FUV Received: April 12, 2021

signals and protein structures under environmental fluctuations Revised:  May 14, 2021

which requires electronic structure calculations of thousands of Published: June 4, 2021

molecular dynamics (MD) conformations in order to properly
sample fluctuations of the proteins and the surrounding
solvent.
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region. However, computing the electronic couplings involves
expensive calculations of two-electron integrals.'” Approximate
semiempirical methods based on empirical parametrized
Hamiltonians derived from atomic coordinates are less
expensive.'> Maps are created by fitting polynomial functions
of the electric field or the electrostatic potential at reference
points obtained from either high-level theoretical simulations
or experiment.'* Some limitations of traditional spectroscopy
map methods include the fitting errors when applied to
structures that are too distant from the structures in the
training set, unreliable local electrostatics caused by the
unoptimized force-field charge, and the limitation of employing
simple models to represent highly complex spectra."

Over the past decade, machine learning (ML) has shown
enormous potential in chemical science, including synthesis
prediction, druig design, materials discovery, and spectra
simulations.'*™>" In particular, deep learning, which is a subset
of ML methods built on artificial neural networks (ANN5)
with feature learning, has been extensively used for solving
complex nonlinear problems in chemistry, such as the
prediction of spectra, dipole moments, and protein struc-
ture.”””** ML holds clear advantages by carrying out a very
high-dimensional regression on many different features to map
molecular properties so as to construct structure—property
relationships. ML-driven generalization of spectroscopic
mapping procedures should provide an eflicient high-
throughput framework for the FUV spectroscopy simulations
of proteins.

Here we develop a ML protocol for FUV spectra of proteins
in a fluctuating environment. A set of structural descriptors is
identified during the ML training process, which helps
establish structure—property relationships. Our protocol gives
a reasonably good prediction of FUV spectra for various
proteins with comparable accuracy to much more expensive
density-functional-theory (DFT)-based simulations and to
experiment. The computational cost is 3—4 orders of
magnitude lower than DFT. Structure changes caused by
protein mutations and folding pathways under environmental
fluctuations described by MD ensembles are predicted.

2. THEORETICAL METHODS

2.1. Theory of the Calculation of FUV Spectra. A
protein is made of a polypeptide backbone and multiple amino
acid residues (Figure la). Its FUV photoresponse is mostly
derived from electronic excitations of the peptide backbone
coupled with environmental fluctuations. Our divide-and-
conquer strategy uses the Frenkel exciton model Hamiltonian

for the electronic excitations.'>?*
t g t
H= Z 8maBmaBma + Z ]ma,nthaBnb
ma ma,nb

The indices m(n) run over the peptide bonds and a(b)
represents n — 7* or 7 — &* transitions. B}, and B,, are
creation and annihilation operators of excitations of the mth
peptide bond, respectively. €,, is the excitation energy of
peptide m, J,, ., is the resonant coupling between the ath
excited state of peptide m and the bth excited state of peptide
n. Here we used the dipole approximation to compute the
electrostatic interaction between two sub]‘ects;26’27 more details
can be found in the Supporting Information.

2.2. Simulation of FUV Spectra. The computational
bottleneck in simulations of FUV spectra is getting the
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Figure 1. (a) Protein structure and the two electronic transitions of
peptide (n — z* and 7 — 7*) which contribute to FUV adsorption.
(b) Schematic of the machine-learning protocol for FUV protein
spectroscopy.

parameters & ,,, the electronic transition dipole moments of
the peptide bond (m, a) pr,,, and the ground state dipole
moment of a residue [ pg; in eqs 4 and 5 in the Supporting
Information, which requires expensive DFT/time-dependent-
DFT (TDDFT) computations for various MD conformations.
We predict these three parameters from protein geometric
descriptors based on a large data set of DFT/TDDFT
calculations. The protocol involves five steps (Figure 1b):
(1) The data sets of S0000 peptides and 200 000 residues
(10 000 residue structures for each type of amino acid, 20 in
total) are randomly harvested from 1000 different types of
proteins taken from the RCSB Protein Data Bank,”® which
ensure the data set diversity (Table S2). Each peptide bond in
this data set is modeled as a N-methylacetamide (NMA)
molecule. The residues are directly extracted from PDB files
and link the dangling bonds with hydrogen atoms. Here,
residues (H,N—CHR—COH) refer to the remaining parts of
each amino acid after their formation of protein-backbone
peptides and removing of waters. TDDFT simulations for the
data set based on n — 7* or 7 — 7 transitions at the PBE0/
cc-pVDZ level and phase correlation” were performed for
each NMA molecule to obtain its excitation energy (&,) and
transition dipole moments (#r). PBEO/cc-pVDZ has been
successfully used to calculate the excitation properties of NMA
molecules in previous work.’”*" The n — 7* transition is
derived from the transition from the highest occupied
molecular orbital (HOMO) to the lowest unoccupied
molecular orbital (LUMO), for which the TDDFT excitation
energies are in agreement with experiment.’”” The 7 — #*
transition exhibits a multireference feature involving higher
excited states, which is challenging even for a highly accurate
post Hartee—Fock method such as EOM-CCSD.*"** More-
over, the calculated transition energy error of TDDFT is within
acceptable limits (0.3 eV).”** Given the limited computa-
tional resource and relative high accuracy of TDDFT, PBEO/
cc-pVDZ makes a reasonable choice for the simulations of
NMA molecules. (2) We further looked at individual residues
in this data set (Figure S6). In this work, we aim at obtaining
accurate ground state and excited state properties for amino
acid residues and peptide bonds, respectively, so we choose
different combinations of the DFT method and basis set to
handle different properties that they are best for. B3LYP is
widely used to calculate the ground state dipole moment and
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Figure 2. (a) From top to bottom: Data distribution and correlation plots of the TDDFT and ML predicted excitation energies of the n — z* and
7 — m* transitions of peptides. The diagonal orange lines/dots in the bottom column represent excitation energies calculated with TDDFT. (b)
Same as part a but for transition dipole moments. The transition dipole moments in the x, y, and z directions are distinguished by pink, green, and
orange. In the bottom column, the diagonal pink, green, and orange lines/dots represent the pry,, pr, and pr, calculated with TDDFT,
respectively. (c) Pearson correlation coefficients (r) of 20 amino acid residues. (d) The mean relative errors (MREs) of 20 amino acid residues.

tends to show a relatively small error.*>*” The diffuse function prediction of &), and the internal coordinates appear to be the
is necessary for the calculation of ground state dipole moment, best (Figure SS). We chose internal coordinates as the
and 6-311++G** is a cost-effective choice. Therefore, we used molecular descriptor for &, because they directly reflect the
the B3LYP/6-311++G** method to compute the ground state fundamental structure—property relationship and only involve
dipole moments of all amino acid residues. All DFT/TDDFT nine internal coordinates for each peptide bone. The Pearson
simulations are performed using the Gaussian 16 package.” relative coefficient (r) and the mean relative error (MRE) were
(3) ML (neural network, NN) training. Internal coordinates, used to estimate the accuracy and robustness of the trained
embedded density,39 and converted Cartesian coordinates are ML model. TDDFT-based &, and gty and DFT-based pig are
chosen as the molecular descriptors for the input layer of a used as reference values for ML training. ML gives excellent
deep learning NN. Starting with the DFT/TDDFT data sets, predicted &, for both n — 7* and 7 — 7* transitions, with r
we run the data-training process for the data set (80% for being 0.9616 and 0.9512 and MRE being 0.363 and 0.252%
training and 20% for validation) to build the correlation (Figure 2a), respectively. For gy, we employed our previous
between the descriptors and our prediction targets of &, it proposed embedded atom neural network (EANN) in which
(for peptide), and pg (for residue). A deep learning protocol we evaluate the density-like descriptors as the square of linear

containing three hidden layers (with 32, 64, and 128 neurons, combination of Gaussian type atomic orbitals.”” Similarly, we

respectively) and L2 regularization is employed for data obtained a good prediction from the ML model (Figure 2b), as

training of &, for peptide and p for residue. Embedded atom evident by r (>0.95) and MRE (<10%). pr are more
neural networks (EANNs) which have been reported in our

previous work have been employed for the prediction of py of
peptide.”” (4) ML prediction of the exciton Hamiltonian.
Using the trained ML protocol, we input the geometry of a
new protein outside the data set into the NN and predict &,
H1, and pg parameters without additional quantum chemistry
calculations. (S) The exciton Hamiltonian is diagonalized, and
the FUV spectrum of the selected protein is calculated using
the SPECTRON package.*’ More details can be found in the
Supporting Information.

challenging for ML than &, because they are vectors rather
than scalars. For the pg simulations, we reoriented all
Cartesian coordinates to the same reference system before
ML predictions. Again, for all types of residues, ML models
give very good predictions (Figure 2c,d) with large r (>0.985)
and small MRE (<10%). These results indicate the accuracy
and robustness of our trained ML model.

3.2. Machine-Learning Prediction of FUV Spectra for
Proteins. We now apply the ML models for &, pr of the
peptide bond, and pg for the residue, to predict these
parameters for new proteins, construct the exciton Hamil-

3. RESULTS AND DISCUSSION tonian, and obtain FUV spectra. Note that the proteins

3.1. Machine-Learning Prediction for Peptides and presented in Figure 3 and Figure S8 are not included in the
Residues. The peptide n — 7* and 7 — 7* transitions appear 1000 proteins employed for extracting of peptide and residues
at ~220 and ~190 nm, respectively (Figure la). Four for ML training. We have first simulated FUV spectra of 12
molecular descriptors, including internal coordinates, Coulomb proteins whose structures were randomly retrieved from the

matrix (CM),*" bag of bonds (BOB),"* and atom-centered RCSB Protein Data Bank. Our ML-based approach agrees well
symmetry functions (ACSFs),* have been tested for the with the DFT-based approach for all types of proteins (Figure
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Figure 3. FUV spectra of 12 proteins (a: a-helix, f-sheet; b, c: a-helix + f-sheet) calculated with the DFT/TDDFT (black curves) and ML (red
curves) methods. The excitation energy (&), transition dipole moment () of the peptide bond, and ground state dipole moment of each residue
(pg) are first calculated with the DFT/ML methods. They are then employed as inputs for the construction of an exciton Hamiltonian and further
diagonalized to acquire FUV spectra. p, Spearman rank correlation coefficients; f, time ratio (DFT/ML). Predicted FUV spectra of 230 proteins are

plotted in Figure S8.

3) in terms of positions of peaks and line shapes. This was
further demonstrated by high Spearman rank correlation
coefficients™ (p > 0.80), which reveals the quantitative
agreement between the predicted and reference spectra. We
then expanded the scope of investigation to a larger pool with
230 different proteins (Figure S8). For most proteins of
interest, ML gives comparable FUV spectra to DFT, indicating
the robustness and transferability of the trained ML model.
The good transferability can be rationalized as follows: (1)
The large training data set covers different types of proteins,
which ensures its diversity. (2) Each property has a favorable
molecular descriptor after careful selection of descriptors. The
domain parameters of FUV spectra are &, and g1 of peptide.
The internal coordinate is selected as a molecular descriptor
for p and can construct the fundamental structure—property
relationship very well. The EANN approach can effectively fit
the value and orientation of the transition dipole vector. (3)
We optimize the hyperparameters to create a unique NN for
each property, which have showed excellent prediction power
in our previous work. The present FUV spectra form the basis
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for predicting the more informative LD, CD, and 2DUV
signals; extending the present protocol to LD, CD, and 2DUV
spectra is a future direction. ML is significantly (3 orders of
magnitude for most proteins with around 200 amino acid
residues) faster than DFT in generating the model
Hamiltonian needed for FUV spectra simulation (Table S1).
For larger proteins containing more than 1000 amino acid
residues (PDB: 3V03), the speed-up is even greater (4 orders
of magnitude).

To take the fluctuating environment into account, we
conducted classical MD simulations to generate trajectories for
equilibrated protein structures. We had harvested 1000 MD
conformations and computed their FUV spectra using our ML
protocol. The averaged spectra are in good agreement with
experiment (Figure 4a).** FUV spectroscopy is extremely
sensitive to a variety of processes and excitation effects (¢ — o
transitions, # — 7* electronic transitions, charge-transfer
transitions, Rydberg transitions, electronic transfer and
reaction process, etc.), solvents (water, oxygen, alkanes, and
alcohols), and the surrounding environment (concentration,

https://doi.org/10.1021/acs.jpcb.1c03296
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Figure 4. (a) Experimental (black curves) and ML predicted (red curves) FUV spectra based on 1000 MD conformations (f-sheet, a-helix, a-helix,
a-helix). (b) The ML simulated FUV spectra based on 100 MD conformations for minoring the mutation of protein. The original structure wild
type (WT), symmetry related G106V, and character related variant G18V. (c) The ML simulated FUV spectra of the Trp-cage protein along its
folding path (S1, the initial unfolded structure; S100, the final folded structures). Each state is based on 100 MD conformations.

temperature, pH, etc.).******” These result in broad peaks,
which erodes its information. More distinguishable exper-
imental FUV features can be obtained at low temperatures.

Protein aggregation is essential in some human diseases and
functional amyloids.”® Wild type (WT) yS-crystallin plays an
important role in maintaining eye lens transparency, and its
aggregation leads to cataract or opacification of the lens. There
are two mutations in WT protein, including a symmetry related
G106V variant and G18V variant which are associated with
early onset cataract.”” These minor structural mutations cause
different aggregation tendencies in the order of WT < G106V
< G18V. Figure 4b shows the FUV spectra of WT and its
variants based on 100 MD conformations. As we can see, the
G106V variant shows stronger absorbance and its double peaks
become sharper compared with original WT. On the contrary,
the G18V variant shows more blunt double peaks. The results
suggest that FUV spectra are sensitive to minor structure
variation. This offers a possible path to correlate the tendency
of aggregation of different proteins with the specific structure
factors that are responsible for the FUV signals. FUV is the
foundation of CD and 2DUV spectra, which are more powerful
in minoring mutations of proteins.50

To support real-time tracking of protein dynamics using
time-resolved spectroscopy, we combined MD simulation and
ML-based FUV spectra simulation to reveal the time-
dependent evolution of FUV spectra of mini Trp-cage along
its folding path.”" Figure 4c is the ML predicted FUV spectra
based on 100 MD conformations for five states along the
folding path of Trp-cage (retrieved from our previous study).’”
Table 1 shows the averaged secondary structure contents and

Table 1. Averaged Secondary Structure Contents and Main
Peaks of the Five States of the Mini Trp-Cage along Its
Folding Process”

state S1 S25 S50 S75 S$100
coil (%) 99.1 739 497 489 376
turn (%) 0.9 25 38.5 29.9 16.6
a-helix (%) 0 0 82 197 371
3 0-helices (%) 0 0 3.7 1.6 8.7
bridge (%) 0 1.1 0 0 0
main peak (nm) 188.9 189 191.2 194 194.1

“Each state is based on 100 MD conformations.
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main peaks of the corresponding five states. As we can see, the
initial unfolded S1 state with a coil structure shows a double
peak FUV spectrum. The S25 state is slightly folded along with
the decrease of coil content, leading to the decrease of the
shoulder peak of the FUV spectrum. The folding process
becomes faster from S25 to SSO states and helical structures
appear, accompanied by the narrowing of bandwidth. The
protein becomes a cage in the S75 state with the rapid increase
of a-helix, and the shoulder peak becomes even weaker and
finally is merged into one narrower peak in the final folded
structure (S100). It is worth noting that Trp-cage undergoes a
decrease of coil structure and increase of helical content during
its folding path, which results in a red shift of the dominant
peak of the FUV spectra. These results show the potential of
ML-based FUV simulations for monitoring the protein folding
process.

4. CONCLUSIONS

In summary, we report an efficient and powerful ML protocol
to predict the FUV spectra for proteins based on their
structure descriptors. The ML model presented here shows
good transferability and high performance for predicting
protein UV signals. It can be used to interpret experimental
spectra in solution, probe structural variations, and monitor
protein folding. This protocol can be applied to other related
electronic UV spectroscopies, such as ultraviolet resonant
Raman, circular dichroism (CD), and two-dimensional UV
spectroscopy. Spectral assignments, molecular interactions, and
structure—property relationships will be investigated in a future
study.
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Computational details
1. Theory of the Calculation of FUV Spectra

The far-ultraviolet (FUV) absorption spectra of a protein is mostly derived from it
electronic excitations of the peptide backbone coupled with environmental fluctuations,
which can be described by the Frenkel exciton model.!-2

~ N m#n S
H= ZmagmaBmaBma + Zmalnb]ma,anmaBnb (1)

The indices m (n) run over the peptide bonds and a (b) represents n — n* or 1 — w*

transitions. B,;rla and B,,, are creation and annihilation operators of excitations of the m th

peptide bond, respectively. The excitation energy ¢, can be described by summing over
the excitation energy of an isolated peptide (gy,,,) and environmental electrostatic
interactions:

Ena= Eomat ) - f f drmdrl([pT'ma(rm)_pG’m(rm)]'pG’l(rl) 2)
l

4mee |7 — 1

pPrma and pg , are the molecular charge density of the a th excited state and ground state
of the peptide bond m, respectively. p¢.,, is the charge density of a residue / (/ runs over
all residues). The resonant coupling (J) between a th excited state of peptide m and b th
excited state of peptides n can be written as:

f f drmdrnPT,ma(rm)pT,nb(rn) 3)

|rm_rn|

]ma,nb - 4‘7'[880

Applying the dipole approximation that computes electrostatic interaction between two
subjects with the product of their electric dipole moments,3* we can calculate the
excitation energy &, by summing over the excitation energy of an isolated peptide (¢,,..)
and its electrostatic interactions with surrounding environment.

+ Z 1 (”T,ma UGl 3(”T,ma ’ I‘ml) (MG,Z ' rml)) 4)
& = 80, —
e Tome T Lagmeso|  r,, | ol

Hrm. and uc are the electronic transition dipole moments of the peptide bond (m, a) and
the ground state dipole moment of a residue / (/ runs over all residues), respectively.
Using the dipole approximation, the resonant coupling (J) between the excited states a, b
of peptides m, n can be computed as:

1 ( KT ma " KT nb (”T,ma ' rmn) (”T,nb ' rmn)

4meeo| |1yl [Fonl®

) ()

] manb —

The J couplings come from transitions of peptide bonds (m+#n). The residues only
contribute in Eq. (4) where they modify the excitation energies.

2. Data Preparation and Quantum Chemistry Simulations

In order to ensure the diversity of the dataset, 1000 PDB files cover almost all the typical
types of proteins, including fibrous protein, globular protein, keratin, collagen, chaperone,
myoglobin, hemoglobin and denaturation, are retrieved from RCSB Protein Data Bank.
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The PDB ID can be found in Table S2. Afterwards, 50 000 peptides (NMA molecule is
chosen as peptide model) and 200 000 amino acid residues are directly extracted in bulk
from the downloaded PDB files with self-compiled codes. The numbers of
peptides/residues randomly extracted from each proteins are roughly the same in order to
ensure the diversity of the dataset. When extracting peptides, we also include the two
connected C atoms, that is -C—CO-NH-C- rather than -CO-NH- since NMA molecule
(—C - CO-NH—-C-) is chosen as peptide model. The dangling bonds in extracted NMA
molecules and residues are linked with hydrogen in bulk with Pymol package.®> Therefore,
the coordinates of both NMA molecules and residues are exactly the same as they are in
original proteins configurations except that positions of hydrogen atoms are uncertain in
PDB files. The structures of NMA molecules and residues can be found in Figure S4 and
Figure S6, respectively.

We didn’t carry out energy minimization for NMA molecules and residues for the
following two reasons: (1) the coordinates of NMA molecules and residues are directly
extracted from PDB files without any change, which are more consistent with the
configurations of peptide bonds and amino acid residues in proteins. (2) The NMA
molecules and residues directly extracted from proteins are unstable since they are
dragged by each other when they are in proteins. The configurations of both NMA
molecules and residues tend to be unified and the diversity will be reduced significantly
after energy minimization, which would be adverse to machine learning training for
structure-property relationships.

Time-dependent density functional theory (TDDFT) calculations at PBEO/cc-pVDZ
level are employed to acquire the excitation energy (gy) and transition dipole moments
(u7) of peptides. All the peptides are converted to the same coordinate before TDDFT
calculations as shown in Figure S1 and the NOSYMM keyword is required to prevent
structural reorientation during TDDFT calculations. The lowest 10 excitation states are
calculated and phase correlation © is performed with Multiwfn code.” Density functional
theory (DFT) calculations with B3LYP/6-311++G** method are performed to calculate
the ground state dipole moments (#;) of amino acid residues. Polarizable continuum
models (PCM) is used as solvent model and water is used as solvent for all the

calculations. All the DFT/TDDFT simulations are carried out in Gaussian 16 package.®
zZ

Figure S1. The peptide orientation after conversion of structures to the same Cartesian
coordinate system.
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3. Molecular dynamic simulations

Molecular dynamic (MD) simulations for seven proteins displayed in Figure 4a (1YJP,
1CLG, 2D3E, 3V03) and Figure 4b (WT, G106V, G18V) are carried out to acquire MD
conformations. The MD conformations of Figure 4c are retrieved from our previous
reported work.” The MD simulations in water of 2 ns with a time step of 2 fs are
performed using OPLS-AA force field and TIP3P water at room temperature (300K) and
pressure (1 atm) after NVT equilibration at 300 K in GROMACS package.!? Periodic
boundary conditions are employed during MD simulations. The short-range coulomb
interactions and vdW forces are truncated at 1.2 nm. Particle-mesh Ewald is used to take
long-range electrostatics into consideration.

4. Selection of molecular descriptors

Rational selection of molecular descriptor is crucial for us to create the structures-
property relationship.!! We carefully select different molecular descriptors for different
properties.

Excitation energy of peptide: We compared four molecular descriptors, including
internal coordinates, coulomb matrix (CM),"? bad of bands (BOB),* atom-centered
symmetry functions (ACSF),'* in which the internal coordinates show the best result.
Internal coordinates include the bond lengths, bond angles and dihedral angles of a
molecule, which hold advantages in directly reflecting the fundamental structure-property
relationship.

Bond lengths: ry5, 13, 4, Iss
Angles: ay,3, @154, A5
Dihedral angles: dq»34, dq245

Figure S2. Internal coordinates of a peptide.

Coulomb matrix (CM) M is used to describe the local environment of a central atom k
and can be written as follows:

1
>Z P fa i=]
My(k)={ 7z, (6)

o fufjkfi [#]
[|R: — Ryl|
i — K

In which i, j and k indicate atom labels, Z is nuclear charge and R is coordinate, f; is a
function used to describe long range effect:
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1 IR —Rl| < r—Ar
1 [IRi— Rjl| — 7+ Ar
fii= 2(1+cos(nm))r—Ar< ||Rl-—R]-||S r—Ar (7)

0 IR —Ril| >r
Coulomb Matrix 0
C-bag
C|C|O |N|C 0
O-bag
C | C |CC |CO |[CN |CC 0
N-bag
C |cc | c |co |cN |cc |BagofBonds o
» CC-bag
O |CO |CO | O |ON (CO 0
CO-bag
N |CN |[CN [ON | N |CN 0
CN-bag
C [[EC | CCCONENY C 0
ON-bag

Figure S3. Bad of bags of a peptide.

Bad of bags (BOB) is an expansion of CM molecular descriptor which groups CM
elements into bags based on unique atom pairs and sorts them by values. Each bag
represents a particular bond type (e.g. ‘C-C’, ‘C-O’, ‘C-N’, etc) in BOB. The self-
interactions part (e.g. ‘C’, ‘O’, ‘N’, etc) is constructed by diagonal CM elements:

1
22 AN G))
The interaction between different atoms is created with the off-diagonal CM elements:
ZiZ;
T _—en @
[IR; — Ryl
where Zi and Zj are the nuclear charges, while Ri and Rj are the positions of the two
atoms participating in a given bond.

Atom-centered symmetry functions (ACSF) employ a series of radial and angular
symmetry functions to represent the local environment near a central atom to detect the
structural features. The radial symmetry functions of a central atom 7 are given as:

Tl'Rl'j
cos( R. ) +1
0 Rij >R,

0.5 - Rj <R,

f(Ry) = (10)

Gl = ch(Rij) (11)
J

—n(R:; — R)?
Gt= ) e fRy)  (12)

J
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In which f.(R;;) is the cutoff function, R;; is the distance between atoms i and j, R, is the
cutoff radius. G} radial symmetry function is the sum of cutoff functions. G? radial
symmetry function is the product of a Gaussians and cutoff function, which can be used
to describe a spherical shell of a central atom. n and R can are employed to describe the
width and shift of Gaussians. The G} angular function can be written as:

all

_n(R% + R? 2)2
GH=275 Y (1+AcosOy)’ - e "I RIRI £ (Ry) - £u(Ry) - fo(Ri) (13)
Jk#i

& 1s used to modify the distribution of angles centered of a reference atom. All the
parameters of the equation describe above are directly derived from the best performing
parameters reported by Marquetand et al.!>

For transition dipole moment of peptide, we employ an embedded atom neural network
(EANN) approach reported in our previous works, which introduces a Gaussian-type
orbital based density vector into empirical embedded atom method to describe the
complex relationship between the embedded density vector and atomic energy by neural
networks. The successful construction of relationship between embedded density and
atomic energy of EANN inspires us to extend its application to the prediction of dipole
moment. The ground state dipole moment of g of can be described as the sum of atomics

contributions:
N
U= qu (14)
i=1

Where N is the atom number, q; is the atomic effective charge and can be easily fit with
NN method. The coordinate vector r; = (x;, ¥;, z;)" is oriented from the center of mass of
a molecule to atom i. g can be easily acquired by multiplying g; and r;. However, the
transition dipole moment (u#7) can be perpendicular to the molecular plane since it is
associated with the transition between two states, which it different from that of u; which

is corresponding to only one state. For example, if a molecular plane is on xy plane and
uris perpendicular to xy plane (on z plane) and only g, is be nonzero. While Eq. (14) will
give a zero u, since r, is zero, which is apparently unreasonable. Here we define the
transition dipole moment of peptide as follows to tackle this problem:

N

M=2Wﬁﬂ$
i=1
Where j=1, 2 and ¢/ is the different output of atomic NN. Two vectors u} and u? can
define a plane (molecular plane), and the plane which perpendicular to the molecular
plane can be defined as:

N
3 _ 3¢p1 2
pr = Z%’ (ur x pr)  (16)
i=1
Finally, the transition dipole moment g7 can be written as the linear combination of the
three transition dipole moment vectors:

3
pr=pt+ pt+pp (17)
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As a result, uy can still be rationally described even when it is perpendicular to the
molecular plane.

For the ground state dipole moment of the residue which is employed for the
calculation of the perturbation term of excitation energy, we employ converted Cartesian
coordinates which can directly reflect the structural feather and orientation of a molecule.

5. Machine learning (neural network)

Neural network (NN) implemented in TensorFlow is employed for all the training
procedure. We manually optimize the hyperparameters of NN, including hidden layers,
neurons of each hidden layers, activation functions, algorithms to against overfitting and
the corresponding regularization coefficient, and learning rate, to create a favorable ML
protocol. The hyperparameters of NN are determined after carefully optimization. NN
with three hidden layers are used in all the NN training process. For excitation energy of
peptide and the ground state dipole moment of residues, the neurons of three hidden
layers are 32, 64 and 128, respectively. The Rectified Linear Unit is employed as
activation function for each NN layer to speed up the NN training and resist the gradient
disappearing. L2 regularization with a coefficient of 0.01 is used to mitigate overfitting.
Adam algorithm with an exponentially decaying learning rate, which employs an initial
learning rate of 0.001 and lets the learning rate decreased by 80% every 500 steps during
the NN training, is used to avoid the local minima during the NN training. For transition
dipole moments of peptides, we used an Embedded atom neural network (EANN) model
which has been reported in our previous work.!¢ In this model, a neural network with 3
hidden layers (33, 30, 30), early stopping in which the training will stop if the validation
loss shows a consecutive increase in 6 epoch to prevent overfitting, and Levenberg-
Marquardt algorithm are employed for ML protocol.

For the validation procedure, we randomly select 80% of the peptide/residues data
extracted from 1000 proteins for machine learning training and remaining 20% for
validation. Our NN training results reveal that the NN model show favorable accuracy
and transferability (Figure 2 & Figure S6). All the data are normalized with the following
equation before NN training to avoid remarkably different range of raw input values:

Xi — Xmin

pr= (18)

(xmax - xmin)
The mean relative error (MRE) is defined as follows:

100%< |(R; — P)
Hr = n Z R,
i=1

Where R; and P; are the reference values and predicted values of molecule i, respectively.
N is the molecular number.

(19)
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a - — 1T*
n—m*

TomT*

n
T nb

Figure S4. Peptide model and the corresponding electronic transitions. (a) The molecular
structures of peptide model (N-methylacetamide, NMA). (b) n — ©* transition mainly
distributes in 220 nm and © — 7* transition mainly locates in 190 nm in peptide.

3 1.00

=3 £
— T D100 ERnIE
0.95 o751
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Figure S5. Machine learning results of the excitation energies of peptide based on
internal coordinates, coulomb matrix (CM), bad of bonds (BOB) and atom-centered
symmetry functions (ACSF). Comparison of (a) the Pearson correlation coefficient (r)
and (b) mean relative error (MRE) of the n — n* and m1 — n* transitions based on the

four molecular descriptors described above. Internal coordinates exhibit the largest » and
the smallest MRE.
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Figure S6. ML prediction of ground state dipole moments (#) of twenty amino acid
residues. ug DFT was performed at the B3LYP/6-311G++(d,p) level. The purple star,
green dot and orange pentagon represent the £ NN in the X, y and z directions,
respectively.
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Table S1. Comparison of simulation time between DFT and ML methods for proteins in

Figure 3 and Figure 4a.

PDB ID DFT/s ML/s DFT/ML p

2BMM, MET34-GLU156 15490 6 2582 0.922
4X0J, GLU37-LYS238 of Chain A 22689 8 2836 0.976
3FHH, THR1-TRP202 28135 8 3517 0.888
SW26, ASN200-ASP401 22874 8 2859 0.918
3Q6N, TRP297-THR498 of Chain A 24094 7 3442 0.906
SE84, SER24-LEU225 of Chain A 26781 8 3348 0.874
6S84, MET1-LYS202 of Chain C 21765 8 2721 0.896
5V28, MET1-ALA174 21460 7 3066 0.933
SH34, GLU666-ARG776 26179 8 3272 0.858
6P28, ARG4-ASN195 23697 8 2962 0.931
IWXR, GLY1-GLY202 22982 8 2873 0.895
5Y30, LYS41-ILE222 27789 8 3474 0.874
1YJP 810 5 162 0.999
ICLG 11284 5 2257 0.806
2D3E 70664 10 7066 0.992
3V03 152880 12 12740 0.994

Figure S7. Comparison of timing plot between DFT and ML methods for the four
proteins in Figure 4a and Table S1. As we can see, the simulation time of a DFT
calculation increases rapidly with the increases of residues number, while it remains

almost the same for ML methods
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Figure S8. Far-ultraviolet spectra of 230 proteins calculated with DFT (black curves) and
NN (red curves).
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10 2WNP,SERB1-VALLEO of chainf 10 IASW,GLY212-A5P311 of chainA 10 IEWD,GLYS0-PHEL49 of chainA
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10 AADQVALLEL-HIS260 of chainA 10 4BKLGLN1-GLY100 of chainA 10 AD3E,GLY125-ASN224 of chainD
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10 3RFZ TYR632-ARGE33 of chaing 10 10 3TM3
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Table S2. PDB ID of 1000 proteins downloaded from RCSB Protein Data Bank for
extracting 50 000 peptides and 200 000 residues (20 types of residues and 10 000
structures of each residue). The downloaded proteins cover different types of proteins,
including fibrous protein, globular protein, keratin, collagen, chaperone, myoglobin,
hemoglobin and denaturation.

1A00  1A01  1AOU  1A30 1A4F  1A6G  1A6M 1ABY 1AH6 1AHS  1AJ9  1AMX
IANB 1AOX 1BOB  1B86 1B9Q IBBB IBF8 IBI IBKV IBUW IBUY IBVC
1C40 1CBL  1CG5 1CG8 1CH4 1CK7 ICLG 1CMY ICN4 1CO9 1COH  1CPZ
IDG4 IDGF IDGH IDKE IDKG IDKX IDKY IDLW IDMI IDXU IDY2 IDZI
IECD IEER 1EZU  IF4]  IFAW 1FCS IFDH IFHJ IFMl 1FSZ  IFUJ  1GO0S8
1GOA 1G3J I1GCV  IGIN  IGR3 IGVL 1GXD 1GzX IHIX 1HAB 1HBA IHBH
IHBS IHCO IHGA IHGB IHGC 1HK7 1HX! IHYL 16Z 17X 1IBE  I1IRD
UWH 114 13z 152 1U7W  1J7Y  1JBK 19 UWN Y7  1ZK  1JZL
UzZM  1KOV  1KOY 1K90 1KD2 1KHY IKIU IKKE 1KR7 ILFL  ILFQ  ILFT
ILFV  ILIl  IM3D IMYP IMBA IMBD IMBN IMBO IMBS IMGN IMKO IMOH
IMWB IMYH IMYI IMYM IMYZ IMZ0 IN9X INE] INIH INPF  INPG  INQP
INWI INWN 101l 101K 10IN 1091  1P9H 1PBX IPMB 1QSL 1Q7D  1QI8
IQPW 1QQW IQUN IQVR 1QXD IRIX IRIY IROC IRPS IRTX IRVW  IS5Y
1S69  1S6A  1SB6 ISDK ISDL ISHR IS4  ISLU ISPG  1SS8 ISWM  1T08
IT60  1T7S ITHB 1USM  1U7S 1097 1UIW 1UMK 1US7 1USU 1UVY 1V4U
VAW 1V4X  1V8X  1V9Q  1W09 IWOA 1WOB 1WG3 1WVP 1WXV  1X46  1X9F
IXUC IXXT IXYE 1XZ2 IXZY  1Y0l  1Y09  1Y4P  1Y5]  1YSH  1Y8I  1YCA
IYDZ 1YEO 1YEQ IYGF IYHU IYIE 1YJP IYKT IYMB 1YOU 1YVQ IYVT
IYZI 122G 1Z8U 1ZAV  1ZE3  1ZTQ 1ZWH 2A3G 2AAl  2AKP  2AV0  2B7H
2BPR  2BRC  2BRE  2BW9 2BWH 2C0K  2CG9 2CGE  2DIN 2D2M  2D3E  2D5X
2D5Z  2D60  2D6C  2DHB  2DNI  2DN2  2DN3 2DXM  2E2D  2E2Y  2E30  2E3R
2EKU 2EVP  2F6A 2FAM 2FRF  2FRJ  2FSE  2FXS  2G0S  2Gl2  2GTL  2H35
2HSD 2HSF 2HBC 2HBD 2HBF 2HBS 2HCO 2HHB 2HHD 2HHE 2HPS 2HUE
2HZI  2IDC 2IN4  2IW2  2IWS  2JHO 2KHO 2LKV ~ 2LLL  2LLP  2LMI 2LWP
2LYJ] 2LYK 2LYL 2LYP 2LYQ 2LYR 2LYS 2MOM 2M6Z 2M8S 2MB5  2MGO
2MIQ 2MZE 2MZI 2NS8R  2NBO 2ND2 2ND3 2ND5 2NRL 2NSR  2NX0  205L
205Q 2058 20HB  20J5 20KN  2PEI  2PEO  2PEQ 2PGH  2QIF  2QLS  2QSP
2QSS  2QUO  2RIH  2R80  2R9Y 2RAO 2SEB  2UUR 2VIE  2VIF  2VII  2VIK
2V53  2VIY  2VLY  2VW5  2W6V  2W6W  2W72  2XD6  2XI6  2XIF  2XIL  2XJ6
OXKI  2XX4 2YRS 2744 2746  2Z6S  2Z6T 2785  27Z9Y 27297  2ZLV  2ZLW
2ZLX  2ZSP 27SS  2ZSY  3A0G  3A2G  3A59  3AEH  3AKS 3AQ5 3ASE  3ASW
3875  3BIl  3BWU 3CI1  3CIU  3D17 3DIK 3D70 3DHR 3DLL 3DPO  3DPQ
3DUT 3EDA  3EJH 3ELM 3EOK 3EUI  3FH9  3FP8  3FS4  3FZH  3FZK  3GKV
3GLN  3GOU 3GQG 3GQP  3GYS 3HOX 3H3T 3HC9 3HF4 3HQV  3I1A3  3ICO
312 3IUC  3K8B 3KEK 3LDL 3LDN 3LDO 3LDP 3LDQ 3LJZ 3LQD  3LR7
3LW2  3MOB 3M38  3M3B  3MBA  3MJP  3MJU 3MVF  3N3F  3NL7 3NML 302X
30DQ 30GB 30VU 3PEL  3PI8  3PI9  3QIE  3QLI  3QZL 3QZM 3QZN  3QZO
3RIK  3RJR  3RTL 3RUR 3848  3S5C  3S5H  3S5K 3SDH  3SZK  3TFB  3TNU
3TVC  3UHI  3UT2  3V03  3V2V  3VFE 3VM5 3VM9 3VND 3VNW 3VQK 3VQL
3VQM  3W6L  3WFT 3WHM  3WI8  3WTG 3WVl 3WVL 3WYO 3ZHC 3ZHD 3ZHK
3ZHL  4A7B  4AIX  4AIZ  4AJ0  4AU2  4B2T  4B9Q  4BB2  4BJ3  4BKL  4BNR
4CON  4C44 4CTD 4CUD 4CUE 4CUF  4DOE  4D2U  4DSN  4DC5  4DF3  4DOU
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4E05
4FCW
4128
4K5Q
4AMA7
4NIO
4RIE
4U0Y
4XS0
SAQT
5CTD
5FFO
SIAT
510M
SKX1
SN4H
50MY
5SV7
SUEA
5VY9
SYCE
5ZZT
6A3C
6CQG
6E0G
6FZW
6THX
6NBC
6SOF
7BNA
THVP
ILYZ
TRXN
SABP
8CPA
8ICA
8PCH
8TLI
9GAA
9ICM
9LPR
9RUB

4BZN
4FVL
4137
4K6G
4MBN
4NSM
4RMB
4URG
4Y00
SAUY
5CTI
5FQD
SIAX
SKAO
SKX2
SNAX
50PW
5SXD
SUEK
5VZN
5YP8
5ZZY
6AHF
6CQV
6E2]
6G5A
6111
6NBD
6TSZ
TCA2
7ICD
7LZM
7STD
BACN
8CPP
8ICZ
8PRK
STLN
9GAC
91CO
9LYZ
IWGA

4EZ0
4FWZ
413N
4K6H
4MKF
ANWE
4RRP
4URQ
4YU3
SAZQ
5CVA
SFWL
SIKS
SKER
5M4G
SNII
50PX
STHP
SURC
5VZO
5YPB
6A06
G6AIT
6D45
6E7G
6G5T
6TWK
6ND8
6UUV
7CCP
7ICE
TMHT
7TIM
8ADH
8DFR
8IDW
8PRN
8XIA
9GAF
9ICQ
9MHT
9XIA

4BZP
4GR7
4196
4K6K
4AMKG
ANWH
4RX9
4URS
4YU4
5B50
5CVB
SFWP
SILM
5KI0
5MA4J
SNIR
50U8
5TU7
SUT7
5VZP
5YUP
6A0H
6ASY
6D6S
6ETH
6GCQ
6J0A
6NDH
6VGK
7CEI
7ICF
TMSF
7TLN
SAME
SDRH
SKME
8PSH
8XIM
9GPB
9ICS
9MSI
9XIM

4EZR
4H32
4112
4KJT
4MKH
404T
4TQL
4uzZv
473V
5B85
5D0Q
SFXP
SILP
SKKK
SMA4L
SNIX
50U9
5TUS
5UT9
5VZQ
SYZF
6A0V
6AXB
6DDK
6ECO
6GZD
6181
605V
6W75
7CEL
7ICN
7NN9
TWGA
SAPI
8EST
SLDH
8PTI
9ABP
9GSS
9ICU
9NSE

4BZW
4HRR
4JA7
4L2A
4MPB
4047
4TYU
4W68
47ZLY
SBOY
SD5R
5GHU
SILR
SKRR
SM9M
SNRO
50WI
5TU9
SUWK
5W0S
5250
6A0Y
6BBS
6DFM
6ED3
6H2P
6JBX
6069
6XV4
7CGT
71CO
INSE
7XIM
8ATI
SFAB
SLPR
SRAT
9AME
9HVP
9ICV
9PAI

4BZX
4HRT
4JA9
4L2D
4MPR
40F9
4U3H
4W70
4ZRY
SBX0
SES3
5GW4
513P
5KSI
SMBY
5NX3
50WI
SU2L
5UYX
S5WOG
SZBA
6A19
6BIN
6DJU
6EOF
6H2Q
6IP1
60G3
6Y6W
7DFR
71CQ
TPAZ
TYAS
SATC
8GCH
SLYZ
SRNT
9ANT
9ICA
9ICY
9PAP

4F01
4HSE
4IB0
4L36
4MQK
4010
4UST
4W81
SAKS
5CES5
SE84
5GW5
5138
5KSI
5MC1
504P
5PKC
502U
5V4M
SX2R
5ZHB
6AIW
6BIR
6DL9
6FOY
6HAL
6MSF
6QFF
7ABP
TFAB
7ICR
7PCK
7ZNF
8BNA
SGEP
SMHT
SRSA
9ATC
9ICC
9ILB
9PCY

4F40
4HWC
41B2
4LTA
4MTH
400D
4U8U
4W94
5A06
5CIB
SE85
SHCL
5132
SKVN
5SMUO
5OBU
5Q5Z
5UCB
5V4N
5X28
52Ul
6A23
6BNR
6DTC
6F17
6HBI
6MV0
6QFH
7ACN
7FD1
7ICV
7PTD
821P
8CA2
8GPB
8MSI
8RUC
9CA2
9ICE
9INS
9PTI

4F68
410C
43SD
4M4B
4N79
40W4
4U08
4WIG
5AQG
5CMV
SEII
SHLY
51G9
SKWX
SMV3
50CX
5QEH
5UCU
5VPN
SXKV
5ZYK
6A2U
6BWU
G6E14
6F25
GHBW
6N02
6QH9
7AHL
7GAT
7INS
7RIR
830C
8CAT
8GSS
8NSE
8RXN
9CGT
9ICH
9IDW
9RAT

4FC3
410Y
43S0
4M356
4N7P
4PNJ
4UOT
4WUY
5AQI
5CN5
SEIV
SHQ3
STHI
SKWZ
SMZU
5OFO
5R4]
SUE2
5VQP
5Y45
SZZF
6A32
6CD2
6EL5
6FQF
6HG7
6N8V
6QI8
TAME
7GCH
7KME
7REQ
8A3H
8CGT
SHVP
SOHM
8TFV
9DNA
91C]
9LDB
9RNT

4FCT
411E
4K07
4M8U
4NSW
4QBY
4U0X
4XIF
5AQ0
5CNC
5F2R
SHY8
5714
5KX0
5N30
50MP
5SV3
5UE5
5VY8
5YAN
577G
6A39
6CF0
6EOF
6FSE
6HV2
6N8Z
6REU
TAPT
7HSC
7LPR
7RSA
SAAT
8CHO
8I1B
8PAZ
8TIM
9EST
9ICK
9LDT
9RSA
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