
PLATEAU
12th Annual Workshop at the
Intersection of PL and HCI

Organizers:
Sarah Chasins, Elena
Glassman, and Joshua
Sunshine

This work is licensed under a
“CC BY 4.0” license.
cb

Interaction Templates: A Data-Driven
Approach for Authoring Robot Programs
David Porfirio ∗1, Maya Cakmak †2, Allison Sauppé ‡3, Aws
Albarghouthi §1 and Bilge Mutlu ¶1

1University of Wisconsin–Madison, Madison, WI
2University of Washington, Seattle, WA
3University of Wisconsin–La Crosse, La Crosse, WI

Abstract

Socially interactive robots present numerous unique programming challenges for interaction developers. While
modern authoring tools succeed at making the authoring experience approachable and convenient for devel-
opers from a wide variety of backgrounds, they are less successful at targeting assistance to developers based
on the specific task or interaction being authored. We propose interaction templates, a data-driven solution
for (1) matching in-progress robot programs to candidate task or interaction models and then (2) providing
assistance to developers by using the matched models to generate modifications to in-progress programs. In
this paper, we present the various dimensions that define first how interaction templates might be used, then
how interaction templates may be represented, and finally how they might be collected.

Keywords: Human-robot interaction. Templates. Authoring. Robot programming.

1 Introduction
Authoring socially interactive robots [1] presents numerous unique challenges for human-robot inter-
action (HRI) developers, who may be professional software engineers or interaction designers creating
robot applications for others to use, or end-user developers programming a robot for their own use.
To begin, human-robot interactions can be exceptionally open-ended, thereby necessitating that de-
velopers consider numerous edge cases when crafting the high-level flow of a robot program. Even
experienced developers may further struggle with low-level interaction details, such as behavior timing
and speech volume, which must be correctly parameterized to adequately fit a robot program to an
interaction context. And for end-user developers who use less precise development techniques, such
as natural language programming, there exists less capacity for meticulous program specification and
testing to ensure that authored programs are correct.

We propose interaction templates as a solution for the challenges associated with HRI authoring.
Interaction templates are inspired by existing program synthesis work on program templates [2] and
sketching [3]–[5] and build on prior HRI work on templates as generic, reusable program specifications
that can be selected and instantiated by end users [6]. In our own investigation, we recast interaction
templates as generic and reusable models of human-robot interactions derived from interaction data
for the purpose of assisting developers specifying a robot program. Furthermore, in our own vision of
interaction templates, a developer using an authoring tool to construct an in-progress robot program
does not select the appropriate template to use, nor does the developer necessarily instantiate it.
Rather, we envision that from a multitude of available interaction templates derived from interaction
data, an authoring tool will proactively match an appropriate subset of templates to the in-progress
program for the purpose of proposing or enforcing changes. When matched, any critical informa-
tion present in a template that differs or is absent from the in-progress program becomes proposed.
Additional uses of templates in prior work include robot motion planning and analysis [7], [8] and
generating user interfaces [9].

∗Email: dporfirio@wisc.edu
†Email: mcakmak@cs.washington.edu
‡Email: asauppe@uwlax.edu
§Email: aws@cs.wisc.edu
¶Email: bilge@cs.wisc.edu

1/6

https://creativecommons.org/licenses/by/4.0/deed.en
https://orcid.org/0000-0001-5383-3266
https://orcid.org/0000-0002-9456-1495
dporfirio@wisc.edu
mcakmak@cs.washington.edu
asauppe@uwlax.edu
aws@cs.wisc.edu
bilge@cs.wisc.edu

o�er
help

carry
item

wait deliver
co�ee

o�er
help carry

item farewell

wait deliver
co�ee

proactive
interaction template

reactive
interaction template

user requests co�ee

time = 7:00 AM

user
accepts user

accepts ?
?

?
In-Progress Program Template Matching Resulting Modi�cations

structural templates

parameter templates

delivery template

announcement template

OR

user requests
co�ee

Program: o�er to deliver items

Program: deliver co�ee upon
request

match

robot can now proactively deliver co�ee

match

? = an unknown event

Figure 1. Examples of two delivery programs (left), hypothetically-matching templates (center), and proposed
program modifications (right). The first example (top) shows a scenario in which helping a user carry items to
a particular location is matched to a common delivery flow. The second example (bottom) shows a scenario in
which delivering coffee to a user is matched to parameters that make the human-robot interaction proactive
[10]. States represent actions and transitions are annotated with events that cause behavioral changes.

Our current progress with interaction templates is exploratory. In what follows, we (1) provide a
preliminary vision of how templates may be used in authoring, (2) discuss different representations
that templates may assume, and (3) provide insights about how templates might be collected.

2 Template Use
In this section, we explore preliminary use cases for templates. What does it look like to apply a
template within an authoring tool? In which authoring paradigms would templates prove most useful?
Do templates suggest, enforce, or notify developers of potential changes to a robot program?

For traditional keyboard-and-mouse authoring tools that support meticulous and iterative develop-
ment, we envision templates to lead to an auto-suggest function that proposes, but does not enforce,
changes. In flow-based (e.g., Interaction Composer [11]) and blockly-based (e.g., the Opsoro toolkit
[12]) authoring systems, templates may serve to help add missing structure to an in-progress robot
program, such as in the example workflow in Figure 1 (top). Here, a developer may have programmed
a simple delivery interaction, causing the authoring tool to match the program to a delivery template
and ultimately use the matched template to propose branching and looping modifications to the pro-
gram. The template may be matched to the program using a simple “diff” heuristic, in which the
best-matching template is decided based on how similar the flow of the template is to the flow of
the original program. Furthermore, this particular template does not propose parameters to control
the flow of the program, hence the question marks in Figure 1 (top-right). Other templates may
propose changes to interaction parameters, such as in Figure 1 (bottom), involving an in-progress
program of a robot that delivers coffee upon request. In this example, perhaps there exist proactive
and reactive interaction templates based on the implicit interaction framework characterized by Ju
[10]. The proactive template may match to in-progress programs based on prior knowledge that coffee
delivery often occurs at the same time each day during the user’s morning routine. The template may
then provide suggestions to enable coffee deliveries to be made proactively, proposing a parameter
change for the condition that guards the transition from “wait” to ”deliver coffee.”

While traditional authoring approaches benefit from developers providing meticulous attention to
detail and can presumably present proposed modifications to the user in a way that is visually intuitive,
various non-traditional interfaces also exist for programming robots, such as verbal interfaces [e.g.,
13] and demonstration-based interfaces [e.g., 14]. These interfaces may provide fewer channels for
feedback to developers and may also experience a significant degree of noise or uncertainty when
sensing user input. Even for users of graphical interfaces that support meticulous, precise, and iterative
development, the task at hand may require “quick-and-dirty” programming (e.g., for a delivery robot
being programmed on the fly by an employee of a hotel [15]), leaving little room for checking the
veracity of user input or for iterating on designs. Therefore, we suggest that for non-traditional

Porfirio et al. | PLATEAU | v.12 | n.1 | | 2021 2/6

Conversation Collaboration Instruction

Interview Storytelling

Start
Start

Start

Start

Start
Instruction

Question

Question

Answer

Answer

Answer

Answer

Answer

Comment:
Personal

Comment:
Personal

Comment:
Generic

Comment:
Generic

Comment:
Generic

End

End End

End

End

Conversation Action

Action
Comment:
Finished

Question:
Understanding,

status

Question:
Understanding,

status

Comment:
Finished

Comment:
Finished

Question:
Clari�cation,
elaboration

Question:
Clari�cation,
elaboration

Conversation

Answer

Answer

Monologue:
IntroductionMonologue:

Introduction

Monologue:
Story

Comment:
Personal

Comment:
Generic

Question:
Clari�cation

Question:
Topical

Question:
Elaboration

Answer

Comment:
Finished

Comment:
Valediction

C

C

C

C

Figure 2. Five HRI models [18] derived from dyadic human-human interaction data. Each model contains
start and end states. Dark and light gray states represent one or the other agent in the dyad. States with
dotted outlines can be enacted by either agent. Larger dotted regions correspond to the patterns uncovered
by Sauppé and Mutlu [17]. A “C” is placed over components that are core to the interaction scenario.

authoring interfaces and on-the-fly authoring pipelines that support fewer feedback channels, templates
should largely enforce changes to a robot program. Fully enforcing changes without accepting further
developer input, however, poses an increased risk that the resulting program will contain uncorrected
erroneous robot behaviors. Therefore, some opportunity to provide feedback should still be offered to
developers, and templates should only be matched to a program with high confidence.

In our own work, various authoring tools come close to using templates, but stop short. RoVer [16],
in particular, checks in-progress programs during design time for social norm violations and presents
developers with feedback and suggestions for improvement. Although the feedback mechanism is
similar to that of our proposed interaction templates, automatically targeting feedback based on the
interaction being programmed to different sets of social norm properties must consist of future work.
Additional past work by the authors includes Interaction Blocks [17], which is based on a set of
common interaction themes, or design patterns of interaction, observed in human-human interactions.
Although design patterns can be treated as templates, Interaction Blocks does not use them as such.

3 Template Representation
What is the underlying model representing a template? A simple template may consist of a single, linear
demonstration of how to perform a task or social interaction, such as each demonstration collected
through the VirtualHome platform [19]. Alternatively, a template may arise from the combination of
multiple demonstrations. Figure 2 depicts five individual interaction models from data qualitatively
coded by Sauppé and Mutlu [17] that resemble nondeterministic finite automata and can serve as
interaction templates.1 These models, in particular, contain information about the high-level flow

1 The five interaction models are derived from data collected by Sauppé and Mutlu [17], later published in [18].

Porfirio et al. | PLATEAU | v.12 | n.1 | | 2021 3/6

of an interaction rather than low-level interaction details such as timing, volume, and locomotion
speed for mobile robots. Other templates may contain information about such low-level parameters.
Templates may also contain probabilistic information derived from multiple demonstrations or from
learning algorithms. State-of-the-art interaction adaptation approaches that employ reinforcement
learning (RL) to automatically decide on the next optimal behavior for a robot to perform [e.g., 20],
[21] can similarly be applied to authoring. A template may consist of a single RL model trained within
a particular interaction context, and template matching may be performed by observing how well an
in-progress robot program adheres to the model’s optimal policy. A detriment of certain learning
methods, however, is the sheer amount of data required to learn individual templates. As a result, we
do not expect deep learning methods to prove as effective as methods that require less data.

A template’s underlying model balances its ability to represent a wide variety of tasks and social
interactions with its ability to make meaningful suggestions. Templates constructed from the models
in Figure 2 can be applied to a wide variety of human-robot interactions. Due to their general nature
and lack of low-level details, these templates may best be suited for generating partial suggestions,
involving, for instance, a suggestion for the developer to add a loop between two states but not
specifying the conditions for the loop to terminate. For on-the-fly programming interfaces, iterating
with the developer to complete partial suggestions may cost too much time and be error prone. In
these cases, templates may be better represented with a greater level of detail to enable the automatic
resolution of suggestions generated by templates without requiring any further developer input. With
greater detail per template, however, each individual template will represent a smaller range of possible
robot programs. Collecting a greater number of templates may partially address this challenge.

4 Template Collection
There are many different ways to collect templates, each with a unique set of benefits and drawbacks.
Recognizing that a vast amount of potential human-robot interaction scenarios fall under a small set
of general categories, Sauppé and Mutlu [17] focused on collecting the small set of interaction models
shown in Figure 2 within an in-person laboratory study.1 The findings from various additional studies
[e.g. 22]–[24] may prove similarly useful for creating further templates. However, such studies are time
intensive and researchers must ensure that the data used to create templates represents the optimal
design choices for an interaction, rather than representing, for instance, suboptimal designs that are
suited specifically for laboratory settings.

Templates of common tasks may alternatively be collected from existing datasets of in-the-wild
interactions, although many of these datasets are limited in scope as to the tasks or interactions they
can represent. For human-robot conversations, the Loqui Human-Human Dialogue Corpus provides
back-and-forth telephone conversations between patrons and employees at a service desk [25]. To
overcome the potentially limited scope or scarcity of suitable in-the-wild data, datasets of freely
available procedural knowledge on the web are viable alternatives [26]. A breadth of demonstrations
per instruction, each representing a different way to perform a task or undergo an interaction, may
also be useful, especially if one wishes to create templates that consist of automata or learned models.
For multiple demonstrations per task, the VirtualHome dataset is appropriate, collected from multiple
users of an online simulation of common household tasks and interactions that proved effective for
collecting a large number of task models [19]. Planners may also be used to create artificial datasets
of task instructions, as was done to create the ALFRED dataset [27].

5 Conclusion
We propose interaction templates as a technique for authoring robot programs and describe various
considerations for their application. Further investigation is necessary to uncover the optimal collection,
modelling, and usage strategies of templates given a particular programming task. The limitations
of templates have also yet to be explored. In pursuing this future work, we can properly situate
interaction templates within the toolkit of available techniques for authoring effective robot programs.
We will also explore the use of interaction templates for autonomous agents in general, including, for
instance, smart home agents, rather than limiting interaction templates specifically to robots.

Porfirio et al. | PLATEAU | v.12 | n.1 | | 2021 4/6

References
[1] T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially interactive robots,” Robotics and

autonomous systems, vol. 42, no. 3-4, pp. 143–166, 2003.

[2] S. Srivastava, S. Gulwani, and J. S. Foster, “Template-based program verification and program syn-
thesis,” International Journal on Software Tools for Technology Transfer, vol. 15, no. 5, pp. 497–518,
2013.

[3] A. Solar-Lezama, Program synthesis by sketching. University of California, Berkeley, 2008.

[4] ——, “The sketching approach to program synthesis,” in Asian Symposium on Programming Languages
and Systems, Springer, 2009, pp. 4–13.

[5] ——, “Program sketching,” International Journal on Software Tools for Technology Transfer, vol. 15,
no. 5, pp. 475–495, 2013.

[6] P. Ferrarelli, M. T. Lázaro, and L. Iocchi, “Design of robot teaching assistants through multi-modal
human-robot interactions,” in International Conference on Robotics and Education RiE 2017, Springer,
2017, pp. 274–286.

[7] J. Motes, R. Sandström, W. Adams, T. Ogunyale, S. Thomas, and N. M. Amato, “Interaction templates
for multi-robot systems,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2926–2933, 2019.

[8] S. Waldherr, R. Romero, and S. Thrun, “A gesture based interface for human-robot interaction,”
Autonomous Robots, vol. 9, no. 2, pp. 151–173, 2000.

[9] J. Nichols, B. A. Myers, and K. Litwack, “Improving automatic interface generation with smart tem-
plates,” in Proceedings of the 9th international conference on Intelligent user interfaces, 2004, pp. 286–
288.

[10] W. Ju, “The design of implicit interactions,” Synthesis Lectures on Human-Centered Informatics, vol. 8,
no. 2, pp. 1–93, 2015.

[11] D. F. Glas, T. Kanda, and H. Ishiguro, “Human-robot interaction design using interaction composer
eight years of lessons learned,” in 2016 11th ACM/IEEE International Conference on Human-Robot
Interaction (HRI), IEEE, 2016, pp. 303–310.

[12] A. D. Frederiks, J. R. Octavia, C. Vandevelde, and J. Saldien, “Towards participatory design of social
robots,” in IFIP Conference on Human-Computer Interaction, Springer, 2019, pp. 527–535.

[13] M. Forbes, R. P. Rao, L. Zettlemoyer, and M. Cakmak, “Robot programming by demonstration with
situated spatial language understanding,” in 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), IEEE, 2015, pp. 2014–2020.

[14] H. Knight and R. Simmons, “An intelligent design interface for dancers to teach robots,” in 2017 26th
IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), IEEE,
2017, pp. 1344–1350.

[15] J. Huang, T. Lau, and M. Cakmak, “Design and evaluation of a rapid programming system for service
robots,” in 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), IEEE,
2016, pp. 295–302.

[16] D. Porfirio, A. Sauppé, A. Albarghouthi, and B. Mutlu, “Authoring and verifying human-robot interac-
tions,” in Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology,
2018, pp. 75–86.

[17] A. Sauppé and B. Mutlu, “Design patterns for exploring and prototyping human-robot interactions,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2014, pp. 1439–1448.

[18] A. V. Sauppe, “Designing effective communication strategies for human-robot collaboration,” Ph.D.
dissertation, The University of Wisconsin-Madison, 2015.

[19] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba, “Virtualhome: Simulating
household activities via programs,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 8494–8502.

[20] A. H. Qureshi, Y. Nakamura, Y. Yoshikawa, and H. Ishiguro, “Robot gains social intelligence through
multimodal deep reinforcement learning,” in 2016 IEEE-RAS 16th International Conference on Hu-
manoid Robots (Humanoids), IEEE, 2016, pp. 745–751.

Porfirio et al. | PLATEAU | v.12 | n.1 | | 2021 5/6

[21] K. Weber, H. Ritschel, I. Aslan, F. Lingenfelser, and E. André, “How to shape the humor of a robot-social
behavior adaptation based on reinforcement learning,” in Proceedings of the 20th ACM international
conference on multimodal interaction, 2018, pp. 154–162.

[22] P. H. Kahn, N. G. Freier, T. Kanda, H. Ishiguro, J. H. Ruckert, R. L. Severson, and S. K. Kane, “Design
patterns for sociality in human-robot interaction,” in Proceedings of the 3rd ACM/IEEE international
conference on Human robot interaction, 2008, pp. 97–104.

[23] Y. Mohammad, Y. Xu, K. Matsumura, and T. Nishida, “The h 3 r explanation corpus human-human
and base human-robot interaction dataset,” in 2008 International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, IEEE, 2008, pp. 201–206.

[24] D. B. Jayagopi, S. Sheiki, D. Klotz, J. Wienke, J.-M. Odobez, S. Wrede, V. Khalidov, L. Nyugen,
B. Wrede, and D. Gatica-Perez, “The vernissage corpus: A conversational human-robot-interaction
dataset,” in 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), IEEE,
2013, pp. 149–150.

[25] R. Passonneau and E. Sachar, Loqui human-human dialogue corpus (transcriptions and annotations),
Available from https://academiccommons.columbia.edu/doi/10.7916/D82R3PW9, 2014.

[26] P. Pareti, B. Testu, R. Ichise, E. Klein, and A. Barker, “Integrating know-how into the linked data
cloud,” in International Conference on Knowledge Engineering and Knowledge Management, Springer,
2014, pp. 385–396.

[27] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and D. Fox,
“Alfred: A benchmark for interpreting grounded instructions for everyday tasks,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 10 740–10 749.

Porfirio et al. | PLATEAU | v.12 | n.1 | | 2021 6/6

	Introduction
	Template Use
	Template Representation
	Template Collection
	Conclusion

