Downloaded via UNIV OF CALIFORNIA IRVINE on October 4, 2021 at 18:32:53 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

NANO.. .5

pubs.acs.org/NanoLett

Carrier-Envelope-Phase Modulated Currents in Scanning Tunneling
Microscopy

Ziyang Hu, YanHo Kwok, GuanHua Chen,* and Shaul Mukamel*

Cite This: Nano Lett. 2021, 21, 6569-6575 I: I Read Online

ACCESS | m Metrics & More | Article Recommendations ‘ @ Supporting Information

X

ABSTRACT: Carrier-envelope-phase (CEP) stable optical pulses
combined with state-of-the-art scanning tunneling microscopy
(STM) can track and control ultrafast electronic tunneling +(a;,cos¢ + by, sing) 5
currents. On the basis of nonequilibrium Green’s function ’7 E \‘ !

J =~ ayEg

8

°
Integrated current J (nA-fs)

formalism, we present a time and frequency domain theoretical
study of CEP-stable pulse-induced tunneling currents between an {A)—
STM tip and a metal substrate. It is revealed that the
experimentally observed phase shift between the maximum 0.10
tunneling current and maximum electric field is caused by the
third-order response to the electric field. The shift is also found to
be sensitive to the duration of pulses. The tunneling process can T e . 05 00 05 10
thus be precisely manipulated by varying the phase and duration of Time (fs) CEP ¢ ()
these pulses.
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C ontrolling the ultrafast electron dynamics in nanodevices @, This is controlled by attosecond technology.'®™>* The
is one of the central goals of nanoscience. Terahertz vector potential and CEP are illustrated in Figure la. The
(THz) pulses coupled to STM have been recently used to electric field variation with the CEP is shown in Figure 1b.
monitor tunneling dynamics with subpicosecond temporal and Detecting the femtosecond transient tunneling current in
nanometer spatial resolutions.' ~® However, THz pulses are too real time is not possible with current technology. The quantity
long to track the electron dynamics in its natural femtosecond being measured is the average current during a pulse period,
time scale.”® Ultrashort optical pulses provide a promising i.e, the integrated current.”” The electric field changes with
route to modulate and track the tunneling process.” The the CEP, and the measured tunneling current will vary as well.
electron tunneling was found sensitive to the CEP of the However, the measured tunneling current is not synchronous
optical pulse.'’™"” Experimentally, the CEP can be precisely with the electric field but has a phase shift."*” To study the
modulated and has been used to coherently control the light- role of the phase shift, we first derive perturbative expressions
driven tunneling current between STM tip and substrate™ and in the optical field for the integrated current based on
the photoemission of electrons from nanotips.'*'> Under- nonequilibrium Green’s function (NEGF) formalism>*® and
standing the mechanism of CEP-dependent tunneling current then verify them by time-domain nonperturbative”’ ~* and
in a junction is thus crucial for advancing ultrafast STM perturbative® simulations.
techniques. Consider an STM junction coupled to two leads, i.e., tip and
The optical pulses created by mode-locked lasers consist of a substrate with noninteracting electrons. The time-dependent
train of Gaussian enveloped sinusoidal pulses.” The vector current passing through each lead can be expressed based on
potential of a laser pulse can be expressed as Keldysh NEGF formalism as®'
AE) = 27 oot + ) 1,(0) = ¢ [ @rulG (e, DTir, ) + Gt DI, ©) + hel )
@y (1)
Here E; is the electric field amplitude, @, is the central Received: May 15, 2021
frequency, o is the variance, and ¢ is the CEP, respectively. Revised:  July 19, 2021
The full width at half-maximum of the pulse is Published: July 23, 2021

fwhm = 2+/2In 2 6. The electric field E(t) = —d,A(t) is an
AC field. The CEP is related to the time difference between
the peaks of the envelope and the sinusoidal wave as At = ¢/
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Figure 1. (a) One of the vector potentials used in our simulations. Red dotted line: the Gaussian envelope G(t) with an fwhm of 3.2 fs and an
amplitude of 51.0 aWb/A; black solid line: the vector potential A(t) with a central frequency equivalent to 1.55 eV (800 nm) and a CEP of 0.5 .
The time difference between the peaks of the envelope and the sinusoidal wave is At = ¢p/w,. (b) The electric field variation with the CEP.

Here G*/* is the lesser/retarded Green’s function, and %< is
the advanced/lesser self-energy of lead ¢, respectively. Because
the tunneling gap investigated is relatively DAITOW, the optical
electric field can be approximated as quasi-static.” Upon the
application of an electric field, the induced bias at each lead
can thus be taken as V,(t) = +E(t)L/2. Here E(t) is the near-
field strength determined by eq 1, and L is the device region
length along the transport direction. Since the applied electric
field wavelength is much longer than the device size, the
amplitude E; can be considered to be constant within the
system of interest. The potential will be almost flat inside the
tip and substrate, owing to screening, and the potential drops
between the gap, inducing the local field enhancement. The
coupling Hamiltonian to the electric field is A (t) = —puE(t)
within dipole approximation, where u is the electric dipole
moment matrix of the device region. The variations of Green’s
function and self-energy with the electric field are induced by
both the bias and Hamiltonian changes. In the wide-band limit
approximation,”” the advanced self-energy is invariant to the
external voltage, and the n-th order response of lesser self-
energy can be expressed as”’

=<, 7) = %[é [ ' dt’eV(t’)] Tt 7) (3)

The n-th order variations of the retarded and lesser Green’s
functions are then>*

Gt ) = [ dt-dt G, a)]‘[m)co( o)
(4)

i+j +k n

G (t, )= / dt,dt,Gi(t, t1)2<(tl, t,)Gi(t,, 7)

(%)
X* is the sum of self-energies of all leads. Thus, the n-th order
response current is

10,]0

19() = e f dm{ NORICIES 2 G'(t 2)Z5 (¢, 1) + he
(6)

The integrated current is

() _ (n)
]a - /dtI(z (t) (7)
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It is more convenient to work on frequency domain whereby

1" = 1w = 0) (8)

It is stra1§htforward to get the integrated first-order response
current as

0 = =0y [geuigle)

6.
field is given by

)
is given in Supporting Information. The integrated electric

E(w=0) = E(\/271e_"zwﬂz/Zacosgb)EO =0
o,

0

(10)

We, therefore, obtain the zero first-order integrated current

w=0

](El) =0 (11)

. a1 . 35,36
Thus, phase control is impossible in the linear response.

Similarly, for the second-order integrated current, we have

o =

a

E(—e/ME(e/h) [ dewlG3e, &) (1)
gf}/}(e, €,) is given in Supporting Information. For the electric
field part, we obtain

2
E,
E(—¢/h)E(e,/h) = [%] neiﬁz[%h(el/h)zl[cos(lqﬁ) + cosh(26wye,/ )]

W
(13)
Denoting the coefficients before E§ as a,, and cos (2¢) Ej as
a,,, respectively, we have

](EZ) = [ay + a22C°5(2¢)]E(% (14)

Experimental Aiw, is around several eV, and ¢/7 is around
several eV, thus cosh (26%w,e,/ ) > 1 for not too small ¢,.
Consequently, we have a,, > a,,; ie, J? =~ ay E% The
second-order response thus acts as a rectifier for all ¢.

The third-order integrated current is

87° rﬁZ// dezdelE( ) ( n I)E(_

/dstr[gaﬂ(s, &, &)1

~
~

&
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! )

a

(13)
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Figure 2. CEP modulated tunneling in a gold-tip-gold-substrate system. (a) The structure of the device region used in TDDFTB-OS simulations.
Both the tip and substrate are semi-infinite in the —x/+x-directions, respectively. (b) Modulated integrated current as a function of CEP and gap
width. The color bar displays the integrated current in A fs. Three contours are plotted to guide the eyes of readers to the maxima of integrated
current. The applied electric field is transmitted along the z-direction and polarized along the x-direction. Ey = 0.05 V/A, Aiw, = 1.55 eV (800 nm),
and fwhm = 3.4 fs. (c) The maximum integrated current (J,,,,) and the corresponding CEP (¢,,,,) as a function of gap width. ¢,,,, is plotted as the

«, »

red “+” line with scales at the left vertical axis. ], is plotted as the black “X” line with scales at the right vertical axis.

The electric field part is R =./ a3,21 + b321

E(E)E( -4 )E(—ﬁ) tan . = bs/as (20)
h h n

3 Here ¢,,,, is the CEP that maximizes the integrated current. It
_ ok, 7 F e(e, — )¢ o0 e’ —eeyte)) /3w /2] is apparent that the ¢, is mainly caused by the third-order
haw, g 12 =2 1r)espl(;nse. Noteb that azoi asy, ;mddbm afle not solle}y determinej
. . the system but are also related to the central frequency an

liAcos ¢ — Bsin ¢ + cos(3¢)] fvzrfhm oz the external electric field. R
(16) To examine further, we carry out a quantum mechanical
simulation of a gold-tip-gold-substrate system using the open
system time-dependent density-functional tight-binding
(TDDFTB-0OS) method.””~>* Both the tip and substrate are
semi-infinite along the transmission direction x. The device
region containing 128 gold atoms is depicted in Figure 2a, with
(17) the gap width varying from 2.3 to 4.5 A. The Gaussian pulse
with an amplitude of 0.05 V/A is transmitted along z and
foﬁ)(& &y 52) is given in Supporting Information. We thus polarized along x. The central frequency is 1.55 eV (800 nm)
with an fwhm of 3.4 fs. The wide-band limit approximation is
applied, and the induced Hamiltonian A (t) is obtained by
(3) _ . 3 solving the Poisson equation. DFTB parameters provided by A.
Ju = Lasicos ¢ 4 bysin ¢ + ascos(3¢)1Ep (18) Fiheyget al. are used.”” The system ils) propagatelcjl up to 16}(7) fs
with the applied electric field. The integrated current (J)
containing the response to all orders with different gap widths
and CEP is plotted in Figure 2b. ¢,,,, and the corresponding
thus given by maximum integrated current (J,.,) at each gap width are
depicted in Figure 2c. ], has a peak near a gap width of 3.7 A.
I, = “zoEg + “31E3 cos ¢ + b31ESSin ¢ When the gap width is small, the tip and substrate fuse into a
) 3 single metal and thus screen out the electric field.”® From
=ayEy + Reos(¢p — ¢max)Eo (19) Figure 2c, it is clear that ¢, changes with the gap width
monotonically, which is consistent with the experimental

where results.’

where

A = cosh(26%wye,/ ) + cosh[26°wy(e, — &,)/h] + cosh(26’w,e,/ )

B = sinh(26’w,e,/h) — sinh[26°w, (e, — €,)/A] — sinh(26°w,e,/h)

have

With the same argument, we have a;,,b;; > as;.
The integrated current to third order in the optical field is
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Figure 3. Perturbative time-domain simulation of a hydrogen chain system. (a) The chain structure. The device region included in the TDDFTB-
OS simulation is framed by the black rounded rectangle. Both leads are semi-infinitely extended to the —x/+x-directions. (b) The sum of different
orders integrated current as a function of CEP at a gap width of 2.9 A. (c) The maximum CEP calculated from the sum of different orders
integrated current as a function of gap width. (d) The maximum integrated current calculated from the sum of different orders responses as a
function of gap width. The first-order integrated current J, the sum of first- and second-order integrated current JD4J® the sum of first-,
second-, third-order integrated current ](1)+](2)+]<3>, and full-order integrated current J are plotted as blue “+”, green “X”, red “*”, and black “O”

lines, respectively.

(a) 5 A .

8.5 T T

6.0 b

5.5 5 ;
0.06 0.08 0.10

Eo (V-A")

Int. curr. (nA-fs)

-0.5

0.0
CEP (1)

0.5

Figure 4. (a) The relation between the tangent of maximum CEP (tan ¢,,,,) and the amplitude of electric field (E;). ),y calculated from the
hydrogen chain system depicted in Figure 3a at gap widths of 2.5, 2.7, and 2.9 A are plotted as the blue “*”, red “X”, and black “O” marks,
respectively. The solid lines are the linearly fitted curves. (b) Total integrated current with pulses of different fwhm for the hydrogen chain system
at gap width 2.9 A. The minimum of integrated current shifts to 0 7 as fwhm decreases.

To verify the frequency-domain analysis, which implies that
the shift of ¢, is at least a third-order effect, we have
performed a time-domain perturbative TDDFTB-OS simu-
lation™ for the asymmetric hydrogen chain system shown in
Figure 3a. Simulating the order-by-order dynamics of the
gold—gold system is too expensive. The hydrogen chain system

6572

is chosen to demonstrate our point. The device region contains
4 hydrogen atoms with the gap width varying between 2.1 and
2.9 A. The distance between hydrogen atoms on each side is
1.5 A along x. The Gaussian pulse with an amplitude of 0.12
V/A is transmitted along z and polarized along the
transmission direction (x). The central frequency is 1.55 eV

https://doi.org/10.1021/acs.nanolett.1c01900
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(800 nm) with an fwhm of 3.2 fs. DFTB parameters were
provided by M. Elstner et al.*” A 29 fs simulation was required
to get the saturated integrated current. In Figure 3b, we
analyze the maximum integrated current calculated by the sum
of different orders responses as a function of the CEP at a gap
width of 2.9 A. J is zero within numerical errors, and
increases the integrated current almost homogeneously for all
CEP. The inset shows the negligible variation of J@ with the
CEP. J® shifts ¢, to —0.555 7, and the higher-order
responses do not shift ¢, further. ¢, .. and J, .. calculated
from the sum of different orders responses with various gap
widths are plotted separately in Figure 3¢,d. Again, only for the
sum of first-, second-, and third-order integrated current ¢,,.,
depends on the gap width and is virtually identical to ¢,,,,
obtained from the total nonperturbative integrated current.
From Figure 3d, the difference between ], obtained from the
sum of first-, second-, and third-order responses and ], from
the total responses is negligible. We thus verified that the shift
of (nax from O is at least a third-order effect in the optical field.
This is consistent with M. Garg and K. Kern’s experimental
work,” where the shift of ¢, was observed at a field-driven
regime, in which third-order photon processes contribute.

To validate eqs 19 and 20, ¢, is calculated for different E,
values, where third-order response dominates using the same
time-domain method for the same hydrogen chain system. The
relation between tan ¢, and E; is shown in Figure 4a for gap
widths of 2.5 A (blue), 2.7 A (red), and 2.9 A (black). The
marked points in Figure 4a are the simulated results, while the
solid lines are the linearly fitted functions. The lines are almost
horizontal; thus, eq 20 is confirmed. At small gap widths, the
second-order response cos (2¢) is stronger, causing the slight
inclination of fitted lines. This relation may further be checked
with existing experimental techniques in the future.

For a fixed gap width, ¢, is also determined by the fwhm
of the pulse. We consider two extreme cases where the fwhm
tends to zero and infinity. When expanding eqs 13 and 16 at 0
= 0, we have

E(—%)E(%) = 0(c”)[1 + cos(24)]

& &H 8 &1 _ 3
E(;)E( . )E(_%) = 0(6°)[3cos ¢ + cos(3¢)]
+[0(6%)cos ¢ + O(c”)sin ¢ + O(6°)cos(3¢)]

(1)

It is clear that cos ¢ and cos (2¢)) dominate in the integrated
current, so ¢, will be less shifted from 0 for a small fwhm.
We simulated the hydrogen chain system with a decreasing
fwhm of pulses at a gap width of 2.9 A using the time-domain
method and plotted the results in Figure 4b. It is clear the cos
¢ component becomes more dominant as fwhm decreases, and
for a small enough fwhm, the cos (2¢)) term emerges. For a
large fwhm scenario, E (¢,) E (&, — €,) E (—¢,) vanishes, so
the integrated current will be independent of the CEP.

We note that the shifted ¢,,,, is not due to the system’s
asymmetry. We can still observe the shift ¢, = 0.6 7 for a
symmetric hydrogen chain with a gap width of 2.9 A at an
electric field amplitude of 0.12 V/A and an fwhm of 3.2 fs.
Instead, asymmetry leads to an even order integrated current
and results in the rectifier effect.”’ Especially for a large fwhm,
the odd order signal vanishes, and the total integrated current
will be virtually independent of the CEP.

If the tip—substrate system is extremely close to the light
source, the integrated field might survive."' Then, the first-
order integrated current will interfere with the third-order
integrated current and further shift the ¢,

In this work, the wide-band limit approximation is adopted.
The inclusion of the electronic structures of the leads will make

Q(a‘,); considerably complicated."’1 For the current in the

negative differential resistance regime, the coeflicients before
cosine and sine terms will change, but our conclusion will still
hold.

In summary, time-domain TDDFTB-OS simulations dem-
onstrate that the tunneling current can be modulated by tuning
the CEP of few-cycle optical pulses. The phase shift between
the current and the field in a gold-tip-gold-substrate system is
found to vary monotonically with the gap width. Analytical
expressions of the different order integrated current are
obtained by perturbative expansion of the effective tunneling
current under the wide-band limit approximation. We find that
the first-order integrated current is zero, and the third-order
integrated current is phase shifted. The even order responses
can generate a rectification of STM for asymmetric systems.
We have also performed time-domain perturbative simulations
and confirmed that the phase shift is mainly caused by the
third and possibly higher-order responses. The phase shift
further depends on the central frequency and fwhm of the
pulses. These findings demonstrate how to modulate the
tunneling process by tuning the pulse profile. This perturbative
technique can also be applied to the pump—probe setup and
will be reported in the future.
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First Order Integrated Current

For simplicity, we use the following abbreviated integration notation,
[dtde,--de, A (£.4) A, (4,6) A, (1,.1) = [dT A A, A, (S1)

A, are general matrices, and they can also be single-variable, A, (tl.) . The fold of integration can

be deduced from the number of A, .

We split the response to electric field into two parts, i.e., (1) the sole response to induced bias;

(2) the remaining part. The first part is
I8 (t) = e [drtr] G'E{G L, + G'E], +h.c.] (S2)
Perform Fourier transform from ¢ to w,

eV, (o)

7| [er6riGox; |- ; e [deGiz;6x:, ©
7| a6z, |- —ezzh(fg [deGx;.

Notations A=A(¢), A, =A(e+hw), A=A-A, areused ineq S3. Choose V, ()= E(t)L/2

and V, (t) = —E(t)L /2, we have

.y ¢E(@) (11)
I, (0) = o Eﬂ Idetr[gaﬁ (g,a))} <
L ry<gyaya r T < ga < < ~a
g% (&,0)= 2ehw[(25aﬁ_1)(c+zﬂc X -XGIX;G")+0, (G -X;G6) |.

The second part is



I8 (t) = e [dr tr G'AG™E, + GAG E, +G'AG'E; +h.c. . (S5)
Perform Fourier transform from ¢ to w,

109 (w) = 2% [detr[ GIA(@)GZ, +GIA(0)G E, +G/A(@)G'L; +h.c.]|.  (S6)
T

Set @ =0 and denote A, = Im[EZ], we have

o

g2 %Idg tr[A(a) = O)(G<AMG’ +G‘A,G"+FG'A, G -FGA G )] (S7)

=0.

F (&) is the Fermi-Dirac distribution, and G* =—F [G" —G“] is used in the last line of eq S7.

The first order integrated current is

(1 _ €E Cl) O

J,) = o Zjdgtr[ ]

Gup () =limG" (¢,0).

w—0

(S8)

Second Order Integrated Current

Following the split scheme used in the first order integrated current, the first part of second

order current is
1°9(f) = eIdT tr[GrZEGaEZ +G'Y;, +h.c.]. (S9)

Perform Fourier transform from #to @ and set @ =0,



a 47z2h2 ZIdgl —& /h 51 /h)jdg tr[gj,;‘) (6‘,6‘1 )],
22 (S10)
G (e.6) = —%[G";;G“ZZ ~X.G'L;G +4,,(G'E; - E;6") |
1
Notation A=A—A(e+¢,) is used. Plug the relation X (£)=2i A, F(¢) into eq S10, it can be

shown that

JE =0, (S11)
The second part is

182 () =e [ dr tr] G'AG'AG L, + G'AG AGE;,
+G'AGAGE! +G'AG’AG'E: +G'AG'E;, (S12)
+G'AG'E;G L, +G'E;GAG'L] +h.c.].

Perform Fourier transform from #to w and set =0,

J2 = 2 h2 '[dgE (—& /h)E( g/hjdgtr[ )(55)]
n

g7 (5,6)=0,,(G" uGilqu‘; +G uG!, uG L,

Q,

+G' uG uG L’ +G uG uG'E; —%G’ G.I;) (S13)
1
eL r r < a a V < a a a
_2_51(25 1)(G'n#G, L;G E; +G'E,G! uG L. )
+h.c..

Notations A, =A(e+¢, ) A=A-A_ areused.

+1

The second order integrated current is



g = Tezfzzzfdgl E(-&/h)E(s /) dete| G (2.4)
B

G\ (e,6,)=65" (e,e).

(S14)

Third Order Integrated Current

Following the split scheme used in the first order integrated current, the first part of third order

current is
I8 () =efdrtr| G'L;G 2L +G'Ey, +hee. |. (S15)
Perform Fourier transform from #to @ and set @ =0,

2= ot o e 252 (- foen{ o8 (o)

373
gs;l) (6‘,81,6‘2) _ el

ey (PN EEE - R EEE )+, (68 -6

(S16)

Notation A = A(s +¢& ) - A(g +&, ) is used. The second part is

I8 (t)= e[ dr tr| G'AG'AG'AG E! + G"AG‘AG'AG"E,,
+G'AG'AG AG“E’ + G'AG*AGAG L
+G'AG'AG'AG'E: +G'AG'AG XS,
+G'AG’AG' LG Y’ +G'E;G'AG*AG X"
+G'AG'E{G AG Z! +G'AG'E;,

(S17)

+G'AG'E5G E! + G E5GAG LY +h.c. |.

Perform Fourier transform from #to @ and set @ =0,



Jg“)=%L3#ijdgzdglE(%JE(%j( jjd | 657 (5.4.2) |,

G (s,6.8,) =6, (G' nG,uG , uG L; —X,G uG",uG* uG")
3,5 (G uG,uG! G L, ~X,G" uG ,uG’, uG")
~3,,(G" G, uG uG L, —X.G' uG,uG uG" )
~3,,(G" uGLuG! uG L, —X.G' uG' ,uG; uG" )

~3,,(G" G, uG, uG'L, - L G  uG,uG! uG* )

1
+%5 { G'uGLuG X, —— X G, uG! 1,uG“}
3

2

el 1 r roN<gaga 1 rgNT< ga a

+—(28,,-1)| —G'uG,uG L;G'L: ——X/G'L;G,uG! uG
& -

a,
2

+%(25w 1){1 G'L;G,uG! uG'L! Ly "G uG,uG’, 2%}“}
2 81
(26,1
+M[G’ HGLE5G HG E X, G pGE;G A G |
2(&,-¢)
ers,, 1 1
ap G uG (2= ) e — (2 + 2 )G uG*
+8(82—€1)_81 ” +2(~a —a) 82(~a+: ) llu :|
el |1 . 1
—— = | —G'uG, (T -X5)GE ——X G (T G uG*
+8(82_€1)_€1 ” +2(~/j’ _ﬂ) a 82 a (~ ) 1” :|
el 1, 1
— = | —G’ G uGL! ——X' G uG’,(Z;-2;)G" |.
+8(82—81)_€2 (” ) alt g A ( p _'B) }
(S18)
Notations A, =A(s+¢), A,=A(s+s,), A=A-A,, A=A-A,, A=A, -A, are

used.

The third order integrated current is



J(3)= e &, &, —
P = Sl e 252 (5 faseTo )]

gri? (8’ 81’ 82) = go(;,l) (8, 815 82 ) + gg([;Z) (5, 51,82 )

(S19)
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