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We develop a microscopic theory for the two-dimensional (2D) spectroscopy of one-dimensional
topological superconductors. We consider a ring geometry of an archetypal topological superconductor
with periodic boundary conditions, bypassing energy-specific differences caused by topologically
protected or trivial boundary modes that are hard to distinguish. We show numerically and analytically
that the cross-peak structure of the 2D spectra carries unique signatures of the topological phases of the
chain. Our work reveals how 2D spectroscopy can identify topological phases in bulk properties.
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Topological phases of matter have attracted considerable
attention following the discovery of topologically non-
trivial magnetic and electronic phenomena like the
Berezinskii-Kosterlitz-Thouless transition [1–4] and the
integer and fractional quantum Hall effect [5,6]. Some
topological systems, such as superconducting quantum
wires [7], spin liquids [8], and vortices on surfaces of
topological superconductors [9] are predicted to host any-
ons such as spatially isolated Majorana zero-energy boun-
dary modes that are of interest to quantum information
processing [10,11]. Despite experimental evidence of zero-
energy modes [12], their topological origin remains in-
conclusive [13]. Experimental techniques that reliably
identify one-dimensional (1D) topological superconductors
are badly needed. Current approaches detect the localized
zero-energy boundary modes, but cannot unambiguously
discriminate them against topologically trivial features that
appear close to zero energy as well, like Yu-Shiba-Rusinov
states [14–18], Kondo peaks [19,20], Andreev bound states
[21], and Caroli-de Gennes-Matricon states [22,23]. In 2D
electronic systems, dispersive Majorana edge modes have
been shown to increase the linear optical conductivity [24].
A versatile advanced tool is nonlinear 2D spectroscopy

[25,26] applied in the THz frequency regime to probe
electronic excitations in solid-state nanostructures [27–30]
or the Fermi glass phase in disordered correlated materials
[31]. Recently, 2D spectroscopy of two- and three-
dimensional topological spin liquids has theoretically
revealed characteristic spectral properties of itinerant
spin-based anyons and fractons [32–34] and of strongly
correlated two-band Fermi-Hubbard models [35]. It offers
additional features in comparison to pump-probe THz
spectroscopy [36–39]. The main difference lies in the
decoupling of the waiting time and excitation frequency
resolution both of which are high [40]. This is in stark
contrast to pump-probe spectroscopy where both are

inherently connected by a Fourier uncertainty. Moreover,
the lack of large background signals permits excellent
signal-to-noise ratios.
In this Letter, we employ 2D nonlinear spectroscopy to

analyze the periodic Kitaev chain, the archetype of one-
dimensional topological superconductors, describing the
topological electronic properties of nanowires [12], atomic
magnetic chains [41,42], and cold atom systems [43].
Rather than investigating the Majorana boundary modes
of this model, we consider a periodic configuration to study
the topological properties of the bulk and characterize its
two phases by 2D spectroscopy. This could be realized by
atomic chain quantum corrals. In particular, we compare
Kitaev chains with the same bulk energy spectrum but a
different topological phase. We predict experimental sig-
natures due to topological effects, eliminating differences
caused solely by the bulk energy spectra or topologically
trivial or nontrivial localized zero-energy states. We find
signatures of superconducting topological band inversion
in the 2D spectra, which are characteristic for the topo-
logical phase and which are absent in linear absorption
spectra. Our predictions should be verifiable by 2D THz
spectroscopy [27–31].

Model.—The Kitaev chain is a 1D spin-polarized uncon-
ventional superconductor with the Hamiltonian

H ¼
XN
n¼1

½−wa†nþ1an − μa†nan þ Δananþ1� þ H:c:; ð1Þ

where an is a fermionic annihilation operator, 2μ is the
chemical potential, w the nearest-neighbor hopping, and Δ
is the complex superconducting gap parameter [7]. In
physical systems, the parameters can assume a wide range
of energies starting from suspended hybridizing atomic
chains or semiconductors where they are of the order of eV
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and going down to meV in hybridized Yu-Shiba-Rusinov
states [12,44]. However, the superconducting gap is always
in the meV range or less. The system has an electronic band
gap for jwj ≠ jμj and Δ ≠ 0 [7]. For dominant hopping
jwj > jμj, the open chain, i.e., aNþ1 ¼ 0, has an in-gap
mode localized at both ends of the chain. Its energy is
exponentially small in the system size. In the large-N limit,
this mode decomposes into two spatially isolated Majorana
operators [7] whose existence is protected by the electronic
energy gap in the bulk. The mode can only disappear by
closing the gap. Hence, there are two distinct gapped
phases: the topologically trivial phase without and the
topologically nontrivial phase with Majorana end modes.
Both are characterized by a Z2 topological invariant of the
bulk only [45,46]. The boundary modes are due to an
interface between different topological phases explained by
the bulk boundary correspondence [47].
Kitaev [7] has already pointed out that there is a map in

form of a simple parameter transformation that leaves the
band structure of the periodic chain invariant but changes
the topological phase. We find that the transformed
parameters are given by

μ0 ¼ �w; w0 ¼ �μ; Δ0 ¼ eiϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2þjΔj2 −w2

q
; ð2Þ

where ϑ is an arbitrary real number. If the system is
originally in the nontrivial phase, i.e., jμj < jwj, then the
transformed chain with the primed parameters will be in the
trivial phase, because jw0j ¼ jμj < jwj ¼ jμ0j. The same
holds vice versa. By this, a dual Hamiltonian with the same
spectrum but the inverse topological phase is assigned to
each topologically trivial one. Yet, if μ2 þ jΔj2 − w2 < 0,
which can only happen in the nontrivial phase, there will be
no trivial Hamiltonian with the same band structure.
We start with the simplest case, w ¼ Δ. The linear

transformation U defined by

U†anU ¼ iða†n − an − a†nþ1 − anþ1Þ=2 ð3Þ

corresponds to the transformed parameters μ0 ¼ w and
w0 ¼ Δ0 ¼ μ. In general, we can construct the map between
the phases by concatenating the Bogoliubov transformation
diagonalizing the trivial Hamiltonian with the inverse of the
transformation that diagonalizes the nontrivial Hamiltonian
with the same band structure. Even simpler, the map in
Eq. (3) can be extended to jwj ≤ jΔj by fixing the super-
conducting phase to φ ¼ arccosðw=jΔjÞ.

2D spectroscopy.—In 2D spectroscopy, the system is
subjected to three consecutive electromagnetic pulses and
its response is probed by interference with a fourth pulse
[25,26]. In the dipole approximation, i.e., when the shortest
wavelength of the light is much larger than the extent of the
chain, the radiation-matter interaction Hamiltonian reads
VðtÞ ¼ −d · EðtÞ, where d denotes the dipole operator and
EðtÞ the electric field. For the Kitaev chain, d ¼ −eR with

the position operator R ¼ PN
n¼1 rna

†
nan and e the electron

charge. Here, rn is the location of site n. We consider a ring
of radius r with rn ¼ rðcos ð2πn=NÞ; sin ð2πn=NÞ; 0ÞT . A
similar dipole operator emerges from a low-energy descrip-
tion of realistic systems as shown for a Rashba wire in the
Supplemental Material [48].
We are interested in the time-dependent polarization

PðtÞ ¼ hdðtÞiρðtÞ, which provides the measurable electro-
magnetic response. Here, ρðtÞ is the density matrix of
matter. Because the system consists of broad electronic
bands, we compute the full third-order signal Pð3ÞðtÞ for the
2D spectra, which is the sum of all phase matching
directions. It can be detected in a collinear beam geometry.
Breaking it into phase matching components could reveal
additional information on specific groups of dynamical
pathways, which goes beyond the present study. Coherent
2D techniques, in particular the double quantum coherence,
are usually applied to discrete electronic systems like
molecules [49].
We assume that at time t ¼ 0 the system is in its ground

state, and obtain the third-order contribution to the polari-
zation [25,26]

Pð3Þ;jðtÞ ¼
Z

∞

0

dt3dt2dt1Emðt − t3ÞElðt − t3 − t2Þ

× Ekðt − t3 − t2 − t1ÞSð3Þ;jklm ðt3; t2; t1Þ; ð4Þ
with a sum over repeated indices and the third-order
response function Sð3Þ;jklm ðt3; t2; t1Þ. The 2D signal is dis-
played by its Fourier transform

Sð3Þ;jklm ðω3; t2;ω1Þ ¼
2

ℏ3
θðt2Þ

X4
α¼1

Z
∞

0

Z
∞

0

ImCj
α;klmðt3; t2; t1Þ

× eiðω1t1þω3t3Þdt1dt3; ð5Þ

with the Heaviside function θðtÞ and Cα are the four-point
correlation functions of the dipole operator (see the
Supplemental Material [48]). ω1 and ω3 are the excitation
and detection frequency, respectively, and t2 the waiting
time. In the following, we set t2 ¼ 0.
Results.—We restrict the discussion to the Sð3Þ;xxxx compo-

nent, where all light pulses are polarized in the x direction.
The signals for this feasible configuration are similar to the
ones for a physically unrealistic linear chain with periodic
boundary conditions. We choose a representative slice in
the ðw ¼ ΔÞ plane to demonstrate the parameter depend-
ence of the 2D spectra. By this, we can use the map in
Eq. (3) to clarify the qualitative differences between the
phases. Representatives of the two phases are the trivial
atomistic limit (dissected atoms) and the sweet spot of the
Majorana chain that hosts localized Majorana modes in an
open chain. We fix the maximal quasiparticle energy Λ as
the energy scale. In our case, Λ can be in the meV regime,
but depending on the physical system, Λ can vary up to eV
[12,44]. We follow the trajectory
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Γs ¼ ðμs; ws;ΔsÞ ¼ Λð1 − s; s; sÞ=2; ð6Þ

where 0 ≤ s ≤ 1, which interpolates between the two
extreme casesHðΓ0Þ being the Hamiltonian in the atomistic
limit and HðΓ1Þ the Hamiltonian for the sweet spot, such
that Λ remains unchanged at all instances. For s < 0.5,
HðΓsÞ is in the topologically trivial phase, for s > 0.5 in the
nontrivial phase, and for s ¼ 0.5, the system reaches the
semimetallic critical point, where the bulk gap closes. The
spectra and band structures of HðΓsÞ and HðΓ1−sÞ coincide
due to the map U in Eq. (3). By this, 2D spectra for
different topological phases with the same eigenenergies
can be compared.
Representative 2D spectra for a band gap of Λ=2 and for

the gapless critical point are shown in Fig. 1 (see also the
Supplemental Movie [48]). They include a Gaussian broad-
ening (σ ¼ 0.05Λ) to increase readability. Noticeable peaks
in the 2D spectra are arranged along three main axes, the
diagonal ω1 ¼ ω3, the counterdiagonal ω1 ¼ −ω3, and the
horizontal ω3 ¼ 0. Valuable information is contained in

the cross peaks on the counterdiagonal and the horizontal.
A change of the cross-peak pattern is observedwhen passing
from the topologically trivial to the nontrivial phase. The
counterdiagonal peaks dominate the nontrivial phase, while
they almost disappear in the trivial phase. The horizontal
peaks appear in both phases. They form a large inhomoge-
neously broadened peak in the trivial phase but become
disconnected in the nontrivial phase and are most pro-
nounced at the band edges. Furthermore, their relative
magnitude significantly decreases. In general, the overall
magnitude of the 2D spectra increases for s → 1. The peak
amplitudes between the phases differ by orders of magni-
tude. For perfectly flat bands in the trivial phase, they can
evenvanish due to the charge conserving nature of the dipole
operator. The ground state in the trivial phasewith flat bands
is either the empty or fully filled lattice. There are no other
states with the same charge, hence, all transitions are
forbidden. For flat bands in the nontrivial phase, there are
numerous possible transitions, in contrast. The charge
expectation value of the ground state is−Ne=2. We estimate

FIG. 1. Imaginary part of the 2D spectrum of the Kitaev ring at waiting time t2 ¼ 0 (a) in the topologically trivial phase with
μ ¼ 0.375Λ; w ¼ Δ ¼ 0.125Λ, (b) at the critical point in between with μ ¼ 0.25Λ; w ¼ Δ ¼ 0.25Λ, and (c) in the nontrivial phase with
μ ¼ 0.125Λ; w ¼ Δ ¼ 0.375Λ. The chain length is N ¼ 60, Λ is the maximal excitation energy of a single quasiparticle. The
topologically trivial and nontrivial phases are distinguished by peaks on the counterdiagonal and the splitting of the peak on the
horizontal.

FIG. 2. Imaginary part of the 2D spectrum of the Kitaev ring in (a) the topologically trivial phase with μ ¼ 0.005Λ; w ¼ Δ ¼ 0.495Λ,
and (b) the nontrivial phase with μ ¼ 0.495Λ and w ¼ Δ ¼ 0.005Λ for N ¼ 60.
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that for even N, the number of Fock states with charge
−Ne=2 is 2N=

ffiffiffiffi
N

p
due to Sterling’s formula. This accounts

for the discrepancy of the magnitudes between the 2D
spectra of the almost flat band scenarios shown in Fig. 2.
For the nearly flat bands in Fig. 2, we find essential

differences between the 2D spectra of the two topological
phases. In the trivial phase, the horizontal peaks are the
dominant cross peaks while counterdiagonal peaks are
absent. In the nontrivial phase, the counterdiagonal peaks
are dominant while the horizontal peaks are reduced. To
show that this is generic, we depict the cross sections along
the diagonal, counterdiagonal, and horizontal in Fig. 3. For
each value of s, the 2D spectra are normalized to their
maximal peak amplitude. The diagonal at t2 ¼ 0 carries
information on the linear response spectra. We find the 2D
spectra to be symmetric about the phase transition at
s ¼ 0.5. This reaffirms that the linear response cannot
uncover differences between the phases. Our analytic
calculations show that the difference between the phases
in linear spectroscopy is essentially a scaling factor [48].
For the counterdiagonal, cross peaks disappear in the trivial
regime s < 0.5, but are strong in the nontrivial regime
s > 0.5. Importantly, the change in the relative peak
amplitudes when crossing the critical point s ¼ 0.5 is
continuous. The signal from the horizontal sections forms
a broad continuum in the trivial phase that is clearly split in
the topological phase. This is caused by the superconduct-
ing topological band inversion characteristic for the model.
The anomalous term in Eq. (1) mixes the particle and hole
bands. In the trivial phase, the bands maintain their
predominant particle and hole character, respectively. In
the topological phase, the bands change between particle
and hole character at the inversion points in the Brillouin
zone. There, the nonvanishing two-particle to two-particle
transition dipole moments have a gap closure [48]. This is
absent in the trivial phase and is thus unique to the
topological phase. For large N, their transition frequencies
go to zero. Hence, they contribute to the horizontal peaks in
the 2D spectra, and the observed splitting of the peak

continua provides a clear signature of the superconducting
topological band inversion. The difference in the cross
peaks and the absence of any difference in the diagonal
peaks are a fundamental advantage of nonlinear spectro-
scopy for characterizing topological phases. Our results
transfer to finite Kitaev chains with open boundary con-
ditions. Yet, additional Majorana end modes as well as
possible trivial zero-energy modes result in a doubling of
the 2D spectrum at energies of the order of the band gap
that must be accounted for. Remarkably, the bulk contri-
bution is qualitatively the same as for the periodic con-
figuration, suggesting that our results are largely insensitive
to the specific geometry underlying the dipole operator.
Furthermore, local parametric disorder of up to 30% of the
band gap energy does not significantly affect the signature
of the topological phase. These two observations suggest
the robustness of the signature of the topological phase (see
the Supplemental Material [48] for more details).
The map U offers an alternative interpretation of

our results. Rather than considering U to actively change
the topological phase, we could equivalently consider the
Hamiltonian to be invariant and passively transform the
measurement operator, i.e., the dipole operator, which has
the form of a local chemical potential, into the Majorana
braiding operator Bn;nþ1 ¼ a†nþ1an þ anþ1an þ H:c: for
adjacent sites [50]. Formally, this means U†dU ¼
ðe=2ÞPN

n¼1 rnBn;nþ1. Then, the 2D spectrum can be
interpreted in two ways: first, the chain being in one phase
and probed by the common dipole operator, and second the
chain being in the other phase and probed by the braiding
operator.
Conclusions.—With the Kitaev ring, we propose a

physical realization of the Kitaev chain with periodic
boundary conditions and calculate the THz response in
2D nonlinear spectroscopy with three parallel polarized
field pulses. By a mapping between the topologically trivial
and nontrivial phases that changes the phase but not the
band structure of the Kitaev Hamiltonian, we identify
signatures stemming solely from topological effects and

FIG. 3. (a) Diagonal, (b) counterdiagonal, and (c) horizontal sections of the imaginary part of the 2D spectra for the Hamiltonian
HðΓsÞ as a function of s following Eq. (6). For each parameter set Γs, the 2D spectra are normalized to their maximal peak amplitude.
The chain length is N ¼ 60. Differences between the topological phases emerge along the counterdiagonal and the horizontal lines. In
the trivial phase (s < 0.5), the counterdiagonal peaks disappear. The horizontal peaks are more pronounced in the trivial phase than in
the nontrivial phase (s > 0.5).
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not from the energy spectra. A superconducting topological
band inversion is then detected by cross peaks in the 2D
spectra, which underlines the advantage of nonlinear
spectroscopy over linear spectroscopy for topological
systems. A band inversion has recently been resolved in
scanning tunneling microscope experiments [44], which
couples to the local charge rather than the dipole operator.
2D spectroscopy is less invasive, offers higher spectral
resolution, and is less prone to dissipation, where any
backaction of a macroscopic tip on the quantum system can
be excluded. A seeming caveat of our approach is that the
superconducting gap Δ should be rather large for the U
map to exist. However, our analytic computation of the
dipole moments [48] suggests that our results carry over to
small Δ. In contrast to topological spin liquids [32,33], the
electronic system at hand can be probed both in its
topologically trivial and nontrivial phase, and its topologi-
cal features are revealed by bulk properties only, omitting
the spectroscopy of hard-to-control low-energy topological
quasiparticles that interfere with the topological response of
the bulk. Future research on multiple topological band
inversions and multiband models could help to establish a
general connection between our findings and the bulk
topological invariant.
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In this Supplemental Material, we give the explicit expressions for the 4-point correlation functions
contributing to the third-order response function of the Kitaev chain. We provide details of the
numerical evaluation of the correlation functions. The many-particle transition dipole moments are
computed numerically and complemented by analytic results for the large-N limit. Furthermore, we
show that our results for the Kitaev ring model carry over to the more realistic model of a Rashba
wire. We conclude by discussing the effect of disorder on our results.

I. CORRELATION FUNCTIONS

The third-order response function is given by

S
(3),j
klm (t3, t2, t1) =

2

ℏ3
θ (t1) θ (t2) θ (t3)

4∑
α=1

ImCj
α,klm (t3, t2, t1) (S1)

with the Heaviside step function θ(t). The four-point correlation functions Cα are given by

Cj
1,klm (t3, t2, t1) =⟨dl (t1) dm (t1 + t2) d

j (t1 + t2 + t3) dk(0)⟩ρ, (S2)

Cj
2,klm (t3, t2, t1) =⟨dk(0)dm (t1 + t2) d

j (t1 + t2 + t3) dl (t1)⟩ρ, (S3)

Cj
3,klm (t3, t2, t1) =⟨dk(0)dl (t1) dj (t1 + t2 + t3) dm (t1 + t2)⟩ρ, (S4)

Cj
4,klm (t3, t2, t1) =⟨dj (t1 + t2 + t3) dm (t1 + t2) dl (t1) dk(0)⟩ρ. (S5)

Here, dj is the j-th component of the dipole operator d and ρ is the groundstate of the unperturbed system. For a
derivation of these expression, we are referring to Chapter 13 of Ref. [26] of the main text.

II. NUMERICAL EVALUATION OF THE CORRELATION FUNCTIONS

We find the eigenmodes of the Kitaev chain in momentum space by a standard Bogoliubov transformation [7] (main
text), where we define all quasiparticle energies to be non-negative. The quasiparticle vacuum |Ω⟩ and the groundstate
of the system then coincide. With this, the 4-point correlation functions for the x-components of the dipole operator
are of the form

C = ⟨Ω| dx(τ1)dx(τ2)dx(τ3)dx(τ4) |Ω⟩ . (S6)

Consider a general quadratic operator for the dipole operator

dx(τ) =
N∑

i,j=1

[
Aij(τ)f

†
i fj +Bij(τ)f

†
i f

†
j + Cij(τ)fifj +Dij(τ)fif

†
j

]
. (S7)

The matrices A, B, C and D are obtained either numerically or analytically from the Bogoliubov transformation that
diagonalizes the Hamiltonian. To compute the correlation functions, we insert Eq. (S7) into Eq. (S6). Evaluating the
correlation functions reduces to computing the vacuum expectation values of products of creation and annihilation
operators. We achieve this combinatorically involved task in a systematic way by using Wick contractions and Wick’s
theorem. The results are sums of traces of products of the matrices A, B, C and D at different times τ1, τ2, τ3 and
τ4 that must be evaluated numerically.
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(a) s = 0.01 (b) s = 0.25 (c) s = 0.5

(d) s = 0.75 (e) s = 0.99

FIG. S1. Single-particle density of states for the Kitaev chain of length N = 60 as a general reference at different parameters
corresponding to s = 0.01, 0.25, 0.5, 0.75, 0.99, respectively (see main text).

(a) s = 0.01 (b) s = 0.25 (c) s = 0.5

(d) s = 0.75 (e) s = 0.99

FIG. S2. Histograms of the two-particle density of states for chain length N = 60.

III. DENSITY OF STATES AND THE DIPOLE OPERATOR MATRIX ELEMENTS

Here, we provide the density of states of two- and four-quasiparticle states as well as the corresponding matrix
elements of the dipole operator d. We constrain ourselves to its x-component, because the z-component vanishes by
definition and the y-component carries equivalent information in the rotationally invariant system. We numerically
construct the many-particle Fock states directly from the single-particle states of a Kitaev chain of length N = 60 by
standard combinatorics. In total, there are 1770 states with two quasiparticles and 487635 with four quasiparticles.
The corresponding density of states is depicted in Figs. (S1-S3) for a representative choice of parameters s (see main
text), which cover the topologically trivial phase at s < 0.5, the critical point at s = 0.5, and the nontrivial phase at
s > 0.5.

We further evaluate the matrix elements of the x-component of the dipole operator numerically for two- and four-
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(a) s = 0.01 (b) s = 0.25 (c) s = 0.5

(d) s = 0.75 (e) s = 0.99

FIG. S3. Histograms of the four-particle density of states for chain length N = 60.

particles cases. Between these states, the vast majority of matrix elements vanishes because the dipole operator either
changes the number of quasiparticles by ±2 or leaves the number of quasiparticles unchanged. Further matrix elements
vanish because the dipole operator only combines momentum modes that are close-by. This is seen by expressing the
dipole operator in momentum space, i.e.,

dx = −eR
∑
j

cos

(
2π

N
j

)
a†jaj = −eR

2

∑
k

ã†k+1ãk + h.c., (S8)

with the Fourier transformed quasiparticle operator ãk. The results are shown in Figs. (S4-S6), which depict the
nonvanishing matrix elements Ωa,b between states with a quasiparticle excitations and b quasiparticle excitations,
where a and b are 0, 2, or 4. The matrix elements connecting the groundstate with two-particle states as well as the
matrix elements that connect two-particle states to two-particle states represent the energetically lowest states where
signatures of braiding of quasiparticles can occur. In fact, from Ω2,2, i.e., the dipole transitions between states with
two quasiparticles, we observe a gap for the topologically trivial phase at s < 0.5, which is closed in the topologically
nontrivial phase s > 0.5. As we elaborate in Secs. IVC3 and V, the closure of the gap in Ω2,2 indicates a change of
the character of an electronic band from particle-like to hole-like. This is a key feature of gapped topological phases
of matter.

IV. ANALYTIC DETAILS AND DISCUSSION

A. Eigenmodes and Eigenenergies

First, we briefly summarize the solution of the Kitaev chain as given by Kitaev in his original paper from 2001, see
Ref. [7] of the main text. The Hamiltonian of the periodic Kitaev chain is

H =
N∑

n=1

[
−wa†n+1an − µa†nan +∆anan+1

]
+ h.c., (S9)

with the hopping amplitude w, the chemical potential 2µ, and the complex superconducting gap parameter ∆ = |∆|eiφ.
Periodic boundary conditions are enforced by aN+1 ≡ a1. The system is gauge invariant under the change of the
superconducting phase φ. The Hamiltonian is diagonalized by the eigenmodes (Bogoliubons)

fk =

{
ei(

π
4 +φ

2 ) cos
(
ϑk

2

)
ãk + e−i(π

4 +φ
2 ) sin

(
ϑk

2

)
ã†−k, if w cos

(
2π
N k
)
+ µ > 0,

−ei(π
4 +φ

2 ) sin
(
ϑk

2

)
ãk + e−i(π

4 +φ
2 ) cos

(
ϑk

2

)
ã†−k, if w cos

(
2π
N k
)
+ µ < 0,

(S10)
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(a) s = 0.01 (b) s = 0.25 (c) s = 0.5

(d) s = 0.75 (e) s = 0.99

FIG. S4. Dipole matrix elements Ω0,2 between the ground state and states with two quasi-particles excitations and energy ϵ2.

(a) s = 0.01 (b) s = 0.25 (c) s = 0.5

(d)s = 0.75 (e) s = 0.99

FIG. S5. Dipole matrix elements Ω2,2 between states with two quasi-particles excitations and energy ϵ1 and ϵ2. Shown are
the projections onto the (ϵ1 + ϵ2) line. The (ϵ1 − ϵ2)-dependence becomes irrelevant for long chains, as inferred by the analytic
calculations. The gap closure in Ω2,2 shown for s = 0.75 and s = 0.99 marks an inversion of the band from particle to hole
character, a key feature of a gapped topological phase, see analytical calculations and Sec. V.

with the Fourier transformed operators ãk = (1/
√
N)
∑N

j=1 exp (2πijk/N) aj and the mixing angle

ϑk = arctan

(
|∆| sin

(
2π
N k
)

w cos
(
2π
N k
)
+ µ

)
. (S11)

The Bogoliubov transformation mixes particle and hole states. We can choose the Bogoliubov transformation to be
orthogonal by gauge fixing φ = −π/4. The diagonalized Hamiltonian reads

H =
N∑

k=1

ϵk

(
f†kfk − 1

2

)
=

N∑
k=1

ϵk
2

(
f†kfk − fkf

†
k

)
, (S12)
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(a1) s = 0.01 (b1)

(a2) s = 0.25 (b2)

(a3) s = 0.5 (b3)

(a4) s = 0.75 (b4)

(a5) s = 0.99 (b5)

FIG. S6. The dipole matrix elements Ωa,b between states with two and four quasiparticle excitations. Each diagram includes
100, 000 uniformly randomly drawn pairs of states at energies ϵ1 and ϵ2 (measured as differences from the ground state energy)
and their corresponding matrix elements. The parameter s takes on the values 0.01, 0.25, 0.5, 0.75, and 0.99 from top to
bottom.
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with the dispersion relation [7] (main text)

ϵk = 2

√(
w cos

(
2π

N
k

)
+ µ

)2

+ |∆|2 sin2
(
2π

N
k

)
. (S13)

Note that for |w| < |µ|, the eigenmodes have either predominantly particle or predominantly hole character depending
on the sign of the chemical potential. For |w| > |µ| and ∆ ̸= 0, there are distinct k-regions with particle and with
hole character. The change from particle to hole character happens at the inversion points 2π

N kinv = arccos
(−µ

w

)
and 2π

N (−kinv) ≡ 2π − 2π
N kinv. These relations distinguish two different gapped electronic topological phases. The

first is called the trivial and the latter the non-trivial phase. At the boundary in parameter space, w = µ, the band
gap closes. In fact, one cannot interpolate between the two phases without closing the band gap. This leads to
zero-energy modes at domain walls between different phases as well as at the ends of an open non-trivial Kitaev chain.
These zero-modes are conjectured to have Majorana character [7] (main text). For the following discussion, we fix
the maximal excitation energy of a single Bogoliubon

Λ := max(ϵk), (S14)

as in the main text.

B. The Dipole Operator

The dipole operator is the sum of the positions of each site times the charge on the same site. For the ring geometry,
its x-component reads

dx = −eR
∑
j

cos

(
2π

N
j

)
a†jaj = −eR

2

∑
k

ã†k+1ãk + h.c.

= −eR
2

∑
k

sgnk

[
(ckck+1 − sksk+1)

(
f†k+1fk + f†kfk+1

)
+ skck+1

(
f†k+1f

†
−k − fk+1f−k

)
+ skck−1

(
f†k−1f

†
−k − fk−1f−k

)]
,

(S15)

where ck = cos
(
ϑk

2

)
, sk = sin

(
ϑk

2

)
and sgnk = sgn

(
w cos

(
2π
N k
)
+ µ

)
. Note that Eq. (S15) does not directly follow

from Eq. (S10) for |w| > |µ| (non-trivial phase). We would rather need to replace the terms that cross the inversion
points. This leads to new terms

eR

[ (
s⌊kinv⌋c⌊kinv⌋+1 + c⌊kinv⌋s⌊kinv⌋+1

)
f†⌊kinv⌋+1f⌊kinv⌋ −

(
s⌊kinv⌋c⌊kinv⌋+1 + c⌊kinv⌋s⌊kinv⌋+1

)
f†⌊−kinv⌋f⌊−kinv⌋−1

+
(
c⌊kinv⌋c⌊kinv⌋+1 − s⌊kinv⌋s⌊kinv⌋+1

) (
f⌊kinv⌋f⌊−kinv⌋−1 + f†⌊kinv⌋+1f

†
⌊−kinv⌋

)]
,

(S16)

where ⌊·⌋ is the floor function giving the largest integer smaller than or equal to the argument. We will not consider
this technical term any further because for large N this term only has an influence on a null set in k-space.

We go to the interaction picture by replacing fj 7→ fj(t) = e−itϵjfj . The time-dependent dipole operator reads

dx(t) = −eR
2

∑
k

sgnk

[
(ckck+1 − sksk+1)

(
eit(ϵk+1−ϵk)f†k+1fk + eit(ϵk−ϵk+1)f†kfk+1

)
+ skck+1

(
eit(ϵk+1+ϵk)f†k+1f

†
−k − e−it(ϵk+1+ϵk)fk+1f−k

)
+ skck−1

(
eit(ϵk−1+ϵk)f†k−1f

†
−k − e−it(ϵk−1+ϵk)fk−1f−k

)]
.

(S17)

Notice that for large N , the coefficients converge to the following functions that can be expressed in simple terms by
the system parameters:

sgnk (skck+1) e
it(ϵk+1+ϵk) −−−−→

N→∞

|∆| sin
(
2π
N k
)

ϵk
ei2ϵkt, (S18)

sgnk (ckck+1 − sksk+1) e
it(ϵk+1−ϵk) −−−−→

N→∞

2w cos
(
2π
N k
)
+ 2µ

ϵk
. (S19)
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The first coefficient corresponds to increasing or decreasing the number of quasiparticles by two. It is the same
(up to a scaling factor ∆) for Hamiltonians with the same band structure. In particular, it will be the same if the
topological phases differ, but the band structures coincide, which can happen, see the main text. The second coefficient
corresponds to transitions in the same quasiparticle sector. Here, it can be seen that the transition dipole moment
has zeroes at the inversion points if and only if the system is in the topologically non-trivial phase. Also notice the
different values of the transition energies. For the transitions between quasiparticle sectors, the transition energy is
2EGap ≤ ϵk+1+ϵk ≤ 2Λ. For transitions within a quasiparticle sector, the transition energy is |ϵk+1 − ϵk| ≤ Λ−EGap,
and goes to zero for large N . We find that the latter contributions appear in the 2D spectra in the main text as
the horizontal peaks. These peaks will have a zero at the energies of the inversion points if and only if the system is
in the topologically non-trivial phase. For intermediate and large ∆, this zero splits the peak continuum along the
horizontal axis in two parts, as can be seen in the main text. For small ∆, the inversion points are at the lower band
edge, so the zero appears at the small frequency end of the horizontal peak continuum. This zero can be identified
by comparing with an absorption spectrum or the peaks on the diagonal of the 2D spectrum.

C. Matrix Elements

Here, we provide explicit expressions for the matrix elements for the transitions from the ground state to the two-
quasiparticle sector and for transitions within the two-quasiparticle sector.

We denote the quasiparticle vacuum and ground state by |Ω⟩ and use the convention |k1, . . . , kn⟩ := fkn · · · · ·fk1 |Ω⟩
for k1 ≤ · · · ≤ kn.

1. Groundstate

The groundstate’s dipole moment vanishes, i.e.,

⟨Ω| dx(t) |Ω⟩ = 0. (S20)

2. Groundstate to 2-particle-States

For the transitions from the groundstate to the two-quasiparticle sector, the transition dipole moments are of the
form

− 2

eR
⟨k1, k2| dx(t) |Ω⟩

=
∑
k

sgnk skck+1e
it(ϵk+1+ϵk) ⟨Ω| fk1fk2f

†
k+1f

†
−k |Ω⟩+

∑
k

sgnk skck−1e
it(ϵk−1+ϵk) ⟨Ω| fk1fk2f

†
k−1f

†
−k |Ω⟩ .

(S21)

The vacuum expectation values are evaluated by Wick contractions, i.e.,

⟨Ω| fk1
fk2

f†k+1f
†
−k |Ω⟩ = ⟨Ω| fk1

fk2
f†k+1f

†
−k |Ω⟩+ ⟨Ω| fk1

fk2
f†k+1f

†
−k |Ω⟩

= −⟨Ω| fk1
f†k+1fk2

f†−k |Ω⟩+ ⟨Ω| fk2
f†k+1fk1

f†−k |Ω⟩
= −δk1,k+1δk2,−k + δk2,k+1δk1,−k ,

(S22)

⟨Ω| fk1
fk2

f†k−1f
†
−k |Ω⟩ = −δk1,k−1δk2,−k + δk2,k−1δk1,−k. (S23)

As a result, we obtain

⟨k1, k2| dx(t) |Ω⟩ =


eR
2 sgnk1

(sk1−1ck1
+ sk1

ck1−1) e
it(ϵk1

+ϵk1−1), if k1 + k2 = 1,
eR
2 sgnk1

(sk1+1ck1 + sk1ck1+1) e
it(ϵk1+1+ϵk1), if k1 + k2 = −1,

0, otherwise.

(S24)

For large N , the only non-vanishing matrix element is

⟨k ± dk,−k| dx(t) |Ω⟩ = sgnk
eRxk

2
√
x2k + 1

ei2ϵkt =
eR|∆| sin

(
2π
N k
)

ϵk
ei2ϵkt, (S25)
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where dk is an infinitesimal shift in momentum space and

xk =
|∆| sin

(
2π
N k
)

w cos
(
2π
N k
)
+ µ

. (S26)

In linear spectroscopy, only the absolute squared of the dipole moment in Eq. (S25) enters. The form of the absorption
spectra are fully determined by the dispersion relation ϵk. If the band structures of two Hamiltonians coincide, they
will give rise to the same absorption spectrum modulo a scaling factor of |∆|2. Hence, the different topological phases
are indistinguishable by linear spectroscopy methods.

3. 2-particle-States to 2-particle-States

Similar as before, the 2-particle to 2-particle transition dipole moments are of the form

− 2

eR
⟨k1, k2| dx(t) |l1, l2⟩

=
∑
k

(ckck+1 − sksk+1)
(
eit(ϵk+1−ϵk) ⟨Ω| fk1

fk2
f†k+1fkf

†
l2
f†l1 |Ω⟩+ eit(ϵk−ϵk+1) ⟨Ω| fk1

fk2
f†kfk+1f

†
l2
f†l1 |Ω⟩

)
,

(S27)

with the vacuum expectation values

⟨Ω| fk1fk2f
†
k+1fkf

†
l2
f†l1 |Ω⟩ = ⟨Ω| fk1

fk2
f†k+1fkf

†
l2
f†l1 |Ω⟩+ ⟨Ω| fk1

fk2
f†k+1fkf

†
l2
f†l1 |Ω⟩

+ ⟨Ω| fk1
fk2

f†k+1fkf
†
l2
f†l1 |Ω⟩+ ⟨Ω| fk1

fk2
f†k+1fkf

†
l2
f†l1 |Ω⟩

=δk1,k+1δk2,l2δk,l1 − δk1,k+1δk2,l1δk,l2 − δk1,l2δk2,k+1δk,l1 + δk1,l1δk2,k+1δk,l2 ,

(S28)

⟨Ω| fk1fk2f
†
kfk+1f

†
l2
f†l1 |Ω⟩ = ⟨Ω| fk1

fk2
f†kfk+1f

†
l2
f†l1 |Ω⟩+ ⟨Ω| fk1

fk2
f†kfk+1f

†
l2
f†l1 |Ω⟩

+ ⟨Ω| fk1
fk2

f†kfk+1f
†
l2
f†l1 |Ω⟩+ ⟨Ω| fk1

fk2
f†kfk+1f

†
l2
f†l1 |Ω⟩

=δk1,kδk2,l2δk+1,l1 − δk1,kδk2,l1δk+1,l2 − δk1,l2δk2,kδk+1,l1 + δk1,l1δk2,kδk+1,l2 .

(S29)

For large N , it is a good and convenient assumption that −k ≪ k ± 1 almost everywhere. Then, the only transition
dipole moments relevant for the 2D spectroscopy are

⟨k1, k2| dx(t) |−k, k ± 1⟩ = −eR
2


(ck1−1ck1 − sk1−1sk1) e

it(ϵk1
−ϵk1−1), if k1 = −k + 1 and k2 = k ± 1,

(ck2−1ck2
− sk2−1sk2

) eit(ϵk2
−ϵk2−1), if k1 = −k and k2 = k + 1± 1,

(ck1ck1+1 − sk1sk1+1) e
it(ϵk1

−ϵk1+1), if k1 = −k − 1 and k2 = k ± 1,

(ck2
ck2+1 − sk2

sk2+1) e
it(ϵk2

−ϵk2+1), if k1 = −k and k2 = k − 1± 1.

(S30)

For large N , the discussion of the dipole moments is analogous to the one at the end of subsection IVB.

4. 2-particle States to 4-particle States

In a similar way, but with increasing combinatorial effort, the transitions from the two-quasiparticle sector to the
four-quasiparticle sector can be obtained. Their effect on the 2D spectra will be similar to what is already discussed
at the end of subsection IVB. Representative numerical values are shown in Fig. S6.

V. IDENTIFICATION OF THE TOPOLOGICAL PHASE

Below, we summarize our findings in Secs. III and IV that are relevant for the interpretation of the 2D spectra shown
in the main text. The only contributions to the four-point correlation functions in Eqs. (S2) to (S5) come from
transitions between the groundstate and two-particle states, from transitions within the two-particle sector, and from
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transitions between the two-particle sector to the four-particle sector. As seen from Figs. S4 and S6, the transition
dipole moments from the ground state to two-particle states and the transition dipole moments from two-particle to
four-particle states show no qualitative difference for Hamiltonians with the same dispersion relation. In fact, they
merely differ by a scaling factor that is the ratio between the supeconducting gap parameters of the two Hamiltonians
|∆′|/|∆| as derived in subsection IVB. We observe in the numerical computations in Figs. S4 and S6 that the scaling
factors are in agreement with |∆′|/|∆| = 99 for s = 0.01 and s′ = 0.99, and |∆′|/|∆| = 3 for s = 0.25 and s′ = 0.75.
This scaling factor is fully determined by the condition that the band structures coincide and the topological phases
differ as seen in Eq. (2) of the main text. Yet, such a scaling factor is not a conclusive signature which characterizes
the topological phases in a unique way. Instead a qualitative difference in the 2D spectra of the topological phases
stems from the transitions within the two-particle sector. For these transitions, we observe differences in Fig. S4, in
particular, a cluster of transitions with close-to-zero dipole moments in the non-trivial phase that is absent in the
trivial phase. We characterize these zeroes by the analytic result in subsection IVB. Eq. (S19) and show that the
two-to-two-particle transition dipole moments are always finite in the trivial phase but cross zero in the non-trivial
phase. The crossing from negative to positive occurs precisely at the inversion points in k-space where the band
changes from a predominantly particle to a predominantly hole band. Hence, these zeroes are a consequence of the
band inversion happening in the non-trivial phase. In the spectra, the transitions within the two-particle sector appear
as low-frequency transitions while the transitions that change the number of quasiparticles must overcome at least
twice the band gap. Therefore, the contributions that are characteristic for a topological phase should appear on the
horizontal of the 2D spectra. There, they section the continuum in two precisely at the energy of the inversion points
as seen in Fig. 1c in the main text. For small ∆, i.e., |∆|2 < w2 −µ2, this energy is found at the lower band edge and
is only identifiable by comparison with linear spectra or the diagonal of the 2D spectrum.

VI. SPECTROSCOPY OPERATOR OF THE RASHBA WIRE

The Kitaev chain is the archetype of one-dimensional topological superconductors. However, it only appears in
nature as a low-energy description of specifically engineered mesoscopic systems that require auxiliary effects such
as proximity-induced superconductivity, spin-orbit coupling and strong magnetic fields. The general form of the
spectroscopy operator given by the projection of the dipole operator onto the low-energy theory is a priori unclear.
In this section, we demonstrate that the spectroscopy operator as given in the main text is the principal contribution
to the spectroscopy operator of a semiconducting wire.

The Rashba wire is conjectured to realize topological superconductivity. It is a semiconducting wire on an s-wave
superconducting substrate with strong spin-orbit coupling and Zeeman splitting due to applied external magnetic
fields. It was first realized in an experiment reported in Ref. [12]. Following the exposition in Ref. [11], we derive its
spectroscopy operator for the low-energy band in the limit of large magnetic fields B. The Hamiltonian of the Rashba
wire is

H =

∫
dx

[(
ψ†
↑x, ψ

†
↓x

)(
−ℏ2∂2x

2m
− µ− iℏu(e · σ)∂x − gµBBz

2
σz

)(
ψ↑x
ψ↓x

)
+ (∆ψ↓xψ↑x + h.c.)

]
, (S31)

where e =
(
ex, ey, 0

)
with e2x + e2y = 1. Further, µ is the chemical potential, u the Dresselhaus/Rashba spin-orbit

coupling strength and σ the vector of Pauli matrices. The spin-singlet pairing ∆ is due to proximity to an s-wave
superconducting substrate. For large magnetic fields, one can project the Hamiltonian onto a single-band model [11].

If gµB |Bz| ≫ µ and gµB |Bz| ≫ |∆|, then ψ↑x ∼ ℏu(ex+iey)
gµB |Bz| ∂xΨx and ψ↓x ∼ Ψx. The low-energy Hamiltonian is

H ∼
∫
dx

[
Ψ†

x

(
−ℏ2∂2x

2m
− µeff

)
Ψx + (∆effΨx∂xΨx + h.c.)

]
, (S32)

with µeff = µ+ gµB |Bz|/2 and

∆eff ≈ ℏu∆
gµB |Bz|

(ex + iey). (S33)

We proceed to express the dipole operator in terms of the field operator Ψx. The dipole operator is

d = −e
∫
dx rx

(
ψ†
↓xψ↓x + ψ†

↑xψ↑x

)
, (S34)
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FIG. S7. (a) Diagonal, (b) counterdiagonal and (c) horizontal sections of the imaginary part of the 2D spectra for the lattice
Hamiltonian of the Rashba wire HLattice(wL, µL,∆L) = HLattice(sΛ/2, (1 − s)Λ/2, sΛ/2) as a function of s in analogy with
Fig. 3 in the main text. The dipole operator is given by Eq. S40 with ∆ = Λ. For each s, the 2D spectra are normalized to
their maximal peak amplitude. The chain length is N = 60. For s < 0.5, the chain is in the trivial phase, and for s > 0.5, the
chain is in the non-trivial phase. Compared to the results for the pure Kitaev model, we observe only little difference. There
is only a slight fading of the high-frequency peaks on the horizontal.

where rx denotes the physical position at x. Here, we consider x to merely parametrize the one-dimensional chain
and not to distinguish any spatial direction. Projecting the dipole operator onto the low-energy band yields

d ∼ −e
∫
dx rxΨ

†
xΨx − 2emu2

ℏ2g2µ2
B |Bz|2

∫
dx rxΨ

†
x

(
−ℏ2∂2x

2m

)
Ψx. (S35)

We can already see here that the principal term is of the same kind as for the dipole operator given in the main text
and the additional hopping term is negligible for sufficiently large B-fields.

In order to compare these results to the results for the Kitaev chain, we need to fit this continuum model to a
lattice model. We arrive at the Kitaev Hamiltonian

HLattice =
N∑

n=1

[
−wLa

†
n+1an − µLa

†
nan +∆Lanan+1

]
+ h.c. (S36)

with the hopping parameter wL, the chemical potential µL and the p-wave pairing term ∆L given by

wL =
ℏ2

2mλ2
, (S37)

µL =
µeff

2
− ℏ2

2mλ2
=
µ

2
+
gµB |Bz|

4
− ℏ2

2mλ2
, (S38)

∆L =
∆eff

λ
=

ℏu∆
λgµB |Bz|

(ex + iey) . (S39)

Here, λ is the lattice constant. We introduce the spin-orbit coupling energy ESOC = ℏu/λ and the Zeeman energy
EZeeman = gµB |Bz|. Within this lattice fit the final spectroscopy operator reads

dLattice = −e
∑
n

rna
†
nan − e

|∆L|2

|∆|2
∑
n

rn

(
a†n+1an + a†nan+1

)
(S40)

= −e
∑
n

rna
†
nan − e

E2
SOC

E2
Zeeman

∑
n

rn

(
a†n+1an + a†nan+1

)
. (S41)

The first term corresponds to the spectroscopy operator in the main text. The additional hopping-like term is
suppressed by the ratio of the spin-orbit coupling to the Zeeman energy squared. Equivalently, the prefactor is given
by the ratio of the p-wave gap in the lattice model to the proximity-induced s-wave gap of the overall wire. In a
typical experimental setup this term is at most of the order of a few percent [12]. Such minor terms are negligible
in nonlinear spectroscopy. To demonstrate the influence of this term, we have repeated the calculation of the 2D
spectra for the same parameters as used for Fig. 3 of the main text. In this setup, the prefactor of the hopping-like
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FIG. S8. Horizontal sections of the 2D spectra of the Kitaev ring in its topological phase for varying degrees of local parametric
disorder, see Eq. S42. (a) The sections are depicted for different disorder strengths increasing from 0% to 100% of the band
gap energy with step sizes of 5%. Each averaged over 100 samples. Even for significant disorder, the peak splitting on the
horizontal remains distinguishable, serving as unique identifier of the topological phase. (b) The disorder strengths α from
50% to 100% of the band gap energy are highlighted. The peak splitting vanishes, ruling out the possibility to identify the
topologically nontrivial phases at large disorder.

contribution varies since we vary ∆L. We choose ∆ = Λ. In the topological phase, i.e., s > 0.5, the prefactor ranges
from 6.25% to 25%. Thus, it is with our intentionally unrealistic choice of ∆ one order of magnitude larger than to
be expected. The result is shown in Fig. S7. We observe no qualitative deviations from the results of the main text.
There is merely a fading of the high-frequency peaks along the horizontal. Yet, the peak splitting remains clearly
visible.

VII. DISORDER

In this section, we want to exemplify the effect of disorder on the characteristic signatures of the 2D spectra
discussed in the main text. Therefore, we add parametric local disorder to the Hamiltonian in the the cases s = 0.25
(trivial phase) and s = 0.75 (topological phase) as depicted in Fig. 1a and c in the main text. We accomplish this
by adding random variables wn, µn and ∆n drawn uniformly from [−1, 1] to each parameter at every site or bond,
respectively.

Hdisorder(w, µ,∆;α) =

N∑
n=1

[
−(w + αwn)a

†
n+1an − (µ+ αµn)a

†
nan + (∆+ α∆n)anan+1

]
+ h.c. (S42)

Here, α quantifies the strength of the disorder. Again, periodic boundary conditions are imposed, i.e., aN+1 = a1.
To determine the influence of disorder on the separation of the horizontal peaks of the 2D spectra, we vary α from
0 to the band gap energy, which is in both cases 0.5Λ and average the results over 100 samples. The results for
the topological and trivial phase are shown in the Supplemental Movies 2 and 3, respectively, where increasing time
corresponds to increasing α. Increasing the disorder strength mostly result in a narrowing of the band gap and in a
peak broadening additional to the method-related initial one. We observe that the signature of the topological phase,
namely the peak-splitting on the horizontal (ω3 = 0) axis of the 2D spectra, remains clearly visible up to values of α
about 30% of the band gap but mostly vanishes at 50% of the band gap energy. Sections of the horizontal peaks in the
2D spectra of the topological are depicted in Fig. S8. For the trivial phase, we only observe the aforementioned generic
consequences of disorder, peak broadening and closure of the excitation gap. As the Supplemental Movies 2 and 3
show, both phases eventually approach the same 2D spectrum for large disorder strengths. The distinction of the two
phases by the splitting of the horizontal peaks remains possible until a disorder strength of at least 30%, as shown in
Figs. S8 and S9. We hence conclude that the described method of identifying one-dimensional superconductivity by
unique features in the 2D spectra, remains viable up to significant parametric disorder.
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FIG. S9. Horizontal sections of the 2D spectra of the Kitaev ring in its trivial phase for varying degrees of local parametric
disorder, see Eq. S42. (a) The sections are depicted for different disorder strengths increasing from 0% to 100% of the band
gap energy with step sizes of 5%. Each averaged over 100 samples. (b) The disorder strengths α from 50% to 100% of the band
gap energy are highlighted. The increasing disorder strength mostly causes peak broadening and the closure of the band gap.
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