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Abstract

An important topic in the study of segregation are comparisons across space
and time. This article extends current approaches in segregation measure-
ment by presenting a five-term decomposition procedure that can be used to
understand more clearly why segregation has changed or differs between
two comparison points. Two of the five terms account for differences in
segregation that are due to the differing marginal distributions (e.g., the
gender and occupational distributions), while one term accounts for differ-
ences in segregation due the different structure of segregation (what might
be termed “pure” segregation). The decomposition thus presents a solution
to the problem of margin dependency, frequently discussed in the segrega-
tion literature. Finally, two terms account for the appearance or dis-
appearance of units when analyzing change over time. The method can be
further extended to attribute structural changes to individual units, which
makes it possible, for instance, to quantify the effect of each occupation on
changing gender* segregation. The practical advantages of the decomposition
are illustrated by two examples: a study of changing occupational gender
segregation in the United States and a study of changing residential segre-
gation in Brooklyn, New York.
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Studies of segregation are concerned with a variety of substantive problems.
Social scientists are interested in residential racial segregation, in the racial
or class-based segregation of schools and workplaces, or the gender segrega-
tion of occupations. More generally, any study of the association between
two categorical variables can be regarded as a segregation problem. Segre-
gation is usually studied by applying a segregation index to a contingency
table, which provides a one-number summary of the association between, for
instance, gender and occupations.

Often, the interest in the study of a segregation problem lies not only in
describing segregation at one point in time or in one place but in comparing
levels of segregation over time, across countries or cities, or between pop-
ulation groups. For instance, in the school segregation literature, there is a
debate about the resegregation of schools along racial lines (Reardon and
Owens 2014). The workplace segregation literature documented a decrease
in within-workplace racial segregation levels but a decrease in between-
workplace segregation (Ferguson and Koning 2018). The gender-
occupational literature is interested not only in comparing segregation over
time within a single country but also across regional or national economies
(e.g., Charles and Grusky 2004). When comparing across time, the message
of segregation studies is often that segregation has either increased or
decreased, but the deeper causes for these differences often remain unclear.
The contribution of this article is to provide a general and practical method
for the study of change or difference in segregation (hereafter abbreviated as
“change” when this doesn’t create confusion). The method developed here
brings practical advantages to many segregation problems, and proposes a
solution to the long-standing problem of margin dependency:

1. Among the practical advantages, the method allows an analysis of
where differences in segregation originate. For instance, we might
ask whether declining occupational gender segregation arises from
manual or professional occupations or whether the declines in segre-
gation are associated with changes in the educational composition of
certain occupations. In school or residential segregation, it would be
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of interest to know which schools or neighborhoods contribute most
to changes in segregation. This is especially relevant when consider-
ing different types of schools such as charter or private schools.
Relatedly, one may study the association between gentrification and
segregation at the neighborhood level.

The method also allows for a change in the number of units under
study. This problem arises naturally in the study of school segrega-
tion: When comparing school segregation across two points in time,
some schools will have closed and new ones will have opened. The
problem may also occur with occupational segregation: Over time,
some occupations will become obsolete and vanish, while new occu-
pations appear. The method developed here allows the researcher to
quantify the effect of these “appearing” and “disappearing” units on
the total change in segregation. While this seems a natural question, it
has only received scant attention in the segregation literature. An
exception is Ferguson and Koning (2018) who studied the effect of
firm turnover on workplace segregation.

Finally, the method provides a solution to the problem of margin depen-
dency. Taking again occupational gender segregation as an example, it
is intuitively clear that some of the declines in gender segregation of
recent decades may be due to compositional changes. Deindustrializa-
tion has led to declines in factory jobs and a decrease in the share of
manual and routine occupations, which have often been almost entirely
male (Weeden 2004). If these occupations are still as segregated as they
were before, and only their relative share has declined, this will register
as a decrease in (most) segregation indices. Thus, it would be desirable
to distinguish between these changes, which are referred to as marginal
changes (because the change is reflected in the marginal row or column
sums of the contingency table), from changes in “pure segregation.” A
major part of the article will elaborate on this distinction and on the exact
meaning of “pure segregation.”

The methodological literature on segregation indices has engaged mostly
with point (3), the margin dependency of segregation indices, while the useful
innovations described in points (1) and (2) have received almost no attention.
The method described in this paper proposes a solution to the margin depen-
dency problem that can be summarized as follows: Margin dependency is
desirable in the cross-section to characterize the “average” level of segregation
an individual experiences but is problematic when comparing levels of segre-
gation across time or space. The solution, as first proposed by Karmel and
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Maclachlan (1988), is to decompose the difference into terms that distinguish
changes that are introduced because of changes in the marginal distributions
alone from changes in “pure segregation.” The latter will be called “structural
change” throughout the article. Combining this idea with the desired properties
of (1) and (2), we arrive at a five-term decomposition:

S(tz) - S(tl) = Aappearing + Adisappearing + Amarginalfunits

+ Amarginalf groups + Ai.structural )
uct;Nt

where S(-) refers to the value of the segregation index at different points in
time. The equation then says that we decompose the difference in segregation
between two time points (or across population groups, places) into two terms
that account for the appearance and disappearance of units under study (think
school openings and school closures), two terms that account for composi-
tional changes (the marginal distributions), both in terms of units (say,
schools) and groups (say, racial groups). The last term is a summation that
extends over those units that are present at both time points and describes the
change in structural (or “pure”) segregation that arises from each unit.

Thus, the decomposition opens up new avenues of research for scholars
working on segregation problems. Its primary advantage is that it allows for a
much more precise statement about the nature of change: We can pinpoint
whether the segregation change is due to a change in the population of units,
due to marginal change, or due to structural change. We can further drill
down to study whether the structural change is concentrated in a certain set of
units that are of special interest (say, charter schools). It should also be noted
that the total change in segregation could be zero, but that some of the
components are nonzero. In this case, some positive components would be
offset by negative components. The decomposition of change could thus
reveal previously obscured patterns such as an increase in “pure segregation”
that is offset by declines due to marginal changes. (Such offsetting patterns
are explored in the examples at the end of the article.)

The remainder of the article is organized as follows: In the next section,
the issue of margin dependency and the possible solutions that have been
presented in the literature are discussed. None of these solutions are deemed
satisfactory. It is then argued that the only index that can fully achieve the
desired five-term decomposition is the M index. This index, extensively
discussed by Mora and Ruiz-Castillo (2003, 2009, 2011), is not as widely
used as the closely related H index but has many desirable properties. Next,
the decomposition procedure is introduced. Finally, the practical advantages
of the method are shown through two examples: changing occupational
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gender segregation in the United States and changing residential segregation
in Brooklyn, New York.

All procedures discussed in this article have been implemented in an R
package. “This includes the calculation of the M and H indices, as well as the
decomposition procedure. Standard errors can be bootstrapped for both the
index calculation and the decomposition procedure. Examples on how to use
the package are given in Online Appendix C (which can be found at http://
smr.sagepub.com/supplemental/).

The Problems and Benefits of Margin Dependency

To make the following more concrete, consider U organizational units, such
as schools or occupations, and a number of population groups, G, such as
racial groups or genders. For an occupational segregation problem, the
number of workers in each occupation—gender combination can be cross-
classified ina U x G contingency table. A segregation index S(-) is a function
that summarizes the U x G contingency table to a single number. Without loss
of generality, occupational gender segregation will be used as an example for
the remainder of the article.

Margin dependency refers to the property of some segregation indices that
proportional changes in the marginal distributions of the contingency table
lead to a change in the index value. To illustrate, consider a simplified
economy with three occupations and two genders. At time point 1, there are
55 men and 45 women distributed across occupations in a way that the first
occupation is integrated, while the other two are rather segregated. This
matrix is shown at the left-hand sides of the arrows, with men in the first
and women in the second column:

[25 257 [20 207
|28 2| — |28 2|,
|2 18] | 4 36
[25 25] (25 507
n:|28 2| — 6:|28 4.
| 2 18] |2 36]

Consider then two alternative scenarios. In the first scenario (top), the size
of the first, integrated occupation decreases by 20 percent, and the third
occupation (which is very segregated) doubles. Note that it is not possible
under these transformations to keep the overall gender proportion constant
without changing the internal proportion of the remaining occupation. In the
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Table 1. Margin Dependency of Different Indices.

Unit (e.g., Occupation)

Margin Dependent Margin Free

Group (e.g., Gender) Margin dependent M, H,V SSD
Margin free D A

Source: Adapted from Charles and Grusky (1995:934).

second scenario (bottom), the size of the female labor force doubles, with the
numbers for men unchanged. An index that changes its value under the first
transformation is called unit-margin-dependent, while an index that changes
its value under the second transformation is called group-margin-dependent.
A margin-free index, by definition, does not change under either of these
processes. An overview of prominent indices is displayed in Table 1.

The entropy-based, information-theoretic indices M and H are margin-
dependent for both groups and units. This is also true for the variance ratio
index V (also known as separation or eta-squared index). Other indices, such
as the index of dissimilarity D, are only margin-dependent in terms of the
unit distribution. The size-standardized index of dissimilarity SSD is group-
margin-dependent only,' and only the log-linear index A is margin-free in
both dimensions.

The reader might be surprised to find the H index among the group-
dependent indices. The margin dependency of the H index is often not
explicitly considered in empirical studies although this fact is known at least
since James and Taeuber (1985). For instance, An and Gamoran (2009:20)
write that they “use a measure [the H] that is insensitive to changes in the
U.S. school population, thereby concentrating solely on racial imbalance.”
This, however, is not entirely true. While the H index involves a term that
partly accounts for changes in group marginals, the standardization is not
complete (for a formal proof, see Mora and Ruiz-Castillo 2011). We thus
emphasize here that the H is margin-dependent in both directions.

Often, margin dependency is considered problematic, and the segregation
literature has devoted considerable effort to solving this problem. The prob-
lem stems from the assumption that marginal changes often reflect processes
that are thought to be unrelated to the deeper, structural causes of segrega-
tion. For instance, deindustrialization (changing occupation marginals) or a
rising share of female employment (changing group marginals) should only
lead to changes in segregation if the structure of segregation changed. If the
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changes are in the margins only, arguments about “rising” or “decreasing”
segregation may not be warranted.
The major solutions to the problem are discussed in turn:

1. A series of papers by Charles and Grusky (Charles 1992; Charles and
Grusky 1995; Grusky and Charles 1998) introduced the 4 index. The

A index is based on the insight that a measure of segregation that is
invariant to row or column transformations needs to be based on
odds ratios. For instance, two local odds ratios are sufficient to
describe the association structure of a 3 x 2 table (as in the example
above). If we let n; denote the number of workers in the ith row
nno n1n32

and jth column, the two odds ratios are 6, ; = v and 0, = e

(Agresti 2013:54). It is easy to verify that these odds ratios are
identical for all three matrices #,, t,, and £, which is to say that
the association structure between occupations and gender does not
change from ¢, to #, or from #; to £;. This is the same argument that
is made in favor of log-linear modeling in the study of social
mobility.

Essentially, the 4 index calculates the odds ratio of male and female
employment within each occupation and is then summarized by weighting
all occupation-specific ratios equally. The resulting index measures only the
level of association as captured by the odds ratios and is not influenced by
changes in the marginal distribution of either occupations or genders. Note
that the index achieves its unit-margin-independence by simply weighting all
occupations equally. The index is thus more a characterization of the segre-
gation of the average occupation and not a measure of average segregation at
the individual level. Especially if the sizes of occupations differ greatly, the
index is problematic (see also the exchange between Watts [1998] and
Grusky and Charles [1998]). The index thus seems even less applicable when
school or residential segregation is studied.

Another way to phrase this problem is that the 4 index conflicts with the
criterion of organizational equivalence. Organizational equivalence implies
that when two occupations with the same level of segregation are combined,
segregation should be unchanged (James and Taeuber 1985). This criterion is
not fulfilled when occupations are weighted equally and the segregation level
of the other, uncombined occupations differ from the two occupations that
are combined. This shows that the discussion about the merits of margin-free
versus margin-dependent indices cannot be resolved because the two indices
pursue goals that are not compatible.
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2. Karmel and Maclachlan (1988) propose a decomposition that is very
similar to the one developed in this article. Their approach is based on
creating counterfactual contingency tables that account only for the
effects of marginal and structural changes, respectively. This is done
using iterative proportional fitting (IPF), which will be explained
below. The counterfactual tables can then be used to disentangle mar-
ginal from structural changes. A downside of their approach is that the
decomposition contains an interaction effect between the two marginal
dimensions, which is hard to interpret. They also do not address the
problem of appearing and disappearing units. The largest disadvantage
of their method is the choice of index, which they call /,,, and which is
not decomposable in terms of units or groups.

3. Mora and Ruiz-Castillo (2009) presented two formulas that supposedly
quantify structural and compositional change between two M indices.
With a slightly adapted notation, the difference between two M indices,
defined by the matrices #; and ¢,, is decomposed as follows:

M () — M(r) = AN(IT") + AG* + AU(IT") (1)
= AN(T1,) + AU, + AG(I1,),

where the AU and AG capture changes in the marginals of unit and group
proportions, respectively, and AN captures “composition—invariant”
changes, which, importantly, are not the same as structural changes defined
through the change in odds ratios. As the authors themselves write, the
interpretation of these terms hinges on crucial assumptions that are rarely
met in practice (Watts 2015; Mora and Ruiz-Castillo 2009:47-50). For rea-
sons of brevity, these problems are not explicated fully here. Instead, an
especially problematic aspect of these decompositions is highlighted, and
that is that there are two possible answers for each of the three components,
which might provide conflicting interpretations. The decompositions on the
first and the second line will only in exceptional circumstances give the same
numerical results. This is easily seen by applying equation (1) to the differ-
ence between ¢, and ¢, from the example above:

M(ty) — M(t;) = 0+ 0.00376 + 0.0267
= —0.0209 + 0.0479 + 0.00346 = 0.03.

The first decomposition implies that structural change is zero and further
suggests that the marginal change in the occupational distribution is largely
responsible for the increase in segregation, which aligns with our
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expectations. However, the second line gives a contradictory answer, imply-
ing that structural segregation decreased (—0.0209). Furthermore, the size of
the marginal components is not the same in the two decompositions. Even if
the assumptions that underlie these decompositions were justified in practice
(which is questionable), the fact that the two decompositions give two pos-
sibly contradictory answers is unsatisfactory and poses practical problems of
interpretation. The issue here is that these decompositions are not based on
the notion that only the odds ratios are invariant under row and column
transformations. Finally, their decomposition also does not address the prob-
lem of appearing and disappearing units, which means that only the common
subset of units can be decomposed.

The method developed in this article is based on the idea that margin
dependency (especially in terms of units) is a desirable property in the cross-
section. Consistent with the idea that we want to measure average segrega-
tion at the individual level, it is reasonable to argue that a segregation index
should be higher when more people work in segregated occupations. If
occupations are weighted equally, this is not the case. At the same time,
we would also like to distinguish changes that are purely due to composition
(marginal changes) from changes in pure segregation (structural changes).
To illustrate this point, consider that two processes occur at the same time:
The occupations that are more segregated grow at the expense of less-
segregated occupations, while at the same time segregation within each
occupation declines. The overall change in segregation will be positive if
the first process leads to a greater change than the second process. If attention
is only paid to the total difference, the conclusion will be that segregation has
become “worse” (which is a warranted statement, at least for the average
worker). However, the statement is also imprecise because the segregation of
each individual occupation has in fact decreased. The decomposition of
change into the two components thus allows the researcher to pinpoint more
clearly the sources of segregation change. Importantly, the prevalence and
direction of the two trends may call for different policy responses.

Thus, the article advocates for an approach that uses a margin-dependent
index in the cross-section, which is then decomposed when we compare over
time or across places. The proposed solution combines and expands the
approaches (1)—(3) discussed above. Charles and Grusky provide the key
insight that any structural changes are reflected in the odds ratios and that
these are the only measures of association that are invariant under marginal
transformations. Karmel and Maclachlan use IPF to arrive at counterfactual
tables. Finally, Mora and Ruiz-Castillo’s contributions highlighted the
advantages of the entropy-based index M, which will be adopted below.
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The Choice of Index

Recently, the H has become increasingly popular for the study of racial
segregation, which is most likely due to two distinct advantages. First, the
H allows for attractive decompositions. Second, the H allows for a natural
treatment of the multigroup case, which has become increasingly important
for the study of racial segregation in the United States and is a natural
requirement in other segregation problems. In their comprehensive overview
of multigroup segregation indices, Reardon and Firebaugh (2002) conclude
“that the information theory index H is the most conceptually and mathema-
tically satisfactory index” (p. 33).

In a recent series of papers, Mora and Ruiz-Castillo (2003, 2009, 2011)
pointed to an alternative but closely related index, which they called the
Mutual Information Index (M). Both the M and H were introduced by Theil
(Theil 1967, 1971, 1972; Theil and Finizza 1971). Mora and Ruiz-Castillo, as
well as Frankel and Volij (2011), outlined some of the advantages of the M
over the H. Importantly, Mora and Ruiz-Castillo (2011) showed that the
decomposition of an H index into between- and within-group terms (for
instance, white/nonwhite) may be ambiguous, and they thus recommend the
adoption of the M if such decompositions are desired.’

To define H and M, assume that we observe the gender composition of U
occupations. Define ng, as the number of workers with gender g in occupa-
tion u and the total number of workers as n. From this contingency table,
define p, = chzlngu /n and pg. = fozlngu /n as the marginal probabilities
of occupations and gender, respectively. The joint probability of being in
occupation u and gender g is pg, = ng, /n. We also write pgj, = pgu/p.. as the
conditional probability of having gender g given occupation u (and p,,
likewise).

The M index quantifies how strongly each occupation’s gender distribu-
tion deviates from the overall (or expected) gender distribution. This yields a
“local” segregation score for each occupation, called L,. The occupation
scores are then weighted by the size of the occupation, p.,. To measure the
deviation, the logarithm of the ratio between conditional and marginal prob-
abilities is used. As Theil (1972) has shown, the logarithm allows for the
attractive decomposition properties. Thus,

) : (2)

M =2 pulu=) pu (Zpgulogpg”
u u g :

Pg
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Because the M is symmetric, it can also defined by summing proportion-
weighted scores for each gender, that is,

M= Zpg'Lg = Zpg' <Zpulg1°gpug>' 3)

Pu

The simple expressions for the M, that is,
M = E puL, = E PeLyg,
u g

show that the M is symmetric (i.e., the meaning of groups and units can be
exchanged) and that the M is margin-dependent in both directions. From the
standpoint of decomposing changes in segregation, this is an attractive
property.

The M can also be motivated from an information-theoretic perspective,
which is helpful to understand its basic properties. First, define the entropy
E(-) of a distribution as

E(p) = *Zp;log pi,

where p is a vector of probabilities that sums to 1. Entropy is a nonnegative
measure of expected information or uncertainty (Theil 1972). Consider two
events that occur with probabilities .99 and .01. The expected information of
the next observation from this distribution is close to zero, that is,
E(].99,.01]) = .06, as we were virtually certain that the first event would
occur. However, for two events that will occur with a probability of 5 each,
the expected information is large, that is, E([.5,.5]) = log 2 ~ .69. The
entropy is maximized at log » when the probability of each event is 1/n,
where 7 is the number of events. Intuitively, the entropy is minimized at zero
when it is certain which event will occur.

To define M from this perspective, we ask: How much more information
does the overall distribution provide compared with the gender distribution
of a specific occupation? Formally, this is the difference in entropies at the
occupation level, weighted by the occupation’s proportion:

M =3 pu[Ek,) — Eby.)]. @)

where p, refers to the relevant vector of probabilities. Due to the symmetry
of the M, this expression can also be formulated from the gender perspective:
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M= [E(.) — Epy)]- (5)

It follows that M is minimized at zero when the gender distribution of each
occupation is identical to the overall gender distribution. M is maximized at
min({logU,logG}). To see this, note that equation (4) is maximized when
the entropy £(p,.) is maximized, and the entropy £(p,,) for each occupation
is minimized. This is the case when each gender has the same overall pro-
portion and when each occupation is either completely male or completely
female.

It may seem odd that a segregation index can only be maximized when all
groups are the same size, but it is in line with information-theoretic princi-
ples. This point will become clearer with an example. Consider two labor
markets 4 and B with 200 workers each, and only three occupations. The
labor markets differ in their gender distributions. Labor market 4 has 100
women and 100 men, while B has 20 women and 180 men. The workers are
distributed as follows, with the occupations indexed by the rows of the
matrix:

women men women men
100 0 20 0

A 0 50 B: 0 90
0 50 0 90

In both labor markets, all three occupations are completely segregated in
the sense that there is no mixing within occupations. For these matrices,
M(A4) =0.69 and M(B) = 0.33. The M index thus finds that segregation
in A4 is twice as high as in B. This suggests to standardize the M index by
the gender entropy, which gives the H index:

M
E(p,.)

For the two cities, it follows that H(4) = H(B) = 1. The H is attractive
because it is standardized between zero and one,® which facilitates compar-
isons between two cities with differing gender distributions. Nonetheless,
there is an argument to be made for the M index. While the H index sees the
amount of segregation as equal between the two cities, the M takes into
account that it is much “harder” in A4 to achieve complete segregation than

it is in B: Given that in B 90 percent of the workers are men, it is less
surprising to find an all-men occupation in B than it is in 4.
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The Decomposition of Change
Generating Counterfactuals Through IPF

Instead of attempting the margin-free measurement of segregation at each point
in time, the approach outlined here follows the idea that changes in segregation
indices can be decomposed into marginal and structural changes (Watts 1998;
Mora and Ruiz-Castillo 2009; Watts 2015). This method was proposed by Theil
himself (Theil 1972:131) and was extended by Karmel and Maclachlan (1988)
in the context of occupational gender segregation. Karmel and Maclachlan used
another segregation index, but the approach is applicable whenever a margin-
free comparison of two contingency tables is desired.

The basic idea is to adjust the contingency table from time point #;
forward so that only marginal changes between the two time points are
taken into account. Consider a labor market with men and women distrib-
uted across three occupations. We observe the labor market at two points in
time. Between these two time points, the number of men has grown and the
number of women has declined. At the same time, occupations have chan-
ged in size, with especially strong declines in the third occupation. The
question is: If there are changes in segregation, how much of these changes
can be attributed to changes in the distribution of gender and occupation
marginals alone, and how much of the change can be attributed to changes
in the odds ratios?

At the two time points, the workers are distributed across occupations as
follows:

women men women men
Lo 20 100 (| 10 170
1180 50 | 2| 80 60
600 50 240 40

Both the M and the H register large changes in segregation: The M
increases by over 80 percent between #; and t,, while the H increases by
33 percent. To identify how much of this change is due to marginal changes,
the matrix at #, is transformed to have the same margins as #,, while leaving
the association structure (i.e., the odds ratios) intact. This can be achieved
using IPF: First, the cells of #; are scaled to achieve the overall gender
marginal distribution of z,. The adjusted cell counts are then scaled to achieve
the marginal occupation distribution of #,. This process is repeated until the
margins of the adjusted table are within a small percentage of #,. The first
steps of the procedure are shown here:
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20 100 20 x 330/800 100 x 270/200
180 50 = | 180 x 330/800 50 x 270,/200
600 50 600 x 330/800 50 x 270/200
[ 83 135 8.3 x 180/144.4 135 x 180/144.3
=743 675 = | 74.3 x 140/141.8 67.5 x 140/141.8
| 248 67.5 248 x 280/315.5 67.5 x 280/315.5
[ 103 168.4] [ 10.3 x 330/303.8  168.4 x 270/294.9 ]
=734 66.6 = | 73.4 x330/303.8  66.6 x 270/294.9
[220.1 599 | | 220.1 x 330/303.8  59.9 x 270/294.9 |
[11.2 154.2] [ 11.2 x 180/165.4  154.2 x 180/165.4 ]
= 1| 79.7 61 = | 79.7 x 140/140.8 61 x 140/140.8
239.1  54.8 | | 239.1 x 280/293.9  54.8 x 280/293.9 |
(122 167.8]
=792 60.7 = ...(10 steps omitted)
(2278 522 |
[13.7 166
= 1835 565 =1,
| 233 473

The transformations at rows 1 and 3 adjust the gender marginal, while the
transformations at rows 2 and 4 adjust the occupation marginals. It is unim-
portant whether the procedure starts with the group or the unit marginals; it
will always converge (for details on IPF, see Deming and Stephan 1940;
Agresti 2013).* After four steps, both margins are already within 3-4 percent
of the desired marginals. After 14 steps, the procedure yields the matrix
shown in the last row, where the marginals are within 0.1 percent of the
desired marginals. The resulting matrix ¢{ is a counterfactual version of the 7,
matrix, where only the marginals changed in the direction empirically
observed in #,, but the odds ratios are the same as in #;. This allows a
decomposition of overall change in segregation levels as follows:

structural marginal
M(t2) = M(t) = M(2) — M(t'1) + M(t") — M(t1) (6)
= (0.273 — 0.238) + (0.238 — 0.150)

=0.035+0.088 = 0.123.

The “marginal” component quantifies how much we would expect seg-
regation to change given that the marginals changed toward those of #,. The
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“structural” component quantifies any additional amount of segregation that
is unexplained by marginal changes. To understand the behavior of the
decomposition, it is useful to consider the two extreme cases of “structural
change only” and “marginal change only.” Considering ¢, it is possible to
construct an alternative matrix that redistributes the workers across occupa-
tions in such a way that the marginals will stay the same (e.g., by distributing
50 workers from occupation 1 to the other two occupations, and moving the
same number of women to occupation 1). A decomposition of these two
matrices will find that marginal change is zero because the IPF procedure
converges immediately without changing any cell counts. Thus, the marginal
term of equation (6) would compare identical matrices, and the difference
would be zero—as desired. Similarly, it is also possible to construct a matrix
where simply the number of, say, women doubled. In this case, the IPF
procedure scales the margins in exactly this way, which means that the
structural term of equation (6) compares identical matrices, and we again
obtain the desired result.

One criticism that can be leveled against this decomposition is that the
choice of #; as the baseline is somewhat arbitrary, especially if the matrices
are not compared over time, but across space or, say, across birth cohorts.
The results are similar but not identical when we instead choose #, as the
baseline and apply the IPF procedure to this matrix:

structural marginal

M(tz) —M(tl) = M([lz) —M(t1) +M(tz) —M(Ilz)
=0.026 + 0.097 = 0.123.

In decomposition analysis, this is known as the path dependency problem
(Kitagawa 1955; Fortin, Lemieux, and Firpo 2011), where the results of the
decomposition are dependent on the order in which elements are eliminated.
As proposed by Shorrocks (2013), the solution to this problem is the Shapley
decomposition, which considers all possible ways in which an element can be
eliminated. In this case, the decomposition results in a simple averaging of
the two scenarios (Deutsch, Fliickiger, and Silber 2009):

Amnarginal
M(1) = M(n) = 3 (M(ts) = M(12)) + 3 (M(th) = M(n)
7
3 (M(12) = M)+ (M () = M(n)) 7

Astructural
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For the example, this is

M) — M(t1) = £(0.097 + 0.088) + % (0.035 + 0.026)

N | —

Amurginal As&ruclum]

=0.092 +0.031 = 0.123.

From this decomposition, we conclude that marginal changes are respon-
sible for about three quarters of the overall change in the M, while structural
changes account for only a quarter of the increase. Compared to segregation
indices that focus on structure only (i.e., odds ratios), the procedure intro-
duced here quantifies the effects of both marginal and structural changes. It
will be argued below that marginal changes are often an important part of
segregation processes and that it is therefore not always desirable to “purge”
the influence of the marginal distributions.

This aggregate view of segregation differences can be further decom-
posed. The key property that is exploited here is that in the marginal com-
ponent, the odds ratios are the same, and that in the structural component, the
marginal distributions of units and groups are the same.

Decomposing Marginal Changes Further

The marginal change can be further subdivided into two components: One
component quantifies the contribution of changing unit marginals and one
quantifies the contribution of changing group marginals. Karmel and Macla-
chlan proposed a simpler decomposition that includes an interaction term,
but the Shapley decomposition can be used to quantify the contributions of
either margins without an interaction term. A full proof of this strategy is
provided by Deutsch et al. (2009), and we will present here the intuitive
understanding of this decomposition. Again, we consider all the ways in
which either marginal component can be eliminated. For this, we need to
consider all possible combinations between unit marginals, group marginals,
and odds ratios from both #; and #,. As a shorthand notation, we will write
M(U;G;0) to identify the M that is calculated based on the unit (row)
marginals from U, the group (column) marginals from G, and the odds ratios
from O. For instance, M (t;) = M (t;t1;11) and M(¢'1) = M(t2; 12; t1). Given
all possible combinations, there are eight unique matrices, including the two
unaltered ones. This decomposition thus requires six distinct IPF procedures.
For instance, to arrive at M(¢; t,; 1), the matrix ¢, has to be adjusted toward
the column marginals of #, while retaining its original #; row marginals. The
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decomposition then relies on averaging all possible elimination strategies. To
quantify the effect of marginal change in the rows, there are four possible
elimination strategies:

1 1
Amarginal—units = Z(M(fz;tl;fl) —M(t;;t;1)) +Z(M(12;t2;t1) —M(t1;2;11))
1 1
+Z(M(fz;fz;f2) - M(ti;12512)) +Z(M(fz;ll;tz) —M(t1;1312)).

(®)

Note that within each subtraction, only the row margins are changed, with
the other two factors held constant. Similarly, for the columns:

1 1
Ararginal—groups = Z(M(ll; bity) —M(t;t;0)) + Z(M(lz; bit)) — M(ty; 15 11))
1 1
+Z(M(t2;t2;t2) — M(tr; 115 12)) +Z(M(t1;tz;tz) —M(t;;t51)).

©)

Slmple algebra shows that Amarginallfunits + Amarginalfgrou}')s = Amarginall~
Applying this decomposition to the example above, we get:

Amarginal = Aunits + Agroups
=0.082 4 0.01 = 0.092.

Among the changes in the marginals, the shift in the unit marginals was
much more important for the increase in segregation than the shifting gender
distribution, despite the large changes.

Decomposing Structural Changes Further

Usually, structural change is of greater interest than marginal change. The
term for the structural component admits two straightforward decomposi-
tions based on local segregation scores. These decompositions were not
exploited by Karmel and Maclachlan (1988) or others because their index
did not admit disaggregation by local segregation scores. The key property
that these decompositions exploit is that p2 = p'1, P = pf; , P =p'2, and

Pl = pf;, that is, the equivalence of the margins. We can thus write:
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Table 2. Decomposition of Structural Changes Into Contributions of Each
Occupation.

Proportion Observed Counterfactual
Occupation Weighted Difference
u tlu 3‘21 L, (t|) L, (t2) L, (IIZ) L, (t,l ) Ay structural
I 2300 928 573 1.056 515 0l6
2 23 233 .00 .00 0.003 .004 .000
3 .65 467 059 216 0.075 177 014

Astru(:tural — %(M(Q) - M(tll)) + % (M(t/Z) - M(tl))

SPAIL() = Lu(t0)] 4 3P4IL0) — L)) | (10)

I
M=

u=1

I
M=

Au, structural »
1

s
Il

where L, (X) refers to the local segregation score for unit # in matrix X. The
difference in structural segregation can thus be attributed solely to differ-
ences in the conditional probabilities, holding the marginals constant.
Clearly, this decomposition is only possible because the M can be expressed
as the weighted average of local scores. In the example, the decomposition
results in three terms, one for each occupation. Table 2 shows the results for
the detailed structural decomposition. Occupation one and three are respon-
sible for the increase in structural segregation, while in occupation 2, local
segregation is low and almost unchanged. In more realistic settings with a
greater number of units, the local segregation scores could now also be
grouped by occupational major group or another characteristic (e.g., wage
levels of occupations), if individual occupations are not of much interest. The
sources of an increase or decrease in structural segregation, net of any mar-
ginal confounding, can thus be precisely understood.

Appearance and Disappearance of Units

Until now, we assumed that at both points in time, all units and groups have
nonzero counts. However, this assumption is often not met in practice. In the
case of school segregation, schools may have closed down and new schools
may have opened. In the case of occupational segregation, some occupations
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may have vanished and new occupations have become established. Capita-
lizing on the decomposition properties of the M, the approach used here can
be extended to account for the effects of adding or removing units and
groups.

Assume the simple case that in a labor market of five occupations, two
occupations become obsolete:

5 15

15 5 8 23
ti:10 10| —t: |23 8

5 15 19 19

15 5

In this scenario, the workers from the vanished occupations were distrib-
uted across the remaining occupations, so that there are still 50 men and
women each. Between #; and #,, the M declines from 0.105 to 0.076. Is this
purely an effect of the workers being redistributed? Or were the occupations
that vanished more segregated than the occupations that remained.

To answer this question, define the set S = {1,2,3} for the three remain-
ing occupations, and D = {4, 5} for the occupations that vanish. The sets S
and D define “super-units” that are composed of individual units, and the
share pp, is the proportion of workers in set D at #. The goal is to decompose
M(t)) into the contribution of the occupations that vanish and those that
continue to exist, which can be done using the general form of the
between-within decomposition of M (Mora and Ruiz-Castillo 2011). Total
segregation thus equals the between-super-unit M plus the weighted M within
the two matrices defined by the two super-units, that is,

5 15
5 15
Mt)= M 2030 +ppM + (I =pp)M| 15 5
20 20 15 5 10 10
—_———— —_———
between vanished/remaining within vanished —

within remaining

Then solve for the last M term, which we call M*:

5 15
wurn(f £) gl (2 ) (s )]
10 10) L-pp

[0.105— 0 — 0.4 x 0.131]

=0.087 = —
0.6
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This expression summarizes the mechanical effect of dropping occupa-
tions on the M index. To arrive at the “reduced M” on the left-hand side, we
subtract from M all the sources of segregation that are due to the vanished
occupations only, which consists of a “between” and a “within” term. The
between term summarizes how strongly the gender composition of the van-
ished occupations deviates from the remaining occupations, in total, while
the within term summarizes how much segregation there is within the van-
ished occupations. The division by 1 — pp has the effect of scaling the other
occupations’ proportions upward.’

M*(#;) will be larger than M (#;) when the occupations that vanish were
less segregated compared to the remaining occupations and will be smaller in
the opposite case. In this case, removing occupations 4 and 5 from #, reduces
the M from M (#;) = 0.105 to M*(#;) = 0.087. The “reduced M” can now be
compared to the situation at ¢, using the regular IPF method. The approach
outlined here thus amounts simply to a comparison of only those units that
overlap across time points. However, an advantage of the M, which neither
the H nor other indices have, is that there is an intuitive interpretation for the
“missing” units.

Applying the decomposition to the example above gives the following:

M(tZ) - M(tl) = Aremovals + Amarginal + Astruc'cural
0.076 — 0.105 = —0.017 4+ —0.006 4+ —0.006 = —0.029.

In total, about 60 percent of the decline in segregation can be attributed to
the effect of removing occupations 4 and 5. The remaining decline is equally
due to changes in the marginals and to structural changes.

For simplicity, the example was only concerned with the removal of units,
but additional units, such as newly arising occupations, can be handled in
exactly the same way.

Summary of Decomposition Approach

The full, five-term decomposition of change between two segregation indices
is thus:

M(tz) - M(tl) = Aappearing + Adisappearing + Amarginalfunits
+ Amarginal—groups + Z Au.s’(ructural- (l 1)
uct;Nty
For most segregation problems, equation (11) is the minimum that is required
to robustly understand changes in segregation because the possible sources of
change may point in opposite directions. Large changes in the marginals may
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hide worsening segregation at the structural level or improvements in structural
segregation might be overwhelmed by changes in the marginals.

Often, it is also of interest to compare several points in time or across
space, and not just two. In this case, one point can be set as the reference
point, with the decomposition then comparing all other points to the focal
point in time. In a time series of occupational segregation, the first or the last
point are obvious candidates for the reference point, while in a ranking of
occupational segregation by cities the city with the median occupational
segregation could be a good candidate.

Note also that this procedure can be used to decompose any M index.
Because the cross-sectional decomposition of an M index again yield M
indices, their change can also be studied over time. For instance, when study-
ing occupational segregation, one might be interested in the change not only in
the total M but also for the partial M indices that define segregation within
major occupational groups. (This will be done in the example below.) The total
M admits to the following decomposition, assuming K major groups:

K
M :Mbetween + § PkMk7 (12)
k=1

where Myeween refers to the gender segregation between the occupational
major groups, py is the proportion of major group & such that >, py = 1, and
M; is the segregation within major group k. When change is observed over
time, the & + 1 M indices defined in this decomposition can then be studied
using the procedure outlined here.

Example |: Occupational Segregation

To consider the practical value of the above, I study occupational gender
segregation in the United States between 1990 and 2016. IPUMS provides
harmonized occupational codings based on the 1990 Census occupational
codes for this period (Ruggles et al. 2018). The sample has been selected to
comprise the employed, civilian population aged 1666 with nonmissing
occupations. The occupational codes for 1990 were grouped into nine major
groups (see Table 3).

When comparing occupations over time, two problems arise. First, the
degree to which fine-grained occupations are recorded changes over time, and
this is often a problem induced by the harmonization efforts. For instance,
“sociologists” are not coded separately in 20002016 but are available as a
separate code in 1990. Second, occupations may vanish or new occupations
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Table 3. Descriptive Statistics.

1990 2000 2010 2016
Sample size (in 1,000) 5917 6,542 1,443 1,441
A. Number of occupations
Number of occupations 369 336 330 319
Appearing occupations 0 0 0
Disappearing occupations 33 6 Il
B. Labor force participation (%)
Female 46 47 48 48
C. Distribution of occupational major groups (%)
Managerial 12 12 13 14
Professional 13 16 17 18
Technical 4 4 4 4
Sales 12 I I I
Administrative 16 16 14 13
Service 13 14 17 17
Farming, forestry 2 2 2 2
Production, craft Il Il 9 9
Operators, laborers 16 14 12 12
D. Female labor force by major groups (%)
Managerial 43 44 45 46
Professional 54 57 59 59
Technical 46 48 49 48
Sales 49 50 51 51
Administrative 78 74 72 70
Service 57 59 60 59
Farming, forestry 17 18 17 19
Production, craft 8 10 10 11
Operators, laborers 27 25 20 20

may appear. “Stenographers,” for instance, are no longer coded in later years,
and this is probably because they no longer exist as a recognizable occupation.
In many cases, it is hard to distinguish whether the problem is one of harmo-
nization or one of disappearing occupations. For the purpose of this example,
we will make the simplifying assumption that the harmonized occupations that
are coded in each year represent recognizable, established occupations.

Descriptive Statistics and Total Segregation

Table 3 contains descriptive statistics by year. Panel A shows the number of
unique occupations that are available in each year, along with the number of
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categories that appear and disappear in each year. Panels B and C document a
well-known pattern of occupational change, both in terms of female labor
force participation and in terms of a changing occupational distribution.
Panel D shows that there is considerable heterogeneity in terms of female
labor force participation across occupational groups and a heterogeneous
pattern of change. In most occupational groups, female labor force partici-
pation increased, while in the administrative and operators/laborers major
groups, the share of women declined.

We calculate the M and the H for the total labor force, as well as sepa-
rately for each major occupational group. This is based on the decomposition
of the M into between and within-cluster terms, as in equation (12). In this
case, the between-group term measures the segregation that is induced by the
major occupational groups alone, while the within terms measure the segre-
gation of detailed occupations within each major group. Because the number
of observations are in the millions, bootstrapped standard errors are negli-
gible (<.0005) and therefore not shown.

The results are shown in Figure 1. Overall gender segregation, shown in the
top panel, declined by 15 percent from 1990 to 2016 for the H and the M.° In
1990, the H was at 31 percent and declined to 26 percent by 2016. The between
term also declined, which means that major occupational groupings are
becoming less informative about gender composition over time. However,
major occupational groupings account for a large amount of overall gender
segregation (45 percent of total segregation in 1990 and 42 percent in 2016).

While overall segregation declined, the within terms reveal some hetero-
geneity. In most major groups, gender segregation declined. In others, nota-
bly farming and forestry as well as production and craft occupations, gender
segregation increased strongly. This heterogeneity suggests that it is worth-
while to study major groups separately.

Decomposition of Change

Many segregation analyses would stop at this point. Using the decomposition
properties of the M, as well as the decomposition of change developed in this
article, we can go further and explore the patterns in more detail. To simplify
the analysis of change, we focus on the changes between 1990 and 2016,
without considering the intermediate years. Because no new occupations
appear over time in this example, the total difference of any M term is thus
decomposed into four components: the effect of those occupations that are
removed, the effect of the changing occupation marginal distribution, the
effect of the changing gender marginal distribution, and the total structural
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Figure 1. Occupational gender segregation, 1990-2016.
Panel A shows total segregation by gender and detailed occupations. Panel B shows
segregation between gender and major occupational groups. Panel C shows within-
major-group gender segregation by detailed occupations.
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Figure 2. Decomposition of change.

component. Figure 2 shows the results graphically (without the between
term), while Online Appendix B (which can be found at http://smr.sagepub.-
com/supplemental/) contains the full decomposition table. Again, the stan-
dard errors obtained through bootstrapping are negligible.

For the total M, the decline can be attributed to the changing occupational
structure—that is, the labor force has shifted toward occupations that are less
segregated—and, for the most part, to structural decrease. The decline in
structural segregation accounts for 62 percent of the total decline in segrega-
tion. Most analysts of occupational segregation would consider this a posi-
tive development: Segregation decline is mostly due to declines in structural
segregation, and the shift toward less segregated occupations has contributed
even further to the decline. If all of the decline were due to the changing
occupational margins only, we would still find that the average worker
experiences less gender segregation. However, we could not conclude that
the association of certain occupations with certain genders has lessened.

Segregation declined in five out of the nine major groups, and the share of
the structural component was high in all five groups (between 65% and
117%). Within the major group of operators and laborers, the occupations
that disappeared were relatively less segregated than the ones that remain,
which increased segregation. However, the large marginal and structural
components offset this small increase.
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Segregation increased for four major groups. Except for the managerial
group, structural increase plays less of a role for these groups. For technical
occupations, structural change was in fact negative, but the marginal
changes, especially the effect of the changing occupational distribution, led
to an increase in segregation. In farming and forestry and production and
craft occupations, structural segregation increased, but the changes in the
marginals had a larger effect on the increase in segregation than the structural
change. For the managerial occupations, the increase in segregation is almost
entirely due to a structural increase in segregation, which is worrisome.
Overall, a rough pattern emerges: For those occupational major groups where
segregation declined, it declined in large part because of a structural decrease
in segregation. When segregation increased, it increased mostly because of
changes in the marginal distributions—with the notable exception of man-
agerial occupations.

The increasing labor force participation of women accounts for only a
minor part of the overall segregation difference: Around 3 percent of the total
change is explained by changing gender marginals. One might wonder why
the sign of these effects does not correspond to the changing patterns of
female labor force participation from Table 3. Shouldn’t major groups in
which women are rare show a decrease in segregation if the number of
women increases? For instance, the female share of production and craft
workers has increased from 8 percent to 11 percent, but this led to an
expected increase in segregation. To understand why this is the case, con-
sider the example of carpenters. In 1990, this occupation was 98.2 percent
male, while the male share in the major group was 92.2 percent. This leads to
a local segregation score for carpenters (within the major group) of
0.982 - log(§:953) 4 0.018 - log (3:558) = 0.036. In 2016, the share of male
workers in the major group is 88.9 percent, which represents a reduction
in the share of men of about 4 percent and an increase in the share of women
of about 42 percent. After proportionally increasing the number of women
and reducing the number of men, the expected share of carpenters that are
men is now 97.4 percent. (To simplify, we only consider the forward adjust-
ment here.) This leads to a counterfactual local segregation score for carpen-

ters of 0.974 - log(5:973) -+ 0.026 - log (§92%) = 0.051. This score is higher

than before, although the number of women has increased. In this case, the
expected effect of proportionally increasing the share of women within each
occupation increases segregation because it emphasizes existing patterns of
segregation even more. The effect of the changing patterns of female labor
force participation thus depends on the existing association structure between
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Figure 3. Comparison of the margins-adjusted M index with alternative indices.

occupations and gender. This shows that the marginal effects have to be
interpreted as expected changes in segregation when the odds ratios are held
constant.

Comparison With Other Indices

IPF makes it possible to create a time series of adjusted M indices that is not
confounded by marginal changes. To do this, I choose 1990 as the reference
year and adjust the other years (2000, 2010, 2016) toward the marginals of
the year 1990. Alongside with the adjusted M index, I also calculate the
observed M and H indices, and the three other indices discussed above (see
Online Appendix A for formulae, which can be found at http://smr.sagepub.
com/supplemental/).

The results for the five indices are shown in Figure 3. To ease comparison
across the indices, the absolute numbers are transformed to be percentages of
the 1990 values. First, it should be noted that all indices register a decline in
segregation (although the 4 and SSD indices increase between 2000 and
2010). The structural decline, as calculated by the adjusted M, amounts to
10 percentage points of the 1990 value. The observed M and H “overstate”
the decline, similarly to the V" index. As seen in Figure 2, this is because the
change in the occupational margins contributed to the decrease in
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segregation. Although the H is standardized, it gives essentially the same
answer as the M. This is because the H is standardized by the gender distri-
bution, which, however, had only a slight effect on segregation change. The
effect of the occupation-margin dependency of the H is thus clearly visible
here. The other indices underestimate structural change compared to the
adjusted M. The differences between the margin-free 4 and adjusted M are
due to the different occupational weights. The 4 weights each occupation
equally, which makes is susceptible to extreme values for small occupations
that arise from sampling variability (Watts 1998), which is a possible expla-
nation for its more erratic movement compared to the other indices.

The adjusted M index has a clear interpretation and a clear advantage: It
quantifies the amount of segregation that is purely due to changes in the odds
ratios, net of any changes in the marginal distributions. It should be empha-
sized that the adjusted M is not a new segregation index, but just a regular M
index, calculated on tables with identical margins. The main advantages of
the decomposition will not be in the construction of an adjusted time series,
as in Figure 3, but in the ability to more precisely pinpoint where the changes
in segregation originate.

Example 2: Residential Segregation

A second, short example illustrates the advantages of decomposing structural
segregation. These results make use of the Longitudinal Tract Database
(Logan, Xu, and Stults 2014), which provides racial group counts for con-
sistent Census tract boundaries. We just look at one example: The change in
multigroup segregation in the borough of Brooklyn, New York City, from
2000 to 2010. Four racial groups are considered: Non-Hispanic whites, non-
Hispanic blacks, Hispanics, and Asians.

Table 4 shows estimates of segregation by Census tracts in Brooklyn in
2000 and 2010, as well as the decomposition. The H declined from 0.437 to
0.398, which represents a decrease in segregation of about 9 percent. The
difference in M values is then decomposed into the usual five terms. The
main finding of this decomposition is that the decline in segregation is almost
entirely due to structural change.

As a next step, the structural term is decomposed further to explore
whether the declines in segregation are spatially clustered. We could use the
terms A, structural, @ introduced in equation (10), but these terms are weighted
by tract proportion. To show changes at the scale of the M index, we define
instead the term AL,, which is just the average change in local segregation
scores, net of marginal changes:
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Table 4. Decomposition of Change.

Estimate

Index scores

H in 2000 437

Hin 2010 .398

M in 2000 .552

Min 2010 517
Difference in M —.035
Difference decomposition

Additions .000

Removals .000

Racial group margins .000

Tract margins .003

Structural —.038

1 / 1 /
ALu = E [Lu(tZ) - Lu(t l)} +§ [Lu(t 2) - Lu(tl)]-

(This is simply equation [10], with the weights p", and p“ dropped.)
Recall that the local segregation scores are measuring how strongly each
tract’s racial group distribution deviates from Brooklyn’s overall racial group
distribution. If a tract has exactly the same racial group distribution as Broo-
kyln, its local segregation score will be 0; if a tract’s racial group distribution
deviates from Brooklyn’s racial group distribution, local segregation for that
tract will be > 0.

Figure 4 shows a map of Brooklyn, with the tracts shaded according to the
value of AL, that is, the expected difference in local segregation when the
margins are held constant. As Table 4 has shown, the average structural
decline in segregation was ~ —0.04. Thus, if all tracts were affected in the
same way by structural segregation, we would expect AL, to be —0.04 for all
neighborhoods. The map shows that this is clearly not the case. Instead,
declines in structural segregation have been much more pronounced in some
neighborhoods of central Brooklyn, such as Clinton Hill, Williamsburg, or
Bedford-Stuyvesant, which are shaded in dark blue. In some eastern parts of
Brooklyn (Canarsie and East New York), as well as southwest of Prospect
Park (the area of Sunset Park), structural segregation has increased, often
quite strongly. Note that these values can be interpreted at the scale of the M.
Thus, an increase in structural segregation of 0.2 for the whole of Brooklyn
would mean an increase in segregation of about 36 percent, given the
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Figure 4. Tract-level differences in local segregation change AL,, net of marginal
changes.

baseline value of M = .552 in 2010. This shows that the differences we
observe across tracts are quite substantial.

This analysis could now be continued in various ways. As the index was
calculated as a multigroup index, a further analysis might be interested in
racial group differences. Another approach is to correlate the changes in
structural segregation with tract-level measures, such as income or racial
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composition. It seems that segregation declined most strongly in gentrifying
neighborhoods, while segregation has increased especially in the eastern,
disadvantaged neighborhoods.

Limitations

The major limitation of the M index is that it is not standardized between zero
and one. This clearly is a disadvantage. However, as has been pointed out
throughout the paper, the full decomposition of change is only possible with
the M index, as (a) it is decomposable into a weighted average of local
segregation scores, (b) “vanished” and “new” units have a clear interpreta-
tion, and (c) the symmetry of the decomposition requires that the index is
neither standardized in terms of groups nor in terms of units (if that were the
case, the respective marginal component would be underestimated). In prac-
tice, one might therefore prefer to use the H index to establish the absolute
level of segregation, and report all M changes in terms of percentages. This
has been done throughout the examples.

A limitation of the decomposition method is its relative complexity
(certainly compared to a computation of a time series of segregation
indices). This can be remedied through the use of the R package. Even
with large tables and bootstrapping, the computation of the decomposition
will be fast.

In the segregation literature, there has been some concern about segrega-
tion indices that are calculated on the basis of small unit sizes or small group
proportions. For instance, Winship (1977) derived expressions for the expec-
tation of the index of dissimilarity for a city with two racial groups. With 10
households per block and varying proportions of the racial groups, the
expected value of the D under a random housing pattern will range from
0.246 to 0.387. This represents serious bias. For the M and the H, the
expected values’ for the same situation range from approx. 0.053 to 0.058,
and from 0.076 to 0.178, respectively, which is an improvement (see also
Fossett 2017:257-279). The reason for this improvement can be seen when
the M is expressed in terms of the individual table cells. In this formulation,
the observed value in each cell, p,,, is compared to the expected value under
independence (by multiplying the two marginal probabilities, p,. and pa)®

M= Z{:Xg:pgum(ppg“ ) (13)

oD
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Clearly, if p, is especially small, the logged ratio may be overly large.
However, the expression is then weighted by pg,, which leads to a relative
decrease of the influence of the large ratio.

More generally, if one is concerned that in the problem at hand there may
be zero segregation, and/or one deals with small group proportions or small
unit sizes, one can take two steps to help remedy this problem: First, one can
resort to the tool kit of classical statistics, such as Fisher’s exact test or a chi-
squared test. If these tests do not reject the null hypothesis of zero association
between groups and units, then one can also conclude that there is no seg-
regation. Second, one can use the observed marginal distributions to simulate
random contingency tables, and compute the average segregation score for
these tables. If the average simulated segregation score is > 0, the observed
segregation score should be interpreted with caution. As a remedy, one could
then combine units to arrive at a smaller contingency table. To check seg-
regation bias for the A and M easily, the procedure has been implemented in
the R package.

Finally, while the literature has devoted considerable effort to “purge” the
influence of marginal differences from segregation indices, it should be
noted that differences in the marginal distributions may often be the relevant
social fact compared to differences in structural segregation. Consider the
comparison of a labor market over time. At the beginning of the period, men
comprise 80 percent of the labor market, and at the end of the period the labor
market has a balanced gender composition. One could compare the absolute
level of segregation over time, but it seems that in such an extreme case, the
relevant difference lies in the starkly different demographic profiles. When
there are large changes in the marginal distributions (as in this case), it is also
questionable whether the marginal and structural changes can be interpreted
as (causally) independent. The IPF method would adjust the majority gender
distribution at the first time point toward the balanced situation at the second
time point, assuming that the marginal changes did not affect structural
change (or vice versa). The IPF method would still successfully calculate
the contributions of marginal and structural changes to this trend. However,
if it were true that marginal changes causally produced all structural change,
then the contributions from the (unknown) true causal model would be dif-
ferent. The deeper point here is that changing marginal distributions can be
an important part of segregative processes and that the summaries provided
by a standardized segregation index should be used with caution when the
margins are very different. An important empirical question to address in
future work is how marginal changes and structural changes interact.
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Conclusion

The article presented a general method to decompose changes in segregation
levels. It has been shown that the difference between two M indices can be
decomposed into marginal and structural changes, as well as into terms that
account for the appearance and disappearance of units. Parts of the method
are, in principle, applicable to any segregation index. However, the advan-
tages of the M index became apparent when considering changing sets of
units under study and when a further decomposition of structural terms is
desired. The decomposition of the structural term into the contribution of
individual units is especially useful, as it may reveal important heterogeneity
in segregation change among the set of units. The change in structural seg-
regation allows a more precise testing of hypotheses about the causes and
effects of changing levels of segregation at the unit level, and this change will
be net of any influence of the marginal distributions. The benefits of this
approach have been illustrated in the two examples.

The method described here can be applied to a variety of problems.
Given that the M is a multigroup index, no measures have to be taken to
account for segregation problems with more than two groups. Thus, the
decomposition can be applied to school and residential racial segregation
(as in example 2) where the analysis extends beyond just the majority—
minority group dichotomy. Other examples where the method might be
usefully applied are workplace racial and gender segregation. As firms shut
down and new firms are founded, these studies typically have to account for
a changing distribution of units. Furthermore, it is likely that there are firm
differences in the propensity to segregate by race and/or gender (e.g., large
and small firms).

The examples in this article are focused on comparisons over time, but the
method applies equally to comparisons across space. One useful application
would be for comparisons of occupational segregation across countries or
cities. One might suspect that observed differences in occupational segrega-
tion between cities are often due to marginal changes. For instance, a city
with a large production sector will likely have higher gender segregation than
a city with an employment profile skewed toward service occupations. One
might suspect that the differences in segregation are just a consequence of the
differences in the marginal occupational distribution. If one compares many
cities or countries with each other, it will often not be feasible to compute all
pairwise comparisons. Similar to regression analysis, one could instead
choose one city as the “reference category” and compute comparisons
against this reference city. Alternatively, one could also pool all of the
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city-specific data sets to capture overall segregation and then compute dif-
ferences of each city compared to the overall average.

The M index and the decomposition can be applied to a much wider array
of problems than are usually considered in segregation analysis. The M
index, as any segregation index, is a measure of statistical association
between two categorical variables and could thus be usefully applied to
variables other than gender, occupation, racial groups, schools, or firms. For
instance, the study of social mobility relates the parental class distribution to
the class distribution of the children. It could prove insightful to apply
entropy-based indices to this problem as well, as it would allow researchers
to make statements about which classes contribute the most toward increases
and decreases in social mobility.
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Notes

1. The unit-margin dependency of the D has long been recognized. This led to the
development of the size-standardized index of dissimilarity SSD, which, while not
margin-dependent on the unit distribution, reintroduces a dependency on the group
distribution.

2. Mora and Ruiz-Castillo (2011:161) identify a small number of papers that prefer
the M index over the H. Beyond those, DiPrete et al. (2017) and Forster and Bol
(2018) have used the M index in the context of school-to-work linkages.
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3. Three caveats apply: First, the standardization is only limited to the range from
zero to one when U > G, which is the case in most segregation problems.
Alternatively, Mora and Ruiz-Castillo (2011) also define the H* index. This
index is defined by standardizing the M by the unit distribution entropy, that
is, H* = %. This index is maximized when E(p,,) = 0 for all groups, which

is only true when all members of each group are concentrated at exactly one unit.
This, of course, is not possible with two groups and more than two units. The H*
index is thus only appropriate when G > U, which for practical segregation
problems is usually not the case. Second, the maximal value can only be reached
if there are more subjects than there are units. As Carrington and Troske (1998:
239) write, “in a sample with 10 black workers and 20 firms, for example,
evenness is unobtainable because it is impossible for each firm to get half a
black worker.” In many practical segregation problems, this is usually not a
problem as there are more subjects than units. Third, the standardization only
works when the size of the smallest group is larger than the smallest unit. For
instance, consider a labor market of 200 women and 700 men distributed across
three occupations of size 300. Even if the occupations are maximally segregated
(i.e., two all-men occupations, and one occupation with 200 women and 100
men), the indices reach their maxima at M = 0.32 and H = 0.6. Whether such
marginal constraints matter in practice depends on the concrete application.

4. The iterative proportional fitting procedure requires positive counts in each cell,
which in practice may not always be in case. The canonical solution here is to
replace zero counts with a very small number, for example, 0.0001.

5. This can be clearly seen by assuming that we drop one unsegregated occupation

only (occupation 3 from ¢;). Then, the expression simplifies to M* = }1‘{(—1’2 This
shows that the mechanical consequence on M when an unsegregated occupation
vanishes depends only on the size of the occupation, pp.

6. Because the M is sensitive to the number of categories, one might suspect that the
higher gender segregation in 1990 is an artifact of measurement. The normal-
ization of the H index corrects for the changing number of categories, as shown
above. Either way, in this case the variation in the number of occupations is too
small to matter: if we restrict the calculation to the 317 occupations that are
available at all five points in time, the M and H values are within 1 percent of
the values presented in Figure 1.

7. These values have been simulated using the “mutual_expected” function of the R
package.

8. This equation also shows that the A is a “rescaled likelihood ratio test” (Card, Hein-
ing, and Kline 2013:983) and provides a natural way to relate the M index to other
approaches that are concerned with the study of association in contingency tables.
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