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Abstract

An important topic in the study of segregation are comparisons across space
and time. This article extends current approaches in segregation measure-
ment by presenting a five-term decomposition procedure that can be used to
understand more clearly why segregation has changed or differs between
two comparison points. Two of the five terms account for differences in
segregation that are due to the differing marginal distributions (e.g., the
gender and occupational distributions), while one term accounts for differ-
ences in segregation due the different structure of segregation (what might
be termed “pure” segregation). The decomposition thus presents a solution
to the problem of margin dependency, frequently discussed in the segrega-
tion literature. Finally, two terms account for the appearance or dis-
appearance of units when analyzing change over time. The method can be
further extended to attribute structural changes to individual units, which
makes it possible, for instance, to quantify the effect of each occupation on
changing gender* segregation. The practical advantages of the decomposition
are illustrated by two examples: a study of changing occupational gender
segregation in the United States and a study of changing residential segre-
gation in Brooklyn, New York.
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Studies of segregation are concerned with a variety of substantive problems.

Social scientists are interested in residential racial segregation, in the racial

or class-based segregation of schools and workplaces, or the gender segrega-

tion of occupations. More generally, any study of the association between

two categorical variables can be regarded as a segregation problem. Segre-

gation is usually studied by applying a segregation index to a contingency

table, which provides a one-number summary of the association between, for

instance, gender and occupations.

Often, the interest in the study of a segregation problem lies not only in

describing segregation at one point in time or in one place but in comparing

levels of segregation over time, across countries or cities, or between pop-

ulation groups. For instance, in the school segregation literature, there is a

debate about the resegregation of schools along racial lines (Reardon and

Owens 2014). The workplace segregation literature documented a decrease

in within-workplace racial segregation levels but a decrease in between-

workplace segregation (Ferguson and Koning 2018). The gender-

occupational literature is interested not only in comparing segregation over

time within a single country but also across regional or national economies

(e.g., Charles and Grusky 2004). When comparing across time, the message

of segregation studies is often that segregation has either increased or

decreased, but the deeper causes for these differences often remain unclear.

The contribution of this article is to provide a general and practical method

for the study of change or difference in segregation (hereafter abbreviated as

“change” when this doesn’t create confusion). The method developed here

brings practical advantages to many segregation problems, and proposes a

solution to the long-standing problem of margin dependency:

1. Among the practical advantages, the method allows an analysis of

where differences in segregation originate. For instance, we might

ask whether declining occupational gender segregation arises from

manual or professional occupations or whether the declines in segre-

gation are associated with changes in the educational composition of

certain occupations. In school or residential segregation, it would be
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of interest to know which schools or neighborhoods contribute most

to changes in segregation. This is especially relevant when consider-

ing different types of schools such as charter or private schools.

Relatedly, one may study the association between gentrification and

segregation at the neighborhood level.

2. The method also allows for a change in the number of units under

study. This problem arises naturally in the study of school segrega-

tion: When comparing school segregation across two points in time,

some schools will have closed and new ones will have opened. The

problem may also occur with occupational segregation: Over time,

some occupations will become obsolete and vanish, while new occu-

pations appear. The method developed here allows the researcher to

quantify the effect of these “appearing” and “disappearing” units on

the total change in segregation. While this seems a natural question, it

has only received scant attention in the segregation literature. An

exception is Ferguson and Koning (2018) who studied the effect of

firm turnover on workplace segregation.

3. Finally, themethod provides a solution to the problemofmargin depen-

dency. Taking again occupational gender segregation as an example, it

is intuitively clear that some of the declines in gender segregation of

recent decades may be due to compositional changes. Deindustrializa-

tion has led to declines in factory jobs and a decrease in the share of

manual and routine occupations, which have often been almost entirely

male (Weeden 2004). If these occupations are still as segregated as they

were before, and only their relative share has declined, this will register

as a decrease in (most) segregation indices. Thus, it would be desirable

to distinguish between these changes, which are referred to as marginal

changes (because the change is reflected in the marginal row or column

sums of the contingency table), from changes in “pure segregation.” A

major part of the articlewill elaborate on this distinction and on the exact

meaning of “pure segregation.”

The methodological literature on segregation indices has engaged mostly

with point (3), the margin dependency of segregation indices, while the useful

innovations described in points (1) and (2) have received almost no attention.

The method described in this paper proposes a solution to the margin depen-

dency problem that can be summarized as follows: Margin dependency is

desirable in the cross-section to characterize the “average” level of segregation

an individual experiences but is problematic when comparing levels of segre-

gation across time or space. The solution, as first proposed by Karmel and
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Maclachlan (1988), is to decompose the difference into terms that distinguish

changes that are introduced because of changes in the marginal distributions

alone from changes in “pure segregation.” The latter will be called “structural

change” throughout the article. Combining this idea with the desired properties

of (1) and (2), we arrive at a five-term decomposition:

Sðt2Þ � Sðt1Þ ¼ Dappearing þ Ddisappearing þ Dmarginal�units

þ Dmarginal�groups þ
X

u2t1\t2
Di;structural;

where Sð�Þ refers to the value of the segregation index at different points in

time. The equation then says that we decompose the difference in segregation

between two time points (or across population groups, places) into two terms

that account for the appearance and disappearance of units under study (think

school openings and school closures), two terms that account for composi-

tional changes (the marginal distributions), both in terms of units (say,

schools) and groups (say, racial groups). The last term is a summation that

extends over those units that are present at both time points and describes the

change in structural (or “pure”) segregation that arises from each unit.

Thus, the decomposition opens up new avenues of research for scholars

working on segregation problems. Its primary advantage is that it allows for a

much more precise statement about the nature of change: We can pinpoint

whether the segregation change is due to a change in the population of units,

due to marginal change, or due to structural change. We can further drill

down to study whether the structural change is concentrated in a certain set of

units that are of special interest (say, charter schools). It should also be noted

that the total change in segregation could be zero, but that some of the

components are nonzero. In this case, some positive components would be

offset by negative components. The decomposition of change could thus

reveal previously obscured patterns such as an increase in “pure segregation”

that is offset by declines due to marginal changes. (Such offsetting patterns

are explored in the examples at the end of the article.)

The remainder of the article is organized as follows: In the next section,

the issue of margin dependency and the possible solutions that have been

presented in the literature are discussed. None of these solutions are deemed

satisfactory. It is then argued that the only index that can fully achieve the

desired five-term decomposition is the M index. This index, extensively

discussed by Mora and Ruiz-Castillo (2003, 2009, 2011), is not as widely

used as the closely related H index but has many desirable properties. Next,

the decomposition procedure is introduced. Finally, the practical advantages

of the method are shown through two examples: changing occupational
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gender segregation in the United States and changing residential segregation

in Brooklyn, New York.

All procedures discussed in this article have been implemented in an R

package. *This includes the calculation of theM and H indices, as well as the

decomposition procedure. Standard errors can be bootstrapped for both the

index calculation and the decomposition procedure. Examples on how to use

the package are given in Online Appendix C (which can be found at http://

smr.sagepub.com/supplemental/).

The Problems and Benefits of Margin Dependency

To make the following more concrete, consider U organizational units, such

as schools or occupations, and a number of population groups, G, such as

racial groups or genders. For an occupational segregation problem, the

number of workers in each occupation–gender combination can be cross-

classified in aU � G contingency table. A segregation index Sð�Þ is a function
that summarizes theU � G contingency table to a single number. Without loss

of generality, occupational gender segregation will be used as an example for

the remainder of the article.

Margin dependency refers to the property of some segregation indices that

proportional changes in the marginal distributions of the contingency table

lead to a change in the index value. To illustrate, consider a simplified

economy with three occupations and two genders. At time point 1, there are

55 men and 45 women distributed across occupations in a way that the first

occupation is integrated, while the other two are rather segregated. This

matrix is shown at the left-hand sides of the arrows, with men in the first

and women in the second column:

t1 :
25 25

28 2

2 18

2
4

3
5 ! t2 :

20 20

28 2

4 36

2
4

3
5;

t1 :
25 25

28 2

2 18

2
4

3
5 ! t�2 :

25 50

28 4

2 36

2
4

3
5:

Consider then two alternative scenarios. In the first scenario (top), the size

of the first, integrated occupation decreases by 20 percent, and the third

occupation (which is very segregated) doubles. Note that it is not possible

under these transformations to keep the overall gender proportion constant

without changing the internal proportion of the remaining occupation. In the
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second scenario (bottom), the size of the female labor force doubles, with the

numbers for men unchanged. An index that changes its value under the first

transformation is called unit-margin-dependent, while an index that changes

its value under the second transformation is called group-margin-dependent.

A margin-free index, by definition, does not change under either of these

processes. An overview of prominent indices is displayed in Table 1.

The entropy-based, information-theoretic indices M and H are margin-

dependent for both groups and units. This is also true for the variance ratio

index V (also known as separation or eta-squared index). Other indices, such

as the index of dissimilarity D, are only margin-dependent in terms of the

unit distribution. The size-standardized index of dissimilarity SSD is group-

margin-dependent only,1 and only the log-linear index A is margin-free in

both dimensions.

The reader might be surprised to find the H index among the group-

dependent indices. The margin dependency of the H index is often not

explicitly considered in empirical studies although this fact is known at least

since James and Taeuber (1985). For instance, An and Gamoran (2009:20)

write that they “use a measure [the H] that is insensitive to changes in the

U.S. school population, thereby concentrating solely on racial imbalance.”

This, however, is not entirely true. While the H index involves a term that

partly accounts for changes in group marginals, the standardization is not

complete (for a formal proof, see Mora and Ruiz-Castillo 2011). We thus

emphasize here that the H is margin-dependent in both directions.

Often, margin dependency is considered problematic, and the segregation

literature has devoted considerable effort to solving this problem. The prob-

lem stems from the assumption that marginal changes often reflect processes

that are thought to be unrelated to the deeper, structural causes of segrega-

tion. For instance, deindustrialization (changing occupation marginals) or a

rising share of female employment (changing group marginals) should only

lead to changes in segregation if the structure of segregation changed. If the

Table 1. Margin Dependency of Different Indices.

Unit (e.g., Occupation)

Margin Dependent Margin Free

Group (e.g., Gender) Margin dependent M, H, V SSD
Margin free D A

Source: Adapted from Charles and Grusky (1995:934).
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changes are in the margins only, arguments about “rising” or “decreasing”

segregation may not be warranted.

The major solutions to the problem are discussed in turn:

1. A series of papers by Charles and Grusky (Charles 1992; Charles and

Grusky 1995; Grusky and Charles 1998) introduced the A index. The

A index is based on the insight that a measure of segregation that is

invariant to row or column transformations needs to be based on

odds ratios. For instance, two local odds ratios are sufficient to

describe the association structure of a 3� 2 table (as in the example

above). If we let nij denote the number of workers in the ith row

and jth column, the two odds ratios are y1;1 ¼ n1;1n2;2
n1;2n2;1

and y2;1 ¼ n2;1n3;2
n2;2n3;1

(Agresti 2013:54). It is easy to verify that these odds ratios are

identical for all three matrices t1, t2, and t�2, which is to say that

the association structure between occupations and gender does not

change from t1 to t2 or from t1 to t�2. This is the same argument that

is made in favor of log-linear modeling in the study of social

mobility.

Essentially, the A index calculates the odds ratio of male and female

employment within each occupation and is then summarized by weighting

all occupation-specific ratios equally. The resulting index measures only the

level of association as captured by the odds ratios and is not influenced by

changes in the marginal distribution of either occupations or genders. Note

that the index achieves its unit-margin-independence by simply weighting all

occupations equally. The index is thus more a characterization of the segre-

gation of the average occupation and not a measure of average segregation at

the individual level. Especially if the sizes of occupations differ greatly, the

index is problematic (see also the exchange between Watts [1998] and

Grusky and Charles [1998]). The index thus seems even less applicable when

school or residential segregation is studied.

Another way to phrase this problem is that the A index conflicts with the

criterion of organizational equivalence. Organizational equivalence implies

that when two occupations with the same level of segregation are combined,

segregation should be unchanged (James and Taeuber 1985). This criterion is

not fulfilled when occupations are weighted equally and the segregation level

of the other, uncombined occupations differ from the two occupations that

are combined. This shows that the discussion about the merits of margin-free

versus margin-dependent indices cannot be resolved because the two indices

pursue goals that are not compatible.
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2. Karmel and Maclachlan (1988) propose a decomposition that is very

similar to the one developed in this article. Their approach is based on

creating counterfactual contingency tables that account only for the

effects of marginal and structural changes, respectively. This is done

using iterative proportional fitting (IPF), which will be explained

below. The counterfactual tables can then be used to disentangle mar-

ginal from structural changes. A downside of their approach is that the

decomposition contains an interaction effect between the two marginal

dimensions, which is hard to interpret. They also do not address the

problem of appearing and disappearing units. The largest disadvantage

of their method is the choice of index, which they call Ip, and which is

not decomposable in terms of units or groups.

3. Mora and Ruiz-Castillo (2009) presented two formulas that supposedly

quantify structural and compositional change between two M indices.

With a slightly adapted notation, the difference between twoM indices,

defined by the matrices t1 and t2, is decomposed as follows:

Mðt2Þ �Mðt1Þ ¼ DNðPuÞ þ DGu þ DUðPuÞ
¼ DNðPgÞ þ DUg þ DGðPgÞ;

ð1Þ

where the DU and DG capture changes in the marginals of unit and group

proportions, respectively, and DN captures “composition–invariant”

changes, which, importantly, are not the same as structural changes defined

through the change in odds ratios. As the authors themselves write, the

interpretation of these terms hinges on crucial assumptions that are rarely

met in practice (Watts 2015; Mora and Ruiz-Castillo 2009:47-50). For rea-

sons of brevity, these problems are not explicated fully here. Instead, an

especially problematic aspect of these decompositions is highlighted, and

that is that there are two possible answers for each of the three components,

which might provide conflicting interpretations. The decompositions on the

first and the second line will only in exceptional circumstances give the same

numerical results. This is easily seen by applying equation (1) to the differ-

ence between t1 and t2 from the example above:

Mðt2Þ �Mðt1Þ ¼ 0þ 0:00376þ 0:0267
¼ �0:0209þ 0:0479þ 0:00346 ¼ 0:03:

The first decomposition implies that structural change is zero and further

suggests that the marginal change in the occupational distribution is largely

responsible for the increase in segregation, which aligns with our
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expectations. However, the second line gives a contradictory answer, imply-

ing that structural segregation decreased (�0:0209). Furthermore, the size of

the marginal components is not the same in the two decompositions. Even if

the assumptions that underlie these decompositions were justified in practice

(which is questionable), the fact that the two decompositions give two pos-

sibly contradictory answers is unsatisfactory and poses practical problems of

interpretation. The issue here is that these decompositions are not based on

the notion that only the odds ratios are invariant under row and column

transformations. Finally, their decomposition also does not address the prob-

lem of appearing and disappearing units, which means that only the common

subset of units can be decomposed.

The method developed in this article is based on the idea that margin

dependency (especially in terms of units) is a desirable property in the cross-

section. Consistent with the idea that we want to measure average segrega-

tion at the individual level, it is reasonable to argue that a segregation index

should be higher when more people work in segregated occupations. If

occupations are weighted equally, this is not the case. At the same time,

we would also like to distinguish changes that are purely due to composition

(marginal changes) from changes in pure segregation (structural changes).

To illustrate this point, consider that two processes occur at the same time:

The occupations that are more segregated grow at the expense of less-

segregated occupations, while at the same time segregation within each

occupation declines. The overall change in segregation will be positive if

the first process leads to a greater change than the second process. If attention

is only paid to the total difference, the conclusion will be that segregation has

become “worse” (which is a warranted statement, at least for the average

worker). However, the statement is also imprecise because the segregation of

each individual occupation has in fact decreased. The decomposition of

change into the two components thus allows the researcher to pinpoint more

clearly the sources of segregation change. Importantly, the prevalence and

direction of the two trends may call for different policy responses.

Thus, the article advocates for an approach that uses a margin-dependent

index in the cross-section, which is then decomposed when we compare over

time or across places. The proposed solution combines and expands the

approaches (1)–(3) discussed above. Charles and Grusky provide the key

insight that any structural changes are reflected in the odds ratios and that

these are the only measures of association that are invariant under marginal

transformations. Karmel and Maclachlan use IPF to arrive at counterfactual

tables. Finally, Mora and Ruiz-Castillo’s contributions highlighted the

advantages of the entropy-based index M, which will be adopted below.
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The Choice of Index

Recently, the H has become increasingly popular for the study of racial

segregation, which is most likely due to two distinct advantages. First, the

H allows for attractive decompositions. Second, the H allows for a natural

treatment of the multigroup case, which has become increasingly important

for the study of racial segregation in the United States and is a natural

requirement in other segregation problems. In their comprehensive overview

of multigroup segregation indices, Reardon and Firebaugh (2002) conclude

“that the information theory index H is the most conceptually and mathema-

tically satisfactory index” (p. 33).

In a recent series of papers, Mora and Ruiz-Castillo (2003, 2009, 2011)

pointed to an alternative but closely related index, which they called the

Mutual Information Index (M). Both the M and H were introduced by Theil

(Theil 1967, 1971, 1972; Theil and Finizza 1971). Mora and Ruiz-Castillo, as

well as Frankel and Volij (2011), outlined some of the advantages of the M

over the H. Importantly, Mora and Ruiz-Castillo (2011) showed that the

decomposition of an H index into between- and within-group terms (for

instance, white/nonwhite) may be ambiguous, and they thus recommend the

adoption of the M if such decompositions are desired.2

To define H and M, assume that we observe the gender composition of U

occupations. Define ngu as the number of workers with gender g in occupa-

tion u and the total number of workers as n. From this contingency table,

define p�u ¼
PG

g¼1ngu=n and pg� ¼
PU

u¼1ngu=n as the marginal probabilities

of occupations and gender, respectively. The joint probability of being in

occupation u and gender g is pgu ¼ ngu=n. We also write pgju ¼ pgu=p�u as the

conditional probability of having gender g given occupation u (and pujg
likewise).

The M index quantifies how strongly each occupation’s gender distribu-

tion deviates from the overall (or expected) gender distribution. This yields a

“local” segregation score for each occupation, called Lu. The occupation

scores are then weighted by the size of the occupation, p�u. To measure the

deviation, the logarithm of the ratio between conditional and marginal prob-

abilities is used. As Theil (1972) has shown, the logarithm allows for the

attractive decomposition properties. Thus,

M ¼
X
u

p�uLu ¼
X
u

p�u
X
g

pgjulog
pgju

pg�

 !
: ð2Þ
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Because the M is symmetric, it can also defined by summing proportion-

weighted scores for each gender, that is,

M ¼
X
g

pg�Lg ¼
X
g

pg�
X
u

pujglog
pujg

p�u

 !
: ð3Þ

The simple expressions for the M, that is,

M ¼
X
u

p�uLu ¼
X
g

pg�Lg;

show that the M is symmetric (i.e., the meaning of groups and units can be

exchanged) and that the M is margin-dependent in both directions. From the

standpoint of decomposing changes in segregation, this is an attractive

property.

The M can also be motivated from an information-theoretic perspective,

which is helpful to understand its basic properties. First, define the entropy

Eð�Þ of a distribution as

EðpÞ ¼ �
X
i

pilog pi;

where p is a vector of probabilities that sums to 1. Entropy is a nonnegative

measure of expected information or uncertainty (Theil 1972). Consider two

events that occur with probabilities .99 and .01. The expected information of

the next observation from this distribution is close to zero, that is,

Eð½:99; :01�Þ ¼ :06, as we were virtually certain that the first event would

occur. However, for two events that will occur with a probability of ½ each,

the expected information is large, that is, Eð½:5; :5�Þ ¼ log 2 � :69. The
entropy is maximized at log n when the probability of each event is 1=n,
where n is the number of events. Intuitively, the entropy is minimized at zero

when it is certain which event will occur.

To define M from this perspective, we ask: How much more information

does the overall distribution provide compared with the gender distribution

of a specific occupation? Formally, this is the difference in entropies at the

occupation level, weighted by the occupation’s proportion:

M ¼
X
u

p�u Eðpg�Þ � EðpgjuÞ
h i

; ð4Þ

where p� refers to the relevant vector of probabilities. Due to the symmetry

of theM, this expression can also be formulated from the gender perspective:
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M ¼
X
g

pg� Eðp�uÞ � EðpujgÞ
h i

: ð5Þ

It follows thatM is minimized at zero when the gender distribution of each

occupation is identical to the overall gender distribution. M is maximized at

minðflogU ; logGgÞ. To see this, note that equation (4) is maximized when

the entropy Eðpg�Þ is maximized, and the entropy EðpgjuÞ for each occupation
is minimized. This is the case when each gender has the same overall pro-

portion and when each occupation is either completely male or completely

female.

It may seem odd that a segregation index can only be maximized when all

groups are the same size, but it is in line with information-theoretic princi-

ples. This point will become clearer with an example. Consider two labor

markets A and B with 200 workers each, and only three occupations. The

labor markets differ in their gender distributions. Labor market A has 100

women and 100 men, while B has 20 women and 180 men. The workers are

distributed as follows, with the occupations indexed by the rows of the

matrix:

A :

women men

100 0

0 50

0 50

2
664

3
775 B :

women men

20 0

0 90

0 90

2
664

3
775

In both labor markets, all three occupations are completely segregated in

the sense that there is no mixing within occupations. For these matrices,

MðAÞ ¼ 0:69 and MðBÞ ¼ 0:33. The M index thus finds that segregation

in A is twice as high as in B. This suggests to standardize the M index by

the gender entropy, which gives the H index:

H ¼ M

Eðpg�Þ
:

For the two cities, it follows that HðAÞ ¼ HðBÞ ¼ 1. The H is attractive

because it is standardized between zero and one,3 which facilitates compar-

isons between two cities with differing gender distributions. Nonetheless,

there is an argument to be made for the M index. While the H index sees the

amount of segregation as equal between the two cities, the M takes into

account that it is much “harder” in A to achieve complete segregation than

it is in B: Given that in B 90 percent of the workers are men, it is less

surprising to find an all-men occupation in B than it is in A.

12 Sociological Methods & Research XX(X)



The Decomposition of Change

Generating Counterfactuals Through IPF

Instead of attempting themargin-freemeasurement of segregation at each point

in time, the approach outlined here follows the idea that changes in segregation

indices can be decomposed into marginal and structural changes (Watts 1998;

Mora andRuiz-Castillo 2009;Watts 2015). Thismethodwas proposed byTheil

himself (Theil 1972:131) and was extended by Karmel and Maclachlan (1988)

in the context of occupational gender segregation.Karmel andMaclachlan used

another segregation index, but the approach is applicable whenever a margin-

free comparison of two contingency tables is desired.

The basic idea is to adjust the contingency table from time point t1
forward so that only marginal changes between the two time points are

taken into account. Consider a labor market with men and women distrib-

uted across three occupations. We observe the labor market at two points in

time. Between these two time points, the number of men has grown and the

number of women has declined. At the same time, occupations have chan-

ged in size, with especially strong declines in the third occupation. The

question is: If there are changes in segregation, how much of these changes

can be attributed to changes in the distribution of gender and occupation

marginals alone, and how much of the change can be attributed to changes

in the odds ratios?

At the two time points, the workers are distributed across occupations as

follows:

t1 :

women men

20 100

180 50

600 50

2
664

3
775 t2:

women men

10 170

80 60

240 40

2
664

3
775

Both the M and the H register large changes in segregation: The M

increases by over 80 percent between t1 and t2, while the H increases by

33 percent. To identify how much of this change is due to marginal changes,

the matrix at t1 is transformed to have the same margins as t2, while leaving

the association structure (i.e., the odds ratios) intact. This can be achieved

using IPF: First, the cells of t1 are scaled to achieve the overall gender

marginal distribution of t2. The adjusted cell counts are then scaled to achieve

the marginal occupation distribution of t2. This process is repeated until the

margins of the adjusted table are within a small percentage of t2. The first

steps of the procedure are shown here:
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20 100

180 50

600 50

2
4

3
5 )

20� 330=800 100� 270=200
180� 330=800 50� 270=200
600� 330=800 50� 270=200

2
4

3
5

¼
8:3 135

74:3 67:5
248 67:5

2
4

3
5 )

8:3� 180=144:4 135� 180=144:3
74:3� 140=141:8 67:5� 140=141:8
248� 280=315:5 67:5� 280=315:5

2
4

3
5

¼
10:3 168:4
73:4 66:6
220:1 59:9

2
4

3
5 )

10:3� 330=303:8 168:4� 270=294:9
73:4� 330=303:8 66:6� 270=294:9
220:1� 330=303:8 59:9� 270=294:9

2
4

3
5

¼
11:2 154:2
79:7 61

239:1 54:8

2
4

3
5 )

11:2� 180=165:4 154:2� 180=165:4
79:7� 140=140:8 61� 140=140:8
239:1� 280=293:9 54:8� 280=293:9

2
4

3
5

¼
12:2 167:8
79:2 60:7
227:8 52:2

2
4

3
5 ) :::ð10 steps omittedÞ

¼
13:7 166

83:5 56:5
233 47:3

2
4

3
5 ¼ t 01

The transformations at rows 1 and 3 adjust the gender marginal, while the

transformations at rows 2 and 4 adjust the occupation marginals. It is unim-

portant whether the procedure starts with the group or the unit marginals; it

will always converge (for details on IPF, see Deming and Stephan 1940;

Agresti 2013).4 After four steps, both margins are already within 3-4 percent

of the desired marginals. After 14 steps, the procedure yields the matrix

shown in the last row, where the marginals are within 0.1 percent of the

desired marginals. The resulting matrix t 01 is a counterfactual version of the t1
matrix, where only the marginals changed in the direction empirically

observed in t2, but the odds ratios are the same as in t1. This allows a

decomposition of overall change in segregation levels as follows:

Mðt2Þ �Mðt1Þ ¼ Mðt2Þ �Mðt 01Þ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{structural

þMðt 01Þ �Mðt1Þ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{marginal

¼ ð0:273� 0:238Þ þ ð0:238� 0:150Þ

¼ 0:035þ 0:088 ¼ 0:123:

ð6Þ

The “marginal” component quantifies how much we would expect seg-

regation to change given that the marginals changed toward those of t2. The
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“structural” component quantifies any additional amount of segregation that

is unexplained by marginal changes. To understand the behavior of the

decomposition, it is useful to consider the two extreme cases of “structural

change only” and “marginal change only.” Considering t1, it is possible to

construct an alternative matrix that redistributes the workers across occupa-

tions in such a way that the marginals will stay the same (e.g., by distributing

50 workers from occupation 1 to the other two occupations, and moving the

same number of women to occupation 1). A decomposition of these two

matrices will find that marginal change is zero because the IPF procedure

converges immediately without changing any cell counts. Thus, the marginal

term of equation (6) would compare identical matrices, and the difference

would be zero—as desired. Similarly, it is also possible to construct a matrix

where simply the number of, say, women doubled. In this case, the IPF

procedure scales the margins in exactly this way, which means that the

structural term of equation (6) compares identical matrices, and we again

obtain the desired result.

One criticism that can be leveled against this decomposition is that the

choice of t1 as the baseline is somewhat arbitrary, especially if the matrices

are not compared over time, but across space or, say, across birth cohorts.

The results are similar but not identical when we instead choose t2 as the

baseline and apply the IPF procedure to this matrix:

Mðt2Þ �Mðt1Þ ¼ Mðt 02Þ �Mðt1Þ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{structural

þMðt2Þ �Mðt 02Þ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{marginal

¼ 0:026þ 0:097 ¼ 0:123:

In decomposition analysis, this is known as the path dependency problem

(Kitagawa 1955; Fortin, Lemieux, and Firpo 2011), where the results of the

decomposition are dependent on the order in which elements are eliminated.

As proposed by Shorrocks (2013), the solution to this problem is the Shapley

decomposition, which considers all possible ways in which an element can be

eliminated. In this case, the decomposition results in a simple averaging of

the two scenarios (Deutsch, Flückiger, and Silber 2009):

Mðt2Þ �Mðt1Þ ¼ 1

2
ðMðt2Þ �Mðt 02ÞÞ þ 1

2
ðMðt 01Þ �Mðt1Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Dmarginal

þ 1

2
ðMðt2Þ �Mðt 01ÞÞ þ 1

2
ðMðt 02Þ �Mðt1ÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dstructural

:
ð7Þ
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For the example, this is

Mðt2Þ �Mðt1Þ ¼ 1

2
ð0:097þ 0:088Þ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dmarginal

þ 1

2
ð0:035þ 0:026Þ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dstructural

¼ 0:092þ 0:031 ¼ 0:123:

From this decomposition, we conclude that marginal changes are respon-

sible for about three quarters of the overall change in the M, while structural

changes account for only a quarter of the increase. Compared to segregation

indices that focus on structure only (i.e., odds ratios), the procedure intro-

duced here quantifies the effects of both marginal and structural changes. It

will be argued below that marginal changes are often an important part of

segregation processes and that it is therefore not always desirable to “purge”

the influence of the marginal distributions.

This aggregate view of segregation differences can be further decom-

posed. The key property that is exploited here is that in the marginal com-

ponent, the odds ratios are the same, and that in the structural component, the

marginal distributions of units and groups are the same.

Decomposing Marginal Changes Further

The marginal change can be further subdivided into two components: One

component quantifies the contribution of changing unit marginals and one

quantifies the contribution of changing group marginals. Karmel and Macla-

chlan proposed a simpler decomposition that includes an interaction term,

but the Shapley decomposition can be used to quantify the contributions of

either margins without an interaction term. A full proof of this strategy is

provided by Deutsch et al. (2009), and we will present here the intuitive

understanding of this decomposition. Again, we consider all the ways in

which either marginal component can be eliminated. For this, we need to

consider all possible combinations between unit marginals, group marginals,

and odds ratios from both t1 and t2. As a shorthand notation, we will write

MðU ;G;OÞ to identify the M that is calculated based on the unit (row)

marginals from U, the group (column) marginals from G, and the odds ratios

from O. For instance,Mðt1Þ ¼ Mðt1; t1; t1Þ andMðt 01Þ ¼ Mðt2; t2; t1Þ. Given
all possible combinations, there are eight unique matrices, including the two

unaltered ones. This decomposition thus requires six distinct IPF procedures.

For instance, to arrive at Mðt1; t2; t1Þ, the matrix t1 has to be adjusted toward

the column marginals of t2 while retaining its original t1 row marginals. The
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decomposition then relies on averaging all possible elimination strategies. To

quantify the effect of marginal change in the rows, there are four possible

elimination strategies:

Dmarginal�units ¼ 1

4
Mðt2; t1; t1Þ �Mðt1; t1; t1Þð Þ þ 1

4
Mðt2; t2; t1Þ �Mðt1; t2; t1Þð Þ

þ 1

4
Mðt2; t2; t2Þ �Mðt1; t2; t2Þð Þ þ 1

4
Mðt2; t1; t2Þ �Mðt1; t1; t2Þð Þ:

ð8Þ

Note that within each subtraction, only the row margins are changed, with

the other two factors held constant. Similarly, for the columns:

Dmarginal�groups ¼ 1

4
Mðt1; t2; t1Þ �Mðt1; t1; t1Þð Þ þ 1

4
Mðt2; t2; t1Þ �Mðt2; t1; t1Þð Þ

þ 1

4
Mðt2; t2; t2Þ �Mðt2; t1; t2Þð Þ þ 1

4
Mðt1; t2; t2Þ �Mðt1; t1; t2Þð Þ:

ð9Þ

Simple algebra shows that Dmarginal�units þ Dmarginal�groups ¼ Dmarginal.

Applying this decomposition to the example above, we get:

Dmarginal ¼ Dunits þ Dgroups

¼ 0:082þ 0:01 ¼ 0:092:

Among the changes in the marginals, the shift in the unit marginals was

much more important for the increase in segregation than the shifting gender

distribution, despite the large changes.

Decomposing Structural Changes Further

Usually, structural change is of greater interest than marginal change. The

term for the structural component admits two straightforward decomposi-

tions based on local segregation scores. These decompositions were not

exploited by Karmel and Maclachlan (1988) or others because their index

did not admit disaggregation by local segregation scores. The key property

that these decompositions exploit is that pt2�u ¼ pt
0
1

�u , p
t2
�g ¼ pt

0
1

�g , p
t1
�u ¼ pt

0
2

�u , and

pt1�g ¼ pt
0
2

�g , that is, the equivalence of the margins. We can thus write:
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Dstructural ¼ 1

2
Mðt2Þ �Mðt 01Þð Þ þ 1

2
Mðt 02Þ �Mðt1Þð Þ

¼
XU
u¼1

1

2
pt2�u Luðt2Þ � Luðt 01Þ½ � þ 1

2
pt1�u Luðt 02Þ � Luðt1Þ½ �

0
@

1
A

¼
XU
u¼1

Du;structural;

ð10Þ

where LuðX Þ refers to the local segregation score for unit u in matrix X. The

difference in structural segregation can thus be attributed solely to differ-

ences in the conditional probabilities, holding the marginals constant.

Clearly, this decomposition is only possible because the M can be expressed

as the weighted average of local scores. In the example, the decomposition

results in three terms, one for each occupation. Table 2 shows the results for

the detailed structural decomposition. Occupation one and three are respon-

sible for the increase in structural segregation, while in occupation 2, local

segregation is low and almost unchanged. In more realistic settings with a

greater number of units, the local segregation scores could now also be

grouped by occupational major group or another characteristic (e.g., wage

levels of occupations), if individual occupations are not of much interest. The

sources of an increase or decrease in structural segregation, net of any mar-

ginal confounding, can thus be precisely understood.

Appearance and Disappearance of Units

Until now, we assumed that at both points in time, all units and groups have

nonzero counts. However, this assumption is often not met in practice. In the

case of school segregation, schools may have closed down and new schools

may have opened. In the case of occupational segregation, some occupations

Table 2. Decomposition of Structural Changes Into Contributions of Each
Occupation.

Occupation
Proportion Observed Counterfactual

Weighted Difference
u pt1�u pt2�u Luðt1Þ Luðt2Þ Luðt 02Þ Luðt 01Þ Du;structural

1 .12 .300 .928 .573 1.056 .515 .016
2 .23 .233 .001 .001 0.003 .004 .000
3 .65 .467 .059 .216 0.075 .177 .014
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may have vanished and new occupations have become established. Capita-

lizing on the decomposition properties of the M, the approach used here can

be extended to account for the effects of adding or removing units and

groups.

Assume the simple case that in a labor market of five occupations, two

occupations become obsolete:

t1 :

5 15

15 5

10 10

5 15

15 5

2
66664

3
77775! t2 :

8 23

23 8

19 19

2
4

3
5:

In this scenario, the workers from the vanished occupations were distrib-

uted across the remaining occupations, so that there are still 50 men and

women each. Between t1 and t2, the M declines from 0.105 to 0.076. Is this

purely an effect of the workers being redistributed? Or were the occupations

that vanished more segregated than the occupations that remained.

To answer this question, define the set S ¼ f1; 2; 3g for the three remain-

ing occupations, and D ¼ f4; 5g for the occupations that vanish. The sets S

and D define “super-units” that are composed of individual units, and the

share pD is the proportion of workers in set D at t1. The goal is to decompose

Mðt1Þ into the contribution of the occupations that vanish and those that

continue to exist, which can be done using the general form of the

between-within decomposition of M (Mora and Ruiz-Castillo 2011). Total

segregation thus equals the between-super-unitM plus the weightedMwithin

the two matrices defined by the two super-units, that is,

Mðt1Þ ¼ M
30 30

20 20

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

between vanished=remaining

þ pDM
5 15

15 5

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
within vanished

þ ð1� pDÞM
5 15

15 5

10 10

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
within remaining

:

Then solve for the last M term, which we call M�:

M�ðt1Þ ¼ M

5 15

15 5

10 10

0
@

1
A ¼ 1

1� pD
Mðt1Þ �M

30 30

20 20

� �
� pDM

5 15

15 5

� �� �

¼ 0:087 ¼ 1

0:6
0:105� 0� 0:4� 0:131½ �
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This expression summarizes the mechanical effect of dropping occupa-

tions on the M index. To arrive at the “reduced M” on the left-hand side, we

subtract from M all the sources of segregation that are due to the vanished

occupations only, which consists of a “between” and a “within” term. The

between term summarizes how strongly the gender composition of the van-

ished occupations deviates from the remaining occupations, in total, while

the within term summarizes how much segregation there is within the van-

ished occupations. The division by 1� pD has the effect of scaling the other

occupations’ proportions upward.5

M�ðt1Þ will be larger than Mðt1Þ when the occupations that vanish were

less segregated compared to the remaining occupations and will be smaller in

the opposite case. In this case, removing occupations 4 and 5 from t1 reduces

theM fromMðt1Þ ¼ 0:105 toM�ðt1Þ ¼ 0:087. The “reduced M” can now be

compared to the situation at t2 using the regular IPF method. The approach

outlined here thus amounts simply to a comparison of only those units that

overlap across time points. However, an advantage of the M, which neither

the H nor other indices have, is that there is an intuitive interpretation for the

“missing” units.

Applying the decomposition to the example above gives the following:

Mðt2Þ �Mðt1Þ ¼ Dremovals þ Dmarginal þ Dstructural

0:076� 0:105 ¼ �0:017þ�0:006þ�0:006 ¼ �0:029:

In total, about 60 percent of the decline in segregation can be attributed to

the effect of removing occupations 4 and 5. The remaining decline is equally

due to changes in the marginals and to structural changes.

For simplicity, the example was only concerned with the removal of units,

but additional units, such as newly arising occupations, can be handled in

exactly the same way.

Summary of Decomposition Approach

The full, five-term decomposition of change between two segregation indices

is thus:

Mðt2Þ �Mðt1Þ ¼ Dappearing þ Ddisappearing þ Dmarginal�units

þ Dmarginal�groups þ
X

u2t1\t2
Du;structural: ð11Þ

For most segregation problems, equation (11) is the minimum that is required

to robustly understand changes in segregation because the possible sources of

change may point in opposite directions. Large changes in the marginals may
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hide worsening segregation at the structural level or improvements in structural

segregation might be overwhelmed by changes in the marginals.

Often, it is also of interest to compare several points in time or across

space, and not just two. In this case, one point can be set as the reference

point, with the decomposition then comparing all other points to the focal

point in time. In a time series of occupational segregation, the first or the last

point are obvious candidates for the reference point, while in a ranking of

occupational segregation by cities the city with the median occupational

segregation could be a good candidate.

Note also that this procedure can be used to decompose any M index.

Because the cross-sectional decomposition of an M index again yield M

indices, their change can also be studied over time. For instance, when study-

ing occupational segregation, one might be interested in the change not only in

the total M but also for the partial M indices that define segregation within

major occupational groups. (This will be done in the example below.) The total

M admits to the following decomposition, assuming K major groups:

M ¼ Mbetween þ
XK
k¼1

pkMk ; ð12Þ

where Mbetween refers to the gender segregation between the occupational

major groups, pk is the proportion of major group k such that
P

kpk ¼ 1, and

Mk is the segregation within major group k. When change is observed over

time, the k þ 1 M indices defined in this decomposition can then be studied

using the procedure outlined here.

Example 1: Occupational Segregation

To consider the practical value of the above, I study occupational gender

segregation in the United States between 1990 and 2016. IPUMS provides

harmonized occupational codings based on the 1990 Census occupational

codes for this period (Ruggles et al. 2018). The sample has been selected to

comprise the employed, civilian population aged 16–66 with nonmissing

occupations. The occupational codes for 1990 were grouped into nine major

groups (see Table 3).

When comparing occupations over time, two problems arise. First, the

degree to which fine-grained occupations are recorded changes over time, and

this is often a problem induced by the harmonization efforts. For instance,

“sociologists” are not coded separately in 2000–2016 but are available as a

separate code in 1990. Second, occupations may vanish or new occupations
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may appear. “Stenographers,” for instance, are no longer coded in later years,

and this is probably because they no longer exist as a recognizable occupation.

In many cases, it is hard to distinguish whether the problem is one of harmo-

nization or one of disappearing occupations. For the purpose of this example,

we will make the simplifying assumption that the harmonized occupations that

are coded in each year represent recognizable, established occupations.

Descriptive Statistics and Total Segregation

Table 3 contains descriptive statistics by year. Panel A shows the number of

unique occupations that are available in each year, along with the number of

Table 3. Descriptive Statistics.

1990 2000 2010 2016

Sample size (in 1,000) 5,917 6,542 1,443 1,441
A. Number of occupations

Number of occupations 369 336 330 319
Appearing occupations 0 0 0
Disappearing occupations 33 6 11

B. Labor force participation (%)
Female 46 47 48 48

C. Distribution of occupational major groups (%)
Managerial 12 12 13 14
Professional 13 16 17 18
Technical 4 4 4 4
Sales 12 11 11 11
Administrative 16 16 14 13
Service 13 14 17 17
Farming, forestry 2 2 2 2
Production, craft 11 11 9 9
Operators, laborers 16 14 12 12

D. Female labor force by major groups (%)
Managerial 43 44 45 46
Professional 54 57 59 59
Technical 46 48 49 48
Sales 49 50 51 51
Administrative 78 74 72 70
Service 57 59 60 59
Farming, forestry 17 18 17 19
Production, craft 8 10 10 11
Operators, laborers 27 25 20 20
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categories that appear and disappear in each year. Panels B and C document a

well-known pattern of occupational change, both in terms of female labor

force participation and in terms of a changing occupational distribution.

Panel D shows that there is considerable heterogeneity in terms of female

labor force participation across occupational groups and a heterogeneous

pattern of change. In most occupational groups, female labor force partici-

pation increased, while in the administrative and operators/laborers major

groups, the share of women declined.

We calculate the M and the H for the total labor force, as well as sepa-

rately for each major occupational group. This is based on the decomposition

of the M into between and within-cluster terms, as in equation (12). In this

case, the between-group term measures the segregation that is induced by the

major occupational groups alone, while the within terms measure the segre-

gation of detailed occupations within each major group. Because the number

of observations are in the millions, bootstrapped standard errors are negli-

gible (<.0005) and therefore not shown.

The results are shown in Figure 1. Overall gender segregation, shown in the

top panel, declined by 15 percent from 1990 to 2016 for the H and the M.6 In

1990, theHwas at 31 percent and declined to 26 percent by 2016. The between

term also declined, which means that major occupational groupings are

becoming less informative about gender composition over time. However,

major occupational groupings account for a large amount of overall gender

segregation (45 percent of total segregation in 1990 and 42 percent in 2016).

While overall segregation declined, the within terms reveal some hetero-

geneity. In most major groups, gender segregation declined. In others, nota-

bly farming and forestry as well as production and craft occupations, gender

segregation increased strongly. This heterogeneity suggests that it is worth-

while to study major groups separately.

Decomposition of Change

Many segregation analyses would stop at this point. Using the decomposition

properties of theM, as well as the decomposition of change developed in this

article, we can go further and explore the patterns in more detail. To simplify

the analysis of change, we focus on the changes between 1990 and 2016,

without considering the intermediate years. Because no new occupations

appear over time in this example, the total difference of any M term is thus

decomposed into four components: the effect of those occupations that are

removed, the effect of the changing occupation marginal distribution, the

effect of the changing gender marginal distribution, and the total structural
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Figure 1. Occupational gender segregation, 1990–2016.
Panel A shows total segregation by gender and detailed occupations. Panel B shows
segregation between gender and major occupational groups. Panel C shows within-
major-group gender segregation by detailed occupations.
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component. Figure 2 shows the results graphically (without the between

term), while Online Appendix B (which can be found at http://smr.sagepub.-

com/supplemental/) contains the full decomposition table. Again, the stan-

dard errors obtained through bootstrapping are negligible.

For the totalM, the decline can be attributed to the changing occupational

structure—that is, the labor force has shifted toward occupations that are less

segregated—and, for the most part, to structural decrease. The decline in

structural segregation accounts for 62 percent of the total decline in segrega-

tion. Most analysts of occupational segregation would consider this a posi-

tive development: Segregation decline is mostly due to declines in structural

segregation, and the shift toward less segregated occupations has contributed

even further to the decline. If all of the decline were due to the changing

occupational margins only, we would still find that the average worker

experiences less gender segregation. However, we could not conclude that

the association of certain occupations with certain genders has lessened.

Segregation declined in five out of the nine major groups, and the share of

the structural component was high in all five groups (between 65% and

117%). Within the major group of operators and laborers, the occupations

that disappeared were relatively less segregated than the ones that remain,

which increased segregation. However, the large marginal and structural

components offset this small increase.

Only: Production, Craft

Only: Farming, Forestry

Only: Managerial

Only: Technical

Only: Sales

Only: Administrative

Only: Service

Only: Professional

Only: Operators, Laborers

Total labor force

−0.04 0.00 0.04

Difference in M

Gender margins Occupation margins

Disappearing occupations Structural

Figure 2. Decomposition of change.
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Segregation increased for four major groups. Except for the managerial

group, structural increase plays less of a role for these groups. For technical

occupations, structural change was in fact negative, but the marginal

changes, especially the effect of the changing occupational distribution, led

to an increase in segregation. In farming and forestry and production and

craft occupations, structural segregation increased, but the changes in the

marginals had a larger effect on the increase in segregation than the structural

change. For the managerial occupations, the increase in segregation is almost

entirely due to a structural increase in segregation, which is worrisome.

Overall, a rough pattern emerges: For those occupational major groups where

segregation declined, it declined in large part because of a structural decrease

in segregation. When segregation increased, it increased mostly because of

changes in the marginal distributions—with the notable exception of man-

agerial occupations.

The increasing labor force participation of women accounts for only a

minor part of the overall segregation difference: Around 3 percent of the total

change is explained by changing gender marginals. One might wonder why

the sign of these effects does not correspond to the changing patterns of

female labor force participation from Table 3. Shouldn’t major groups in

which women are rare show a decrease in segregation if the number of

women increases? For instance, the female share of production and craft

workers has increased from 8 percent to 11 percent, but this led to an

expected increase in segregation. To understand why this is the case, con-

sider the example of carpenters. In 1990, this occupation was 98.2 percent

male, while the male share in the major group was 92.2 percent. This leads to

a local segregation score for carpenters (within the major group) of

0:982 � log 0:982
0:922

� �
þ 0:018 � log 0:018

0:078

� �
¼ 0:036. In 2016, the share of male

workers in the major group is 88.9 percent, which represents a reduction

in the share of men of about 4 percent and an increase in the share of women

of about 42 percent. After proportionally increasing the number of women

and reducing the number of men, the expected share of carpenters that are

men is now 97.4 percent. (To simplify, we only consider the forward adjust-

ment here.) This leads to a counterfactual local segregation score for carpen-

ters of 0:974 � log 0:974
0:889

� �
þ 0:026 � log 0:026

0:111

� �
¼ 0:051. This score is higher

than before, although the number of women has increased. In this case, the

expected effect of proportionally increasing the share of women within each

occupation increases segregation because it emphasizes existing patterns of

segregation even more. The effect of the changing patterns of female labor

force participation thus depends on the existing association structure between
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occupations and gender. This shows that the marginal effects have to be

interpreted as expected changes in segregation when the odds ratios are held

constant.

Comparison With Other Indices

IPF makes it possible to create a time series of adjusted M indices that is not

confounded by marginal changes. To do this, I choose 1990 as the reference

year and adjust the other years (2000, 2010, 2016) toward the marginals of

the year 1990. Alongside with the adjusted M index, I also calculate the

observed M and H indices, and the three other indices discussed above (see

Online Appendix A for formulae, which can be found at http://smr.sagepub.

com/supplemental/).

The results for the five indices are shown in Figure 3. To ease comparison

across the indices, the absolute numbers are transformed to be percentages of

the 1990 values. First, it should be noted that all indices register a decline in

segregation (although the A and SSD indices increase between 2000 and

2010). The structural decline, as calculated by the adjusted M, amounts to

10 percentage points of the 1990 value. The observed M and H “overstate”

the decline, similarly to the V index. As seen in Figure 2, this is because the

change in the occupational margins contributed to the decrease in
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Figure 3. Comparison of the margins-adjusted M index with alternative indices.

Elbers 27



segregation. Although the H is standardized, it gives essentially the same

answer as the M. This is because the H is standardized by the gender distri-

bution, which, however, had only a slight effect on segregation change. The

effect of the occupation-margin dependency of the H is thus clearly visible

here. The other indices underestimate structural change compared to the

adjusted M. The differences between the margin-free A and adjusted M are

due to the different occupational weights. The A weights each occupation

equally, which makes is susceptible to extreme values for small occupations

that arise from sampling variability (Watts 1998), which is a possible expla-

nation for its more erratic movement compared to the other indices.

The adjusted M index has a clear interpretation and a clear advantage: It

quantifies the amount of segregation that is purely due to changes in the odds

ratios, net of any changes in the marginal distributions. It should be empha-

sized that the adjustedM is not a new segregation index, but just a regularM

index, calculated on tables with identical margins. The main advantages of

the decomposition will not be in the construction of an adjusted time series,

as in Figure 3, but in the ability to more precisely pinpoint where the changes

in segregation originate.

Example 2: Residential Segregation

A second, short example illustrates the advantages of decomposing structural

segregation. These results make use of the Longitudinal Tract Database

(Logan, Xu, and Stults 2014), which provides racial group counts for con-

sistent Census tract boundaries. We just look at one example: The change in

multigroup segregation in the borough of Brooklyn, New York City, from

2000 to 2010. Four racial groups are considered: Non-Hispanic whites, non-

Hispanic blacks, Hispanics, and Asians.

Table 4 shows estimates of segregation by Census tracts in Brooklyn in

2000 and 2010, as well as the decomposition. The H declined from 0.437 to

0.398, which represents a decrease in segregation of about 9 percent. The

difference in M values is then decomposed into the usual five terms. The

main finding of this decomposition is that the decline in segregation is almost

entirely due to structural change.

As a next step, the structural term is decomposed further to explore

whether the declines in segregation are spatially clustered. We could use the

terms Du;structural, as introduced in equation (10), but these terms are weighted

by tract proportion. To show changes at the scale of the M index, we define

instead the term DLu, which is just the average change in local segregation

scores, net of marginal changes:
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DLu ¼ 1

2
Luðt2Þ � Luðt 01Þ½ � þ 1

2
Luðt 02Þ � Luðt1Þ½ �:

(This is simply equation [10], with the weights pt1�u and pt2�u dropped.)

Recall that the local segregation scores are measuring how strongly each

tract’s racial group distribution deviates from Brooklyn’s overall racial group

distribution. If a tract has exactly the same racial group distribution as Broo-

kyln, its local segregation score will be 0; if a tract’s racial group distribution

deviates from Brooklyn’s racial group distribution, local segregation for that

tract will be > 0.

Figure 4 shows a map of Brooklyn, with the tracts shaded according to the

value of DLu, that is, the expected difference in local segregation when the

margins are held constant. As Table 4 has shown, the average structural

decline in segregation was � �0:04. Thus, if all tracts were affected in the

same way by structural segregation, we would expect DLu to be�0:04 for all
neighborhoods. The map shows that this is clearly not the case. Instead,

declines in structural segregation have been much more pronounced in some

neighborhoods of central Brooklyn, such as Clinton Hill, Williamsburg, or

Bedford-Stuyvesant, which are shaded in dark blue. In some eastern parts of

Brooklyn (Canarsie and East New York), as well as southwest of Prospect

Park (the area of Sunset Park), structural segregation has increased, often

quite strongly. Note that these values can be interpreted at the scale of theM.

Thus, an increase in structural segregation of 0:2 for the whole of Brooklyn

would mean an increase in segregation of about 36 percent, given the

Table 4. Decomposition of Change.

Estimate

Index scores
H in 2000 .437
H in 2010 .398
M in 2000 .552
M in 2010 .517

Difference in M �.035
Difference decomposition
Additions .000
Removals .000
Racial group margins .000
Tract margins .003
Structural �.038
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baseline value of M ¼ :552 in 2010. This shows that the differences we

observe across tracts are quite substantial.

This analysis could now be continued in various ways. As the index was

calculated as a multigroup index, a further analysis might be interested in

racial group differences. Another approach is to correlate the changes in

structural segregation with tract-level measures, such as income or racial

Prospect
Park

−0.4 −0.2 0.0 0.2

Figure 4. Tract-level differences in local segregation change DLu, net of marginal
changes.
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composition. It seems that segregation declined most strongly in gentrifying

neighborhoods, while segregation has increased especially in the eastern,

disadvantaged neighborhoods.

Limitations

The major limitation of theM index is that it is not standardized between zero

and one. This clearly is a disadvantage. However, as has been pointed out

throughout the paper, the full decomposition of change is only possible with

the M index, as (a) it is decomposable into a weighted average of local

segregation scores, (b) “vanished” and “new” units have a clear interpreta-

tion, and (c) the symmetry of the decomposition requires that the index is

neither standardized in terms of groups nor in terms of units (if that were the

case, the respective marginal component would be underestimated). In prac-

tice, one might therefore prefer to use the H index to establish the absolute

level of segregation, and report all M changes in terms of percentages. This

has been done throughout the examples.

A limitation of the decomposition method is its relative complexity

(certainly compared to a computation of a time series of segregation

indices). This can be remedied through the use of the R package. Even

with large tables and bootstrapping, the computation of the decomposition

will be fast.

In the segregation literature, there has been some concern about segrega-

tion indices that are calculated on the basis of small unit sizes or small group

proportions. For instance, Winship (1977) derived expressions for the expec-

tation of the index of dissimilarity for a city with two racial groups. With 10

households per block and varying proportions of the racial groups, the

expected value of the D under a random housing pattern will range from

0.246 to 0.387. This represents serious bias. For the M and the H, the

expected values7 for the same situation range from approx. 0.053 to 0.058,

and from 0.076 to 0.178, respectively, which is an improvement (see also

Fossett 2017:257-279). The reason for this improvement can be seen when

the M is expressed in terms of the individual table cells. In this formulation,

the observed value in each cell, pgu, is compared to the expected value under

independence (by multiplying the two marginal probabilities, pg� and p�u):
8

M ¼
X
u

X
g

pguln
pgu

pg�p�u

� �
: ð13Þ
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Clearly, if pgu is especially small, the logged ratio may be overly large.

However, the expression is then weighted by pgu, which leads to a relative

decrease of the influence of the large ratio.

More generally, if one is concerned that in the problem at hand there may

be zero segregation, and/or one deals with small group proportions or small

unit sizes, one can take two steps to help remedy this problem: First, one can

resort to the tool kit of classical statistics, such as Fisher’s exact test or a chi-

squared test. If these tests do not reject the null hypothesis of zero association

between groups and units, then one can also conclude that there is no seg-

regation. Second, one can use the observed marginal distributions to simulate

random contingency tables, and compute the average segregation score for

these tables. If the average simulated segregation score is > 0, the observed

segregation score should be interpreted with caution. As a remedy, one could

then combine units to arrive at a smaller contingency table. To check seg-

regation bias for the H andM easily, the procedure has been implemented in

the R package.

Finally, while the literature has devoted considerable effort to “purge” the

influence of marginal differences from segregation indices, it should be

noted that differences in the marginal distributions may often be the relevant

social fact compared to differences in structural segregation. Consider the

comparison of a labor market over time. At the beginning of the period, men

comprise 80 percent of the labor market, and at the end of the period the labor

market has a balanced gender composition. One could compare the absolute

level of segregation over time, but it seems that in such an extreme case, the

relevant difference lies in the starkly different demographic profiles. When

there are large changes in the marginal distributions (as in this case), it is also

questionable whether the marginal and structural changes can be interpreted

as (causally) independent. The IPF method would adjust the majority gender

distribution at the first time point toward the balanced situation at the second

time point, assuming that the marginal changes did not affect structural

change (or vice versa). The IPF method would still successfully calculate

the contributions of marginal and structural changes to this trend. However,

if it were true that marginal changes causally produced all structural change,

then the contributions from the (unknown) true causal model would be dif-

ferent. The deeper point here is that changing marginal distributions can be

an important part of segregative processes and that the summaries provided

by a standardized segregation index should be used with caution when the

margins are very different. An important empirical question to address in

future work is how marginal changes and structural changes interact.
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Conclusion

The article presented a general method to decompose changes in segregation

levels. It has been shown that the difference between two M indices can be

decomposed into marginal and structural changes, as well as into terms that

account for the appearance and disappearance of units. Parts of the method

are, in principle, applicable to any segregation index. However, the advan-

tages of the M index became apparent when considering changing sets of

units under study and when a further decomposition of structural terms is

desired. The decomposition of the structural term into the contribution of

individual units is especially useful, as it may reveal important heterogeneity

in segregation change among the set of units. The change in structural seg-

regation allows a more precise testing of hypotheses about the causes and

effects of changing levels of segregation at the unit level, and this change will

be net of any influence of the marginal distributions. The benefits of this

approach have been illustrated in the two examples.

The method described here can be applied to a variety of problems.

Given that the M is a multigroup index, no measures have to be taken to

account for segregation problems with more than two groups. Thus, the

decomposition can be applied to school and residential racial segregation

(as in example 2) where the analysis extends beyond just the majority–

minority group dichotomy. Other examples where the method might be

usefully applied are workplace racial and gender segregation. As firms shut

down and new firms are founded, these studies typically have to account for

a changing distribution of units. Furthermore, it is likely that there are firm

differences in the propensity to segregate by race and/or gender (e.g., large

and small firms).

The examples in this article are focused on comparisons over time, but the

method applies equally to comparisons across space. One useful application

would be for comparisons of occupational segregation across countries or

cities. One might suspect that observed differences in occupational segrega-

tion between cities are often due to marginal changes. For instance, a city

with a large production sector will likely have higher gender segregation than

a city with an employment profile skewed toward service occupations. One

might suspect that the differences in segregation are just a consequence of the

differences in the marginal occupational distribution. If one compares many

cities or countries with each other, it will often not be feasible to compute all

pairwise comparisons. Similar to regression analysis, one could instead

choose one city as the “reference category” and compute comparisons

against this reference city. Alternatively, one could also pool all of the
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city-specific data sets to capture overall segregation and then compute dif-

ferences of each city compared to the overall average.

TheM index and the decomposition can be applied to a much wider array

of problems than are usually considered in segregation analysis. The M

index, as any segregation index, is a measure of statistical association

between two categorical variables and could thus be usefully applied to

variables other than gender, occupation, racial groups, schools, or firms. For

instance, the study of social mobility relates the parental class distribution to

the class distribution of the children. It could prove insightful to apply

entropy-based indices to this problem as well, as it would allow researchers

to make statements about which classes contribute the most toward increases

and decreases in social mobility.
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Notes

1. The unit-margin dependency of the D has long been recognized. This led to the

development of the size-standardized index of dissimilarity SSD, which, while not

margin-dependent on the unit distribution, reintroduces a dependency on the group

distribution.

2. Mora and Ruiz-Castillo (2011:161) identify a small number of papers that prefer

the M index over the H. Beyond those, DiPrete et al. (2017) and Forster and Bol

(2018) have used the M index in the context of school-to-work linkages.

34 Sociological Methods & Research XX(X)



3. Three caveats apply: First, the standardization is only limited to the range from

zero to one when U � G, which is the case in most segregation problems.

Alternatively, Mora and Ruiz-Castillo (2011) also define the H� index. This

index is defined by standardizing the M by the unit distribution entropy, that

is, H� ¼ M
Eðp�uÞ

: This index is maximized when EðpujgÞ ¼ 0 for all groups, which

is only true when all members of each group are concentrated at exactly one unit.

This, of course, is not possible with two groups and more than two units. The H�

index is thus only appropriate when G � U , which for practical segregation

problems is usually not the case. Second, the maximal value can only be reached

if there are more subjects than there are units. As Carrington and Troske (1998:

239) write, “in a sample with 10 black workers and 20 firms, for example,

evenness is unobtainable because it is impossible for each firm to get half a

black worker.” In many practical segregation problems, this is usually not a

problem as there are more subjects than units. Third, the standardization only

works when the size of the smallest group is larger than the smallest unit. For

instance, consider a labor market of 200 women and 700 men distributed across

three occupations of size 300. Even if the occupations are maximally segregated

(i.e., two all-men occupations, and one occupation with 200 women and 100

men), the indices reach their maxima at M ¼ 0:32 and H ¼ 0:6. Whether such

marginal constraints matter in practice depends on the concrete application.

4. The iterative proportional fitting procedure requires positive counts in each cell,

which in practice may not always be in case. The canonical solution here is to

replace zero counts with a very small number, for example, 0:0001.

5. This can be clearly seen by assuming that we drop one unsegregated occupation

only (occupation 3 from t1). Then, the expression simplifies to M� ¼ Mðt1Þ
1�pD

. This

shows that the mechanical consequence on M when an unsegregated occupation

vanishes depends only on the size of the occupation, pD.

6. Because the M is sensitive to the number of categories, one might suspect that the

higher gender segregation in 1990 is an artifact of measurement. The normal-

ization of the H index corrects for the changing number of categories, as shown

above. Either way, in this case the variation in the number of occupations is too

small to matter: if we restrict the calculation to the 317 occupations that are

available at all five points in time, the M and H values are within 1 percent of

the values presented in Figure 1.

7. These values have been simulated using the “mutual_expected” function of the R

package.

8. This equation also shows that theM is a “rescaled likelihood ratio test” (Card, Hein-

ing, and Kline 2013:983) and provides a natural way to relate the M index to other

approaches that are concerned with the study of association in contingency tables.
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