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Abstract— Exploring robots may fail due to environmental
hazards. Thus, robots need to account for the possibility of
failure to plan the best exploration paths. Optimizing expected
utility enables robots to find plans that balance achievable
reward with the inherent risks of exploration. Moreover, when
robots rendezvous and communicate to exchange observations,
they increase the probability that at least one robot is able to
return with the map. Optimal exploration is NP-hard, so we
apply a constraint-based approach to enable highly-engineered
solution techniques. We model exploration under the possibility
of robot failure and communication constraints as an integer,
linear program and a generalization of the Vehicle Routing
Problem. Empirically, we show that for several scenarios,
this formulation produces paths within 50% of a theoretical
optimum and achieves twice as much reward as a baseline
greedy approach.

I. INTRODUCTION

Using multiple robots to explore an unknown area has
the potential to construct maps more efficiently by exploring
multiple regions simultaneously. Yet robots face hazards in
many scenarios [1]; conditions in the environment may cause
robots to get stuck, lost, or otherwise fail. Robots that fail
before communicating new observations will not contribute
to the team’s map, so robots may need to form subteams
that explore together to ensure that at least one robot in
each subteam transmits the map updates. Moreover, wireless
communication between robots itself presents challenges due
to communication range limits or obstacles, so the team may
not know that a robot outside communication range has failed.
To best explore, a robot team must balance efficiency and
speed of concurrent exploration with robustness of forming
subteams with multiple robots. Furthermore, exploration will
typically reveal new areas to explore; thus, exactly computing
optimal explorations paths from limited initial knowledge is
not generally possible. Instead, each robot subteam must be
able to quickly update plans with new information.

To address these aforementioned issues, we adopt the game-
theoretic notion of expected utility [2], providing a metric
for reward (i.e., new information) over a path balanced with
the likelihood of achieving the reward (i.e., the probability
that the robot will not fail). While the expected utility of
a particular path can be directly and efficiently computed
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Fig. 1: Overview of exploration with communication and
attrition. All robots start within communication range and
plan assignments of unknown space to explore as well as
rendezvous points and times to communicate observations.
Robots may fail, so they work in subteams to improve
reliability. At the scheduled time, robots rendezvous to share
info with other subteams and the base station.

using a probabilistic graphical model, planning the utility-
optimal path presents a computational challenge. We prove
that finding the utility-optimal path is NP-hard through a
reduction from the NP-hard Traveling Salesman Problem [3].

We present an optimization-based approach for multi-robot
exploration that maximizes expected utility while accounting
for the possibility of robot attrition and communication
constraints (Fig. 1). The exact optimization problem is
inherently nonlinear, so it is generally not possible to
efficiently find the true optimum (see Sec. III). Instead, we
design an integer, linear program to efficiently approximate
the optimal solution (see Sec. IV), and we develop a recursive
subteaming approach to explore newly revealed areas (see
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Sec. IV-G). We empirically evaluate the optimality of our
approximation and its computational performance in Sec. V.

II. RELATED WORK

This paper addresses robust exploration using multiple
robots and under the possibility of robot failure. We next
review related work in robot exploration, coverage, and
navigation under uncertainty.

Leading approaches in exploration focus on efficient man-
agement of a group of robots and scalability to many robots.
Decentralized approaches [4], [5], [6] have shown the ability
to scale to many robots, but they may get stuck in local optima.
Conversely, algorithms that incorporate information gain [7],
[8], [9], approaches for active information acquisition [10],
[11], or goal assignment [12], [13] produce results closer to a
globally optimal path but at a cost to scalability. Additionally,
exploration algorithms that consider communication require-
ments [14], [15] provide insight applicable to cluttered or
otherwise constrained environments. Our work differs from
existing works by explicitly addressing the possibility of
robots failing during exploration.

The robot coverage problem tasks a group of robots
to revisit an already-explored area with the possibility of
robot failures. Leading approaches account for failures by
decomposing the space into regions and adding a robot to
existing regions if a robot fails [16], taking over a failed
robot’s work once a different robot completes its assigned
task [17], or immediately reassigning robots when a robot
fails [18]. However, in the coverage problem there is no
unknown area. Also, communication is typically assumed to
be perfect, which implies that the robot group is immediately
aware of a robot failure. Our work focuses on exploring new
areas under communication constraints, i.e., a robot failure
may not be immediately detected by other robots.

Works that consider uncertain exploration can also be ap-
plied to mitigate risk during exploration. Leading approaches
for uncertain exploration construct a Partially Observable
Markov Decision Process (POMDP) [19], [20], which com-
putes a policy for what the robots should do in all possible
scenarios. While such approaches generate optimal solutions,
as the size of the map and the number of robots grow, the
computational time to make the policy increases—the curse
of dimensionality. In contrast, our approach computes a single
path, which while not guaranteed to be optimal, can be
calculated more quickly.

III. PROBLEM DEFINITION AND PROBABILISTIC MODEL

We define the attrition-aware multi-robot exploration prob-
lem (AAMREP) where we seek to maximize the expected util-
ity at the base station—i.e., maximize the information gained
at the base station while accounting for the possible robot
failures during exploration. Robots communicate observations
to teammates and the base station; however, a robot that fails
during exploration loses all the untransmitted information—
i.e., we adopt a conservative approach and assume all failure
is catastrophic. Thus, optimal paths need to balance the risk
of failure during exploration with the estimated information

gain reward. We next define the variables and functions for
cost and information gain that will be used in our problem
definition.

Definition 1. Σ =
(
R,X , x[0], b,Wc,Wg,Wk, a,Mknown

)
where,
• R is a finite set of robots,
• X =M|R| is the multi-robot configuration space, where

each M is the space of a single robot—e.g. SE(2),
SE(3), or Rn,

• x[0] ∈ X is the initial multi-robot configuration.
• b ∈M is the position of the base station,
• Wc :M×M 7→ R is a signed communication function,

where positive values indicate that communication is
possible between the two positions,

• Wg :M 7→ R+ is a function that maps from an observed
point to information gained,

• Wk :M×M 7→ R+ is a cost function to move between
two points—e.g., distance, time, or energy.

• a ∈ [0, 1] is an attrition probability per unit cost,
• Mknown ⊆M is the known map.

Single-robot space M consists of disjoint free space
Mfree and obstacle region Mobs. A multi-robot config-
uration is valid if the position of each individual robot is free:
Xvalid =

{
(m1, . . . ,m|R|) ∈ X

∣∣ each mi ∈Mfree

}
.

Initially, the robots have knowledge only of Mknown, and
the rest of the map is unknown: Munknown =M\Mknown.
We assume a discrete, finite representation of the map, e.g.,
an occupancy grid, roadmap, or octree. Note that positions in
Munknown can still be in free space Mfree or the obstacle
regionMobs, thus attempting to plan through Munknown could
result in infeasible paths.

The base station gains information by communicating
with robots, and robots gain information either by direct
observation (i.e., traveling to an unknown area and sensing
the area) or by obtaining information via communicating
with other robots. Information gained at the base station
is the sum of Wg over observations received. However,
we must account for the possibility that robots fail before
communicating observations. Thus, we find optimal paths
based not on reward—i.e., information gain, but on game-
theoretic expected utility—i.e., reward scaled by likelihood
of achieving that reward.

A. Observation Likelihoods

The likelihood of a robot or the base station receiving an
observation depends on (1) a robot reaching a position to
make the observation and (2) two robots or the base station
communicating the observation. We model likelihoods using
random variables representing robot i arriving at a position,
xi; observing an unknown point, oi; or communicating with
robot or base station j, ci,j . Since we assume a discrete map
ofM, there are finite number of positions and observations to
consider. For any specific path σ : [0, 1] 7→ X , there are finite
number of events, which occur when robots reach a position to
observe or communicate, so we need to only consider random
variables over a finite number of timesteps. We model the
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Fig. 2: Dynamic Bayesian Network fragment for a robot i and base station b over two timesteps, k, k + 1. The variables
represent the likelihood of a robot or the base station arriving at a position (x), communicating with one another (c), and
observing a single point (o). Subscripts denote the robot the random variable refers to and arrows on the DBN correspond to
dependencies between the random variables. Horizontal dotted lines show dependencies from preceding to future timesteps,
and the dashed lines separate the timesteps.

random variables and dependencies as a Dynamic Bayesian
Network (DBN) in Fig. 2.

The likelihood that robot i reaches position x at timestep
k and for path σi depends on accumulated cost (Wk) and
the attrition rate (a):

P
(
xi

[k]
∣∣∣xi[k−1]) = (1− a)

Wk(σi(k),σi(k−1)) . (1)

The likelihood that two robots can communicate is the
probability that a network path exists between them. A
network path exists when Wc ≥ 0 for all robots in the
path. Wc is deterministic, so the uncertainty arises from the
probability of a robot reaching a position according to attrition
rate (1)—i.e., the probability that the robot has not failed.

For a specific path σ, we construct and evaluate a DBN
to determine the probabilities that the base station has each
observation o at final timestep h′,

L(o,σ) = P
(
ob

[h′]
)
. (2)

B. Expected Utility
The expected utility We for path σ depends on likelihoods

of observations L and corresponding information gain Wg ,

We (σ) =
∑

o∈Munknown

L (o,σ)Wg (o) . (3)

We assume that the gain from each observed point, o, is
independent of other points, consistent with other information
theoretic works [21] and typical occupancy grid assumptions.

The solution to the problem defined by Def. 1 is a path σ
that is feasible and maximizes expected utility.

Definition 2. An information-optimal path σ solves,
max
σ

We (σ)

s.t. σ[0, 1] ∈ Xvalid ∧ σ(0) = x[0] .

Def. 2 specifies optimal paths over the entire space M.
However, paths that move into unknown space could be
infeasible (Munknown ∩Mobs), and paths that stay in known
map Mknown may be suboptimal, as the optimal path could
move through the unknown but still valid space (Munknown ∩
Mfree). Consequently, we must incorporate new observations
during exploration. Precomputing a policy to respond to all
combinations of free and obstacle portions of Munknown would
be computationally challenging, if not intractable. Instead,
we develop a recursive approach to explore and plan.

IV. APPROACH

We develop an approach to find paths that optimize
expected utility (i.e., expected information gain) according
to Def. 2. When the entire robot team is in communication,
the team divides into subteams, and they plan paths to the
boundaries of the known space—i.e., frontiers [22]—along
with rendezvous locations to communicate their observations
after exploration. Then, when subteams reach frontiers, they
recursively plan based on the newly explored space. Finally,
subteams rejoin at rendezvous points and ultimately relay
observations to the base station.

Because most of the information comes from unknown
points, we only consider reward from unknown space, rather
than over the entire path, to improve scalability. To estimate
the maximum reward from exploring unknown space, we
partition the unknown space into frontier regions. There are
many partition approaches, such as using k-means cluster-
ing [23] or Voronoi diagrams [24]. Empirically, we found a
Voronoi-based partitioning worked well for our experiments.
Based on the partitioning, we estimate the maximum reward
for a single frontier by summing information gain Wg over
all unknown points—i.e., we assume unknown space is free.

Our approach plans paths for robots by choosing which
robots should explore which frontiers in which order before
rendezvous with other robots and finally returning to the base
station. The Vehicle Routing Problem (VRP) [25] addresses
robots that visit a sequence of points and return to a starting
location—without communicating. Thus, we formulate our
approach as an extension of the VRP to include the ability
to communicate.

A. Background on the Vehicle Routing Problem

We briefly summarize the typical formulation for the VRP;
please see [25] for a more thorough discussion. The VRP is
defined as (R,Q), where R is a set of vehicles (robots) and
Q is an undirected, weighted graph of points to visit (goals)
as well as start s and end e locations. s and e represent the
same physical location but are represented separately in Q
to track when robots arrive at the end. Every graph edge has
two weights, a path cost cqq′—given by Wk—and a time,
tqq′ , needed to travel between any two points. The vehicles
must visit every goal in Q and return to e before the final
time h while minimizing the total travel cost.
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The VRP is typically modeled as an integer, linear program
(ILP) with decision variables specifying paths for each robot.
The typical model for the VRP contains continuous variables
xrq representing when robot r arrives at point q and binary
decision variables encoding paths, αrqq′ , defined to be one if
and only if robot r travels between from q to q′. Robots can
remain at a point, so we add another continuous variable yrq
representing the time a robot leaves a point.

Solutions to the VRP minimize the path cost, while
ensuring that some robot visits every goal before the final
time, h. The constraints ensure that a path starts at s, visits
some sequence of points, and then returns to e. The solution
is a continuous time path given by the arrival and leaving
times (xrq and yrq) for every point.

Some requirements of the VRP couple continuous and
binary decision variables, which could, result in a nonlinear
constraint if binary variables are multiplied by continuous
ones. To formulate such requirements as linear constraints—
e.g., (10), [25] formulates all constraints comparing binary
and continuous decision variables as inequality constraints,
and multiplies the binary variable by a constant large enough
that the constraint is always satisfied for one value of αrqq′ .
We use this technique—i.e., big M [26], in our formulation.

Fig. 3 summarizes the objectives and constraints of the
VRP. Constraints (5) and (6) ensure that every robot begins at
starting location s and ends at final location e. Constraint (7)
ensures each robot enters and leaves a point through exactly
one path, and constraint (8) ensures that each point is visited
exactly once. Constraints (9) and (10) ensure that the time
when a robot leaves a point, yrq , is after it arrives, xrq , and
before it arrives at the next. Constraints (11) and (12) ensure
that no points are visited after the final time, h.

B. Extensions to the VRP and NP-Hardness

We extend the VRP formulation in Sec. IV-A to address
the exploration problem of Def. 2. The globally optimal path
may move through unknown space, so it is not possible to
exactly compute such a path. Instead, we finds paths through
known space to reach frontiers while deciding the amount
of time for exploration of frontiers, a decision not addressed
by the VRP. Additionally, the VRP explicitly constrains each
robot to return to the ending location; though returning to an
end location is not an explicit requirement in our problem,
we prove in Sec. IV-C there is an optimal path where every
robot returns to the base station. By planning for time to
explore frontiers and eventually returning to the base station,
robot subteams can recursively plan when they arrive at the
frontier, finding a sequence of near-optimal paths.

Next, we prove that AAMREP is NP-Hard through a
reduction from the NP-hard Traveling Salesman Problem [3].
We reduce the TSP to AAMREP by constructing an AAMREP
with one robot and every TSP goal point as a frontier with
information gain large enough that the optimal solution is
to visit every frontier. Since there are no other robots to
communicate with, the solution to Def. 2 would be to visit
every frontier at the lowest cost. Thus an answer to AAMREP
would be an answer to TSP, therefore AAMREP is NP-hard.

min
∑
r∈R

∑
q∈Q

∑
q′∈Q

cqq′αrqq′ (4)

s.t.
∑
q∈Q

αrsq = 1 ∀r ∈ R (5)∑
q∈Q

αrqe = 1 ∀r ∈ R (6)∑
q′∈Q

αrq′q =
∑
q′∈Q

αrqq′ ∀r ∈ R, q ∈ Q \ {s, e}

(7)∑
r∈R

∑
q′∈Q

αrq′q = 1 ∀q ∈ Q \ {s, e} (8)

xrq ≤ yrq ∀r ∈ R, q ∈ Q (9)
yrq + tqq′ − xrq′ ≤

(h+ tqq′) (1− αrqq′)
∀r ∈ R, q, q′ ∈ Q (10)

yrq ≤ h
∑
q′∈Q

αrqq′ ∀r ∈ R, q ∈ Q (11)

yre = h ∀r ∈ R (12)

Fig. 3: Objective and constraints for the VRP [25]. R is the
set of robots and Q is the set of points. αrqq′ represents the
choice for robot r to take the path from q to q′, where cqq′
and tqq′ are the cost and travel time of that path respectively.
We track the arrival time, xrq, and departure time, yrq, for
each robot r at each point q. h represents the final possible
time, and points s and e represent the start and end locations.

The NP-hardness of AAMREP means that optimal solutions
will, in general, be computationally intractable, even when
planning through Mknown. Thus, the rest of our approach
focuses on tractable approximations of an optimal solution.

C. Ending paths at the base station

Though AAMREP does not explicitly require robots to
return to the base station, we prove that an optimal path must
exist in which every robot returns to the base station. Since
there is such an optimal path ending at the base station, we
are able to retain constraint (6) for robots to reach the base
station. We prove robots may optimally complete paths at
the base station by showing, for all cases where a robot ends
its path elsewhere, there is a path where the robot ends at
the base station with the same or greater expected utility.

Proposition 1. A robot, whose (1) path does not end at the
base station and (2) observations are all received by the base
station, has expected utility equal to a path where the robot
ends at the base station.

Proof. Expected utility increases either by (1) increasing
likelihood a particular observation is received by the base
station; or (2) new observations being received by the base
station. The base station has all the robot’s observations,
so the robot cannot (1) increase (or decrease) likelihood of
the base station having an observation or (2) provide new
observations to the base station.
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Proposition 2. If a robot’s path ends with observations not
received by the base station, then there exists a path with
greater or equal expected utility ending at the base station.

Proof. Likelihood is strictly non-negative. Regardless of
path cost, returning to the base station will never decrease
likelihood of the base station receiving the untransmitted
observation. Thus, it is always optimal to return to the base
station with untransmitted observations.

Proposition 3. An optimal path must exist where every robot
ends its path at the base station.

Proof. A robot that does not end at the base station either has
or has not transmitted all of its observations to the base station.
Prop. 1 and Prop. 2 prove for both cases that returning to the
base station provides equal or greater expected utility.

D. Robot Teaming and Exploration

Unlike the VRP, AAMREP permits multiple robots to
visit frontiers for exploration or a rendezvous points for
communication. We model multiple robots in a subteam as
the set of robots visiting the same frontier. The behavior of a
subteam exploring a frontier is different than their behavior
at a rendezvous point—i.e., they recursively plan to explore
unknown space at a frontier, and they wait and communicate at
a rendezvous points. To distinguish frontiers and regular space,
we create a new set of points, f ∈ F ⊆ Q, that contain just
the frontiers—i.e., points where robots can explore. We keep
non-frontier points for possible communication locations—
e.g., the base station. We capture the decision for a robot
to explore a frontier with βrf which is one if and only if
robot r explores frontier f . We define a subteam as the set of
robots r exploring the same frontier f , {r ∈ R | βrf = 1}.

We remove constraint (8) so multiple robots may visit the
same point, and add (13) so any robot visiting a frontier,
given by αrqf , is in the subteam exploring it.∑
q′∈Q

αrq′f = βrf ∀r ∈ Rf ∈ F (13)

We ensure that robot subteams remain together by restrict-
ing teams to arrive and leave at the same time.

E. Exploration Constraints and Objective

When a subteam explores a frontier, it gains information
dependent upon its observations. We model the available
information and how much information a subteam obtains
from exploring a frontier. However, we do not know the
composition of unknown space (by definition), so we estimate
the maximum information available at a frontier.

We estimate the maximum information gained from a
frontier with the constant, df , defined as the sum of Wg

over an entire frontier, and add the decision variable zrf
as the amount of information robot r gains from frontier f .
Tracking which robot has information about which frontier is
not necessary for computing the reward at the base station (as
all robots will return to the base station); however, we must
know which robots have observations about which frontiers
for correct communication in Sec. IV-F.

We construct a linear approximation of (3) for an objective
function in the ILP, approximating the optimal solution
to Def. 2. We consider paths through only known space,
though the true optimal solution may move through unknown
space, which is not possible to find. However, our experiments
show that the linear approximation was within around 50% of
the theoretical upper bound of optimal paths through known
space. Expected utility (3) can increase three ways: new
information arriving at the base station, increased likelihood
from more robots transmitting observations, and increased
likelihood of a robot arriving at a point (given by (1)) by
choosing a lower cost path. Thus our objective function seeks
to increase the reward at the base station (zbf ) and obtained
by every robot (zrf ) while minimizing the cost accrued (cqq′ ).
We scale a robot’s reward and the path cost by the attrition
rate, a, as the change in likelihood from more transmissions
or lower cost is directly related to the attrition rate.

max
∑
f∈F

zbf + a
∑

r∈R\{b}

zrf

−
a
∑
r∈R

∑
q∈Q

∑
q′∈Q

cqq′αrqq′

(14)

We consider the base station as a stationary robot and add
it to R. We further add constraints dictating that the base
station immediately travels and stays at the ending point.

We plan for additional time for the robots to explore a
frontier. When more robots are sent to a frontier, or more time
is spent exploring, the reward increases up to the maximum
estimated amount, df . The benefit from adding more robots
does not necessarily scale linearly with the number of robots—
e.g., exploring a narrow hallway is not faster with more
robots. Thus, we add a hyperparameter representing a set of
exploration rates, j ∈ J , describing information gain per unit
time. If at least nj robots explore, they achieve rate mj . We
decide rates using binary variable, γfj which is one if and
only if exploration rate j is used to explore frontier f . Ideal
values of mj depend on the environment. We would expect
the exploration rate to increase linearly for open environments
due to simultaneous exploration, but have diminishing returns
in cluttered environments.

We define constraints for the reward from frontier ex-
ploration. Constraint (15) limits the reward for a robot from
frontier f , described by βrf , or unconstrained otherwise. Con-
straints (16)-(18) ensure we choose at most one exploration
rate with the proper number of robots if exploring.

zrf ≤ mj (yrf − xrf ) +

df (1− γfj) +

df (1− βrf )

∀r ∈ R, f ∈ F , j ∈ J (15)

njγfj ≤
∑
r∈R

βrf ∀f ∈ F , j ∈ J (16)

||R||
∑
j∈J

γfj ≥
∑
r∈R

βrf ∀f ∈ F (17)∑
j∈J

γfj ≤ 1 ∀f ∈ F (18)
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F. Communication Constraints

The likelihood of the base station receiving an observation
increases when multiple robots attempt to send the same
observation. Each robot has some probability of failure, so
communication from multiple robots increases the likelihood
that any one robot arrives back at the base station with the
information. We model information exchange between robots
and communication with the base station.

We model rendezvous points to communicate by expanding
Q to include more points within Mknown. There is an
optimality-scalability trade-off in adding rendezvous points;
more rendezvous points will better approximate the optimal
solution at the cost of additional decision variables. In our
experiments we expanded Q to include the midpoint on the
path between any two frontiers and the midpoint between
the base station and any frontier. Alternatively, rendezvous
points could be chosen by sampling the space or choosing
specific features, such as intersections, on the map.

We model communication with a binary variable, ηrr′fq,
that is one if and only if robot r communicates information
about frontier f to r′ at point q.

To ensure robots have an observation before they communi-
cate it, we add variable wrf for the time that robot r obtains
observations from f , and add constraint (19) to limit when a
robot obtains new information when exploring a frontier.

yrf ≤ wrf + h (1− βrf ) ∀r ∈ R, f ∈ F (19)

The reward a robot gains from communication, zr′f ,
is limited to what information was transmitted. We add
constraint (20) to limit reward from communication based
upon what the communicating robot knows or unconstrained
(i.e., df ) if not obtaining information by communication.

zr′f ≤ zrf + df

1−
∑
q∈Q

ηrr′fq

 ∀r, r′ ∈ R, f ∈ F

(20)

To bound the maximum reward a robot can receive, we
define (21) to be the maximum amount available at a frontier if
it receives any information and zero otherwise. This constraint
combined with the other two that limit reward ((15) and (20))
ensures that the reward a robot receives reflects the actions
it performs—e.g., exploration, communication, or neither.
Constraint (22) limits the ways a robot can receive information
to either communication or exploration, as a robot that has
explored a frontier already knows the information.

zrf ≤ rf

∑
r′∈R

∑
q∈Q

ηr′rfq + βrf

 ∀r ∈ R, f ∈ F (21)

∑
r′∈R

∑
q∈Q

ηr′rfq + βrf ≤ 1 ∀r ∈ R, f ∈ F (22)

When two robots rendezvous to communicate, we must
ensure that they arrive at the same point, given by ηrr′fq , at
the same time (given by the arrival, xrq and departure, yrq,
time), after one robot has learned the information, wrf . We
model these three conditions with the constraints (23)-(27).

(23) limits the communication to at most one rendezvous
point. (24) and (25) constrain both robots to be at rendezvous
point at the same time. (26) ensures the transmitting robot
has the information before arriving, and (27) enforces the
receiving robot has the information after leaving.∑
q

ηrr′fq ≤ 1 ∀r, r′ ∈ R, f ∈ F (23)

xr′q ≤
yrq + h (1− ηrr′fq)

∀r, r′ ∈ R, f ∈ F , q ∈ Q (24)

xrq ≤
yr′q + h (1− ηrr′fq)

∀r, r′ ∈ R, f ∈ F , q ∈ Q (25)

wr′f ≥ wrf−

h

(
1−

∑
q

ηrr′fq

)
∀r, r′ ∈ R, f ∈ F (26)

wr′f ≥
yr′q − h (1− ηrr′fq)

∀r, r′ ∈ R, f ∈ F , q ∈ Q (27)

Communication can occur from any robot that knows
information to one that does not; it does not need to be from
the robot that directly explored the frontier. To ensure that
the origin of any information is from exploration, we model
flow of information through the variable vrr′f representing
network flow from r to r′ about f .

Constraint (28) enforces that information about a frontier
is only generated by exploring a frontier, and constraint (29)
ensures information only flows between robots that have com-
municated. These constraints ensure that all communicated
information starts with an exploring robot.

(||R|| − 1)βrf +
∑
r′

vr′rf ≥∑
r′

vrr′f +
∑
r′

∑
q

ηr′rfq
∀r ∈ R, f ∈ F (28)

vrr′f ≤ ||R||

(∑
q

ηr′rfq

)
∀r, r′ ∈ R, f ∈ F (29)

We limit communication at the base station to ensure any
rendezvous point increases the likelihood of the base station
receiving information, rather than just increase (14).

ηrr′fe = 0 ∀r ∈ R, r′ ∈ R \ {b}, f ∈ F (30)

Lastly, we add typical non-negativity and binary constraints.

G. Recursive Exploration

We develop a recursive exploration strategy (Alg. 1) using
the model in Sec. IV. Each subteam plans division into new
subteams, frontier exploration, movement, and rendezvous
(line 2). Subteams execute their plans in parallel (line 10). The
robots record new observations during movement (line 17),
and recursively plan (line 15) with new observations at fron-
tiers, before returning to any previously planned rendezvous.

5869

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on July 14,2022 at 16:28:44 UTC from IEEE Xplore.  Restrictions apply. 



(a) A Four Way Intersection (b) A Maze Environment (c) Caged Environment (d) Camp Lejeune

Fig. 4: Maps of the simulated environments used in our experiments. Dark and light gray points represent occluded and free
unknown space respectively. The laptop represents the base station and every robot’s starting location.

Algorithm 1: Recursive subteam exploration.

Input: R,M,F , h // team, map, frontiers, final time
Output: R,M.F // new team, map, and frontiers

1 function Plan(R,M,F , h) is
// L is a start time ordered list of actions for R

2 L ← optimize (R,M,F , h) // Sec. IV
3 return Execute (R,M,F ,L)

4 function Execute(R,M,F ,L) is
5 if L = () then return M
6 (l, R′, h′, q)← first(L)
7 if R∩R′ = ∅ then // Skip others’ actions
8 return Execute (R,M,F ,rest(L))
9 else if R 6⊆ R′ then // Fork subteam

10 fork Execute (R′,M,F ,L)
11 return Execute (R \R′,M,F ,rest(L))
12 else // R′ ⊇ R
13 switch l do // Perform action
14 case PLAN do

// Recursively explore the frontier
15 R,M,F ← Plan (R,M,F , h′)
16 case MOVE do // Robots can fail here
17 R,M,F ← Move (R,M, q)
18 case COMMUNICATE do // Merge subteams
19 R,M,F ← Join (R′,M)

20 return Execute (R,M,F ,rest(L))

V. EXPERIMENT

We evaluate the optimality of a single iteration of our
algorithm and simulate exploration in the scenarios in Fig. 4.
Scenarios Fig. 4a, Fig. 4b, and Fig. 4c test basic execution,
scalability to many frontiers, and performance with an
inaccurate estimate of information gain respectively. Fig. 4d
is a map of Camp Lejeune, a military training center in North
Carolina, testing performance in a real world scenario. As a
baseline, we compare against a theoretical upper bound on
optimality (Sec. V-A) and a greedy search.

A. Upper Bound

We compare our results against an upper bound on the
expected utility from a single iteration. We construct the
upper bound by assuming the likelihood a robot can arrive
and return from a frontier is independent of the likelihood
it can arrive and return from any other frontier. With this

assumption, the optimal solution is for every robot to form
one subteam and go from the base station to each frontier
and return with the maximum reward, d′f :

∑
f∈F

(
1−

∏
r∈R

(
1− (1− a)

2cfe

))
d′f . (31)

The likelihood the robots obtain the reward from a frontier
is still bounded by the cost to go to the frontier, cfe, and the
attrition rate, a, so we expect the upper bound to be close
to the true optimal answer. For Fig. 4a, our approach was
within 0.0% of the upper bound, meaning the upper bound
was the optimum for this problem.

B. Greedy Search Baseline

We compare against a greedy baseline that assigns robots
to the frontier that maximizes the increase in expected utility
and returns after exploring for the full amount of time.

Past work on robot exploration has not explicitly considered
the possibility of failure [12], [13]. Instead, they assume
robots are independent, whereas attrition couples decisions
since we must consider the probability of any one robot
communicating an observation. Thus, using expected utility
as the objective for such algorithms is not possible.

C. Experiments and Results

We solved the ILP in Gurobi [27] on an Intel Xeon CPU
at 3.40Ghz, and computed costs to go between points using
a Probabilistic Road Map [28], [29]. We found frontiers
using [22] and expanded them by constructing Voronoi cells
around the frontiers. We find the optimization starting point by
iteratively assigning each robot to the highest reward frontier
with the least amount of robots assigned to it, and greedily
assigning communication points between pairs of frontiers
with robots. We post-process to explore for the full available
time until the next scheduled rendezvous. For each recursive
call, planning had a timeout of 10% of the exploration time.

We specify possible communication points as the midpoint
on the path between any two frontiers or from a frontier to
the base station. We used a cost and time to go as distance,
attrition rate of 0.005—i.e., a 0.5% chance of failure per
meter—and maximum reward as the number of unknown
0.1x0.1m cells in the frontier. We assume subteams have
exploration rates of {4, 5.5, 6.5, 7}m

2

s for {1,2,3,4} robots.
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Upper Bound Greedy Search Our Work Greedy Search Our Work
10 robots Initial Expected Utility Simulated Information Gain ± Std. Dev.
Four Way 980 979 (99.9%) 979 (99.9%) 980± 0 980± 0
Maze 4785 2165 (45.3%) 2393 (50.0%) 1940± 530 2005± 300
Cage 59968 56009 (93.4%) 57192 (95.3%) 8144 ± 7362 7326± 3005
Camp Lejeune 185109 72003 (38.9%) 108008 (58.3%) 10459± 9819 21513± 16392
20 robots Initial Expected Utility Simulated Information Gain ± Std. Dev.
Four Way 980 980 (100.0%) 980 (100.0%) 980± 0 980± 0
Maze 4879 2914 (59.7%) 3635 (74.5%) 2887± 481 3173± 617
Cage 59969 59746 (99.6%) 59959 (100.0%) 18351± 8108 19218± 8795
Camp Lejeune 191705 115289 (60.1%) 175470 (91.5%) 35456± 13036 45162± 16011

TABLE I: Initial Expected Utility and Information Gain during Simulation. We compared our approach to a greedy search
and list the % difference ( ours

bound ) from the theoretical upper bound, and standard deviation of information gain.

Table I shows the initial expected utility for the theoretical
upper bound (31) and the two approaches as well as the infor-
mation gain at the base station averaged over five simulated
trials. Our model has higher expected utility than the greedy
search in more complex environments and produces results
within 50% of the theoretical upper bound. Additionally, our
approach has both greater achieved information gain and less
deviation from simulated exploration.

The deviation in information gain from our method is
significantly lower the greedy search’s, due to the subteams
planning rendezvous points. The likelihood that at least one
robot returns to the base station with some information
increases when robots communicate. Thus, the information
gain is less dependent on an individual robot successfully
returning to the base station, decreasing the deviation in the
simulated information gain and increasing the expected utility.

Greedy search may outperform our method when our
estimate of information gain is very inaccurate (Fig. 4c) and
with small number of robots. However, we do outperform
the greedy search in environments with sufficient accuracy
in estimated information gain (Fig. 4d), implying that our
approach can account for some deviation in the estimated
information gain.

VI. CONCLUSION

We presented an optimization model and recursive approach
to find robot paths that maximize expected utility under
communication and attrition. Our model extends the VRP,
and we solve an ILP to approximate the optimal solution.
Our results show that, for tested scenarios, our approach
outperforms greedy search and finds plans within 50% of a
theoretical upper bound on optimality. In future work, we
will evaluate this approach on physical robots and further
refine choices of rendezvous locations.
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“Voronoi-based space partitioning for coordinated multi-robot explo-
ration,” 2007.

[25] P. Toth and D. Vigo, The vehicle routing problem. SIAM, 2002.
[26] J. D. Camm, A. S. Raturi, and S. Tsubakitani, “Cutting big m down

to size,” Interfaces, vol. 20, no. 5, pp. 61–66, 1990.
[27] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2021.

[Online]. Available: http://www.gurobi.com
[28] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-

abilistic roadmaps for path planning in high-dimensional configuration
spaces,” Trans. on Robotics and Automation, 1996.
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