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Abstract

Differential item functioning (DIF) is often used to examine validity evidence of alter-
nate form test accommodations. Unfortunately, traditional approaches for evaluating
DIF are prone to selection bias. This article proposes a novel DIF framework that
capitalizes on regression discontinuity design analysis to control for selection bias. A
simulation study was performed to compare the new framework with traditional
logistic regression, with respect to Type I error and power rates of the uniform DIF
test statistics and bias and root mean square error of the corresponding effect size
estimators. The new framework better controlled the Type I error rate and demon-
strated minimal bias but suffered from low power and lack of precision. Implications
for practice are discussed.
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Access to unbiased, equitable testing in education is critical to maximizing outcomes

for all students (U.S. Department of Education, 2007). In modern educational models

(e.g., response-to-intervention), testing is used to screen students who may be at risk
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of academic difficulties, select appropriate instructional activities, monitor student

progress and responsiveness to instruction, evaluate eligibility for special education

or other services (e.g., English learner services), and evaluate program effectiveness,

among other purposes. Using test scores that are not adequately supported by reliabil-

ity and validity evidence may have serious consequences, such as students not receiv-

ing federally mandated services for which they are eligible, or misallocation of

resources away from students with the most significant educational need. Conversely,

appropriate testing practices can promote inclusive educational environments and

equity, and diversity in the classroom. Evaluating assessment practices to ensure they

operate as intended and yield fair, unbiased outcomes is thus paramount.

Validity Evidence to Support Use of Alternate
Form Test Accommodations

Assessment accommodations facilitate access to testing for diverse children with

unique educational needs. According to Salvia et al. (2017), assessment accommoda-

tions can alter the way test materials are presented, the way students respond to the

test, the setting in which the test takes place, and the timing of the test. One particu-

larly common assessment accommodation is the use of alternate test forms (e.g., oral

tests for children with visual impairments, translated tests for English learners). In

establishing validity evidence to support the use of these alternative forms, a neces-

sary (albeit, insufficient) step is to evaluate whether the items function in the same

way (measure the same construct and are on the same scale) as the original items.

Evidence to the contrary reflects differential item functioning (DIF).

Evaluating DIF is critical to supporting the use of alternate form test accommoda-

tions. For example, analyses of DIF can be performed to evaluate whether translated

items function similarly to the original items (e.g., Petersen et al., 2003). However,

traditional approaches for evaluating DIF are confounded by the threat of selection

bias—differences between groups on variables other than the test form that was admi-

nistered. An alternate form item may be more difficult, not because there is an issue

with the accommodation but because the two groups differ on construct relevant

(e.g., exposure to the content being tested) or irrelevant (e.g., socioeconomic status

[SES]) variables. Failure to control for selection bias when evaluating DIF could

result in discarding well-functioning items that are costly to develop and replace or

retaining poorly functioning items that introduce bias into the testing process.

Assignment to alternate test forms is often not random. Instead, students are typi-

cally assigned based on need. For example, all students who may qualify for services

as English learners must receive an English language proficiency assessment at the

beginning of the school year (Lhamon & Gupta, 2015). Although there are no feder-

ally mandated standards related to assessment for English learners, best practice

promotes the use of accommodations to minimize the likelihood that limited

English proficiency influences performance on the assessment. One such ‘‘direct
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accommodation’’ is to provide the assessment in students’ home language

(Pitoniak et al., 2009).

In educational practice, schools and districts should rely on more information than

a single screener for determining accommodations. However, Aikens et al. (2020)

highlight the challenges that large-scale research studies face when determining need

for accommodations as research project personnel typically do not have detailed

knowledge of individual children for determining their assessment needs, and many

children must be assessed within a short period of time. Consequently, the use of a

single cut score, although not ideal, often represents the most feasible approach to

determining accommodations in the context of large-scale research studies. Indeed,

the practice of using an English language proficiency screener to determine assign-

ment to assessment language has been used in large, federally funded survey studies,

including the Early Childhood Longitudinal Study, Kindergarten Class of 1998–1999

(ECLS-K; Rock & Pollack, 2002), Kindergarten Class of 2010–2011 (ECLS-

K:2011; Najarian et al., 2018), and Birth Cohort (Najarian et al., 2010). Specific

information on data collection procedures for the Kindergarten Class of 2023–2024

(ECLS-K:2024) are not available, but current plans include the use of an English lan-

guage screener, presumably to route multilingual children to the English or Spanish

version of the assessments, as necessary (U.S. Department of Education, 2021).

Other large-scale research studies that have used single indicators of English profi-

ciency for routing children through alternate language assessments include the Head

Start Family and Child Experiences Survey (FACES) and the Universal Preschool

Child Outcomes Study (UPCOS; Aikens et al., 2020; Bandel et al., 2012).

The aforementioned large-scale research testing contexts naturally lend themselves

to regression discontinuity design (RDD) analysis, a rigorous quasi-experimental

approach for controlling selection bias when nonrandom, cut point–based assignment

is used. However, with the exception of a recent application (Goodrich et al., 2021),

the use of RDDs to evaluate DIF has not been considered. Given this gap in the litera-

ture, the objective of this article is twofold. First, we develop and describe two

approaches for evaluating DIF within an RDD framework. Second, we use Monte

Carlo simulation methods to compare the performance of these new approaches with

traditional logistic regression (LR).

Methods for Investigating DIF

An item is said to exhibit DIF if the probability of a correct response for the focal

group differs from that of the reference group, conditioning on the underlying latent

trait (Holland & Wainer, 1993). That is, an item exhibits DIF if the group-specific

item response functions (IRFs) are not perfectly overlapping. Uniform DIF reflects a

group difference in difficulty or scaling, whereas nonuniform DIF reflects a group

difference in discrimination (i.e., the degree to which the item differentiates among

test-takers with different ability levels; Mellenberg, 1982).
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Multiple approaches have been proposed for investigating DIF, including item

response theory (IRT; Lord, 1980), structural equation modeling (SEM; Meredith,

1993), LR (Swaminathan & Rogers, 1990), the Mantel–Haenszel (MH) Test (Holland

& Thayer, 1988), the Simultaneous Item Bias Test (SIBTEST; Shealy & Stout,

1993), and variations thereof. Broadly, these approaches differ in how they operatio-

nalize the latent trait (as a latent variable versus observed score versus corrected

observed score), whether they rely on parametric assumptions, whether they allow

multiple items to be tested simultaneously, and their sensitivity to nonuniform DIF.

For this study, we focus on LR, as it does not require as large of a sample size as

latent variable approaches, does not require coarse stratification of the matching vari-

able, and is sensitive to both uniform and nonuniform DIF (Fidalgo et al., 2014).

Testing DIF Using LR

LR is a parametric approach for investigating DIF, specified as

ln
pij

1� pij

� �
=b0 +b1ûj +b2Gj +b3ûjGj, ð1Þ

where ln( � ) is the natural log of the odds (logit) that test-taker j correctly responds

to item i, b0 is an intercept (or threshold, in some software packages) that reflects the

item’s easiness (difficulty) for test-takers in group G = 0, ûj is the test-taker’s ability

level estimated as the total test score (sum of all item responses) and b1 reflects the

item’s discrimination for test-takers in group G = 0, b0 +b2 reflects the item’s easi-

ness (difficulty) for test-takers in group G = 1, and b1 +b3 reflects the item’s discrim-

ination for test-takers in group G = 1 (Swaminathan & Rogers, 1990). Maximum

likelihood is typically used for estimation. A likelihood ratio test or Wald test can be

performed to test the overall hypothesis of no DIF by comparing the full model in

Equation 1 to a reduced model where b2 =b3 = 0. Under the null hypothesis, the test

statistics asymptotically follow a chi-square distribution with two degrees of freedom

(Paek, 2012). Alternatively, or as a follow-up to the omnibus test, one degree of free-

dom tests can be performed to sequentially evaluate nonuniform and uniform DIF.

Nonuniform DIF is indicated if b3 6¼ 0. In the absence of nonuniform DIF, uniform

DIF is indicated if b2 6¼ 0.

Two limitations of LR and related parametric observed score approaches are often

cited in the DIF literature. First, û is subject to random and systematic error and thus

groups matched on û may not be adequately matched on the underlying latent trait

(u). Test scores based on shorter tests and less discriminating items contain more ran-

dom error, and test scores derived from items that exhibit DIF contain systematic

error (DeMars, 2009, 2010; Y. Li et al., 2012; Z. Li, 2014; Rogers & Swaminathan,

1993; Shih et al., 2014). To mitigate the latter concern, a scale purification procedure

(Zieky, 1993) is often recommended that involves iteratively detecting and removing

all DIF items, with the exception of the item under investigation, from the calcula-

tion of the total score. Unfortunately, scale purification is a labor-intensive process
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and does not always perform well (Magis & De Boeck, 2012; Shih et al., 2014). A

second limitation is that Equation 1 may not adequately fit the data (DeMars, 2009,

2010; Z. Li, 2014). For example, the true IRF for multiple-choice items may have a

lower asymptote due to guessing, which is captured by the IRT three-parameter

logistic model (3PL) but not Equation 1. When the focal and reference groups have

different underlying ability levels (i.e., when there is group ‘‘impact,’’ such that

E(ujjGj = 0) 6¼ E(ujjGj = 1)), unreliability in û and/or incorrect specification of the

functional form results in inflated Type I error rates. This inflation increases as

impact and sample size increase and reliability decreases (DeMars, 2010).

Another limitation of LR is that inferences are prone to selection bias. If groups

differ on variables other than the grouping mechanism and underlying latent trait,

then it is unclear whether DIF is due to the grouping mechanism or some other con-

struct relevant or irrelevant variable. Similarly, true DIF may be masked by selection

bias (Wu et al., 2017).

Existing DIF Frameworks for Controlling Selection Bias

Past research has acknowledged the importance of considering selection bias in eva-

luations of DIF. One strategy for eliminating the threat of selection bias is to ran-

domly assign test-takers to groups. Unfortunately, this strategy has limited utility in

education, as typically the grouping mechanism either cannot be manipulated or is

based on need. Two alternative strategies are to include covariates in Equation 1 (in

addition to ability level; for example, Clauser et al., 1996) or apply propensity score

analysis (PSA) methods (e.g., Chen et al., 2020; Liu et al., 2019). Including addi-

tional covariates is a relatively straightforward approach but assumes that all relevant

covariates are measured and included in the model, and that the relationship between

the covariates and item response is correctly parameterized. In the absence of ran-

dom assignment, there may be numerous confounding variables that can lead to a

highly parameterized model that in turn limits statistical power to detect true DIF.

PSA is a diverse collection of methods that involves (a) reducing a large number of

covariates into a single variable, or propensity score (i.e., balancing score), which

represents the probability of being assigned to the ‘‘treatment’’ group (hereafter we

use the term treatment to refer broadly to any grouping mechanism), given the vector

of covariates, and (b) conditioning the treatment effect on the propensity score

(Rosenbaum & Rubin, 1983). PSA mitigates some of the concerns with the simple

covariate approach by separating the propensity score model from the treatment

model and reducing the dimensionality of the covariates. Nevertheless, PSA can be

complex and time-consuming and still suffers from limitations, such as the potential

to overlook important covariates, a reduction in sample size and power, and sensitiv-

ity of the treatment effect to misspecification of the propensity score model. PSA

does not permit inferences as strong as those of other quasi-experimental approaches,

in particular RDD (Shadish & Steiner, 2010).
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Testing DIF Within an RDD Framework

RDD is a quasi-experimental approach that applies when a ‘‘running’’ variable (Xj)

is used to assign participants to groups (Gj) based on whether Xj exceeds a preestab-

lished cut point (c), and interest lies in making inferences about the effect of Gj on a

posttreatment outcome (Yj) (Thistlethwaite & Campbell, 1960). Putting this in the

context of a DIF investigation and drawing on a recent application (Goodrich et al.,

2021), Xj could be an English proficiency screener, Gj the administration language of

an achievement test where Spanish-speaking test-takers are assigned to the English

form if Xj � c and Spanish form otherwise, and Yj the response to an item on the

achievement test that is investigated for DIF.

Two alternative RDD frameworks have been developed to support causal infer-

ences (Bloom, 2012; Cattaneo et al., 2020a, 2020b; D. S. Lee & Lemieux, 2010).

The standard continuity-based framework relies on the assumption that the condi-

tional expectations of the potential outcomes, given Xj are continuous at c, suggest-

ing no break or jump in pretreatment factors influencing Yj at c. This assumption

ensures that no systematic differences exist between participants with similar values

on Xj at c, except in terms of Gj. The nonrandom treatment assignment mechanism

is completely known and statistically modeled by including Xj and Gj in the treat-

ment model. Accordingly, Gj and Yj are conditionally independent and the selection

process is ignorable. The local randomization framework conceptualizes the RDD as

a local random experiment occurring within a narrow bandwidth around the cut

point. Participants near c are assumed to be identical; it is only due to random error

that Xj falls slightly below or above c and thus it is only due to random error that par-

ticipants are assigned to one group versus the other. Regardless of framework, the

key idea is that participants in the treatment and control groups who are near the cut

point are comparable on all variables other than Gj. As a result, and assuming a sharp

design in which p(Gj = 1jXj � c) = 1 and 0 otherwise, RDD permits causal inferences

on the average treatment effect at the running variable cut point (Bloom, 2012).

RDD treatment effects can be estimated using graphical, parametric, or nonpara-

metric methods. In our proposed framework, we focus on nonparametric methods,

based on the recommendations of Cattaneo et al. (2020b) who advise against para-

metric methods. We first propose using local linear regression within an RDD

continuity-based framework (hereafter abbreviated as LLn-RDD) to test for DIF.

This approach entails fitting the following weighted least-squares regression:

Yij =b0 +b1gj +b2 Xj � c
� �

+b3gj Xj � c
� �

, ð2Þ

where the target parameter is given by b1 and reflects the magnitude of uniform DIF

at c. Calculation of weights (wij) depends on the chosen kernel function and band-

width (hi). We recommend a triangular kernel function (Cattaneo et al., 2020b):

wij =
1� Xj�c

hi

��� ��� if Xj � c
�� �� � hi

0 if Xj � c
�� ��. hi

8<
: : ð3Þ
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Equation 3 highlights the fact that only participants with Xj sufficiently close to c (as

defined by hi) contribute to the estimation of the treatment effect. It is these cases

that define the ‘‘effective’’ sample size. The optimal bandwidth is one that supports

the linear approximation between Xj � c and Yij imposed by Equation 2 (i.e., mini-

mizes bias of the treatment effect estimator) while it minimizes the variance of the

treatment effect estimator. We recommend a bandwidth that minimizes the mean

square error (MSE) of the treatment effect estimator (i.e., the MSE-optimal band-

width; Cattaneo et al., 2020b). However, selecting the MSE-optimal bandwidth con-

cedes that misspecification error is not zero. Consequently, standard ordinary least-

squares (OLS) standard errors and confidence intervals, which assume no misspecifi-

cation error, are inappropriate. Robust bias-corrected standard errors and confidence

intervals are instead recommended. Data-driven approaches for selecting bandwidths

and robust bias-corrected inference are automatized by RDD software packages and

interested readers can refer to Cattaneo et al. (2020b) for formulas and their theoreti-

cal foundation.

Local linear regression is often used on categorical outcomes as it does not require

that Yij follow a normal distribution or that the global association between Xj and Yij
is linear, only that the local association between Xj and Yij is approximately linear.

However, nonparametric local logit RDD estimation (hereafter abbreviated as LLg-

RDD; Xu, 2017) in which the local polynomial approximation is performed on the

logit scale rather than the probability scale, may be preferable. Derivations for an

asymptotic MSE (AMSE) optimal bandwidth and corresponding robust bias-

corrected standard errors and confidence intervals, and justification for a uniform

kernel function, are given by Xu (2017).

A linear approximation is likely to be supported across a broader range of the out-

come when applied to the logit scale, thereby permitting broader bandwidths and

larger sample sizes. This could result in greater precision. For example, outside of the

RDD and DIF contexts, Frölich (2006) found that local logit estimators had greater

precision than local linear estimators for dichotomous outcomes with many regres-

sors. On the contrary, outside of the DIF context, Xu (2017) observed limitations with

the ASME optimal bandwidth and noted that standard errors were large, suggesting

that power may suffer.

There are several noteworthy differences between the traditional and proposed

approaches for testing DIF. First, LR permits tests of uniform and nonuniform DIF,

whereas LLn-RDD and LLg-RDD as defined above are limited to tests of uniform

DIF. Testing whether the item’s discrimination varies between groups would require

either imposing parametric assumptions (thereby increasing susceptibility to bias) or

subsetting the analyses along discrete levels of u (cf. Mazor et al., 1994; thereby

decreasing power). Second, LR attempts to control for uj by including ûj as a covari-

ate, whereas the inclusion of ûj is not necessary in LLn-RDD or LLg-RDD. This fol-

lows from the continuity assumption that ensures no jump in the association between

pretreatment covariates and Yj at c. In the testing contexts applicable to our proposed

approach (i.e., where Gj represents alternative test forms), uj is a pretreatment

Koziol et al. 7



covariate; assigning test-takers to different forms does not change their underlying

ability level, only potentially their observed score. It is possible to include ûj as a

covariate in Equation 2 as a means for increasing precision. The concern is that ûj
may not provide a good approximation of uj and may be impacted by Gj, such that

the covariate-adjusted RDD estimator would not be a consistent estimator of the

average effect at c (Cattaneo et al., 2020b). Third, LLn-RDD and LLg-RDD esti-

mates of DIF generalize to test-takers in the population with Xj = c, whereas LR infer-

ences are not conditional on Xj. Finally, LR and LLg-RDD attend to the bounded and

categorical nature of Yij by modeling the logit of a correct response, whereas LLn-

RDD predicts Yij directly.

Taken as a whole, the RDD approaches have both advantages and disadvantages

when compared with LR for detecting DIF. Their advantages are that they control for

selection bias, use nonparametric methods which require fewer assumptions and are

more robust to outliers and idiosyncrasies in the data that are far from c, and do not

require estimation of uj. Their disadvantages are that they are limited to testing uni-

form DIF, inferences are limited to a small fraction of the total population (i.e., test-

takers with Xj = c), and, in most cases, they are likely to have lower power due to the

effective sample size being smaller than the total sample size.

The Current Study

Although the RDD approaches have some theoretical advantages for evaluating uni-

form DIF, it is unclear how these approaches perform in practice when sample condi-

tions are less than ideal. Empirical evidence is needed to support their use. The

purpose of this Monte Carlo simulation study was to compare the performance of

LR, LLn-RDD, and LLg-RDD in detecting the absence, presence, and magnitude

of uniform DIF across varying sample conditions, including different magnitudes of

group impact, magnitudes of selection bias, sample sizes, test lengths, and item prop-

erties. Four research questions were posed as follows:

Research Question 1 (RQ1): How does the Type I error rate of the LR, LLn-

RDD, and LLg-RDD uniform DIF test statistics compare across varying

sample conditions?

Research Question 2 (RQ2): How does the power of the LR, LLn-RDD, and

LLg-RDD uniform DIF test statistics compare across varying sample

conditions?

Research Question 3 (RQ3): How does the bias of the LR, LLn-RDD, and

LLg-RDD uniform DIF effect size estimators compare across varying sam-

ple conditions?

Research Question 4 (RQ4): How does the root mean square error (RMSE)

of the LR, LLn-RDD, and LLg-RDD uniform DIF effect size estimators

compare across varying sample conditions?
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Based on prior research, we hypothesized that the LR DIF test statistic would

demonstrate inflated Type I error rates and the effect size estimator would be biased

when the magnitude of impact was large and the test was short, and in the presence

of selection bias, particularly when sample size was large and the target item was

strongly discriminating (DeMars, 2009, 2010; Y. Li et al., 2012; Liu et al., 2019;

Rogers & Swaminathan, 1993; Shih et al., 2014). We expected the corresponding

LLn-RDD and LLg-RDD test statistics and effect size estimators would be robust to

selection bias, group impact, and test length. Controlling for differences in the Type

I error rate and bias, we hypothesized that the LR approach would be more powerful

and precise than the RDD approaches, and that the LLg-RDD approach would be

more precise than the LLn-RDD approach (Frölich, 2006).

This study focuses on uniform DIF because it is a natural starting point for evalu-

ating the RDD approaches. These approaches are not designed to detect interactions

with continuous variables (in this case, the proficiency by group interaction reflecting

nonuniform DIF). If they do not perform well for detecting uniform DIF then they are

even less likely to perform well for detecting nonuniform DIF. We acknowledge in

the ‘‘Discussion’’ section, however, that investigating nonuniform DIF is an impor-

tant future direction.

Method

Design

Five simulation factors were fully crossed for a total of 216 conditions: (a) Group

impact (three levels), (b) Selection bias (three levels), (c) Sample size (three levels),

(d) Test length (two levels), and (e) Item properties (four levels). R = 1,050 replica-

tions were generated for each combination of impact, selection bias, sample size, and

test length for a total of 56,700 replications. Item properties were varied within repli-

cations (i.e., each simulated test contained all combinations of items). Within each

condition, only the first 1,000 replications for which all three analyses’ approaches

converged were used to evaluate the test statistics and effect size estimators.

Group Impact. The levels of group difference in true proficiency were 0 SD, .5 SD,

and 1 SD, representing no mean impact, moderate impact, and large impact, respec-

tively. This range mirrors levels considered in prior research (e.g., DeMars, 2009;

Hidalgo et al., 2014; Y. Li et al., 2012; Narayanan & Swaminathan, 1996).

Selection Bias. For the target items, the probability of a correct response was gener-

ated to be a function of the traditional 3PL IRT item and person properties, in addi-

tion to a person-level confounding variable, the RDD running variable. This variable

was generated to account for no, minimal, or moderate variability in the item

responses (see ‘‘Data Generation’’ section).
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Sample Size. Three sample sizes were considered: nr = nf = 150 (N = 300), nr = nf =

300 (N = 600), and nr = nf = 1,000 (N = 2,000). Whereas unequal sample sizes are

more likely to be observed in practice, we imposed the simplifying assumption of

equal sample sizes to prevent confounding variability (variability between sample

size conditions due to factors other than sample size) that could potentially arise

from generating unequal sample sizes.1 We acknowledge this limitation in the

‘‘Discussion’’ section. The smallest sample size condition falls below ETS’ mini-

mum recommended total sample size of 500 and group sample size of 200 during

the test assembly phase (Zwick, 2012), but represents a plausible sample size when

considering special populations such as English language learners or students with

disabilities. For example, only 150 students enrolled in the ECLS-K:2011 completed

the Spanish spring kindergarten mathematics assessment (Najarian et al., 2018). The

middle sample size condition meets minimum guidelines but is still relatively small,

whereas the largest sample size represents an ideal scenario and is similar to the larg-

est condition considered in prior research (e.g., Jodoin & Gierl, 2001; Y. Li et al.,

2012). Practitioners may not have access to a sample size of 1,000, particularly for

the focal group, when DIF analyses are not planned/powered a priori. We include

this largest condition to help inform sample size planning for DIF analyses when

sample size is under the control of the practitioner.

Test Length. Short (20 items) and long (80 items) tests were generated. Twenty items

has been recommended as a lower bound for investigating DIF (Zumbo, 1999).

Although short, 20-item tests are used in practice (e.g., the ECLS-K:2011 kindergar-

ten science achievement test; Najarian et al., 2018). Past simulation research has con-

sidered 80 items to represent a long test, and similar test lengths are used in practice

(e.g., the ECLS-K:2011 kindergarten reading and mathematics achievement tests;

Najarian et al., 2018).

Item Properties. Four combinations of item discriminations and difficulties were con-

sidered for the target items: (a) high discrimination (a = 1.6), low difficulty (b =

21.5); (b) low discrimination (a = 0.6), moderate difficulty (b = 0.0); (c) high dis-

crimination (a = 1.6), moderate difficulty (b = 0.0); and (d) high discrimination (a =

1.6), high difficulty (b = 1.5). These combinations of items have been investigated in

prior DIF research (Narayanan & Swaminathan, 1996; Rogers & Swaminathan,

1993) and were chosen for this study because they contribute varying information

and target different locations across the latent trait continuum.

Data Generation

To help with interpretation, we use the applied example of Goodrich et al. (2021) to

describe the simulated testing context. That is, we consider a scenario in which

Spanish-speaking kindergarteners are administered a mathematics assessment and the

language of administration is determined based on their performance on an English
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language screener. Following a sharp RDD design, all students who pass the English

proficiency cutoff are administered the mathematics assessment in English (reference

group) and all students who do not pass are administered the assessment in Spanish

(focal group).

Item responses were generated in base R Version 3.6.1 (R Core Team, 2019)

according to a modified 3PL IRT model:

pij, g Yij, g = 1jXj, uj, g, ai, bi, g, ci, g
� �

= ci +
1� ci

1 + e�ai uj, g�bi, g�giX
3
jð Þ : ð4Þ

Notation is as follows: pij, g is the probability of a correct response to mathematics

item i (i= 1, . . . ,L; L 2 ½20, 80�) for kindergartener j ( j = 1, . . . , ng; ng 2
½150, 300, 1, 000�) assigned to mathematics assessment form G where G = 0

(Spanish form) or 1 (English form); Xj is an English language screener (the RDD

running variable) used to determine the mathematics assessment language: G = 0 if

Xj\0, otherwise G = 1; uj is the kindergartener’s latent mathematics ability (the dis-

tributions of Xj and uj are detailed below); ai, bi, g, and ci are item discrimination,

difficulty, and pseudo-guessing parameters (detailed below); and gi is the confound-

ing effect of English language proficiency (detailed below). Item responses were

generated by comparing the probability of a correct response with a random number

generated from a uniform(0, 1) distribution.

Impact was simulated by generating Xj and uj to follow a bivariate normal

distribution:
Xj

uj

� �
;N

0

0

� �
,

1 r

r 1

� �� �
, where r 2 ½0, :313, :628�, such that

mug
= (� 1)3d=2 +G3d and d 2 ½0, :5, 1�. This approach is consistent with the con-

tinuity assumption underlying RDD as mug = 0
=mug = 1

at c regardless of r.

For both test length conditions, eight items (four non-DIF and four uniform DIF)

were targeted for investigation (see Table 1). The properties of the four non-DIF

items match those described in the ‘‘Item Properties’’ section. The discrimination

parameters of the four DIF items were the same as those of the non-DIF items,

whereas the difficulty parameters were chosen, such that the area between the IRFs

of the two groups was equal to .6 (reflecting a moderate level of DIF; Swaminathan

& Rogers, 1990) and the group-specific difficulty parameters were equidistant from

the target difficulty parameter. Given these constraints, the item difficulties were

derived by solving the following equation that quantifies the area between two

response functions under the assumption that ai, g = 0 = ai, g = 1 (S. Lee, 2017):

Area= 1� cið Þ bi, g = 0 � bi, g = 1
�� ��: ð5Þ

DIF was generated to be unidirectional, so DIF items were always easier for the refer-

ence group.

The target items accounted for 40% of the 20-item test. To ensure similar item

properties and maintain a constant proportion (.20; see Gierl et al., 2004) of DIF
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items across test lengths, the eight target items were replicated 4 times for the 80-

item test. Properties of the remaining 60% of items (i.e., the remaining 12 items of

the 20-item test and 48 items of the 80-item test) were randomly generated for each

replication under the following constraints: ai;lognormal(0, :1225) and bi;N (0, 1)

with bi truncated at [–2, 2] and bi, g = 0 = bi, g = 1 (DeMars, 2009; Magis & De Boeck,

2012). For all items, ci = .2.

To simulate selection bias, it was necessary to generate a variable besides the

mathematics ability variable that was related to both group membership (mathematics

assessment language) and item response. The English language screener, by defini-

tion under the RDD, predicted group membership. As noted above, the 3PL IRT

model was modified so that the English language screener also predicted response to

the target items. The relationship between the screener and outcome was chosen to be

nonlinear to ensure that a narrower bandwidth would be necessary under the RDD

approaches. Three magnitudes of effects were considered: gi = 0, 20.04, and 20.10,

corresponding to no selection bias, minimal bias, or moderate bias, respectively. For

the nontarget items, gi was fixed at 0.

Note that generating gi 6¼ 0 is akin to generating another source of DIF, DIF that

is due to English language proficiency (a student characteristic) rather than G (the test

form that was administered to the student). In our hypothetical context, for example,

it might be the case that word problems (more language-intensive items) exhibit DIF

due to language proficiency.

Data Analysis

LR, LLn-RDD, and LLg-RDD were used to investigate DIF. The LR approach, spec-

ified according to Equation 1 but without the ability by group term, was carried out

Table 1. Generating IRT Properties and Observed Classical Test Theory Properties of
Target Items

Item ai bi, g = 0 bi, g = 1 ci �pi �ryi, u

1 1.6 21.5 21.5 .2 .87 .39
2 0.6 0 0 .2 .60 .23
3 1.6 0 0 .2 .60 .45
4 1.6 1.5 1.5 .2 .33 .28
5 1.6 21.125 21.875 .2 .86 .41
6 0.6 0.375 20.375 .2 .60 .25
7 1.6 0.375 20.375 .2 .60 .45
8 1.6 1.875 1.125 .2 .34 .30

Note. IRT = item response theory; ai = item discrimination; bi, g = 0 = item difficulty for focal group; bi, g = 1 =

item difficulty for reference group; ci = item pseudo-guessing parameter; �pi = observed proportion of

correct responses averaged across replications and conditions; �ryi , u = observed point-biserial correlation

between the item and latent trait score averaged across replications and conditions.
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in Mplus Version 8.5 (Muthén & Muthén, 1998–2020), using maximum likelihood

estimation. An item was flagged as DIF if the Wald test for the group effect was sig-

nificantly different from 0 (p \ .05). The LLn-RDD approach was implemented

within the rdrobust package in R (Calonico et al., 2021) according to Equation 2.

Bandwidths were empirically derived based on a triangular kernel function and

MSE-optimal bandwidth selector. Estimation was carried out using OLS but with

robust bias-corrected standard errors. An item was flagged for DIF if p\ .05 for the

group difference. LLg-RDD was implemented within the rd.categorical package in R

(Xu, 2017). Bandwidths were derived from the AMSE-optimal bandwidth selector

with a uniform kernel function.

Monahan et al. (2007) describe several effect sizes appropriate for quantifying the

magnitude of uniform DIF. For this study, effect size was measured as the group dif-

ference in the predicted proportion of respondents with a correct response (pDIF) as

this effect size can be approximated by all three DIF approaches. For both RDD

approaches, the estimated group difference is on the proportion scale, so no addi-

tional calculations were required. For the LR approach, the effect size was calculated

using the conditional-difference-in-proportions definition (Monahan et al., 2007):

LR-STD-P-DIF =

P
m wm PLR

rm � PLR
fm

	 

P

m wm

ð6Þ

where m is defined by the range of scores observed on the matching criterion (mathe-

matics sum score), wm is a weight equal to the total number of kindergarteners with

a mathematics sum score equal to m, and PLR
rm and PLR

fm are the model-predicted pro-

portions of a correct response for kindergarteners in the reference and focal groups,

respectively, who achieved a mathematics sum score equal to m.

For LR, a purification procedure was performed in which the mathematics score

used as the matching criterion was calculated as the sum of only the responses to the

non-DIF items plus the item under investigation (Zieky, 1993). Because this proce-

dure was not under investigation, purification was based on truth (DIF items were

treated as known) as opposed to carried out using an estimative iterative procedure.

This approach thus presents a best-case scenario.

Outcomes

The proportion of converged replications (out of 1,050) was documented for the three

approaches. For each of the four target non-DIF items, the Monte Carlo estimated

Type I error rate was calculated as the proportion of the first 1,000 converged replica-

tions that the item was incorrectly flagged as DIF. Using a normal approximation to

the binomial, it is expected with 99% confidence that a test statistic with a true Type

I error rate of .05 will have an estimated error rate between .032 and .068. Similarly,

for each of the four target DIF items, power was calculated as the proportion of the

first 1,000 converged replications that the item was correctly flagged as DIF. Power
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was only interpreted when the corresponding Type I error rate did not fall outside the

99% confidence bounds.

For all target items, bias of the effect size estimator was calculated as the average

of effect size estimates across the first 1,000 converged replications minus the true

effect size:
P
r

p̂DIF, r=R� pDIF . For non-DIF items, the true effect size was 0. For

DIF items, the true effect size was approximated at the English language proficiency

cutoff, using an IRT model-based standardization similar to Equation 6 but involving

numerical integration over the true mathematics score (u) instead of summation over

the observed scores, and using the generating IRT parameters to obtain Pru and Pf u.

The p index was .16 (Category C; Monahan et al., 2007) for the item with high discrim-

ination and moderate difficulty and .08 to .09 (Category B; Monahan et al., 2007) for

the other items. For each estimate of bias, a 99% confidence interval was calculated to

determine whether bias was significantly different from 0. For DIF items in which the

true effect size was not 0, relative bias was calculated by dividing the estimated bias by

the true effect size. RMSE of the effect size estimator was calculated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidbias p̂DIFð Þ2 + dVar p̂DIFð Þ
q

where dVar(p̂DIF) = P
r (p̂DIF, r�

P
r p̂DIF, r=R)

2=R. Similar

to power, RMSE was only interpreted when the corresponding estimator was not signif-

icantly biased.

Given the large number of conditions, an analysis of variance (ANOVA) was

performed on the aggregated Type I error and bias data to identify which simulation

factors accounted for a meaningful proportion of variability in the outcomes.

Interpretation was limited to effects with h2� .02 (Cohen’s, 1988, cutoff for a small

effect). Visual inspection was performed for the power and RMSE outcomes in lieu

of ANOVA due to data missing not at random (power and RMSE data were omitted

if the corresponding Type I error rate and bias were unacceptable).

Results

The primary results are organized below by outcome. We first summarize key char-

acteristics of the data generation and analysis conditions to contextualize the primary

results.

Classical test theory properties of the target items, averaged across replications

and conditions, are shown in Table 1. As expected, the proportion of correct

responses was highest for the low difficulty items (�pi = :86� :87), in the middle for

the moderate difficulty items (�pi = :60), and lowest for the high difficulty items

(�pi = :33� :34). The point-biserial correlation between the items and latent trait

scores was higher for the high discrimination, low difficulty items (�ryi, u = :39� :41)
and high discrimination, moderate difficulty items (�ryi, u = :45) than the low discrimi-

nation, moderate difficulty items (�ryi, u = :23� :25) and high discrimination, high dif-

ficulty items (�ryi, u = :28� :30). Differences in �ryi, u across the high discrimination

items are due to differences in the distance between the items’ difficulty and the sam-

ple’s ability level, as well as the inclusion of a lower asymptote in the generating IRT

model that impacts the location at which the items provide maximal information.
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The percentage of converged replications was 100% across all conditions for LR

and LLn-RDD. For LLg-RDD, convergence was less than 100% (ranging from

97.3% to 99.9% with a median of 99.6%) for 19 of the 54 conditions. Among these

conditions, greater rates of nonconvergence were observed for the large impact and

small sample size conditions. The effective sample size ranged from 47% to 54% of

the total sample size for LLn-RDD and 57% to 83% for LLg-RDD. LR analyses

were based on data from the full sample.

Type I Error

The Monte Carlo estimated Type I error rates are illustrated in Figure 1 and complete

numerical results are available in Table S1. In the figure, Type I error rate is indi-

cated by the x-axis with dashed vertical lines, indicating 99% confidence bounds for

a true Type I error rate of .05; sample size and impact conditions are represented by

columns, test length, and selection bias; item property conditions are represented by

rows; and DIF approach is indicated by different symbols (plus = LR, circle = LLn-

RDD, triangle = LLg-RDD).

The observed Type I error rates were more variable across conditions, and more

inflated on average, under the LR approach (M = .15, range = .04–.93) than the LLn-

RDD (M = .06, range = .04–.09) and LLg-RDD (M = .04, range = .02–.06)

approaches. Results from an ANOVA identified a four-way interaction, selection

bias by DIF method by sample size by item (h2 = .02), that accounted for a meaning-

ful proportion of variability in Type I error rates. Impact and test length did not

account for a meaningful proportion of variability. The LR Type I error rate was

more inflated when selection bias was present, and this pattern was more pronounced

when sample size was large and for the two items with high item-ability correlations

(the high discrimination, low difficulty and high discrimination, moderate difficulty

items). The LLn-RDD and LLg-RDD Type I error rates were not sensitive to selec-

tion bias, sample size, or item properties.

Power

The Monte Carlo estimated power rates are shown in Figure 2 for the conditions in

which the corresponding estimated Type I error rate did not exceed the 99% confi-

dence bounds for a true Type I error rate of .05. Numerical results are provided in

Table S2. The figure follows the same structure as before but with power on the x-

axis. Power to detect DIF was consistently higher for the LR approach than the LLn-

RDD and LLg approaches, with an average difference in power of .56 (range = .06–

.80) and .54 (range = .09–.85), respectively. Power was slightly higher on average

for LLn-RDD than LLg-RDD (MDiff = .05, range = 2.03–.20). Even under the larg-

est sample size condition, power of the LLn-RDD and LLg-RDD test statistics did

not reach .80. In contrast, power of the LR test statistic exceeded .80 under the smal-

lest sample size condition for the two items with high item-ability correlation. For all
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three approaches, power was higher for the two items with high item-ability correla-

tions and when sample size was large.

Bias

Monte Carlo estimated bias of pDIF is illustrated in Figure 3 (Table S3) for the non-

DIF items and Figure 4 (Table S4) for the DIF items. The x-axis indicates bias on

the pDIF (probability) scale, where the dashed vertical line indicates an optimal value

of 0. For the non-DIF items, bias ranged from 20.03 to 0.06 (M = 0.02) under LR,

20.01 to 0.02 (M = 0.00) under LLn-RDD, and 20.02 to 0.01 (M = 20.01) under

LLg-RDD. For the DIF items, bias ranged from 20.03 to 0.05 (M = 0.01) under LR,

20.02 to 0.03 (M = 0.00) under LLn-RDD, and 20.03 to 0.02 (M = 20.01) under

LLg-RDD.

Results from the two ANOVAs revealed similar patterns across the non-DIF and

DIF items. The method by impact by item interaction accounted for a meaningful

proportion of variability in bias (h2 = .05 and .06 for the non-DIF and DIF items,

respectively). When impact was small, the LR pDIF estimator demonstrated similar

levels of bias across items. When impact was large, the pattern diverged; bias became

more positive for the two items with high item-ability correlations and more negative

for the two items with low item-ability correlations. Under the LLn-RDD and LLg-

RDD approaches, bias was less variable and closer to zero across items and impact

levels, particularly for the non-DIF items. There was also a meaningful method by

selection bias interaction (h2 = .19 and .17 for the non-DIF and DIF items, respec-

tively). The LR pDIF estimator, and to a lesser extent the LLg-RDD estimator (appar-

ent under the small sample size condition) became more biased as selection bias

increased, whereas the LLn-RDD estimator was not sensitive to selection bias.

Root Mean Square Error

Monte Carlo estimated RMSE of pDIF is shown in Figures 5 and 6 (Tables S5 and

S6) for the non-DIF and DIF items, respectively. RMSE is only displayed when the

pDIF estimator was not significantly biased. The x-axis indicates RMSE on the pDIF
(probability) scale, where the dashed vertical line indicates an optimal value of 0.

Among the conditions in which the pDIF estimator was not significantly biased, the

LR estimator was consistently more precise than the LLn-RDD and LLg-RDD esti-

mators, with an average difference in RMSE of .09 (range = .03–.14) and .05 (range

= .02–.09), respectively, for the non-DIF items and an average difference in RMSE

of .11 (range = .05–.15) and .06 (range = .03–.09), respectively, for the DIF items.

LLg-RDD was more precise than LLn-RDD, with an average difference in RMSE of

.04 (range = .01–.07) for the non-DIF and DIF items. RMSE reached as high as .20

under the LLn-RRD approach, with an average value of .12 and minimum of .04.

For all approaches, greatest precision was observed for the item with high discrimi-

nation and low difficulty and when sample size was large.
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Discussion

Our objectives in this article were to develop and describe two approaches for evalu-

ating DIF within an RDD framework and compare these novel approaches with tradi-

tional LR. We achieved our first objective by proposing the use of nonparametric

local linear regression and local logit estimation within an RDD continuity-based

framework (LLn-RDD and LLg-RDD, respectively) to evaluate uniform DIF. We

achieved our second objective by performing a Monte Carlo simulation study that

compared the Type I error and power rates of the LR, LLn-RDD, and LLg-RDD uni-

form DIF test statistics, and bias and RMSE of the LR, LLn-RDD, and LLg-RDD

uniform DIF effect size estimators.

Comparison of LR, LLn-RDD, and LLg-RDD for Evaluating DIF

As hypothesized, the LLn-RDD and LLg-RDD uniform DIF test statistics had less

inflated Type I error rates (never exceeding .09 and .06, respectively) than the corre-

sponding LR test statistic (reaching as high as .93). The LLn-RDD and LLg-RDD

statistics were relatively stable across conditions, although the LLg-RDD statistic

was overly conservative (Type I error rate \ .03) at times, consistent with Xu’s

(2017) findings that the local logit standard errors were inflated. In line with prior

research the LR statistic was sensitive to selection bias (Liu et al., 2019), sample size

(DeMars, 2009, 2010; Y. Li et al., 2012; Shih et al., 2014), and the strength of the

association between the item and underlying latent trait (DeMars, 2010; Rogers &

Swaminathan, 1993). The finding that the LR statistic was more sensitive to selection

bias when the item was strongly discriminating is unsurprising based on Equation 4

in which the selection bias parameter is multiplied by the discrimination parameter.

Assuming a testing context that mirrors our simulation study, if there is a moderate

level of selection bias, sample size is large, and the item has a high item-ability cor-

relation, the probability of flagging the item for uniform DIF, when in fact the item

does not exhibit DIF, is greater than .50. Such a high false positive rate has serious

implications for the test construction phase in which unnecessary time and money

may be devoted to reviewing the flagged items, and well-functioning items that take

time and money to develop and replace may be errantly thrown out.

Contrary to our hypothesis, group impact and test length did not account for a

meaningful proportion of variability in Type I error rates. However, focusing on the

conditions with no selection bias, the pattern of results shown in Figure 1 is consis-

tent with prior research, indicating that LR Type I error rates are inflated when the

matching score is unreliable (when the test is short) and group impact is large, partic-

ularly when sample size is large (DeMars, 2009, 2010).

As expected, considering only those conditions in which the Type I error rate of

the uniform DIF test statistic did not exceed the 99% confidence bounds for a true

Type I error rate of .05, the LR statistic was considerably more powerful than the cor-

responding LLn-RDD and LLg-RDD statistics (by .56 and .54, on average, respec-

tively). LLn-RDD demonstrated slightly greater power than LLg-RDD, despite
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smaller effective sample sizes. Even under the largest sample size condition, power

of the LLn-RDD and LLg-RDD statistics to detect a moderate level of uniform DIF

never reached .80 and was less than .30 for the two items with low item-ability corre-

lations. While false positives are costly, failing to detect DIF when an item truly does

function differently across groups (a false negative) is doubtlessly more problematic

in educational contexts in which the end goal is to achieve unbiased and equitable

testing. Consistent with prior research, across approaches power was highest when

sample size was large and the item was strongly correlated with the underlying latent

trait (e.g., Z. Li, 2014).

Consistent with our hypothesis, the LLn-RDD and LLg-RDD effect size estima-

tors were less biased than the LR estimator in the presence of selection bias and when

impact was large for the two items with high item-ability correlations. However,

when considering the p metric classification system presented in Monahan et al.

(2007) that distinguishes among |p| � .05, .05\ |p| � .10, and |p| . .10, the level

of bias was relatively minor for all three approaches across most conditions. Bias

was at or below .05 for 94% of the conditions under the LR approach and below .05

for all conditions under the LLn-RDD and LLg-RDD approaches. These results sug-

gest that, in expectation, the estimated magnitude of pDIF will not be far from the true

value, even if inferences are untrustworthy under those same conditions. This reiter-

ates the importance of considering both statistical significance and effect size when

evaluating DIF.

Finally, only considering the conditions in which the effect size estimators were

unbiased, the LR estimator was notably more precise than the LLn-RDD and LLg-

RDD estimators (by .09–.11 and .05–.06 on average, respectively). RMSE of the

LLn-RDD estimator averaged .12 across conditions and reached as high as .20 when

sample size was small. That is, for any given sample, under these same conditions,

the LLn-RDD estimated magnitude of pDIF is expected to differ from the true value

of pDIF on average by as much as .20. These values are on the probability scale and

thus represent considerable variability. Consistent with Frölich’s (2006) findings, the

LLg-RDD estimator was more precise than the LLn-RDD estimator. Unsurprisingly,

across approaches, greater precision was observed when the sample size was large

and the item was strongly correlated with the underlying latent trait.

Taken together, these results corroborate prior research demonstrating limitations

of the LR DIF test statistic, specifically its high rate of false positives under certain

conditions. Whereas the novel LLn-RDD and LLg-RDD DIF approaches posed theo-

retical advantages for addressing these limitations, they suffered from low statistical

power and lack of precision.

Recommendations for Practice

Our first recommendation in choosing a DIF framework is to reflect on the testing

context. Does the testing context lend itself to an RDD analysis (i.e., was group mem-

bership determined on the basis of a pretreatment running variable and preestablished
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cut point)? If not, then LLn-RDD and LLg-RDD cannot be applied. As we note in the

Introduction, this framework, in its current form, lends itself most directly to large-

scale research testing contexts in which a single cut score is used to determine accom-

modations, in contrast to educational practice in which typically multiple sources of

information are used. What is the research question—Is estimating the average treat-

ment effect at the cut point even appropriate/desired? For example, if the aim is to

test whether items function differently for students who are proficient versus not pro-

ficient in English, then evaluating DIF across language forms at the English language

proficiency cut point is clearly inappropriate. What are the relative costs of a Type I

versus Type II error? If Type I errors are not particularly costly, then LLn-RDD and

LLg-RDD do not offer a distinct advantage. What are the testing conditions (e.g.,

sample size, item properties)? Group sizes need to exceed 1,000 to have sufficient

power (. .80) to detect a moderate degree of uniform DIF. DIF items that are only

weakly discriminating are unlikely to be flagged. (It could be argued, however, that

weakly discriminating items are likely to be discarded early in the test construction

process, making this point moot.)

In line with the advice of Hambleton (2006), our second recommendation is to

use multiple approaches and multiple types of information (statistical significance,

effect size) to evaluate DIF. LLn-RDD and LLg-RDD were found to have low power

and precision, but may still be useful as a means for exploring the presence of, and

sensitivity of inferences to, selection bias. RD plots provide a graphical depiction of

(dis)continuity in outcomes or pretreatment covariates at the cut point by plotting the

test-taker’s score on the target variable (y-axis) in relation to the test-taker’s value on

the running variable (x-axis). A clear discontinuity in the probability of a correct

response at the running variable cut point for an item under investigation for DIF

suggests the presence of uniform DIF that can be attributed to the different test

forms. On the contrary, a positive or negative association between the running vari-

able and item response that is continuous (does not jump) at the running variable cut

point suggests that inferences based on traditional approaches for evaluating DIF

may be confounded by selection bias. Overall, LLn-RDD and LLg-RDD performed

similarly, but the LLg-RDD effect size estimator was slightly more precise and thus

we recommend its use over LLn-RDD for quantifying the magnitude of DIF.

Our third recommendation is that items flagged for DIF should be carefully

reviewed by content experts, regardless of DIF approach. Although the proposed

RDD framework supports causal inferences (e.g., that DIF is due to differences in

the alternate language forms rather than differences in the test-takers assigned to the

different forms), it does not provide an indication of the specific source of DIF (e.g.,

a problem with the translation of a particular word).

Limitations

Our simulation included many conditions, but certain factors were not considered that

may influence the performance of the LR and RDD approaches. Most notably, we
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did not consider nonuniform DIF. The RDD approaches are unlikely to be sensitive

to nonuniform DIF, in contrast to the LR approach that can detect both types of DIF.

In addition, we held constant the magnitude and direction of DIF, proportion of DIF

items, and generating model, and we made the simplifying assumption of equal group

sizes. The RDD approaches had low power and a lack of precision for detecting a

moderate level of DIF under the ideal scenario of equal group sizes; they are expected

to perform even worse for detecting smaller magnitudes of DIF and when group sizes

are unequal. In contrast to large-scale research studies, more complex testing contexts

in which multiple factors determine assignment to form are typical of educational

practice and our simulation is not able to inform such contexts. We also generated the

data so that all assumptions underlying the RDD approaches were met. In practice,

these assumptions must be tested and are not always met. For example, it may be pos-

sible for test-takers or test administrators to manipulate scores on the running variable

to influence group assignment. In this case, test-takers just below and above the cut

point may not be similar on all pretreatment covariates. It is also possible, and indeed

likely, that the running variable is measured with error.

Another limitation is that we considered only one type of effect size, the group

difference in the predicted proportion of a correct response (p metric). While the p

metric is easy to interpret, it is not constant across items with different difficulty lev-

els and it is not a natural effect size estimator for the LR approach (in contrast to the

conditional odds ratio).

Future Directions

In addition to evaluating other simulation conditions described in the ‘‘Limitations’’

section, our proposed framework for detecting DIF can be expanded and improved

upon in multiple ways. It is particularly imperative to extend the framework to sup-

port investigations of nonuniform DIF and to improve power and precision. To this

end, a parametric RDD approach may be considered, which would be comparable to

the covariate approach for controlling selection bias that was described in the

Introduction. Another possible extension is to generalize inferences about DIF

beyond the running variable cut point (e.g., by utilizing multiple cut points). Other

future directions include extending the framework to support multiple running vari-

ables and fuzzy RDDs in which the running variable cut point is not deterministic

(Bloom, 2012) and using alternative rules to flag items for DIF that take into account

both statistical significance and effect size (cf. Hidalgo et al., 2014; Jodoin & Gierl,

2001). Finally, other DIF frameworks for controlling selection bias, beyond RDD,

should be considered.

Conclusion

The findings of our simulation study highlight the importance of considering selec-

tion bias when evaluating items for DIF. Due to low power and lack of precision, we
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do not recommend relying exclusively on the newly proposed framework (at least

not in its current form) when the testing context mirrors the conditions evaluated in

our study. False negatives have significant implications for equity in educational

assessment as failure to account for problematic items could result in the use of a test

accommodation that unfairly advantages one group of students over another (e.g., if

items displaying DIF are systematically easier for one group). However, we do advo-

cate its use as an exploratory tool that can help evaluate the sensitivity of traditional

methods for testing DIF, given clear evidence of selection bias in real-world testing

scenarios in which alternate form assessment accommodations are used (see

Goodrich et al., 2021). Additional methodological research is needed to improve the

proposed framework.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship,

and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support for the research, authorship,

and/or publication of this article: This research was supported by a grant from the American

Educational Research Association (AERA), which receives funds for its ‘‘AERA Grants

Program’’ from the National Science Foundation (NSF) under NSF award NSF-DRL No.

1749275. Opinions reflect those of the authors and do not necessarily reflect those of AERA or

NSF.

ORCID iD

Natalie A. Koziol https://orcid.org/0000-0003-3275-1776

Supplemental Material

Supplemental material for this article is available online.

Note

1. For example, if the overall mean of the latent variable was held constant at 0 across unba-

lanced sample size conditions, then the group means would not be symmetric around 0 for

the conditions with group differences in the latent variable. This asymmetry would lead to

differences in item and test information across unbalanced sample size conditions.
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