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Abstract

Differential item functioning (DIF) is often used to examine validity evidence of alter-
nate form test accommodations. Unfortunately, traditional approaches for evaluating
DIF are prone to selection bias. This article proposes a novel DIF framework that
capitalizes on regression discontinuity design analysis to control for selection bias. A
simulation study was performed to compare the new framework with traditional
logistic regression, with respect to Type | error and power rates of the uniform DIF
test statistics and bias and root mean square error of the corresponding effect size
estimators. The new framework better controlled the Type | error rate and demon-
strated minimal bias but suffered from low power and lack of precision. Implications
for practice are discussed.
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Access to unbiased, equitable testing in education is critical to maximizing outcomes
for all students (U.S. Department of Education, 2007). In modern educational models
(e.g., response-to-intervention), testing is used to screen students who may be at risk
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of academic difficulties, select appropriate instructional activities, monitor student
progress and responsiveness to instruction, evaluate eligibility for special education
or other services (e.g., English learner services), and evaluate program effectiveness,
among other purposes. Using test scores that are not adequately supported by reliabil-
ity and validity evidence may have serious consequences, such as students not receiv-
ing federally mandated services for which they are eligible, or misallocation of
resources away from students with the most significant educational need. Conversely,
appropriate testing practices can promote inclusive educational environments and
equity, and diversity in the classroom. Evaluating assessment practices to ensure they
operate as intended and yield fair, unbiased outcomes is thus paramount.

Validity Evidence to Support Use of Alternate
Form Test Accommodations

Assessment accommodations facilitate access to testing for diverse children with
unique educational needs. According to Salvia et al. (2017), assessment accommoda-
tions can alter the way test materials are presented, the way students respond to the
test, the setting in which the test takes place, and the timing of the test. One particu-
larly common assessment accommodation is the use of alternate test forms (e.g., oral
tests for children with visual impairments, translated tests for English learners). In
establishing validity evidence to support the use of these alternative forms, a neces-
sary (albeit, insufficient) step is to evaluate whether the items function in the same
way (measure the same construct and are on the same scale) as the original items.
Evidence to the contrary reflects differential item functioning (DIF).

Evaluating DIF is critical to supporting the use of alternate form test accommoda-
tions. For example, analyses of DIF can be performed to evaluate whether translated
items function similarly to the original items (e.g., Petersen et al., 2003). However,
traditional approaches for evaluating DIF are confounded by the threat of selection
bias—differences between groups on variables other than the test form that was admi-
nistered. An alternate form item may be more difficult, not because there is an issue
with the accommodation but because the two groups differ on construct relevant
(e.g., exposure to the content being tested) or irrelevant (e.g., socioeconomic status
[SES]) variables. Failure to control for selection bias when evaluating DIF could
result in discarding well-functioning items that are costly to develop and replace or
retaining poorly functioning items that introduce bias into the testing process.

Assignment to alternate test forms is often not random. Instead, students are typi-
cally assigned based on need. For example, all students who may qualify for services
as English learners must receive an English language proficiency assessment at the
beginning of the school year (Lhamon & Gupta, 2015). Although there are no feder-
ally mandated standards related to assessment for English learners, best practice
promotes the use of accommodations to minimize the likelihood that limited
English proficiency influences performance on the assessment. One such ‘“direct
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accommodation’ is to provide the assessment in students’ home language
(Pitoniak et al., 2009).

In educational practice, schools and districts should rely on more information than
a single screener for determining accommodations. However, Aikens et al. (2020)
highlight the challenges that large-scale research studies face when determining need
for accommodations as research project personnel typically do not have detailed
knowledge of individual children for determining their assessment needs, and many
children must be assessed within a short period of time. Consequently, the use of a
single cut score, although not ideal, often represents the most feasible approach to
determining accommodations in the context of large-scale research studies. Indeed,
the practice of using an English language proficiency screener to determine assign-
ment to assessment language has been used in large, federally funded survey studies,
including the Early Childhood Longitudinal Study, Kindergarten Class of 1998—1999
(ECLS-K; Rock & Pollack, 2002), Kindergarten Class of 20102011 (ECLS-
K:2011; Najarian et al., 2018), and Birth Cohort (Najarian et al., 2010). Specific
information on data collection procedures for the Kindergarten Class of 2023-2024
(ECLS-K:2024) are not available, but current plans include the use of an English lan-
guage screener, presumably to route multilingual children to the English or Spanish
version of the assessments, as necessary (U.S. Department of Education, 2021).
Other large-scale research studies that have used single indicators of English profi-
ciency for routing children through alternate language assessments include the Head
Start Family and Child Experiences Survey (FACES) and the Universal Preschool
Child Outcomes Study (UPCOS; Aikens et al., 2020; Bandel et al., 2012).

The aforementioned large-scale research testing contexts naturally lend themselves
to regression discontinuity design (RDD) analysis, a rigorous quasi-experimental
approach for controlling selection bias when nonrandom, cut point-based assignment
is used. However, with the exception of a recent application (Goodrich et al., 2021),
the use of RDDs to evaluate DIF has not been considered. Given this gap in the litera-
ture, the objective of this article is twofold. First, we develop and describe two
approaches for evaluating DIF within an RDD framework. Second, we use Monte
Carlo simulation methods to compare the performance of these new approaches with
traditional logistic regression (LR).

Methods for Investigating DIF

An item is said to exhibit DIF if the probability of a correct response for the focal
group differs from that of the reference group, conditioning on the underlying latent
trait (Holland & Wainer, 1993). That is, an item exhibits DIF if the group-specific
item response functions (IRFs) are not perfectly overlapping. Uniform DIF reflects a
group difference in difficulty or scaling, whereas nonuniform DIF reflects a group
difference in discrimination (i.e., the degree to which the item differentiates among
test-takers with different ability levels; Mellenberg, 1982).
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Multiple approaches have been proposed for investigating DIF, including item
response theory (IRT; Lord, 1980), structural equation modeling (SEM; Meredith,
1993), LR (Swaminathan & Rogers, 1990), the Mantel-Haenszel (MH) Test (Holland
& Thayer, 1988), the Simultaneous Item Bias Test (SIBTEST; Shealy & Stout,
1993), and variations thereof. Broadly, these approaches differ in how they operatio-
nalize the latent trait (as a latent variable versus observed score versus corrected
observed score), whether they rely on parametric assumptions, whether they allow
multiple items to be tested simultaneously, and their sensitivity to nonuniform DIF.
For this study, we focus on LR, as it does not require as large of a sample size as
latent variable approaches, does not require coarse stratification of the matching vari-
able, and is sensitive to both uniform and nonuniform DIF (Fidalgo et al., 2014).

Testing DIF Using LR

LR is a parametric approach for investigating DIF, specified as

ln(li> :Bo+ﬁléj+52Gj+B3éjGja (1)

g

where /n( @) is the natural log of the odds (logit) that test-taker j correctly responds
to item i, 3, is an intercept (or threshold, in some software packages) that reflects the
item’s easiness (difficulty) for test-takers in group G=0, éj is the test-taker’s ability
level estimated as the total test score (sum of all item responses) and 3, reflects the
item’s discrimination for test-takers in group G=0, B, + 3, reflects the item’s easi-
ness (difficulty) for test-takers in group G =1, and 8, + 35 reflects the item’s discrim-
ination for test-takers in group G=1 (Swaminathan & Rogers, 1990). Maximum
likelihood is typically used for estimation. A likelihood ratio test or Wald test can be
performed to test the overall hypothesis of no DIF by comparing the full model in
Equation 1 to a reduced model where 3, =85 =0. Under the null hypothesis, the test
statistics asymptotically follow a chi-square distribution with two degrees of freedom
(Paek, 2012). Alternatively, or as a follow-up to the omnibus test, one degree of free-
dom tests can be performed to sequentially evaluate nonuniform and uniform DIF.
Nonuniform DIF is indicated if B3 # 0. In the absence of nonuniform DIF, uniform
DIF is indicated if 8, # 0.

Two limitations of LR and related parametric observed score approaches are often
cited in the DIF literature. First, 6 is subject to random and systematic error and thus
groups matched on ) may not be adequately matched on the underlying latent trait
(6). Test scores based on shorter tests and less discriminating items contain more ran-
dom error, and test scores derived from items that exhibit DIF contain systematic
error (DeMars, 2009, 2010; Y. Li et al., 2012; Z. Li, 2014; Rogers & Swaminathan,
1993; Shih et al., 2014). To mitigate the latter concern, a scale purification procedure
(Zieky, 1993) is often recommended that involves iteratively detecting and removing
all DIF items, with the exception of the item under investigation, from the calcula-
tion of the total score. Unfortunately, scale purification is a labor-intensive process
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and does not always perform well (Magis & De Boeck, 2012; Shih et al., 2014). A
second limitation is that Equation 1 may not adequately fit the data (DeMars, 2009,
2010; Z. Li, 2014). For example, the true IRF for multiple-choice items may have a
lower asymptote due to guessing, which is captured by the IRT three-parameter
logistic model (3PL) but not Equation 1. When the focal and reference groups have
different underlying ability levels (i.e., when there is group ‘‘impact,” such that
E(0;|G;=0) # E(6;|G;=1)), unreliability in 6 and/or incorrect specification of the
functional form results in inflated Type I error rates. This inflation increases as
impact and sample size increase and reliability decreases (DeMars, 2010).

Another limitation of LR is that inferences are prone to selection bias. If groups
differ on variables other than the grouping mechanism and underlying latent trait,
then it is unclear whether DIF is due to the grouping mechanism or some other con-
struct relevant or irrelevant variable. Similarly, true DIF may be masked by selection
bias (Wu et al., 2017).

Existing DIF Frameworks for Controlling Selection Bias

Past research has acknowledged the importance of considering selection bias in eva-
luations of DIF. One strategy for eliminating the threat of selection bias is to ran-
domly assign test-takers to groups. Unfortunately, this strategy has limited utility in
education, as typically the grouping mechanism either cannot be manipulated or is
based on need. Two alternative strategies are to include covariates in Equation 1 (in
addition to ability level; for example, Clauser et al., 1996) or apply propensity score
analysis (PSA) methods (e.g., Chen et al., 2020; Liu et al., 2019). Including addi-
tional covariates is a relatively straightforward approach but assumes that all relevant
covariates are measured and included in the model, and that the relationship between
the covariates and item response is correctly parameterized. In the absence of ran-
dom assignment, there may be numerous confounding variables that can lead to a
highly parameterized model that in turn limits statistical power to detect true DIF.
PSA is a diverse collection of methods that involves (a) reducing a large number of
covariates into a single variable, or propensity score (i.e., balancing score), which
represents the probability of being assigned to the ‘‘treatment’” group (hereafter we
use the term treatment to refer broadly to any grouping mechanism), given the vector
of covariates, and (b) conditioning the treatment effect on the propensity score
(Rosenbaum & Rubin, 1983). PSA mitigates some of the concerns with the simple
covariate approach by separating the propensity score model from the treatment
model and reducing the dimensionality of the covariates. Nevertheless, PSA can be
complex and time-consuming and still suffers from limitations, such as the potential
to overlook important covariates, a reduction in sample size and power, and sensitiv-
ity of the treatment effect to misspecification of the propensity score model. PSA
does not permit inferences as strong as those of other quasi-experimental approaches,
in particular RDD (Shadish & Steiner, 2010).
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Testing DIF Within an RDD Framework

RDD is a quasi-experimental approach that applies when a ‘“‘running’” variable (Xj)
is used to assign participants to groups (G;) based on whether X; exceeds a preestab-
lished cut point (c), and interest lies in making inferences about the effect of G; on a
posttreatment outcome (Y;) (Thistlethwaite & Campbell, 1960). Putting this in the
context of a DIF investigation and drawing on a recent application (Goodrich et al.,
2021), X; could be an English proficiency screener, G; the administration language of
an achievement test where Spanish-speaking test-takers are assigned to the English
form if X; > ¢ and Spanish form otherwise, and Y; the response to an item on the
achievement test that is investigated for DIF.

Two alternative RDD frameworks have been developed to support causal infer-
ences (Bloom, 2012; Cattaneo et al., 2020a, 2020b; D. S. Lee & Lemieux, 2010).
The standard continuity-based framework relies on the assumption that the condi-
tional expectations of the potential outcomes, given X; are continuous at c, suggest-
ing no break or jump in pretreatment factors influencing ¥; at c¢. This assumption
ensures that no systematic differences exist between participants with similar values
on X at c, except in terms of G;. The nonrandom treatment assignment mechanism
is completely known and statistically modeled by including X; and G; in the treat-
ment model. Accordingly, G; and Y; are conditionally independent and the selection
process is ignorable. The local randomization framework conceptualizes the RDD as
a local random experiment occurring within a narrow bandwidth around the cut
point. Participants near ¢ are assumed to be identical; it is only due to random error
that X; falls slightly below or above ¢ and thus it is only due to random error that par-
ticipants are assigned to one group versus the other. Regardless of framework, the
key idea is that participants in the treatment and control groups who are near the cut
point are comparable on all variables other than G;. As a result, and assuming a sharp
design in which p(G;=1|X; > ¢)=1 and 0 otherwise, RDD permits causal inferences
on the average treatment effect at the running variable cut point (Bloom, 2012).

RDD treatment effects can be estimated using graphical, parametric, or nonpara-
metric methods. In our proposed framework, we focus on nonparametric methods,
based on the recommendations of Cattaneo et al. (2020b) who advise against para-
metric methods. We first propose using local linear regression within an RDD
continuity-based framework (hereafter abbreviated as LLn-RDD) to test for DIF.
This approach entails fitting the following weighted least-squares regression:

Yi=Bo+B1gi+ B2 (X; — c) +Bsgi (X; —¢), @

where the target parameter is given by 3, and reflects the magnitude of uniform DIF
at c. Calculation of weights (w;;) depends on the chosen kernel function and band-
width (%;). We recommend a triangular kernel function (Cattaneo et al., 2020b):

G el <

hi
0if|X; — c| > h;

1-—

3)

Wij:
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Equation 3 highlights the fact that only participants with JX; sufficiently close to ¢ (as
defined by #;) contribute to the estimation of the treatment effect. It is these cases
that define the “‘effective’ sample size. The optimal bandwidth is one that supports
the linear approximation between X; — ¢ and Y;; imposed by Equation 2 (i.e., mini-
mizes bias of the treatment effect estlmator) while it minimizes the variance of the
treatment effect estimator. We recommend a bandwidth that minimizes the mean
square error (MSE) of the treatment effect estimator (i.e., the MSE-optimal band-
width; Cattaneo et al., 2020b). However, selecting the MSE-optimal bandwidth con-
cedes that misspecification error is not zero. Consequently, standard ordinary least-
squares (OLS) standard errors and confidence intervals, which assume no misspecifi-
cation error, are inappropriate. Robust bias-corrected standard errors and confidence
intervals are instead recommended. Data-driven approaches for selecting bandwidths
and robust bias-corrected inference are automatized by RDD software packages and
interested readers can refer to Cattaneo et al. (2020b) for formulas and their theoreti-
cal foundation.

Local linear regression is often used on categorical outcomes as it does not require
that Yj; follow a normal distribution or that the global association between X; and Y;
is linear, only that the local association between X; and Yj; is appr0x1mately llnear
However, nonparametric local logit RDD estimation (hereafter abbreviated as LLg-
RDD; Xu, 2017) in which the local polynomial approximation is performed on the
logit scale rather than the probability scale, may be preferable. Derivations for an
asymptotic MSE (AMSE) optimal bandwidth and corresponding robust bias-
corrected standard errors and confidence intervals, and justification for a uniform
kernel function, are given by Xu (2017).

A linear approximation is likely to be supported across a broader range of the out-
come when applied to the logit scale, thereby permitting broader bandwidths and
larger sample sizes. This could result in greater precision. For example, outside of the
RDD and DIF contexts, Frolich (2006) found that local logit estimators had greater
precision than local linear estimators for dichotomous outcomes with many regres-
sors. On the contrary, outside of the DIF context, Xu (2017) observed limitations with
the ASME optimal bandwidth and noted that standard errors were large, suggesting
that power may suffer.

There are several noteworthy differences between the traditional and proposed
approaches for testing DIF. First, LR permits tests of uniform and nonuniform DIF,
whereas LLn-RDD and LLg-RDD as defined above are limited to tests of uniform
DIF. Testing whether the item’s discrimination varies between groups would require
either imposing parametric assumptions (thereby increasing susceptibility to bias) or
subsetting the analyses along discrete levels of 6 (cf. Mazor et al., 1994; thereby
decreasing power). Second, LR attempts to control for 6; by including éj as a covari-
ate, whereas the inclusion of ¢; is not necessary in LLn-RDD or LLg-RDD. This fol-
lows from the continuity assumption that ensures no jump in the association between
pretreatment covariates and Y; at c. In the testing contexts applicable to our proposed
approach (i.e., where G; represents alternative test forms), 6, is a pretreatment
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covariate; assigning test-takers to different forms does not change their underlying
ability level, only potentially their observed score. It is possible to include 9]» as a
covariate in Equation 2 as a means for increasing precision. The concern is that éj
may not provide a good approximation of 6; and may be impacted by G;, such that
the covariate-adjusted RDD estimator would not be a consistent estimator of the
average effect at ¢ (Cattaneo et al., 2020b). Third, LLn-RDD and LLg-RDD esti-
mates of DIF generalize to test-takers in the population with X; = c, whereas LR infer-
ences are not conditional on X;. Finally, LR and LLg-RDD attend to the bounded and
categorical nature of Yj; by modeling the logit of a correct response, whereas LLn-
RDD predicts Y;; directly.

Taken as a whole, the RDD approaches have both advantages and disadvantages
when compared with LR for detecting DIF. Their advantages are that they control for
selection bias, use nonparametric methods which require fewer assumptions and are
more robust to outliers and idiosyncrasies in the data that are far from ¢, and do not
require estimation of ¢;. Their disadvantages are that they are limited to testing uni-
form DIF, inferences are limited to a small fraction of the total population (i.e., test-
takers with X; =c), and, in most cases, they are likely to have lower power due to the
effective sample size being smaller than the total sample size.

The Current Study

Although the RDD approaches have some theoretical advantages for evaluating uni-
form DIF, it is unclear how these approaches perform in practice when sample condi-
tions are less than ideal. Empirical evidence is needed to support their use. The
purpose of this Monte Carlo simulation study was to compare the performance of
LR, LLn-RDD, and LLg-RDD in detecting the absence, presence, and magnitude
of uniform DIF across varying sample conditions, including different magnitudes of
group impact, magnitudes of selection bias, sample sizes, test lengths, and item prop-
erties. Four research questions were posed as follows:

Research Question 1 (RQ1): How does the Type I error rate of the LR, LLn-
RDD, and LLg-RDD uniform DIF test statistics compare across varying
sample conditions?

Research Question 2 (RQ2): How does the power of the LR, LLn-RDD, and
LLg-RDD uniform DIF test statistics compare across varying sample
conditions?

Research Question 3 (RQ3): How does the bias of the LR, LLn-RDD, and
LLg-RDD uniform DIF effect size estimators compare across varying sam-
ple conditions?

Research Question 4 (RQ4): How does the root mean square error (RMSE)
of the LR, LLn-RDD, and LLg-RDD uniform DIF effect size estimators
compare across varying sample conditions?
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Based on prior research, we hypothesized that the LR DIF test statistic would
demonstrate inflated Type I error rates and the effect size estimator would be biased
when the magnitude of impact was large and the test was short, and in the presence
of selection bias, particularly when sample size was large and the target item was
strongly discriminating (DeMars, 2009, 2010; Y. Li et al., 2012; Liu et al., 2019;
Rogers & Swaminathan, 1993; Shih et al., 2014). We expected the corresponding
LLn-RDD and LLg-RDD test statistics and effect size estimators would be robust to
selection bias, group impact, and test length. Controlling for differences in the Type
I error rate and bias, we hypothesized that the LR approach would be more powerful
and precise than the RDD approaches, and that the LLg-RDD approach would be
more precise than the LLn-RDD approach (Frolich, 2006).

This study focuses on uniform DIF because it is a natural starting point for evalu-
ating the RDD approaches. These approaches are not designed to detect interactions
with continuous variables (in this case, the proficiency by group interaction reflecting
nonuniform DIF). If they do not perform well for detecting uniform DIF then they are
even less likely to perform well for detecting nonuniform DIF. We acknowledge in
the ““Discussion’” section, however, that investigating nonuniform DIF is an impor-
tant future direction.

Method
Design

Five simulation factors were fully crossed for a total of 216 conditions: (a) Group
impact (three levels), (b) Selection bias (three levels), (¢c) Sample size (three levels),
(d) Test length (two levels), and (e) Item properties (four levels). R = 1,050 replica-
tions were generated for each combination of impact, selection bias, sample size, and
test length for a total of 56,700 replications. Item properties were varied within repli-
cations (i.e., each simulated test contained all combinations of items). Within each
condition, only the first 1,000 replications for which all three analyses’ approaches
converged were used to evaluate the test statistics and effect size estimators.

Group Impact. The levels of group difference in true proficiency were 0 SD, .5 SD,
and 1 SD, representing no mean impact, moderate impact, and large impact, respec-
tively. This range mirrors levels considered in prior research (e.g., DeMars, 2009;
Hidalgo et al., 2014; Y. Li et al., 2012; Narayanan & Swaminathan, 1996).

Selection Bias. For the target items, the probability of a correct response was gener-
ated to be a function of the traditional 3PL IRT item and person properties, in addi-
tion to a person-level confounding variable, the RDD running variable. This variable
was generated to account for no, minimal, or moderate variability in the item
responses (see ‘‘Data Generation’’ section).
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Sample Size. Three sample sizes were considered: n, = ng = 150 (N = 300), n, = n¢ =
300 (N = 600), and n, = ny = 1,000 (N = 2,000). Whereas unequal sample sizes are
more likely to be observed in practice, we imposed the simplifying assumption of
equal sample sizes to prevent confounding variability (variability between sample
size conditions due to factors other than sample size) that could potentially arise
from generating unequal sample sizes." We acknowledge this limitation in the
“Discussion” section. The smallest sample size condition falls below ETS’ mini-
mum recommended total sample size of 500 and group sample size of 200 during
the test assembly phase (Zwick, 2012), but represents a plausible sample size when
considering special populations such as English language learners or students with
disabilities. For example, only 150 students enrolled in the ECLS-K:2011 completed
the Spanish spring kindergarten mathematics assessment (Najarian et al., 2018). The
middle sample size condition meets minimum guidelines but is still relatively small,
whereas the largest sample size represents an ideal scenario and is similar to the larg-
est condition considered in prior research (e.g., Jodoin & Gierl, 2001; Y. Li et al.,
2012). Practitioners may not have access to a sample size of 1,000, particularly for
the focal group, when DIF analyses are not planned/powered a priori. We include
this largest condition to help inform sample size planning for DIF analyses when
sample size is under the control of the practitioner.

Test Length. Short (20 items) and long (80 items) tests were generated. Twenty items
has been recommended as a lower bound for investigating DIF (Zumbo, 1999).
Although short, 20-item tests are used in practice (e.g., the ECLS-K:2011 kindergar-
ten science achievement test; Najarian et al., 2018). Past simulation research has con-
sidered 80 items to represent a long test, and similar test lengths are used in practice
(e.g., the ECLS-K:2011 kindergarten reading and mathematics achievement tests;
Najarian et al., 2018).

Item Properties. Four combinations of item discriminations and difficulties were con-
sidered for the target items: (a) high discrimination (¢ = 1.6), low difficulty (b =
—1.5); (b) low discrimination (¢ = 0.6), moderate difficulty (b = 0.0); (c) high dis-
crimination (a = 1.6), moderate difficulty (b = 0.0); and (d) high discrimination (a =
1.6), high difficulty (b = 1.5). These combinations of items have been investigated in
prior DIF research (Narayanan & Swaminathan, 1996; Rogers & Swaminathan,
1993) and were chosen for this study because they contribute varying information
and target different locations across the latent trait continuum.

Data Generation

To help with interpretation, we use the applied example of Goodrich et al. (2021) to
describe the simulated testing context. That is, we consider a scenario in which
Spanish-speaking kindergarteners are administered a mathematics assessment and the
language of administration is determined based on their performance on an English
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language screener. Following a sharp RDD design, all students who pass the English
proficiency cutoff are administered the mathematics assessment in English (reference
group) and all students who do not pass are administered the assessment in Spanish
(focal group).

Item responses were generated in base R Version 3.6.1 (R Core Team, 2019)
according to a modified 3PL IRT model:

I—Ci

Piig(Yig=11X5,6; g, ai, bi g, i y) =ci+

l+e % (9j.g*bi,g*“/in

Notation is as follows: p;; , is the probability of a correct response to mathematics
item i (i=1,...,L; L€[20,80]) for kindergartener ;j (j=1,...,ny; ng €
[150, 300, 1,000]) assigned to mathematics assessment form G where G=0
(Spanish form) or 1 (English form); X; is an English language screener (the RDD
running variable) used to determine the mathematics assessment language: G=0 if
X;<0, otherwise G=1; 0 is the kindergartener’s latent mathematics ability (the dis-
trlbutlons of X; and 6; are detailed below); a;, b; 4, and ¢; are item discrimination,
difficulty, and pseudo -guessing parameters (detailed below); and vy; is the confound-
ing effect of English language proficiency (detailed below). Item responses were
generated by comparing the probability of a correct response with a random number
generated from a uniform(0, 1) distribution.

Impact was simulated by generating X; and 6; to follow a bivariate normal
distribution: [)0(/} ~N ( {g}, [i ’J), where r €[0,.313,.628], such that

'

po, =(— 1)Xd/2+GXd and d € [0,.5, 1]. This approach is consistent with the con-
tinuity assumption underlying RDD as Mg, _, = Mo,_, At C regardless of r.

For both test length conditions, eight items (four non-DIF and four uniform DIF)
were targeted for investigation (see Table 1). The properties of the four non-DIF
items match those described in the ‘‘Item Properties’ section. The discrimination
parameters of the four DIF items were the same as those of the non-DIF items,
whereas the difficulty parameters were chosen, such that the area between the IRFs
of the two groups was equal to .6 (reflecting a moderate level of DIF; Swaminathan
& Rogers, 1990) and the group-specific difficulty parameters were equidistant from
the target difficulty parameter. Given these constraints, the item difficulties were
derived by solving the following equation that quantifies the area between two
response functions under the assumption that a; g=¢ =a; ¢=1 (S. Lee, 2017):

Area=(1 —ci)|bi,g:0—bi,g:1|. (5)

DIF was generated to be unidirectional, so DIF items were always easier for the refer-
ence group.

The target items accounted for 40% of the 20-item test. To ensure similar item
properties and maintain a constant proportion (.20; see Gierl et al., 2004) of DIF
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Table I. Generating IRT Properties and Observed Classical Test Theory Properties of
Target ltems

ltem aj big=0 big=1 G pi Py0
| 1.6 —1.5 —-1.5 2 .87 39
2 0.6 0 0 2 .60 .23
3 1.6 0 0 2 60 45
4 1.6 1.5 1.5 2 .33 .28
5 1.6 —1.125 —1.875 2 .86 41
6 0.6 0.375 —0.375 2 60 25
7 1.6 0.375 —0.375 2 .60 45
8 1.6 1.875 1.125 2 .34 30

Note. IRT = item response theory; g; = item discrimination; b; g=o = item difficulty for focal group; b; ;= =
item difficulty for reference group; ¢; = item pseudo-guessing parameter; p; = observed proportion of
correct responses averaged across replications and conditions; p, , = observed point-biserial correlation
between the item and latent trait score averaged across replications and conditions.

items across test lengths, the eight target items were replicated 4 times for the 80-
item test. Properties of the remaining 60% of items (i.e., the remaining 12 items of
the 20-item test and 48 items of the 80-item test) were randomly generated for each
replication under the following constraints: a;~Ilognormal(0, .1225) and b;~N(0, 1)
with b; truncated at [-2, 2] and b; g9 =b; =1 (DeMars, 2009; Magis & De Boeck,
2012). For all items, ¢; = .2.

To simulate selection bias, it was necessary to generate a variable besides the
mathematics ability variable that was related to both group membership (mathematics
assessment language) and item response. The English language screener, by defini-
tion under the RDD, predicted group membership. As noted above, the 3PL IRT
model was modified so that the English language screener also predicted response to
the target items. The relationship between the screener and outcome was chosen to be
nonlinear to ensure that a narrower bandwidth would be necessary under the RDD
approaches. Three magnitudes of effects were considered: y; = 0, —0.04, and —0.10,
corresponding to no selection bias, minimal bias, or moderate bias, respectively. For
the nontarget items, y; was fixed at 0.

Note that generating vy; # 0 is akin to generating another source of DIF, DIF that
is due to English language proficiency (a student characteristic) rather than G (the test
form that was administered to the student). In our hypothetical context, for example,
it might be the case that word problems (more language-intensive items) exhibit DIF
due to language proficiency.

Data Analysis

LR, LLn-RDD, and LLg-RDD were used to investigate DIF. The LR approach, spec-
ified according to Equation 1 but without the ability by group term, was carried out
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in Mplus Version 8.5 (Muthén & Muthén, 1998-2020), using maximum likelihood
estimation. An item was flagged as DIF if the Wald test for the group effect was sig-
nificantly different from 0 (p < .05). The LLn-RDD approach was implemented
within the rdrobust package in R (Calonico et al., 2021) according to Equation 2.
Bandwidths were empirically derived based on a triangular kernel function and
MSE-optimal bandwidth selector. Estimation was carried out using OLS but with
robust bias-corrected standard errors. An item was flagged for DIF if p < .05 for the
group difference. LLg-RDD was implemented within the rd.categorical package in R
(Xu, 2017). Bandwidths were derived from the AMSE-optimal bandwidth selector
with a uniform kernel function.

Monahan et al. (2007) describe several effect sizes appropriate for quantifying the
magnitude of uniform DIF. For this study, effect size was measured as the group dif-
ference in the predicted proportion of respondents with a correct response (pp;r) as
this effect size can be approximated by all three DIF approaches. For both RDD
approaches, the estimated group difference is on the proportion scale, so no addi-
tional calculations were required. For the LR approach, the effect size was calculated
using the conditional-difference-in-proportions definition (Monahan et al., 2007):

Win (P@R — PfLR>
LR-STD-P-DIF = — > (6)
m Wm

where m is defined by the range of scores observed on the matching criterion (mathe-
matics sum score), w,, is a weight equal to the total number of kindergarteners with
a mathematics sum score equal to 7, and Py and P;X are the model-predicted pro-
portions of a correct response for kindergarteners in the reference and focal groups,
respectively, who achieved a mathematics sum score equal to m.

For LR, a purification procedure was performed in which the mathematics score
used as the matching criterion was calculated as the sum of only the responses to the
non-DIF items plus the item under investigation (Zieky, 1993). Because this proce-
dure was not under investigation, purification was based on truth (DIF items were
treated as known) as opposed to carried out using an estimative iterative procedure.
This approach thus presents a best-case scenario.

Outcomes

The proportion of converged replications (out of 1,050) was documented for the three
approaches. For each of the four target non-DIF items, the Monte Carlo estimated
Type I error rate was calculated as the proportion of the first 1,000 converged replica-
tions that the item was incorrectly flagged as DIF. Using a normal approximation to
the binomial, it is expected with 99% confidence that a test statistic with a true Type
I error rate of .05 will have an estimated error rate between .032 and .068. Similarly,
for each of the four target DIF items, power was calculated as the proportion of the
first 1,000 converged replications that the item was correctly flagged as DIF. Power
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was only interpreted when the corresponding Type I error rate did not fall outside the
99% confidence bounds.

For all target items, bias of the effect size estimator was calculated as the average
of effect size estimates across the first 1,000 converged replications minus the true

effect size: > ppir.r/R — ppir. For non-DIF items, the true effect size was 0. For
p

DIF items, the true effect size was approximated at the English language proficiency
cutoff, using an IRT model-based standardization similar to Equation 6 but involving
numerical integration over the true mathematics score (8) instead of summation over
the observed scores, and using the generating IRT parameters to obtain P,y and Pry.
The p index was .16 (Category C; Monahan et al., 2007) for the item with high discrim-
ination and moderate difficulty and .08 to .09 (Category B; Monahan et al., 2007) for
the other items. For each estimate of bias, a 99% confidence interval was calculated to
determine whether bias was significantly different from 0. For DIF items in which the
true effect size was not 0, relative bias was calculated by dividing the estimated bias by
the true effect sizez RMSE of the effect size estimator was calculated as

\/bias @D]F)Z + W@DIF) where Va\”(l}DlF) = Zr @D{F,r_ Z;»f’D/F, -/ R)2 /R. Similar
to power, RMSE was only interpreted when the corresponding estimator was not signif-
icantly biased.

Given the large number of conditions, an analysis of variance (ANOVA) was
performed on the aggregated Type I error and bias data to identify which simulation
factors accounted for a meaningful proportion of variability in the outcomes.
Interpretation was limited to effects with n2 > .02 (Cohen’s, 1988, cutoff for a small
effect). Visual inspection was performed for the power and RMSE outcomes in lieu
of ANOVA due to data missing not at random (power and RMSE data were omitted
if the corresponding Type I error rate and bias were unacceptable).

Results

The primary results are organized below by outcome. We first summarize key char-
acteristics of the data generation and analysis conditions to contextualize the primary
results.

Classical test theory properties of the target items, averaged across replications
and conditions, are shown in Table 1. As expected, the proportion of correct
responses was highest for the low difficulty items (p;=.86 — .87), in the middle for
the moderate difficulty items (p;=.60), and lowest for the high difficulty items
(pi=.33 — .34). The point-biserial correlation between the items and latent trait
scores was higher for the high discrimination, low difficulty items (p,, =.39 — .41)
and high discrimination, moderate difficulty items (p,, o =.45) than the low discrimi-
nation, moderate difficulty items (p,, ,=.23 — .25) and high discrimination, high dif-
ficulty items (p,, o =.28 — .30). Differences in p,, 4, across the high discrimination
items are due to differences in the distance between the items’ difficulty and the sam-
ple’s ability level, as well as the inclusion of a lower asymptote in the generating IRT
model that impacts the location at which the items provide maximal information.
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The percentage of converged replications was 100% across all conditions for LR
and LLn-RDD. For LLg-RDD, convergence was less than 100% (ranging from
97.3% to 99.9% with a median of 99.6%) for 19 of the 54 conditions. Among these
conditions, greater rates of nonconvergence were observed for the large impact and
small sample size conditions. The effective sample size ranged from 47% to 54% of
the total sample size for LLn-RDD and 57% to 83% for LLg-RDD. LR analyses
were based on data from the full sample.

Type | Error

The Monte Carlo estimated Type I error rates are illustrated in Figure 1 and complete
numerical results are available in Table S1. In the figure, Type I error rate is indi-
cated by the x-axis with dashed vertical lines, indicating 99% confidence bounds for
a true Type I error rate of .05; sample size and impact conditions are represented by
columns, test length, and selection bias; item property conditions are represented by
rows; and DIF approach is indicated by different symbols (plus = LR, circle = LLn-
RDD, triangle = LLg-RDD).

The observed Type I error rates were more variable across conditions, and more
inflated on average, under the LR approach (M = .15, range = .04—93) than the LLn-
RDD (M = .06, range = .04—09) and LLg-RDD (M = .04, range = .02—06)
approaches. Results from an ANOVA identified a four-way interaction, selection
bias by DIF method by sample size by item (n? = .02), that accounted for a meaning-
ful proportion of variability in Type I error rates. Impact and test length did not
account for a meaningful proportion of variability. The LR Type I error rate was
more inflated when selection bias was present, and this pattern was more pronounced
when sample size was large and for the two items with high item-ability correlations
(the high discrimination, low difficulty and high discrimination, moderate difficulty
items). The LLn-RDD and LLg-RDD Type I error rates were not sensitive to selec-
tion bias, sample size, or item properties.

Power

The Monte Carlo estimated power rates are shown in Figure 2 for the conditions in
which the corresponding estimated Type I error rate did not exceed the 99% confi-
dence bounds for a true Type I error rate of .05. Numerical results are provided in
Table S2. The figure follows the same structure as before but with power on the x-
axis. Power to detect DIF was consistently higher for the LR approach than the LLn-
RDD and LLg approaches, with an average difference in power of .56 (range = .06—
.80) and .54 (range = .09—.85), respectively. Power was slightly higher on average
for LLn-RDD than LLg-RDD (Mp;¢ = .05, range = —.03—20). Even under the larg-
est sample size condition, power of the LLn-RDD and LLg-RDD test statistics did
not reach .80. In contrast, power of the LR test statistic exceeded .80 under the smal-
lest sample size condition for the two items with high item-ability correlation. For all
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three approaches, power was higher for the two items with high item-ability correla-
tions and when sample size was large.

Bias

Monte Carlo estimated bias of ppr is illustrated in Figure 3 (Table S3) for the non-
DIF items and Figure 4 (Table S4) for the DIF items. The x-axis indicates bias on
the pp;r (probability) scale, where the dashed vertical line indicates an optimal value
of 0. For the non-DIF items, bias ranged from —0.03 to 0.06 (M = 0.02) under LR,
—0.01 to 0.02 (M = 0.00) under LLn-RDD, and —0.02 to 0.01 (M = —0.01) under
LLg-RDD. For the DIF items, bias ranged from —0.03 to 0.05 (M = 0.01) under LR,
—0.02 to 0.03 (M = 0.00) under LLn-RDD, and —0.03 to 0.02 (M = —0.01) under
LLg-RDD.

Results from the two ANOVAs revealed similar patterns across the non-DIF and
DIF items. The method by impact by item interaction accounted for a meaningful
proportion of variability in bias (n* = .05 and .06 for the non-DIF and DIF items,
respectively). When impact was small, the LR pp;r estimator demonstrated similar
levels of bias across items. When impact was large, the pattern diverged; bias became
more positive for the two items with high item-ability correlations and more negative
for the two items with low item-ability correlations. Under the LLn-RDD and LLg-
RDD approaches, bias was less variable and closer to zero across items and impact
levels, particularly for the non-DIF items. There was also a meaningful method by
selection bias interaction (n” = .19 and .17 for the non-DIF and DIF items, respec-
tively). The LR pp;r estimator, and to a lesser extent the LLg-RDD estimator (appar-
ent under the small sample size condition) became more biased as selection bias
increased, whereas the LLn-RDD estimator was not sensitive to selection bias.

Root Mean Square Error

Monte Carlo estimated RMSE of pp;r is shown in Figures 5 and 6 (Tables S5 and
S6) for the non-DIF and DIF items, respectively. RMSE is only displayed when the
ppir estimator was not significantly biased. The x-axis indicates RMSE on the ppr
(probability) scale, where the dashed vertical line indicates an optimal value of 0.
Among the conditions in which the pp;= estimator was not significantly biased, the
LR estimator was consistently more precise than the LLn-RDD and LLg-RDD esti-
mators, with an average difference in RMSE of .09 (range = .03—14) and .05 (range
= .02—-.09), respectively, for the non-DIF items and an average difference in RMSE
of .11 (range = .05—.15) and .06 (range = .03—.09), respectively, for the DIF items.
LLg-RDD was more precise than LLn-RDD, with an average difference in RMSE of
.04 (range = .01—-.07) for the non-DIF and DIF items. RMSE reached as high as .20
under the LLn-RRD approach, with an average value of .12 and minimum of .04.
For all approaches, greatest precision was observed for the item with high discrimi-
nation and low difficulty and when sample size was large.
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Discussion

Our objectives in this article were to develop and describe two approaches for evalu-
ating DIF within an RDD framework and compare these novel approaches with tradi-
tional LR. We achieved our first objective by proposing the use of nonparametric
local linear regression and local logit estimation within an RDD continuity-based
framework (LLn-RDD and LLg-RDD, respectively) to evaluate uniform DIF. We
achieved our second objective by performing a Monte Carlo simulation study that
compared the Type I error and power rates of the LR, LLn-RDD, and LLg-RDD uni-
form DIF test statistics, and bias and RMSE of the LR, LLn-RDD, and LLg-RDD
uniform DIF effect size estimators.

Comparison of LR, LLn-RDD, and LLg-RDD for Evaluating DIF

As hypothesized, the LLn-RDD and LLg-RDD uniform DIF test statistics had less
inflated Type I error rates (never exceeding .09 and .06, respectively) than the corre-
sponding LR test statistic (reaching as high as .93). The LLn-RDD and LLg-RDD
statistics were relatively stable across conditions, although the LLg-RDD statistic
was overly conservative (Type I error rate < .03) at times, consistent with Xu’s
(2017) findings that the local logit standard errors were inflated. In line with prior
research the LR statistic was sensitive to selection bias (Liu et al., 2019), sample size
(DeMars, 2009, 2010; Y. Li et al., 2012; Shih et al., 2014), and the strength of the
association between the item and underlying latent trait (DeMars, 2010; Rogers &
Swaminathan, 1993). The finding that the LR statistic was more sensitive to selection
bias when the item was strongly discriminating is unsurprising based on Equation 4
in which the selection bias parameter is multiplied by the discrimination parameter.
Assuming a testing context that mirrors our simulation study, if there is a moderate
level of selection bias, sample size is large, and the item has a high item-ability cor-
relation, the probability of flagging the item for uniform DIF, when in fact the item
does not exhibit DIF, is greater than .50. Such a high false positive rate has serious
implications for the test construction phase in which unnecessary time and money
may be devoted to reviewing the flagged items, and well-functioning items that take
time and money to develop and replace may be errantly thrown out.

Contrary to our hypothesis, group impact and test length did not account for a
meaningful proportion of variability in Type I error rates. However, focusing on the
conditions with no selection bias, the pattern of results shown in Figure 1 is consis-
tent with prior research, indicating that LR Type I error rates are inflated when the
matching score is unreliable (when the test is short) and group impact is large, partic-
ularly when sample size is large (DeMars, 2009, 2010).

As expected, considering only those conditions in which the Type I error rate of
the uniform DIF test statistic did not exceed the 99% confidence bounds for a true
Type I error rate of .05, the LR statistic was considerably more powerful than the cor-
responding LLn-RDD and LLg-RDD statistics (by .56 and .54, on average, respec-
tively). LLn-RDD demonstrated slightly greater power than LLg-RDD, despite
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smaller effective sample sizes. Even under the largest sample size condition, power
of the LLn-RDD and LLg-RDD statistics to detect a moderate level of uniform DIF
never reached .80 and was less than .30 for the two items with low item-ability corre-
lations. While false positives are costly, failing to detect DIF when an item truly does
function differently across groups (a false negative) is doubtlessly more problematic
in educational contexts in which the end goal is to achieve unbiased and equitable
testing. Consistent with prior research, across approaches power was highest when
sample size was large and the item was strongly correlated with the underlying latent
trait (e.g., Z. Li, 2014).

Consistent with our hypothesis, the LLn-RDD and LLg-RDD effect size estima-
tors were less biased than the LR estimator in the presence of selection bias and when
impact was large for the two items with high item-ability correlations. However,
when considering the p metric classification system presented in Monahan et al.
(2007) that distinguishes among |p| < .05, .05 < |p| < .10, and |[p| > .10, the level
of bias was relatively minor for all three approaches across most conditions. Bias
was at or below .05 for 94% of the conditions under the LR approach and below .05
for all conditions under the LLn-RDD and LLg-RDD approaches. These results sug-
gest that, in expectation, the estimated magnitude of pp;r will not be far from the true
value, even if inferences are untrustworthy under those same conditions. This reiter-
ates the importance of considering both statistical significance and effect size when
evaluating DIF.

Finally, only considering the conditions in which the effect size estimators were
unbiased, the LR estimator was notably more precise than the LLn-RDD and LLg-
RDD estimators (by .09—11 and .05-.06 on average, respectively). RMSE of the
LLn-RDD estimator averaged .12 across conditions and reached as high as .20 when
sample size was small. That is, for any given sample, under these same conditions,
the LLn-RDD estimated magnitude of pp;r is expected to differ from the true value
of ppr on average by as much as .20. These values are on the probability scale and
thus represent considerable variability. Consistent with Frélich’s (2006) findings, the
LLg-RDD estimator was more precise than the LLn-RDD estimator. Unsurprisingly,
across approaches, greater precision was observed when the sample size was large
and the item was strongly correlated with the underlying latent trait.

Taken together, these results corroborate prior research demonstrating limitations
of the LR DIF test statistic, specifically its high rate of false positives under certain
conditions. Whereas the novel LLn-RDD and LLg-RDD DIF approaches posed theo-
retical advantages for addressing these limitations, they suffered from low statistical
power and lack of precision.

Recommendations for Practice

Our first recommendation in choosing a DIF framework is to reflect on the testing
context. Does the testing context lend itself to an RDD analysis (i.e., was group mem-
bership determined on the basis of a pretreatment running variable and preestablished
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cut point)? If not, then LLn-RDD and LLg-RDD cannot be applied. As we note in the
Introduction, this framework, in its current form, lends itself most directly to large-
scale research testing contexts in which a single cut score is used to determine accom-
modations, in contrast to educational practice in which typically multiple sources of
information are used. What is the research question—Is estimating the average treat-
ment effect at the cut point even appropriate/desired? For example, if the aim is to
test whether items function differently for students who are proficient versus not pro-
ficient in English, then evaluating DIF across language forms at the English language
proficiency cut point is clearly inappropriate. What are the relative costs of a Type I
versus Type II error? If Type I errors are not particularly costly, then LLn-RDD and
LLg-RDD do not offer a distinct advantage. What are the testing conditions (e.g.,
sample size, item properties)? Group sizes need to exceed 1,000 to have sufficient
power (> .80) to detect a moderate degree of uniform DIF. DIF items that are only
weakly discriminating are unlikely to be flagged. (It could be argued, however, that
weakly discriminating items are likely to be discarded early in the test construction
process, making this point moot.)

In line with the advice of Hambleton (2006), our second recommendation is to
use multiple approaches and multiple types of information (statistical significance,
effect size) to evaluate DIF. LLn-RDD and LLg-RDD were found to have low power
and precision, but may still be useful as a means for exploring the presence of, and
sensitivity of inferences to, selection bias. RD plots provide a graphical depiction of
(dis)continuity in outcomes or pretreatment covariates at the cut point by plotting the
test-taker’s score on the target variable (y-axis) in relation to the test-taker’s value on
the running variable (x-axis). A clear discontinuity in the probability of a correct
response at the running variable cut point for an item under investigation for DIF
suggests the presence of uniform DIF that can be attributed to the different test
forms. On the contrary, a positive or negative association between the running vari-
able and item response that is continuous (does not jump) at the running variable cut
point suggests that inferences based on traditional approaches for evaluating DIF
may be confounded by selection bias. Overall, LLn-RDD and LLg-RDD performed
similarly, but the LLg-RDD effect size estimator was slightly more precise and thus
we recommend its use over LLn-RDD for quantifying the magnitude of DIF.

Our third recommendation is that items flagged for DIF should be carefully
reviewed by content experts, regardless of DIF approach. Although the proposed
RDD framework supports causal inferences (e.g., that DIF is due to differences in
the alternate language forms rather than differences in the test-takers assigned to the
different forms), it does not provide an indication of the specific source of DIF (e.g.,
a problem with the translation of a particular word).

Limitations

Our simulation included many conditions, but certain factors were not considered that
may influence the performance of the LR and RDD approaches. Most notably, we
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did not consider nonuniform DIF. The RDD approaches are unlikely to be sensitive
to nonuniform DIF, in contrast to the LR approach that can detect both types of DIF.
In addition, we held constant the magnitude and direction of DIF, proportion of DIF
items, and generating model, and we made the simplifying assumption of equal group
sizes. The RDD approaches had low power and a lack of precision for detecting a
moderate level of DIF under the ideal scenario of equal group sizes; they are expected
to perform even worse for detecting smaller magnitudes of DIF and when group sizes
are unequal. In contrast to large-scale research studies, more complex testing contexts
in which multiple factors determine assignment to form are typical of educational
practice and our simulation is not able to inform such contexts. We also generated the
data so that all assumptions underlying the RDD approaches were met. In practice,
these assumptions must be tested and are not always met. For example, it may be pos-
sible for test-takers or test administrators to manipulate scores on the running variable
to influence group assignment. In this case, test-takers just below and above the cut
point may not be similar on all pretreatment covariates. It is also possible, and indeed
likely, that the running variable is measured with error.

Another limitation is that we considered only one type of effect size, the group
difference in the predicted proportion of a correct response (p metric). While the p
metric is easy to interpret, it is not constant across items with different difficulty lev-
els and it is not a natural effect size estimator for the LR approach (in contrast to the
conditional odds ratio).

Future Directions

In addition to evaluating other simulation conditions described in the ‘‘Limitations”’
section, our proposed framework for detecting DIF can be expanded and improved
upon in multiple ways. It is particularly imperative to extend the framework to sup-
port investigations of nonuniform DIF and to improve power and precision. To this
end, a parametric RDD approach may be considered, which would be comparable to
the covariate approach for controlling selection bias that was described in the
Introduction. Another possible extension is to generalize inferences about DIF
beyond the running variable cut point (e.g., by utilizing multiple cut points). Other
future directions include extending the framework to support multiple running vari-
ables and fuzzy RDDs in which the running variable cut point is not deterministic
(Bloom, 2012) and using alternative rules to flag items for DIF that take into account
both statistical significance and effect size (cf. Hidalgo et al., 2014; Jodoin & Gierl,
2001). Finally, other DIF frameworks for controlling selection bias, beyond RDD,
should be considered.

Conclusion

The findings of our simulation study highlight the importance of considering selec-
tion bias when evaluating items for DIF. Due to low power and lack of precision, we
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do not recommend relying exclusively on the newly proposed framework (at least
not in its current form) when the testing context mirrors the conditions evaluated in
our study. False negatives have significant implications for equity in educational
assessment as failure to account for problematic items could result in the use of a test
accommodation that unfairly advantages one group of students over another (e.g., if
items displaying DIF are systematically easier for one group). However, we do advo-
cate its use as an exploratory tool that can help evaluate the sensitivity of traditional
methods for testing DIF, given clear evidence of selection bias in real-world testing
scenarios in which alternate form assessment accommodations are used (see
Goodrich et al., 2021). Additional methodological research is needed to improve the
proposed framework.
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Note

1. For example, if the overall mean of the latent variable was held constant at 0 across unba-
lanced sample size conditions, then the group means would not be symmetric around 0 for
the conditions with group differences in the latent variable. This asymmetry would lead to
differences in item and test information across unbalanced sample size conditions.
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