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Consolidation of ultrafast optics in electron spectroscopies based on free electron energy
exchange with matter has matured significantly over the past two decades, offering
an attractive toolbox for the exploration of elementary events with unprecedented
spatial and temporal resolution. Here, we propose a technique for monitoring electronic
and nuclear molecular dynamics that is based on self-heterodyne coherent beating
of a broadband pulse rather than incoherent population transport by a narrowband
pulse. This exploits the strong exchange of coherence between the free electron and
the sample. An optical pulse initiates matter dynamics, which is followed by inelastic
scattering of a delayed high-energy broadband single-electron beam.The interacting and
noninteracting beams then interfere to produce a heterodyne-detected signal, which
reveals snapshots of the sample charge density by scanning a variable delay T. The
spectral interference of the electron probe introduces high-contrast phase information,
which makes it possible to record the electronic coherence in the sample. Quantum
dynamical simulations of the ultrafast nonradiative conical intersection passage in
uracil reveal a strong electronic beating signal imprinted onto the zero-loss peak of the
electronic probe in a background-free manner.

conical intersections | single-electron spectroscopy | ultrafast dynamics

Strongly coupled electronic and nuclear motions in molecules give rise to ultrafast
relaxation pathways, some of which are optically dark. State-of-the-art single-electron
microscopes equipped with ultrafast optical elements introduce hybrid probes involving
both electrons and photons. In this theoretical study, we show that when a broadband
fast electron (∼ 0.3MeV) passes near an optically pumped molecule, an interference
between the interacting and noninteracting free electron trajectories stores information
regarding inelastic scattering in the transmitted electron spectrum. This single-pulse
inelastic coherent electron scattering (SPICES) technique is demonstrated for the conical
intersection (CoIn) passage with joint nuclear–electronic contributions in the RNA base
uracil.

Several experimental techniques (1–5) have been proposed for monitoring ultrafast
charge-density dynamics by combining electron microscopy with advanced ultrafast
optics, pioneered by Zewail and coworkers (1, 3, 4). Photon-induced near-field electron
microscopy (1, 3–5) acquires temporal resolution via the embedded ultrafast optics in
electron microscopes. The temporal resolution is achieved by scanning the controlled
delay time between the optical pump and the interaction with a passing electron. Another
electron spectroscopy technique is electron energy loss spectroscopy (EELS)/electron
energy gain spectroscopy, which is usually formulated for macroscopic samples (2, 5).
Both techniques derive their spectral resolution from the narrow energy distribution
of the electron beam. The electron probe undergoes inelastic scattering and may lose
or gain energy when coupled to the optically pumped macroscopic sample. These
inelastic processes can be observed by spectrally dispersing the probe. In the macroscopic
description, both methods are sensitive to sample geometry and the populated plasmonic
modes. Matter spectroscopic information is imprinted into plasmon populations using
the imaginary part of the response to the applied electromagnetic field. The latter is used
as a source to which the linear response typically applies (6–8).

In this paper, we introduce the SPICES signal and show that when the sample is
prepared by a resonant pump, a single interaction with the electronic probe generates
a coherent signal. The interference induced in the incoming beam is analogous to
heterodyne detection of photons for comparison. Conventional EELS requires at least two
interactions to populate new energy states of the probe.The SPICES setup is composed of
the inelastic electron scattering process depicted in Fig. 1. At t = 0, the sample is optically
excited by a short optical pulse, launching electronic and nuclear dynamics. A high-
energy electron beam (a few hundred kiloelectron volts) with a typical full-width at half-
maximum (FWHM)∝ 300 fs and mean velocity v then recoils along the longitudinal (z)
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Fig. 1. The setup. (Left) A sample is optically pumped at t = 0 into a transient
state. A broadband single-electron pulse temporally centered at t = T is then
coupled to the sample, exchanging momentum with the sample. The spectral
profile of the electron is detected. (Right) Diagrammatic representation of the
electron coupling.

direction by the long-range Coulomb interaction with the sample.
The scattered electron pulse initially centered at a variable delay
t = T is energy dispersed. The process is described by the loop
diagram in Fig. 2. The spectrally resolved electron is derived in
SI Appendix, section I, which yields the SPICES signal

Sk (T ) =
2e

�γ
Re

∫ ∞

−∞

dω

2π
e−iωT

×
∫
R3

dq

(2π)3
σμ(q ,ω)

q2

1

vk · q − ω + iγ
φk−qφ

∗
k , [1]

where σμ is the total molecular charge density, φk is the free elec-
tron amplitude, k is the detected electron momentum related to
the energy–momentum exchange via ω = q · vk = �

m k · q , and
vk is the corresponding free electron velocity. The SPICES signal
scales ∝ q−2 rather than the q−4 for conventional incoherent
(narrowband) EELS (9).

Here, our primary goal is spectroscopy rather than microscopy.
To that end, we utilize a collimated, unfocused electron rather
than a tightly focused beam as used when spatial information is

=

′

′ +
†

ℳ ℳ†

Fig. 2. Loop diagram representation of SPICES. The time flows in a loop
from −∞ (on the lower left) to t at the top of the loop and then, backward
to −∞ (on the lower right). The sample is initially prepared in a transient
state during t ∈ (−∞, 0) represented by the yellow box (on the bottom). An
electron beam centered at t = T scatters from momentum state k→ k+ q.
Finally, an electron is detected, represented by the two inward arrows at
the top of the loop diagram and the corresponding measurement operators
Mk

(
M†

k

)
.

desired. This offers insights into the molecular dynamics thanks
to the high-contrast information delivered by the hybrid probe
regarding the strong nuclei–electron coupling.

Results and Discussion

The Setup. The system is described by the Hamiltonian H=
Hϕ + Hf + Hμ + HI , composed of the electromagnetic field
(ϕ), free electron (f ), matter (μ), and interaction (I ) contribu-
tions. The free electron’s Hilbert space is assumed to be separable
from the matter, excluding exchange pathways from the physical
discussion. The interaction Hamiltonian of the sample with the
electron field is given by

HI =− e�

mc

∫
d3r j (r) ·A (r)

− e2

2

∫
d3rd3R

σf (r +R)σμ (r)

|R| , [2]

where we have used the Coulomb gauge for the electromagnetic
vector potential A (r). σf and σμ represent the free electron
and sample charge-density operators, respectively. The single free
electron is described by the wave packet |1e〉=

∑
p φp f

†
p |�0〉,

where φp is the single-electron amplitude, |�0〉 is the free electron
vacuum, and f †p (fp) is a free (spinless) electron creation (annihi-

lation) operator obeying Fermion anticommutators
{
fp , f

†
p′

}
=

δpp′ . Gauge fixing is crucially important for the physical interpre-
tation of the detected quantities. Note that the interactions of the
bound electrons and nuclei are included in Hμ. The free electron
and matter are initially uncorrelated, and their wave functions are
thus factorized.

The free electron measurement is represented by instantaneous
annihilation of a momentum state using the electron opera-
tor fk within an energy window mk,k′ , given by Mk (t) =∫
dk ′mk,k′ fk′ (t). These operators are defined by the measure-

ment setup and the detector properties. The signal is given by the
integrated current with momentum k:

Sk (T ) =

∫
dt δIk (t), [3]

where δIk =
〈
Φ(t) |I (int)

k − I0|Φ(t)
〉
is the change in the free

electron spectral density due to the interference of the interacting
and noninteracting contributions. I0 is the initial spectral density
of the probe, I (int)

k represents the interaction with the sample, and
|Φ(t)〉 is the joint electron plus sample wave function.We expand
the joint electron–sample wave function in powers of the inter-
action Hamiltonian (2). In the Coulomb gauge, the vector field
A (r) does not contribute to first order since the electromagnetic
field for T > 0 is in its vacuum state. The coupling is thus solely
given by the Coulomb term HI =− e2

2

∫
d3rd3R

σf (r+R)σμ(r)
R .

Eq. 1 is obtained by using 1) high spectral resolution mk ,k ′

such that vΔk � γ (SI Appendix, section I), and 2) the energy
exchange between the sample and electron is much smaller than
the free electron central momentum k i � q such that εk+q ≈
εk + vk · q , where vk = �

m k and k̂ ‖ ẑ .
Eq. 1 includes the free electron amplitude φk, reflecting the

self-heterodyning interference between noninteracting and inter-
acting electron states. Only transitions within the electron’s band-
width are recorded. In the single-electron regime considered here,
the effective electron bandwidth characterized by the FWHMΔε
is determined by several factors. One important factor is thematch
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between the energy of the ionizing photon �ωp and the cathode
work function Φ (10). By tuning this parameter α= �ωp − Φ,
a reduction of the electron energy distribution was reported in
both the longitudinal and transverse momentum components
(11). Minimal broadening values of Δε/ε∈{10−5,10−6} have been
realized (including acceleration-induced broadening) in the range
of 30 to 300 keV (11). Our proposed measurement benefits from
a broad energy spread, for which α can be tuned.

Monitoring the Nonadiabatic Dynamics. The time-dependent
wave function of the optically pumped sample can be expanded
in a superposition in the adiabatic basis:

Ψ(r,R, t) =
∑
i

ci (t)ϕi (r,R)χi (r,R). [4]

Here, ϕi (r,R) is the i th electronic state; χi (r,R) is the corre-
sponding nuclear wave packet; r andR are electronic and nuclear
positions, respectively; and ci (t) is its time-dependent amplitude
due to the optical pumping. Eq. 1 can be expressed explicitly:

S (k,T )∝ Im

{∫
dt dqei

�

m k·q(T−t)φk−qφ
∗
k

q2
[5]

×
∑
ij

ρ∗ij (t) 〈χi (t) |σ̂ (q) |χj (t)〉
}
,

where ρij (t) = ci (t) c
∗
j (t) is the electronic coherence and σ̂ (q)

is the Fourier transform of the total charge density. The charge-
density operator σ = σe + σn (electron plus nuclei) is assumed to
be diagonal in the nuclear space (no coherence), and the momenta
{k,q} are parallel to the electron trajectory (here, the ẑ axis by
convention).

Application to the CoIn Passage in Uracil.
CoIns. CoIns are degeneracy regions between electronic potential
energy surfaces of molecules. Around CoIns, the electronic and
nuclear frequencies are comparable and strongly coupled. Thus,
they play an essential role in photochemistry, enabling ultrafast
nonradiative relaxation pathways (<100 fs). This renders them
strong candidates for energy conversion and switching applica-
tions that rely on CoIns as their operational principle. Moreover,
CoIns offer control knobs over product yields and rates of a large
class of photochemical processes (reviewed in ref. 12). Numerous
photoinduced reactions enabled by CoIns have been studied, such
as cyclohexadiene ring opening (13), photosynthesis of vitamin
D (14), retinal photoisomerization in the primary event of vision
(15), photodamage of DNA (16), and DNA repair (17). Due to
their high quantum yield and ultrafast switching, optical molecu-
lar switches that rely on CoIns have been proposed for numerous
applications ranging from optical memories to chemical energy
storage (18, 19). From the theoretical perspective, CoIns are
exceptionally interesting since the electronic and nuclear motions
are strongly coupled and thus, inseparable [beyond the Born–
Oppenheimer approximation (20)]. Spectroscopically, direct de-
tection of CoIns is a daunting challenge since the associated
signatures—based on coherences rather than populations—are
intrinsically weak. Here, we show how the direct detection of
CoIns is possible by using pulsed electrons.
Application to uracil. Our model is based on ab initio multiref-
erence quantum chemical data on the photorelaxation of the
RNA nucleobase uracil (21) that is crucially relevant for RNA
photostability. An effective Hamiltonian that includes two nuclear
degrees of freedom is constructed. The latter captures the relax-
ation through a CoIn after the optical excitation with kinetic rates

that match corresponding experiments (22). Exact nonadiabatic
quantum dynamical propagation of the photoexcited wave packet
is performed, fully capturing the quantum character of the nuclei
and therefore, the CoIn passage. The Hamiltonian, along with
analysis of the wave packet motion, has been described in detail
elsewhere (21, 23). Briefly, a 20-fs FWHM optical pump pulse,
resonantly tuned to the electronic S0 → S2 transition, launches
a nuclear wave packet in the S2 excited state. After a short free
evolution period, it reaches the S2/S1 CoIn around 100 fs and
relaxes to S1. This generates a vibronic coherence between S2 and
S1 due to the nonvanishing overlap of the nuclear wave packet in
the two states. Small parts of the wave packet continue to reach the
CoIn, and it takes several hundred femtoseconds for the relaxation
to be completed. The population and coherences dynamics are
depicted in Fig. 3 A–C and in Fig. 3 D–F, respectively.

The average beam momentum (k0) introduces fast oscillation
in Eq. 5, from which the relevant integration time can be inferred.
When the electron’s velocity is approximately half the speed
of light in vacuum v0 ≈ 0.5c, these oscillations determine the
temporal resolution δT ≡ t − T , which depends on the observed
momenta exchange with the sample. The longitudinal momenta
exchange, parallel to the electron propagation direction (q ‖ k),
determines the significant integration interval—here, collimated
and thus, quasione dimensional. For momentum exchange q in
the range of several inverse angstroms

(
10−10m

)
, the effective

temporal width of the probe is δT > 10−18 s. It is, therefore,
reasonable to estimate the temporal resolution within the order
of 0.1 fs, which is lower than the time step used for the numerical
calculations Δtsim = 0.48 fs. Assuming that within these time
steps, the charge density does not vary significantly, the temporal
summation can be replaced by sampling the charge density at
t = T . This assumption is validated by our numerical calculation
of the temporal dynamics. In this parameter regime, the signal is
given by

Sk (T )∝ Im

{∫
dq

φk−qφ
∗
k

q2
[6]

×
∑
ij

ρ∗ij (T ) 〈χi (T ) |σ̂ (q) |χj (T )〉
}

≡
∑
ij

Sij (k,T ).

Eq. 6 is derived from Eq. 1 by performing the Fourier transform
of the charge density to time domain and integrating the radial
frequencyω for small γ followed by eliminating the fast oscillating
contributions with respect to the resolution as discussed above
(Eq. 5).

Fig. 4 depicts the various contributions Sij (k,T ) defined in
Eq. 6. Fig. 4 A–C captures the population dynamics, and the
electronic coherences are given in Fig. 4 D–F. From Eq. 6, we
can appreciate that low momenta values contribute significantly
to the signal due to the q−2 weight. This corresponds to long-
wavelength dominance, similar to the general form of transient
redistribution of ultrafast electronic coherences in attosecond
Raman signals (TRUECARS) introduced in ref. 24. TRUECARS
is dominated by the polarizability and generated by the longitudi-
nal component of the off-resonant X-ray scattering that follows
optical excitation. Here, the long wavelength of the electronic
charge density plays a similar role to the one of the polarizability
in the TRUECARS signal. From Fig. 4, it is clear that electronic
population contribution to the signal is antisymmetric and van-
ishes exactly at k = k0, which stems from the fact that this is a
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× 5 ⋅ 104

× 50

A

B

C F

E

D

Fig. 3. Population and coherence dynamics. The molecule is initially in its ground state, depicted by the |0〉〈0| population in A. Around t = 100 fs, the second
excited state |2〉 is populated (B) followed by probability flow to state |1〉 (C). D–F present the real parts of the respective electronic coherence rescaled by the
green highlighted prefactor for visibility.

first-order contribution (the imaginary part of the integration is
taken). The coherences, on the other hand, are maximal at k = k0
and thus, contribute. This results in a background-free electronic
coherence signal on the zero-loss peak.

The overall signal obtained by the summation in Eq. 6 is
depicted in Fig. 5. By comparing Fig. 4F with Fig. 5, it is evident
that the |1〉〈2| coherence dominates the signal. This coherence

is developed during the dynamics around ≈ 180 fs when the
molecule reaches the CoIn between these electronic states. It is
evident from the numerical integration that the |0〉〈2| and |0〉〈1|
coherences are not negligible, yet they contribute significantly less
than the |1〉〈2| coherence. The main reason for this is that the
temporal resolution required to sample this oscillator is <0.4 fs
and thus, seems to be averaged/filtered out.

x
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Fig. 4. Signal contributions. A–C depict the contributions to the signal in Eq. 6 from the diagonal contributions Sii (σ00,σ11,σ22, respectively), corresponding to
the electron aligned along the x direction of the charge density, shown in Right. D–F depict the signals arising from the transition charge densities σ01,σ02,σ12,
respectively, corresponding to Sij , (i 	= j) under similar conditions.
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0 100 200 300 400

T fs

-2

0

2
-5

0

5

Fig. 5. Total signal. The recorded signal is obtained from superposition of all
the contributing processes given by Eq. 6.

The signal contributions in Fig. 4 exhibit temporal oscillations
with different frequencies.These are especially pronounced for the
coherences in Fig. 4 D–F, where the |0〉〈2| and |0〉〈1| contribu-
tions oscillate with higher frequency due to the energy difference
between the adiabatic states, while the frequency of the |1〉〈2|
contribution that stems from the CoIn is lower. To characterize
them further, we performed a temporal gating analysis inspired
by a cross-correlation frequency-resolved optical gating (XFROG)
measurement (25–35) according to

IFROG(ω,T ) =

∣∣∣∣
∫ ∞

−∞
dt Sk (t)Egate(t − T ) e−iωt

∣∣∣∣
2

, [7]

where Egate is a Gaussian function with a 3-fs FWHM and S(t)
is a temporal signal trace taken at k = k0 where the coherence
dominates. IFROG is numerically evaluated only at the postpro-
cessing stage, requiring no additional measurements. It gives
information about the transient frequency of the oscillations and
is depicted in Fig. 6 for all contributions and the total signal.

While the population signatures are around zero frequency,
the |0〉〈1| and |0〉〈2| coherences appear between 2 and 3 eV
in Fig. 6 D and E. The energy difference between the adiabatic
states is around 5 eV, where the discrepancy can be explained by
evaluating the signal “only” every 1 fs and thereby, undersampling
with respect to these fast oscillations. Nevertheless, they are well
separated from the |1〉〈2| coherence in Fig. 6F. This is the most
interesting dynamical signature. It starts at 0.1 eV around 80
fs and then, splits into a constant signature staying at 0.1 eV
and another one that decays to 0.01 eV at 120 fs. As discussed
in ref. 23, the 20-fs pump pulse excites a local nuclear wave
packet in S2, which then travels to the CoIn. This arrival is
directly mapped by the FROG spectogram in Fig. 6F. The |1〉〈2|
coherence emerges at 0.1 eV, where the nonadiabatic coupling
between S2 and S1 already is nonvanishing. Part of it then travels
to the actual crossing region where the energy difference between
the adiabatic states is vanishing. The signal thus provides direct
access to nuclear wave packet pathways in ultrafast molecular
dynamics. The FROG of the total signal in Fig. 6G is dominated

A

B

C

D

E

F

G

Fig. 6. XFROG analysis. Using Eq. 7 with S(t) taken at k = k0 from the individual contributions, we depict the XFROG decomposition of the total signal.
A–C correspond to XFROG spectrograms of the populations and D–F to the ones of the coherence contributions to the signal in Fig. 4. G presents the XFROG of
the total signal in Fig. 5.
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A

B

Fig. 7. XFROG analysis according to Eq. 7with S(t) taken at k = 2.8 Å (A) and
5.6 Å (B) from the total signal in Fig. 5.

by this |1〉〈2| contribution since we take the signal trace at k =
k0 where the populations are weak, allowing for direct access
to the coherences. By gradually shifting Sk (t) to k values away
from k0, populations get more visible in the total XFROG and
eventually, dominate. This is demonstrated in SI Appendix and
constitutes a convenient and readily accessible analysis tool for
both populations and coherences (Fig. 6).

Conclusions

SPICES is a technique that monitors electronic coherences of
optically pumped aligned molecules in a background-free man-
ner using frequency-resolved broadband electron and manifest
heterodyne electron detection. The signal is maximal when the
optical pulse propagates parallel to the electron beam. The tem-
poral resolution of the nonadiabatic evolution is initiated by
the optical pulse by scanning the delay time (T ) between the
optical pulse and the center of the free electron pulse. In the
unfocused, collimated, broad-beam regime considered here (weak
electron–sample coupling), the long-range longitudinal compo-
nent (Coulomb term) is dominant, and due to the dispersive
broadband nature of the coupling, the free electron’s phase is
significantly shaped by the coherence of the charge density.

The hybrid combination of electron and photon probes is
particularly useful to monitor ultrafast coherence phenomena.
The photonic degrees of freedom offer the well-developed quan-
tum optical toolbox with unparalleled temporal control and weak

nondestructive coupling as well as advanced generation and detec-
tion schemes (26–31). The electronic degrees of freedom present
a highly versatile broadband source with unparalleled spatial
resolution.The dispersive coupling—responsible for the electron’s
decoherence properties even in the weak coupling regime—is
useful for sensing electronic coherences.

The weak coupling regime enabled the spatial extension of the
electron pulse in the transverse plane (low effective cross-section).
Therefore, the interaction can be interpreted as the interference
of free electron trajectories recoiled by the long-ranged Coulomb
term. This picture is related to the recently proposed “aloof
spectroscopy” (32), whereby an electron beam is focused outside
the sample, generating optical excitations that depend on the
distance between the focusing point and the sample. Here, since
the temporal resolution is important to sample the ultrashort
electronic coherence, the entire free electron bandwidth is used.

The present signal corresponds to heterodyne detection of the
generated electron field with the incoming beam. Ordinary EELS
signals require two interactions with the incoming beam. Here,
we only need one interaction, and the signal is given by its
interference with the incoming beam. For photons, this is known
as heterodyne detection. This signal is analogous to TRUECARS
introduced in ref. 24, where the electron field is replaced by
a photon field. In SPICES, the electronic coherence is more
pronounced due to the long-ranged Coulomb potential.

For nonradiative decay pathways, such as CoIn, higher-order
processes are not required. Generally, the relaxation process from
the initial optical pump may be radiative, which will result in
a resonant term ∝ (j ·A)2 in the interaction Hamiltonian for
the photon generation (Wigner–Weisskopf like). Interference
between these two processes may also lead to interesting effects,
although not studied in this work. Recently, some of these ad-
vantages were experimentally demonstrated, showing significant
background reduction (pathway filtering) in energy-dispersive
X-ray spectrometry (33). Moreover, photon–electron and
electron–electron entanglement is expected to enhance path-
way separation, introducing noise reduction mechanisms
and joint time–frequency resolution that exceed the classical
boundaries (34).

Data Availability. All study data are included in the article and/or SI Appendix.
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I. DERIVATION OF THE SPICES SIGNAL

In this section we derive an explicit expression for the SPICES signal, starting with a Quantum Electro-Dynamics
(QED) approach, and further applying a set of approximations and simplifications. In non-relativistic QED one starts
with a system of free charged particles (electrons and nuclei), which are coupled to quantum electromagnetic field,
described by the vector A and scalar potentials. The classical action of such a system has standard form. While
switching to the Hamilton formalism, one observes that the system has constraints of first kind (according to Dirac’s
classification) that have a form E0(r) = 0 and divE(r) − 4πρ(r) = 0, where E0(r) is the momentum, conjugate to
A0(r). Upon quantization the constraints of first kind can be applied to the system wavefunction, thus identifying
the subspace of physical states, whose wavefunction do not depend on the scalar potential and have a prescribed
dependence on the longitudinal component of the vector counterpart. As a result the system maps onto a set of
charged particles interacting with each other via the Coulomb coupling, as well as interacting with the photons,
represented by the transverse component of the vector potential. The above procedure is known as gauge invariant
quantization.

In our case we have electrons in a sample under study, as well as in subsystem, e.g., a piece of normal metal, referred
to as the reservoir, that serves as a source for the probe electrons. We should also introduce a source, responsible for the
optical fields that drives the sample out of its equilibrium state, as well as an optical source creating a driving optical
field, responsible for the photoionization processes, thus creating high-energy probe electrons. A source is represented
by its time-dependent charge/current density (ρ(r, t), j(r, t)) that satisfy the continuity equation ∂tρ+div r = 0, the
latter ensuring gauge invariance of the interaction of the source with the scalar and vector potentials.

We will further introduce the following simplifications/approximations. Since the sample, reservoir, and probe
electrons are well separated either in real, or energy-momentum space, we will describe them using three independent
quantum fields. The Hamiltonian of the whole system can be, therefore, represented in a form

H(t) = H0(t) +Hint(t), H0(t) = Hµ(t) +Hf +Hs, Hint(t) = Hint
µ +Hint

s (t). (1)

In Eq. (1) H0(t) includes the kinetic and Coulomb energy of the charged particles (electrons and nuclei) in the sample,
the energy of the free transverse electromagnetic field (photons), coupling of the photons to the charged particles of
the sample, as well as to the optical source, responsible to the sample driving field, as prescribed by QED; its time
dependence originates from the optical source-photon coupling. The terms Hf and Hs represent the Hamiltonians
of free probe electrons and electrons in the reservoir, respectively; Hµ represents Coulomb interactions between the
probe and sample electrons, as well as coupling between the probe electrons and photons. Finally, Hint

s (t) describes
photoionization processes of converting the reservoir electrons to fast probe counterparts; this is a simplified description
of photoionization, compared to the original QED version that uses an optical source of the photoionization field,
coupled to the source and free electrons via transverse photons, obtained by invoking a classical approximation for
the photoionizing field. The initial density matrix is naturally assumed in a factorized form

ϱ = ϱµ ⊗ ϱf ⊗ ϱs, (2)

with ϱµ representing the canonical distribution of the material/sample (including photons) at some actual temperature
T , ϱf represents a pure state with no electrons, while ϱs is an equilibrium state of the electron reservoir. A more
detailed derivation of Eq. (1), based on the effective action formalism, will be published elsewhere.

Neglecting probe electron scattering on the sample excitations via a transverse photon exchange, i.e., limiting it to
pure Coulomb, we have

Hint
µ =

∫
drdr′

σµ(r
′)σf (r)

|r − r′|
, σf (r) = −eΨ†(r)Ψ(r), (3)

where σµ(r) is the charge density operator, associated with the sample, whereas Ψ(r) and Ψ†(r) are the probe
electron annihilation and creation operators, respectively. The reservoir-probe electron coupling Hamiltonian can be
represented in a form

Hint
s (t) =

∫
dr(Ψ†(r)Θ(r, t) + Θ†(r, t)Ψ(r)), (4)

where Θ(r, t) and Θ†(r, t) are time-dependent operators that represent collective reservoir variables, their time-
dependence originates from the time dependence of the ionizing field.

In what follows we use the following standard convention: for a Hilbert space operator Q, we denote Qα, with
α = L,R,±, the corresponding Liouville space operators, Qα(t) is the Heisenberg (time-dependent) counterpart of

Qα with respect to Liouville space dynamics, associated with the Liouville operator L = H−, whereas Q̃α(t) is the
Heisenberg operator, associated with the Liouville operator L0 = (H0)−. It is convenient to consider the most general
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signal, associated with counting the total number of beam electrons in a detector; it has a very simple form in terms
of the Liouville-space correlation functions of the beam electron variables

S(r, t; r′, t′)) = ⟨ΨL(r, t)Ψ
†
R(r

′, t′)⟩ = Tr(T(ΨL(r, t)Ψ
†
R(r

′, t′))(ϱ)), S(r, r′; t)) = S(r, t; r′, t)) (5)

where T denotes Liouville space chronological time ordering, and the time dependence of the operators in Eq. (5)
is determined by the Heisenberg picture/formalism, as per the convention, described above. The time-integrated,
momentum-resolved signal, considered in this paper, can be expressed in terms of the correlation function, introduced
in Eq. (5), as

Sk =

∫ ∞

−∞
S̄k(t) S̄k(t) =

∫
dk′

(2π)3
dk′′

(2π)3
mk,k′m∗

k,k′′

∫
dr′dr′′e−ik′·r′+ik′′·r′′

S(r′, r′′; t) (6)

To perform perturbative computations, we recast Eq. (5) in the interaction picture, treating H int in Eq. (1) as a
perturbation to H0

S(r, t; r′, t′)) =
〈
Ψ̃L(r, t)Ψ̃

†
R(r

′, t′) exp

(
−iℏ−1

∫
dτH̃int

− (τ)

)〉
. (7)

Note that, by the definition of the Liouville space correlation functions, the operators under the angular brackets in
Eq. (7) should be chronologically time-ordered, so that when expanding the exponential term in a Taylor series, one
can disregard the non-commutative nature of operators. Since interaction between the sample/material system and
the beam electrons is weak, due to the high energy of the free electrons, and the density of the beam electrons is low,
we will look at the lowest orders of the perturbation theory providing a non-vanishing signal, which is first order in
Hint

µ and second order in Hint
s [or, more specifically, it boils down to first order in Hint

s,L and first order in Hint
s,R], thus

providing the signal, linear in the density of beam electrons, so that Coulomb interaction between the latter can be
neglected.

To obtain a closed formal expression for the signal, we note that within the approximation, described above, the
expression in the r.h.s. of Eq. (7) contains one of each of the operators σ̃µ, ΘL, and ΘR and 6 probe electron operators
(3 creation plus 3 annihilation). Computing the 6-point Liouville space correlation function of the probe electrons by
applying the Liouville space version of the Wick theorem, we arrive at the expression

S(r, r′; t)) = −
(
1

ℏ

)3 ∫
R3

dτdτ1dτ2

∫
X×3

drfdr1dr2u(rf , τ)

G(r, rf , t− τ)G(rf , r1, τ − τ1)(G(r′, r2, t− τ2))
∗K(r1, τ1, r2, τ2) + c.c., (8)

where

u(rf , t) = −e

∫
drµ

⟨σ̃µ(rµ, t)⟩
|r − rµ|

, (9)

is the Coulomb potential, associated with the photoinduced charge density in the sample, whereas G and K are the
retarded correlation function of the probe beam electrons and the “population” correlation function of the reservoir
collective variables, respectively:

G(r, r′; t− t′) = −i⟨Ψ̃L(r, t)Ψ̃
†
L(r

′, t′)⟩, K(r, t; r′, t′) = ⟨Θ̃L(r, t)Θ̃
†
R(r

′, t′)⟩. (10)

Note that G(r, r′; t) = 0 for t < 0, and K(r, t; r′, t′) completely describes the beam of high-energy probe electrons,
and plays a role of some kind of dynamical spectral density of the high-energy electron source. In what follows, we
will use the following explicit expression for the retarded correlation function of the probe electrons

G(r, r′; t) = −iχR+(t)

∫
R3

dk

(2π)3
eik·(r−r′)e−iεkt, εk =

ℏk2

2m
. (11)

The expression in Eq. (8) can be further simplified under a very natural assumption that the electron reservoir is
located far away enough from the experimental sample, so that there is a moment in time t0, so that by that moment
the ionizing pulse is gone [i.e., Hint

s (t) = 0, for t > t0], whereas the probe electron wavepacket is still far enough fro
the sample, so that we can set Hint

µ (t) = 0, for t < t0. This allows the time integration in Eq. (8) to be restricted to
τ1, τ2 ∈ (−∞, t0) and τ ∈ (t0, t). Since the retarded Green function G(r, r′; t) represents the kernel of the one-electron
evolution operator, it possesses the time concatenation property, allowing Eq. (8) to be recast in a simpler form

S(r, r′; t)) = 1

ℏ

∫ t

t0

dτ

∫
X×3

drfdr1dr2u(rf , τ)

G(r, rf , t− τ)G(rf , r1, τ − t0)(G(r′, r2, t− t0))
∗ρf (r1, r2; t0) + c.c.,

ρf (r1, r2; t0) =

(
1

ℏ

)2 ∫ t0

−∞
dτ1

∫ t0

−∞
dτ2G(r1, r

′
1; t0 − τ1)(G(r2, r

′
2; t0 − τ2))

∗K(r′1, τ1, r
′
2, τ2). (12)
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where ρf (r1, r2; t0) should be viewed as a reduced one-electron density of the probe electron beam at time t0, which
represents all relevant properties of the probe electron source, in application to the considered signal in the lowest
non-vanishing order of the perturbation theory, described above. Note that the relevant properties of the probe
electron source are generally described by a one-electron mixed, rather than a pure state.

Summarizing, Eqs. (6), (12), and (9) together with Eq. (11) constitute a complete set of integral expressions for
the signal considered in this paper. They clearly demonstrate that the dynamical information that can be retrieved
from the considered spectroscopic measurement is the time- and position-dependent charge density, induced in the
experimental sample upon photoexcitation.

The expression for the signal Sk can be further simplified by introducing the Fourier transform of the induced
charge density and the probe electron reduced density matrix, i.e., expressing them latter as

⟨σ̃µ(r, t)⟩ =
∫ ∞

−∞

dω

2π

∫
R3

dq

(2π)3
e−iωt+iq·rσµ(q, ω), (13)

and

ρf (r1, r2; t0) =

∫
R3

dk1

(2π)3

∫
R3

dk2

(2π)3
eik1·r1−ik2·r2ρk1k2

(t0), (14)

and further substituting Eqs. (13) and (14), together with the integral representation for the one-electron Green
functions [Eq. (11)] into Eq. (12)) and further into Eq. (6). Then all spatial integration can be easily explicitly
performed, resulting in the delta-functions, that reflect momentum conservation for all scattering processes involved
resulting in:

Sk =
ie

ℏ

∫ ∞

−∞

dω

2π

∫
R3

dq

(2π)3
σµ(q, ω)

q2

∫
R3

dk1

(2π)3

∫
R3

dk2

(2π)3
ρk1−q,k2(t0)mkk1m

∗
kk2

×
∫ ∞

t0

dte−γt

∫ t

t0

dτe−iεk1−q(τ−t0)−iεk1
(t−τ)+iεk2

(t−t0)−iωτ + c.c., (15)

where γ−1 represents the time window of collecting the time-integrated signal. Performing the time integration in the
r.h.s. of Eq. (??), we arrive at

Sk =
ie

ℏ

∫ ∞

−∞

dω

2π

∫
R3

dq

(2π)3
σµ(q, ω)

q2
e−iωt0

∫
R3

dk1

(2π)3

∫
R3

dk2

(2π)3
ρk1−q,k2

(t0)mkk1m
∗
kk2

× 1

εk2 − εk1 + iγ

1

εk2 − εk1−q − ω + iγ
. (16)

To understand clearly the dependence of the signal on t0, in deriving Eq. (15), we switched to the variables t 7→ t− t0
and τ 7→ τ − t0; we also assumed γ|t0| ≪ 1 and dropped such terms that occurred in the exponential.

We further assume that (i) mkk1 , as a function of k1, is strongly peaked at k with a width ∆k, and is normalized
to unity, (ii) the probe electron wavepacket spectral width is large compared to ∆k, which allows setting ρk1−q,k2 =
ρk−q,k, and (iii) q to be small enough to allow decomposing εk1−q to just first order in q. We also follow the convention,
adopted in this paper to describe the probe electron wavepacket at time T , described as the time when the optical
pulse completely leaves the experimental sample, which boils down to setting t0 = T , and ρk1k2(t0) = ρk1k2 , so that
Eq. (16) adopts a form

Sk(T ) =
2e

ℏ
Im

∫ ∞

−∞

dω

2π
e−iωT

∫
R3

dq

(2π)3
σµ(q, ω)

q2
ρk−q,kF (q, ω),

F (q, ω) =

∫
R3

dk1

(2π)3

∫
R3

dk2

(2π)3
mkk1m

∗
kk2

1

εk2
− εk1

+ iγ

1

εk2
− εk1

+ vk1
· q − ω + iγ

. (17)

In the case of a perfect momentum resolution in the detector, or more specifically (∆k)v ≪ γ, we can set k1 = k2

in the resonant factors in the second line of Eq. (17) to obtain a simpler expression, we are using in this paper

Sk(T ) =
2e

ℏγ
Re

∫ ∞

−∞

dω

2π
e−iωT

∫
R3

dq

(2π)3
σµ(q, ω)

q2

1

v · q − ω + iγ
ρk−q,k (18)

In the main text we consider a case when the initial probe electron wave-packet is represented by a pure state.
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II. NUMERICAL DETAILS

The Hamiltonian setup for uracil photorelaxation has been described in Refs. (author?) [2, 3]. Electronic structure
calculations were performed on the CASSCF/MRCIS level of theory as implemented in the program package MOLPRO
(author?) [8], using an active space of 12 electrons in 9 orbitals (5 π, one Oxygen lone pair, and 3 π∗ orbitals). All
quantities including the potential energy surfaces, (transition) dipole moments and non-adiabatic couplings were
computed in 2-dimensional nuclear space spanned by the displacement vectors from the Franck-Condon point to the
S2/S1 CoIn and to the local S2 minimum, respectively. These coordinates had been identified by theory to capture
the relevant wavepacket motion in the S2 state and through the S2/S1 CoIn (author?) [3? ].
For the nuclear wavepacket dynamics, these quantities are discretized on a numerical grid spanning 256 grid points

in both dimensions. The time-dependent Schrödinger equation is solved numerically using a Chebychev propagation
scheme (author?) [6] with a time step of 0.05 fs The effective Hamiltonian in matrix form comprising three electronic
states is given by

Ĥ =

T̂ + V̂S0
(R) 0 −µ̂02E(t)

0 T̂ + V̂S1
(R) K̂12

−µ̂20E(t) K̂21 T̂ + V̂S2
(R)

 , (19)

where V̂ are the potential energy surfaces. The kinetic energy operator T̂ in Eq. 19 is given in the G-Matrix formalism
(author?) [1, 7] according to

T̂ ≃ − ℏ2

2m

2∑
o=1

2∑
p=1

∂

∂qo

[
Gop

∂

∂qp

]
(20)

with o, p ∈ R and the G-Matrix computed via its inverse elements

(
G−1

)
op

=
3N∑
i=1

mi
∂xi

∂qo

∂xi

∂qp
. (21)

The terms K̂ij in Eq. 19 approximate the non–adiabatic couplings and are given by(author?) [4]

K̂ij =
1

2m

(
2fij

∂

∂R
+

∂

∂R
fge

)
(22)

with fij containing terms ⟨Φi| ∂
∂RΦj⟩ with the electronic wavefunction Φ. Since the only CoIn contained in our

Hamiltonian is between S2 and S1, the other non-adiabatic couplings are set to zero. The dipolar coupling element
µ̂E(t) enables laser excitation from S0 to the optically bright S1 with the laser field E(t), whereas the S0 → S1
transition is optically dark.

The nuclear wavefunction χ(R, t) is obtained by propagating the S0 ground state vibrational wavefunction χ(R, t0).
Excitation to S2 is performed by a 20 fs FWHM laser field tuned to the S0A Butterworth filter (author?) [5] was
employed in S1 that absorbs the wavepacket reaching the S1minimum. This is done to create an artificial exit channel
and avoid artifacts, since our Hamiltonian is not suited to describe the wavepacket path in S1 and the CoIns leading
to S0 are not contained. The filter was of ”right-pass” type (absorbing all parts on the left side of the border), and
placed at q1 = 0.5 Å with an order of 100.

III. ELECTRON AND NUCLEAR DENSITIES

To calculate the signal in Equation 1 of the main text, electronic and nuclear densities of the molecule are required.
They were calculated on a 18x15 grid in the nuclear space. Electron densities were evaluated from the state-specific
charge density matrices P ij

rs according to

σE
ij(q,R) =

∫
dre−iq·r

∑
rs

P ij
rs(R)ϕ∗

r(r,R)ϕr(r,R) , (23)

using the basis set of atomic orbitals ϕr(r). All electrons of uracil contribute to the diagonal state densities σii,
while the transition density consists of one electron located participating in the electronic transition (i.e. nOπ

∗ for
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S0 → S1and ππ∗ for S0 → S2at the Franck-Condon point, while this changes across the nuclear space and especially
around the CoIn).

The nuclear charge density for a given nuclear structure R in q-space was calculated as

σN (q,R) =
∑
a

Zae
iq·Ra(R) (24)

where a labels the ath atom with atomic number Za at position Ra(R).
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