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Abstract—Widespread RF spectrum monitoring could enable
data-driven modeling of spectrum usage, enhance spectral
utilization, and help automate policy enforcement. Previous
works in wireless sensor networks offer design insights for RF
sensors, but they assume emitters that radiate omnidirectionally.
This paper develops a new framework for directional sensors
and emitters, which are increasingly common with the growth
of millimeter wave technologies. We focus on two-dimensional
random sensor deployments modeled as Poisson point
processes. Specifically, we determine the probability that a
sensor network detects a single emitter for a channel model
including path loss, fading, and the directivity of emitters and
sensors with random orientations and locations. Our results
suggest that with a path loss exponent of 4, quartering the
emitter half-power beamwidth doubles the required average
sensor density. We also conclude that omnidirectional sensors
optimize detection probability. For multiple emitters, we
develop a lower bound on the probability of multi-emitter
detection and find the average number of undetected emitters.
Finally, assuming higher sensor quality results in higher sensor
cost, we consider a fixed-budget deployment and observe that
decreasing the individual sensor cost by a decade and therefore
increasing the quantity of sensors reduces the missed detection
probability by about a decade.

Index Terms—Directive antennas, radio

management, cooperative spectrum sensing.
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1. INTRODUCTION
A. Background

VEN though the demand of wireless traffic increases, the
supply of RF spectrum remains fixed. As a result, usable
spectrum has become a scarce resource of increasing value [1],
[2]. Solutions are to increase the amount of usable spectrum
and/or to use the current spectrum more efficiently.
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Fig. L. Illustration of widespread spectrum monitoring system. (a) Randomly
deployed sensors measure RF transmissions across a wide spectrum over a wide
geographical area. Emitters with various operating frequencies, locations, and
antennas can be detected. (b) nvo-dimensional view of system highlighting the
varying antenna patterns and resulting coverage. Sensor locations and gain
patterns are denoted with a blue 'o' and solid line, respectively. Emitter locations
and gain patterns are denoted with a red square and dotted line, respectively.

Efforts to expand the usable spectrum are underway with
commercial millimeter-wave (mm-wave) technology (see [3]
and references therein). Here we focus on more efficient
utilization of the widely-used sub-6 GHz spectrum, but
strategies for efficiency apply beyond 6 GHz. Regulatory
institutions currently rely on theoretical models of limited
accuracy and unverified claims by licensees to determine
spectrum usage and efficiency. The result is underutilized
spectrum in some bands [1],[4].

Spectrum monitoring (SM) takes measurements of the
spectrum across frequency, time, and space, as illustrated in Fig.
1. If widespread, SM could provide the "ground truth" of
spectrum usage and thereby "close the feedback loop" for
spectrum management [5]. In particular, SM could provide a
wealth of data for data-driven modeling of RF environments [6],
which could overcome the limited accuracy of current
theoretical models. SM could also provide a data-driven
approach to find unoccupied spectrum and inform a spectrum
management mechanism (e.g., a spectrum access system (SAS)
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(a) Missed detection.

(b) Detection.

Fig. 2. Example of an omnidirectional sensor (white 'o') attempting to detect a
directional emitter (red square). In (a) the sensor fails despite the emitter
residing in the sensor's coverage region because the emission is directed away
from the sensor. In (b) the sensor succeeds since the emitter radiates toward the
Sensor.

with an environmental sensing capability (ESC) [101) to access
it. Additionally, SM could help automate spectrum enforcement
[T T, which could significantly strengthen and expedite
spectrum policy.

Elements of SM have been pursued in a variety of forms over
the past decade, including cognitive radios [12], [13], radio
environment maps [14], dedicated sensor networks [15], and
crowdsourcing [6], [16]-[20]. However, each has experienced
economic and/or regulatory roadblocks. From previous works,
we observe that the prospects of spectrum sharing have
improved from TV white space in the 700 MHz band to the
Citizens Broadband Radio Service (CBRS) in the 3.5 GHz
band. With established standards for sensor data formats [21],
coexistence [22], and interoperability [23], we anticipate that
opportunities will continue to extend to other frequency bands
with time. Moreover, we see from previous works that the
widespread deployment of enough spectrum sensors is a crucial
problem for SM to be beneficial.

The literature on wireless sensor networks (WSN) has
considered the problem of deploying enough sensors to detect
emitters, and SM designs can leverage these results. However,
several important issues in RF have not been considered in the
context of WSN, including directivity of RF emitters, which are
common in RF due to significant signal attenuation over large
distances and/or at high frequencies [24, Ch. 2]. Unfortunately,
previous works on WSN assume the emitters radiate
omnidirectionally. To the extent that directionality has been
considered, the focus has only been on directional sensors, such
as optical, ultrasound, and infrared sensors (e.g., [25] and
sources therein). Directional transmission also appears on the
sensor side in the context of WSN communication [26]—[28]
and secure sensor localization [29].

As illustrated in Fig. 2, if the emitters are directional, an
emitter could reside in the typically-assumed omnidirectional
coverage region of a sensor yet remain undetected because the
emitter's signal is directed away from the sensor. This problem
affects multiple studies [30], [31]. For example, directional
emitters undermine the well-known Boolean model [32]. The
same problem exists in other design approaches, such as for
coverage enhancement algorithms [30], [33]. Consequently, a
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need exists for a framework that considers directional emitters
along with directional sensors.
B. Contributions

This paper considers scenarios in which the deployment is
achieved via crowdsourcing (e.g., re-using cell phones as
sensors in a commercial context) or simply dropping sensors
out of a plane (in a defense context), and are well-modeled by a
random deployment of sensors. Demand on sensor resources
needs to be low, and while backhaul is assumed to be in place
for the sensors, a low required backhaul is desirable to prevent
disruption to the user in the commercial context (e.g., WiFi and
LTE) and to satisfy tactical constraints in defense contexts.
Consequently, we focus on the application of power detection
of emitters to reduce device processing, power consumption,
and backhaul traffic. In particular, the sensors return a
timeaveraged power measurement for a certain center
frequency (with some bandwidth). Despite the simplicity of
power detection, the information is nonetheless useful for
applications such as identifying unused spectrum or bad actors
within a region. Other scenarios and applications are of interest
but are outside the scope of this paper.

In this paper, we create a general framework to model
directional (and omnidirectional) sensors and emitters within a
sensor network for SM. The framework supports three
dimensions, but this paper focuses on the two-dimensional case.
This work addresses the problem of designing a SM system
with the aim of power detection in the presence of directional
emitters. We focus on the effects of sensor and emitter locations
and orientations. For the case when the sensors form a Poisson
point process (PPP), we provide a fundamental and general
analytic result on the probability that an emitter is detected. The
result incorporates all sources of randomness, including channel
fading, shadowing, and/or randomly-oriented directional
antennas. We also analytically lower bound this probability for
multiple emitters of a given number, and we find a closedform
expression for the expected number of undetected emitters
within a finite region. We use these analyses to conclude four
main points. First, we find an expression to quantify the
increase in deployment density of sensors with increasing
emitter directivity. Our results suggest that with a path loss
exponent of 4 and all other things equal, quartering the emitter
half-power beamwidth doubles the average number of sensors
needed for detection. Second, we analytically determine
optimal sensor characteristics; in particular, we find
omnidirectional sensors optimize the probability of detection,
regardless of emitter directivity. Third, we analyze the detection
probability's sensitivity to frequency and develop a deployment
strategy for multiple frequency bands. Finally, under the
constraint of a fixed-budget deployment, we illustrate that
sensor quantity improves the system probability of detection
more than sensor €uality. In particular, from a survey of current
software-defined radios, for a given total cost, we observe that
decreasing the individual sensor cost by a factor of 10 reduces
the system probability of missed detection by about a factor of
10.

C. Related Works
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Previous works have taken a similar approach as this paper
to model sensor networks. The works in [34] [37] also model
sensors deployments as PPPs with simple path loss channel
models for omnidirectional sensors and emitters. The focus of
[34] is to find the necessary sensor density based on a Cramér-
Rao bound on emitter localization error, whereas our work uses
detection probability as the metric. Source detection is similarly
the focus of [35]—[37], though with slight variations such as
time-constraints for sensor communication [35], the use of
estimated likelihood ratios for detection [361, and the effects of
sensor clustering [37]. Our work differs by using power
detection based on a more complex channel model that includes
fading and directional (sensor and emitter) antennas with
random orientations.

Directional senors with random orientations and locations
modeled by a PPP have been considered in [38]. While our
work has a similar theme in the model, [38] finds the critical
density for sensor coverage and network connectivity
percolation for video sensors (with presumed omnidirectionally
visual targets). In contrast, we focus on the RF domain with
directional emitters and find the required sensor density for a
given detection probability rather than percolation.

D. Outline

The remainder of this paper is organized as follows. Section
Il introduces a general framework to model an RF sensor
network with directional emitters and sensors and formulates
the problems of interest in two dimensions. Section 1l provides
the probability of single emitter detection along with several
applications. Section IV presents results for multiple emitters,
including a lower-bound on the probability of multi-emitter
detection and the expected number of undetected emitters.
Finally, Section V provides closing remarks and future
directions.

1. SYSTEM MODEL

We now present a general framework to model RF sensor
networks and the target emitters, which extends to any number
of dimensions d, though the obvious cases of interest are d 2
and 3 dimensions. We focus on cases in which the sensor
deployment is well modeled as uniformly random. As
illustrated in Fig. 1, we need to describe system parameters of
sensor and emitter locations, directionality, and capabilities.

To describe directional sensors, we follow a convention
similar to that in [25], though tailored to RF applications. In
summary, we characterize a directional sensor deployed in a d-
dimensional space with the following pieces of information,
which we describe in more detail later:

® the sensor location, denoted x*e R ¢,

¢ the sensor orientation, denoted by an orthonormal rotation

matrix RS e IRdxd

the sensor antenna gain pattern, denoted by the positive
function g *,

the sensor sensitivity, described by the minimum
detectable signal (MDS) power TS > 0.
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Similarly,

we characterize a directional

ddimensional space with

® the emitter location, denoted x°e Rd,

emitter in a

¢ the emitter orientation, denoted by an orthonormal rotation
matrix R ¢e R4x4

Sensor n®

data

meta-data

TABLE 1
NOTATION
Variable, Description Variable Description
(emitter i, (emitter i,
sensor j) sensor j)
dimension target location
X, X3, x? location P self-location
R, R, RS | orientation ¢ azimuth variable
g, 9 g; gain function 0 location of origin
P, p;’, p;, (Tx/Rx) power w(n) random noise
;p:'J samples
T, 1'3’.“ sensitivity K number of noise
(MDS) samples
n, n%, n® number (of Z random noise
emitters/sensors) power
d, d;‘ measured data pod finite region
P, 7 PPP of locations &, & detection event
A, A%, A® deployment D all emitters
density detected event
Y, 7, P azimuth N # of sensors with
orientation pg‘j >78
o path loss My mark (random
exponent variable) at x
R, hij fading coefficient [) 2/a
K path Toss model [7] arbitrary
constant threshold
i frequency F CCDF
o reference bx Bernoulli random
distance variable at x
c speed of Tight T'(z) gamma function
¥, UF, U7 | azimuth HPBW No noise floor
0, ef, 9; elevation HPBW v noise figure
1, N°, n° angle fraction SNRout application SNR
Pp detection rate B bandwidth
Py false alarm rate T temperature
C received power kg Boltzmann
ratio constant
w power-to- nt number missed
sensitivity ratio emitters
{ l.f
I'. ! data
Y \.I : 1 Sensor 1 |meta-data
)
Emitter 1
Edge/Cloud:
. 2 1 Backhaul Database & | application
. 4] . Network Pracessing data
j / / Algorithms
Emitter n® / rf
'.. ‘L

Fig. 3. A high-level block diagram of all the system components and

parameters.

® the emitter antenna gain pattern, denoted by the positive
function g,

¢ the emitter transmit power, denoted p €2 0.
The superscripts s and e denote the value for a sensor or
emitter, respectively. If there are n * sensors and n® emitters, we
UTC from IEEE Xplore_ Restrictions apply.
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use the subscripts j e {1 ,n%} andie {1,...,n%o0 denote the
index of the sensor and emitter, respectively. In other words, we
fully describe the jth sensor with the 4-tuple (x¢é u®, and we
describe the ith emitter with the 4-tuple (Xt , RI? , gi , Pi). A
summary of the notation used in this paper is in Table I.

We now briefly describe the system architecture. A diagram
of sensors and n ° emitters is given in Fig. 3. Generally, we
collect all sensor data in a centralized database for processing.
Each sensor can determine its location via a mechanism, such
as GPS, WiFi, or LTE positioning. Similarly, each sensor can
determine its orientation RS via a compass or accelerometer.
The sensor gain g; and sensitivity are inherent to the device and
can be recorded in the sensor software before deployment. The
data sent over the backhaul to the database includes the sensor
characteristics (x; , R} , g;, T} ) and the collected data, d}, for
j € {1, n%}. The sensor data can be used toward several ends,
such as estimating the number of emitters, the emitter locations,
the emitter orientations, and/or the emitter transmission powers
[39]. However, estimating emitter parameters is outside the
scope of this paper.

A. Random Deployment

In our scenario of interest, the sensor deployment is well
modeled as random in location and orientation. This model is
reasonable because we have no prior knowledge of sensor
locations nor their orientations. Emitters are arbitrarily located
with random orientations, as well.

I) Locations: We describe location with a vector x e R ¢
representing Cartesian coordinates. In general, the locations of
a random deployment of sensors are well modeled by a PPP,
denoted (I'S , with location-dependent density AS (x) [32].

Mathematically, = (Xf )jeN- From a d 2 dimensional
perspective, the deployment is well modeled as uniformly
random, which implies a homogeneous density, A*. If d > 2, the
deployment may no longer be uniformly random in all
dimensions, but a PPP with an inhomogeneous density

A%(x) can be used. Note if we condition on the number of
locations in a finite region of interest, the locations are iid
uniform in the region, forming a binomial point process (BPP).

For the case of a single emitter, the detection probability does
not depend on the emitter's location since the PPP is stationary
[32, Sec. 2.6]. For convenience, we state that the emitter is at
the origin.

2) Orientations: Describing the orientation of an antenna can
be achieved in several ways. We define the orientation of the
sensor antenna via a rotation from a given default orientation.
In particular, we define the rotation with an orthogonal rotation
matrix R, which is a product of Givens rotations. Generally, we
set the convention that the main lobe of the antenna gain pattern
lies along an axis of the coordinate system.

For the two-dimensional case, the rotation matrix is cos
Y —sing|
R ¥ costp |’

=sin(1l)
where indicates the direction of the main lobe. In the sce-
nario of a random deployment, the orientations of the sensors
and emitters are iid uniformly distributed, which means RS and
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R? are iid uniform rotations. Note that uniformly random
rotations translates into and being iid uniform on [0, 2m).

' A Givens rotation only occurs within one plane. Consequently, to achieve
rotation in more than two dimensions, multiple Givens rotations in different
planes must occur. Consistent with matrix multiplication, the order of these
rotations matters.

B. Sensor and Emitter Capabilities

For simplicity, we consider the case in which the sensors are
deployed with the same antennas that share a common gain
pattern (gj(*) g% (*) Y j). Similarly, all emitters share the same
gain pattern g °(¢), which is known. This scenario is reasonable
because emitters operating in the same frequency range likely
have similar antennas, and we would prepare the sensors in an
identical fashion with antennas that operate in the same
frequency range as the emitters. Usually, publicly available
regulations limit the transmission power of emitters, and often
emitters transmit at the legal maximum to obtain the highest
SNR possible, so we can say that all emitter powers are equal
and known (pfp ¢V 1). Similarly, it is reasonable to say that the
sensors are constructed to be approximately the same, so all
sensors have the same sensitivity (Tj — 7° ¥ 7)

Finally, we consider scenarios in which there are discernible
differences among the emitter signals and power levels across
time, frequency, spreading codes, and/or high-level protocols.
For example, a spectrogram of multiple stationary emitters
following the LTE standard could illustrate varying power
levels across time and frequency due to different separation
distances from the emitters to the sensor. A distribution of the
different power levels from the spectrogram could reveal
distinct patterns, each of which would identify a particular
emitter. Certain signaling structures could be exploited as well,
e.g., primary and secondary synchronization signals (PSS and
SSS) in LTE or clear channel assessment (CCA) in WiFi.
Furthermore, a wide body of machine learning techniques can
be applied to distinguish emitters based on modulation scheme
[40], MAC protocol [41], and communication technology [12].
In particular, clustering of selected features can distinguish
spatially separated emitters, even with the same system
characteristics [42], [43]. As a result, the sensors should be able
to separate the individual emitter signals through low-level
signal processing and calculate distinct power measurements
for each emitter. In particular, for this paper we are interested
in the sensor calculations of p'. , the time-averaged received
power from the ith emitter measured at thejth sensor. In
practice, the sensors provide estimates p °.along with an
estimate of the noise floor No, which could differ from the exact
p} and No. We address this issue in a later section.

1) Sensor Sensitivity: The sensor sensitivity is determined by
several factors [44]. First, let TS denote the power of the
minimum detectable signal by the sensor. Let the equivalent
noise figure (v) of the entire RF chain in the receiver be given
by

SNRin  Sin/Nin

=—=(2)
SNRout  Sout / Nout
Rearranging the terms to solve for the signal power into the

device yields
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Sin v (Sout /Nout)Nine 3)
Based on our application, the sensor will have a required
minimum SNRout to perform its task properly. The noise figure
is inherent to the device, and the input noise is assumed to be

2

The directionality of the antenna gain is usually accomplished through
specialized antennas, such as a horned antenna, or through a phased array of
multiple antennas.

the antenna, the antenna gain changes. As illustrated in Fig. 4,

Y K
t
t'St—p

Y

R

e =p-p=0 e

(a) (b)

(c)

Fig. 4. An example illustrating the direction of departure. From (a) to (b), we translate the system by —p so that the position of the antenna is at the origin. From
(b) to (c), we rotate by to align the main beam with the x-axis (the default orientation). This enables the evaluation of the gain function in a standardized way. In
the opposite direction, we rotate the system by the orientation of the antenna R from (c) to (b) and then translate the system by the position of the antenna p from

(b) to (a).
/6
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(c) Absolute antenna gain vs. ¢

Fig. 5. An example antenna gain pattern (solid blue) from MATLAB's toolbox compared to our simplified radiation pattern (dotted red). ne patterns are shown
in dB in (a) and absolute values in (b). A Cartesian view of the absolute gain is in (c).

thermal noise given by Nin kB TB, where B is the bandwidth
of the system, T is the temperature (in Kelvin) of the system,
and kB is the Boltzmann constant [45]. If the noise figure v and
minimum SNRout for the receiver are known, Sin in (3) gives
the power of the minimum detectable signal (MDS) [44]. For
convenience, we denote the MDS as TS and

(linearly) express it as

7% 2 v(SNRout ) kg BT. 4)

Remark 1: The power of the emitter signal arriving at the
sensor antenna must be larger than the threshold T Sin order for
the sensor to distinguish the emitter signal from noise.

2) Antenna Gain Pattern: The gain of an antenna describes
the degree to which the antenna converts input power into radio
waves or vice versa [45]. To evaluate the antenna gain value,
we require the position of the antenna (p e R?), the location of
the target (t e RY), the rotation of the antenna from a
conventional orientation (R e R ¢ * 4), and the operating
frequency (f) as inputs to the gain function: g(p, R, t, f). A plot
of the gain as a function of direction displays the antenna's
radiation pattern. Antennas are said to possess directionality? if
the antenna gain g(*) is a non-uniform function of the direction
of departure or arrival. In other words, as one moves around
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the normalized direction of departure is
R_li. (5) 11t - pll

We also note that the antenna gain is a function of frequency.
Generally, an antenna is designed to operate at a particular
frequency, and operation outside of that band is degraded by
poor gains or high reflection coefficients [45]. Consider as a
simple example, a half-wave dipole antenna. If we double the
operating frequency, the antenna becomes a full wave dipole
antenna, which has a different pattern than a half-wave dipole.

For the two-dimensional case, the analysis of the inputs (p,
R, t) reduces to the azimuth angle of departure, which we find

0 1]R™*(t—
as d) arctank|1 O[R™(t j)), where care needs to be taken that
the proper quadrant is selected for a unique solution (see atan2
in many software packages). See Fig. 5 for an example of a two-
dimensional directional antenna radiation pattern. Note how the
gain is large in one particular direction (at # = 0) and diminishes
in other directions.

We simplify the gain patterns of the sensors and emitters in
the following way. Let denote the half power beamwidth
(HPBW) of a directional antenna. The HPBW is defined as the
angular range between the points at which the gain has
decreased 3 dB from the peak gain [45]. Also note that the
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HPBW is a function of the operating frequency, W (f), whose
form is specific to the antenna. We simplify the gain to be
constant within the HPBW and zero elsewhere. See Fig. 5 for
an example of our simplification, which captures the essence
of directional antennas. The simplified gain is always less than
or equal to the true gain. Consequently, detection requires
more restrictive circumstances under this simplification, which
we address later in Section IV.

The HPBW and maximum gain of an antenna are physically
related [45]. In general, as the HPBW narrows, the maximum
gain increases. Consequently, the non-zero constant gain in
our simplification is a function of the antenna beamwidth, both
in azimuth and elevation. In this paper, we consider the
scenario in which the sensors and emitters are approximately
coplanar, which is well-modeled by our two-dimensional
framework. Consequently, we treat elevation as constant and
only vary the azimuth beamwidth W. To be thorough, we
include the elevation beamwidth to show the relationship to
gain, though 9 is effectively a constant. Without loss of
generality, we assume antenna efficiencies of | so that antenna
directivity equals gain. Our simplification is

. (0 1R~ (t—p)
3
€ [— 2 72 ]

glo, R, t,f) = L0 %) (6)
where arctan is the four-quadrant inverse tangent. The
expression 4m/(¥(f)O(f)) is an approximation of the
antenna's directivity that becomes more accurate with
narrower beamwidths [45]. The factor of 1/2 comes from using
the 3 dB point as the constant value.

C. RF Channel

The channel is the medium over which the emitters transmit
and the sensors receive radio waves. In wireless
communications, the channel model incorporates aspects of
the environment such as large-scale shadowing and small-
scale fading, which determine how the radio wave changes
from the emitter antenna to the sensor antenna. From the
system perspective, we can incorporate the emitter and sensor
gains into the channel.

For ease and wide applicability, we use the approximation
given by the simplified path loss model in [24, eq. (2.28)]. Let
us briefly define some notation. Let pj be the power received
by sensor j from emitter i. Let IIx€ | denote the Euclidean
distance between the ith emitter and jth sensor. Let a > 2 be
the path loss exponent determining the rate of power
attenuation. Let hi ¢ be the fading coefficient for the channel
between the ith emitter and jth sensor. hij could be the
product of a small-scale fading and a shadowing random
variable. This paper focuses on iid hij. We have
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p*{ij} = h{ii}g G} G}, RO (5}, x° (i}, )
x g°{i}(x*{i}, R{i},x* (3}, 1)
x () IsEf — < GH° L (7)

where K(f) incorporates other aspects of signal attenuation
and antenna characteristics. A common form of K(f) —where is
a reference distance [24], [46]. If hij 1 and a 2, this choice of
K(f) results in Friis equation for free space. Other choices of K(f)
and a can result in the two-ray model, the Hata model, and the
COST extension to the Hata model [24]. Without loss of
generality, we set the frequency f constant throughout the
derivations to simplify notation.

Finally, we note that the power at the input of the receiver

of the jth sensor within a given bandwidth is given by p; *

EP&+NO, (8)

where No = vkB TB accounts for thermal noise and the receiver
noise figure. For a single emitter, p; is simply (7) with No added.
Without a priori knowledge of n €, interpretations on p' alone
can be complicated if n ©> |. Consequently, for

the case of multiple emitters, we consider scenarios in which
the sensors have the capabilities to separate emitter signals
and powers via low-level signal processing. As Section II-B
mentioned, several previous works have implemented such
signal processing and can provide estimates To maintain
generality, this paper does not specify a particular method by
which sensors distinguish among multiple emitters, but we
assume the capability in order to analyze the effects of
multiple emitters on system design in Section IV. For simplicity
of exposition, we consider scenarios in which the estimate can
effectively be given by the already-approximated path loss
model in (7).

We also note that the receiver chain of the sensor will
introduce additional noise, which is accounted for by the noise
figure v of the sensor. As a result, we use the sensor MDS T®
from (4) when evaluating whether the sensor can distinguish
any emitter signal from noise. We consider scenarios in which
sufficient time-averaging occurs such that the estimated noise
floor is effectively the value of the true noise floor and T S can
be treated as a constant threshold for detection. We note here
that while finite-duration sampling inherently results in
variation in the measured noise power, the variance becomes
negligible with a reasonably high number of samples.
Specifically, let the discrete-time samples of thermal noise,
w(n), be iid zero-mean Gaussian random variables with
variance No. The measured noise power is given by
_ 1 vHK-1 2
=% 2n—ow(n)[*.and Z has a gamma distribution with
mean No and variance 2ND/ K. For large K, the variance
becomes negligible, and the measured power is effectively
given by No.

D. Problem Statement
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With the model, we can now mathematically define
detection and state our problem.

Definition 1 (Detection by Sensor): Detection occurs if a
sensor distinguishes an emitter signal from noise. From the
definition of T %in (4), the jth sensor detects the ith emitter if
and only if

PijT (9)

Here we note that the sensors employ a fixed threshold for
detection, which arises from the limiting scenario in which
sufficient time-averaging occurs such that the sensor
measurement of the noise floor is effectively the true noise
floor, No. In terms of the probability of detection and false
alarm, we want to find PD for the sensors operating at PF 0. The
threshold TS can be adjusted (via arbitrary SNRout) to be greater
than No such that PF —Y 0 for an individual sensor as K grows.
Nonetheless, if PF > 0, the fusion of sensor data via an OR
function at the network level would cause the network false
alarm rate to approach 1 as the number of sensors grows.
Consequently, a more sophisticated fusion method of sensor
data (e.g., fusion of soft decisions, sensor reputation,
measurement confidence, and/or verification by nearby
sensors) would be required for very large deployments. This
problem is outside the scope of this paper but has been
considered thoroughly in other works (e.g., [471, [48] and
sources therein). Additionally, different algorithms could be
used for detection at the sensor level (e.g., variable thresholds)
to lower PF for a given PD. With such algorithms, increasing
the sensor density could also lower PF for a given PD. Thus, the
results of this paper can be viewed as lower bounds on sensor
density. Detailed analyses to incorporate such algorithms and
the trade-offs between PD and PF are beyond the scope of this
paper.

For a random deployment of sensors, we want to know the
required sensor density to successfully detect unknown
directional emitters. To this end, we begin with the relationship
between the deployment density of sensors and the probability
that at least one sensor detects a single emitter. Let us
mathematically define detection by a sensor network.

Definition 2 (Detection by Sensor Network): The sensor
network detects an emitter if at least one sensor detects the
emitter. We express the event that the sensor network detects
the ith emitter as

&2 {pf > °}.
i (10)

Remark 2: For the case of a single emitter, we assume the
emitter to be at the origin o. Since the sensor locations form a
stationary PPP, there is no loss of generality. The notation for
sensor network detection simplifies to E. If emitters form an
arbitrary stationary point process independent of , the emitter at
o is the typical emitter.

Starting with the case of a single emitter, we want to find the
relationship Pr(E) = for a function f. Iff is invertible, we can find
f for a given confidence. For multiple emitters, we can apply the
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same strategy with the event D by finding the relationship
between and Pr(D).

I1l. RESULTS FOR SINGLE EMITTER
A. General Result

Proposition 1: Let be a stationary PPP of intensity Aand
(Mx)xes a family of iid non-negative random variables
(marks), independent of with finite moment E[Mx??]. For 0 >

0, the random variable

N2 1MXIIT* > 6] (11) xes

is Poisson with mean

EIN] hro -OE[M?], (12)

where M is distributed like all Mx and = 2/0. In particular,

Pr(N > 0)
(13)

Proof: Let FM denote the complementary cumulative
distribution function of M. N is the cardinality of the point
process & = {x € : Mx > OlIxIl ? }. Since the Mx are iid, $'is
an independently thinned version of and thus itself a PPP [32,
Th. 2.36]. The thinning probability of a point at x is > Ollx1l @
11 = FM(OIIxIl Q). Hence, has the density function N(x) = The
mean number of points in follows as

= / N(x)dx
xeR?

) / Far (0]x]|%) d x
xeR?2

m -
:217)\/ Fry(0r*)rdr
0

Cangd [T gty
=07 [ 50 Pt g
EIN] = Ar6-3E[M3).

The fourth line is obtained by the substitution u Or*.Since E[M
®]. is finite, EIN] is finite, and thus N is Poisson distributed.

Remark 3: If ECM] # I, we can set Mx/E[M] and adjust O to
O/E[M], thereby normalizing E[M] to I without loss of
generality. If E[M] 1, then E[M %] < 1. Therefore, randomness
(e.g., fading, shadowing, and/or directional orientation) never
helps detection.

We present the following applications of the proposition to
our problem statement. Let N denote the number of sensors
whose received power matches or exceeds T 8. Therefore, E —
{N > 0}. Mx is a random variable which incorporates fading
and the directionality of the randomly oriented emitter and
sensor. Finally, let be an arbitrary received-power threshold
whose form depends on the scenario. We assume the emitter at
the origin o transmits at power p ¢. Without loss of generality,
we assume K 1 below (p ¢ can be replaced by np ©).
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B. Applications

1) Baseline (Isotropic Emitter and Sensors, No Fading):
For isotropic transmission and reception without fading, 9 —T5
/p ¢, Mx 1, and the gains are unity. Thus,

prE) 1 (A7 0/7)) (15)

2) Directional Emitter, No Fading: Here the emitter transmits
directionally, in an angle fraction /(27), which results in an
(n®©¢)~L. Hence,

) = 1—exp(=X*n°m(p®/(n°0°r*))°).
independent thinning of the PPP by and a power gain

Pr(E) 1 — exp (16)

3) Directional Sensors, No Fading: In this case, the marks
model the random orientation of the sensors. Due to the 0-1
nature of the gain function, either a sensor is oriented toward
the emitter and receives the signal, or a sensor is directed away
from the emitter and cannot detect the emitter. This behavior is
captured with a Bernoulli random variable whose mean is the
fraction of emitter-detecting orientations. Consequently, the
marks are Bernoulli with wighnnref@T)¢ Henlbe, /EPNF] = VIS .
The power gainis ~ wer gain is (7°©°)™!, and we gptain

Pr(E)=1— (:xp(—)«"*'f}"ﬂ(p"/(u"‘(—)"r"))&) V)]
Hence, directionality at the transmitter and directionality at the
receiver have the same effect on the detection probability.

4) Directional Emitter and Sensors, No Fading: Combining
the two previous results, we obtain

Pr(E) . _exp(—)\Sne?}s?r[pe/[ne'f}saees‘rs))ﬁ)‘ (18)

5) Omnidirectional Emitter With Fading: With iid fading, the
marks represent the fading coefficients, and we observe from
(13) that the effect of fading is equivalent to an adjustment in
the density of the PPP, by a factor corresponding to the 6-th
moment of the fading random variables.

For Rayleigh fading, where the are exponential with mean I,
we have E[MP] + 6), where the function E(z) e-l e-t d t.
Substituting ELM ] 1+6) into (13) provides

P(E) | _zxp(—/\sﬂr(l+ 50 e/((—:ngS))‘S). (19)

Since + 5) <1 for a > 2, Rayleigh fading has a negative effect
on the detection probability.

Alternatively, the effect of fading can be viewed as a scaling
of the transmit power by Interestingly, in the case of Rayleigh
fading, this power "gain" + 6) ! /% is tightly lower bounded by
1/2 + 6/2. If the power is increased by ) =2a/(a + 2), the effect
of Rayleigh fading is compensated (slightly overcompensated,
actually).

If (small-scale) fading and shadowing are both present, then
Mx can be taken to be the product of both random variables.

6)  Directional Emitter and Sensors With Fading: Here the
marks represent the combined effect of directional reception
and fading. Denoting the Bernoulli random variables for
directionality by bx and the fading coefficients by hx, we have
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Mx = bxhx and E[M®] = OS E[h®]. As before, directional
transmission is taken into account by thinning the PPP by o °.
We obtain

Pr(E) _ _:Xp(—)\snengirrE[hE] (pef(nenseees_rsné)'
(20)

This is the most general form for Pr(E) from which the previous
equations can be derived by proper substitution.

Also note that all results depend on the ratio of the channel
parameters C Further, only the ratio w — C/T S matters.
Therefore, (20) could be concisely written as Pr(E) | —

7)  Other Point Processes: Here we consider point
processes that are more or less regular than the PPP. The PPP
exhibits complete spatial randomness [32, Sec 3.1]. In contrast,
point processes such as soft-core and hard-core processes
exhibit repulsion between points, with the limit being a lattice.
In the other direction, cluster point processes exhibit attraction
between points. The PPP is the mid-point on this general spatial
regularity scale with no interaction among its points.

If the sensor locations form a cluster point process, we can
use the result for the PPP as an upper bound on the detection
probability. Intuitively, clustering increases the amount of
overlap among the sensor coverage regions. For a given density
of sensors, as clustering increases, the performance degrades.
On the other hand, as we decrease the amount of clustering, say
for a Neyman-Scott process whose clusters are translated to
points of a PPP [32, Definition 3.4], the point process will
approach a PPP.

For crowdsourced sensors, only a subset can be expected to
participate in sensing. Even if the sensor locations are clustered,
an independent thinning of the process will be close to a PPP in
some scenarios [49, Sec. 3.3]. Therefore, it is still reasonable to
use the PPP model for crowdsourcing.

If there is a possibility of designing the distribution of the
sensor locations, more regular point processes perform better
than the PPP Let us again consider the baseline case of an
isotropic emitter and isotropic sensors with no fading. The
distribution that would achieve the highest detection probability
for a given is the triangular lattice point process [501. In
particular, let the sensors have sensing radius p = (pe /TS)1/a.
If the lattice spacing is a, then = 2/(a 2 vfi). If a 2 2p, then the
detection probability is at most A*m(p®/ %)%, and if a _ pv'a,
then the detection probability can reach 1 [50].

The triangular lattice does indeed perform better than a PPP
of sensor locations. For a PPP, Pr(E)= 1

Both 1 and A*m(p®/7%)° for a
triangular lattice match or exceed the PPP's value because x > 1
— forx > 0.
While the triangular lattice could be a target distribution,
in practice variance from the lattice would exist. In particular, a
reasonable point process model could be a perturbed lattice with
each location having a two-dimensional Gaussian shift from the
triangular lattice [32, Definition 2.16]. However, a closed-form
expression for Pr(E) for a perturbed lattice is elusive.
Nonetheless, since the triangular lattice achieves the best
possible Pr(E) for a given [50], its performance can be treated
as a bound for such deployment distributions. Further, the
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perturbed lattice quickly approaches a PPP if it is likely that a
point is displaced by more than twice the mean nearestneighbor
distance [51, Sec. IL.C].

8) Unknown Emitter Gain: The assumption that the emitter's
gain function is known may not always hold. With Prop. 1, only
the statistics of the emitter pattern need to be known. In this
case, we treat g “as random with distribution fg. Here the marks
represent the combined effect of the fading (hx), directional
reception (h), and unknown emitter (g ©). In particular, Mx
bxhxg ¢, and E[M®] If fg is independent of fading and sensor
orientations, E[M ]

The result is

Pr(S) 1 —
(21)

From Remark 3, this additional randomness decreases the
detection probability. For multiple emitters, an additional
assumption that the are iid would be needed for the results to
hold in Section I'V.

C Observations

Let us observe the behavior of (20). Note that if the path loss
exponent a 2, which corresponds to free space, the azimuth
beamwidths and W ©do not affect Pr(S). This rather surprising
result states that if the environment is free space, the choice of
(azimuth) directivity does not matter. Intuitively, when
beamwidth decreases, the antenna gain and thereby the
transmission range increase. However, if a 2, the extension of
the range is such that the area of the average coverage sector
remains constant.

Let us also observe the influence of the parameters on Pr(E).
The probability is most sensitive to the sensor density AS. The
only exception is in the case of free space (a 2) for which the
sensor density is equally influential as the ratio of system
parameters w. As the path loss exponent a increases, Pr(E)
becomes more sensitive to azimuth beamwidth On the other
hand, as a decreases, Pr(E) becomes more sensitive to the
variable w.

Ultimately, we want to know the density of sensors to deploy
in order to be confident that we detect the emitter present.
Equation (20) provides us with a metric for system design trade-
offs. If we set a desired Pr(E) 6, we rearrange (20) to obtain

nenswE[h8] (w/(nen*))°

We see from (22) that the required sensor density oc ('e) ' 0. In
other words, as the emitter becomes more directional (i.e., as 0),
the sensor density needs to increase, specifically by a factor of
( VT) . Hence, the directivity of the emitter(s) has a significant
influence on the design and deployment of the spectrum
monitoring system. In particular, we see that with a 4 and all
other things equal, quartering the emitter 1--IPBW doubles the
average number of sensors needed for detection: oc

1 S
(@514)1/2 =2(g=)1 112,

(22)
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In practice, the deployment of sensors is limited by cost, and
deploying more sensors increases the total cost. For a set
probability, we can decrease the sensor density in (22) by
maximizing the sensor beamwidth to 2K. We can also decrease
by decreasing the sensor elevation beamwidth 9 , but we are
slightly constrained. Ideally, we would let — 0, but such
antennas do not physically exist, and if 0, the sensors would
need to be exactly coplanar, which is impractical.

Pr(E)

2
o)
8 3n/2 0.8
S
s f.6
B o
% 0.4
5]
=]
B /2
E 0.2
0 0

100 101
Sensor Density,

(/km?)

Fig. 6. The probability of emitter detection by the sensor network as a function
of sensor density (A%) and emitter HPBW (W ©), given by (20). We use the
parameters in Table Il.

TABLE Il

PARAMETERS FOR SIMULATIONS
Parameter Value
Sensor azimu rad
Sensor elevation beamwidth, ar 2 rad
Sensor MDS, T -110 dBm

tter evatlon amwl
Emitter transmission power, p O dBm
requency,
path loss exponent,
ayelg , exp

Ultimately, this analysis suggests that the sensors should be
designed with omnidirectional antennas with 2T.

Next, we consider the sensor MDS TS . For a given Pr(E),
lowering TS can allow a decrease in AS. However, lowering TS
generally increases the cost of each sensor. Usually the RF
environment is not free-space (a 2), so Pr(E) is less sensitive to
the sensor MDS TS than the sensor density AS. Therefore, for a
fixed budget, we improve Pr(E) by letting TS be higher for a
lower cost sensor and then increasing A 5. In other words, we
lower the cost of the sensor in order to deploy more of them.
The larger density of sensors improves Pr(E) more than the
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degradation from a higher MDS. We present an example in a
later section.

We plot (20) in Fig. 6 for Rayleigh fading and the example
parameters listed in Table Il. For the sensor sensitivity, we
experimentally measured a RadioHound sensor to find a
minimum detectable signal of around —110 dBm [20]. For
representative emitters, we consider a dipole (omnidirectional),
a traditional cell tower sector antenna (w °2m/3 rad), a narrower
sector antenna (w °2m/9 rad), and a mmwave antenna (W =T/
18 rad). Fig. 6 shows that a higher sensor density is needed to
maintain a constant Pr(E) for increasing emitter directivity. The
red triangle indicates the approach to calculate the sensor
deployment density to achieve Pr(E) = 0.9 under the assumption
that the emitter is omnidirectional. For the same Pr(E), this
paper also accounts for the emitter HPBW and calculates the
sensor density indicated by the solid black line. For instance, if
the system is designed for an omnidirectional emitter but the
emitter uses a mm-wave antenna, the sensor density would need
to more than triple, or Pr(E) would decrease to about 0.5.

D. Frequency Sensitivity and Multiple Frequency Bands

We return to the fact that W, 9, and K in the previous
expressions are frequency-dependent. In practice, we have to
design the sensor network to operate at a given frequency and
design the antennas to have appropriate beamwidths. Once the
sensors are deployed and the geometry of their antennas is
fixed, the performance of the network is sensitive to emitter
frequency. For the case of no fading, our study of the sensitivity
indicates that the values of (20) and (22) are not significantly
affected if the change in frequency relative to the original
operating frequency (Af /f) is small. In particular, let g denote
the complement of E. If we perturb the designed operating
frequency from fto f+ Af, and [Af/fl 1/2, then

Pr(E) If+Af(23)

where = - §)Af/f [52, Ch. 4]. From our previous example for
omnidirectional sensors and emitters with 50/ km?, the relative
change of Pr(E) is less than 1% if —0.13 < Af/f<0.10. In other
words, at a carrier frequency of I GHz, the frequency can range
from 870 MHz to 1100 MHz with less than a 1% change in
Pr(E). Further details and analysis are available in [52].

For a relative change in frequency Af/f, we could maintain
approximately the same performance with a relative change in
sensor ANE /A8 density

AN/A® = (1—£)/6.

IfAf/f<0, ), then AX*/AS < 0. Intu then < 0.
Intuitively, the coverage of the sensors increases with
decreasing operating frequency, thereby requiring fewer
sensors. Therefore, to design a deployment for the frequency
range fl to h, we should deploy the \¢ required for h. The
performance for the remainder of the band will be equivalent to
or better than that of h, or a subset of sensors could be used for
the lower bands such that the desired detection probability is
achieved.

24

E. Fixed-Budget Example
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We return to the observation made in a previous section that
the sensor MDS T S does not influence the probability of
detection Pr(E) as strongly as sensor density if a > 2. For a fixed
monetary budget, one could lower the sensor cost by increasing
the sensor MDS and thereby deploy more sensors to increase
the probability of detection.

Our motivation is a low SWaP-C (size, weight, power, and
cost) RF sensor that costs on the order of a dollar [20]. The ideal
is to have the sensor incorporated into widely deployed
technologies, such as cell phones, tablets, WiFi access points,
smart appliances, etc. Such devices have a dedicated power
supply or are regularly recharged by users. The incentive to pay
the slight overhead to include the sensor in devices is spectrum

as a service [53]. In other words, the collected data
TABLE 111
SOFTWARE DEFINED RADIOS

Radio Noise Figure | Label
RadioHound 20 10 dB

Ettus USRP $910

B205mini

NI USRP 2900 1,031 7dB C
Ettus USRP N310 $ 10,000 6.8 dB

NI USRP 2945 11,503 | 5dB

Airspy Mini $ 100 3.5dB

Airs R2 250 3.5dB

AD9364 RFIC 2.5dB

will enable better spectrum management and usage, thereby
improving user experience. In militarized contexts, the sensors
are inexpensive enough to be disposable. The military would
not try to retrieve or maintain them. Hence, we can disregard
the cost of maintenance and battery replacement here.

We consider the cost and MDS of several current
representative software defined radios (SDRs) in Table Ill from
Ettus Research, National Instruments, and Airspy, along with
the RadioHound sensor from [20]. Several SDRs share the same
MDS, so we select the lowest priced one and omit the rest. The
reason is that the higher-priced SDRs for a given MDS have
other benefits not considered by our model, such as a larger
dynamic range. We determine the MDS of each SDR via (4)
with an SNRout of I and standard temperature of 290 K. For
each SDR, we assume the worst-case noise figure for a
frequency of I GHz given in its specifications. We use a
bandwidth of 2.56 MHz for all systems, limited by the sampling
rate of the RadioHound sensor [20].

We plot (4) in Fig. 7(a) for the SDRs in Table 111. We
observe two clusters of SDRs, each with the trend of decreasing
MDS with increasing cost. The clusters result due to other
factors in the SDRs that affect price, such as sampling rate,
filtering capabilities, dynamic range, etc.

Next, we consider a deployment with a limited budget of
$1000 per km?. Based on this budget and the price of the SDR
sensor, we can calculate the sensor density AS. Using the
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parameters in Table I1 for omnidirectional sensors and emitters,
we plot Pr(E) in (20) as a function of the sensor cost in Fig. 7(b).
We have normalized the SDR cost by other factors, including
the number of receiver chains, number of RF ports, resolution
of the ADC, sampling bandwidth, and frequency range. For all
cases, we observe the same trend but with different slopes (m).
Decreasing sensor cost increases Pr(E). In comparison with Fig.
7(a), we see that sensors of similar cost have a very similar
Pr(E) despite the significant difference in MDS. In other words,
we see that for a fixed budget, the sensor cost is a large factor
in the metric Pr(E), whereas the MDS is not as influential. In
particular, we fit an approximately linear relationship in Fig.
7(b) for which decreasing the individual sensor cost by a factor
of 10 roughly increases the probability of detection by about a
factor of 10. We then observe diminishing returns on Pr(E) as
the sensor cost becomes very low.

Overall, this example supports decreasing sensor quality to
decrease cost and thereby increase the sensor quantity. Other
experiments are consistent with this theoretical result [6], [17],
[53].
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Fig. 7. An example illustrating the trade-off between the sensor MDS and Pr(E)
for a fixed budget of $1000 per km?. The plot in (a) shows the MDS from (4)
versus sensor cost for the representative RF sensors in Table Ill. For these
sensors, (b) shows Pr(E) from (20) as a function of sensor cost normalized by
various hardware characteristics. The fitted curves have slopes given by m. The
Table Il parameters and omnidirectional antennas are used.

IV. RESULTS FOR MULTIPLE EMITTERS

A. Lower Bound on PT(D)

For n ¢ emitters arbitrarily located in a finite region R, we
want the probability that each emitter is detected by at least one
sensor. Mathematically, we are interested in the event

B= )£

Al | (25)

However, the events Ei are dependent. As a simple example,
consider two omnidirectional emitters. If the second emitter

H

7T omnl. Sensofs i

omni. emitters

0.8

omni. sensors —
dir. emitters

g; 0.6 (or vice versa)
— - ® =Exact
e, Lower bound
b
o 0.4} .
-~ - o -
- “
0.2 {dir. sensors — Ssaa =
dir. emitters ~e
0 | . |
1 2 3 4

Number of emitters, n®

Fig. 8. The lower bound on the probability that the sensor network detects each
of n ®emitters, given by (27). We use the parameters in Table Il with a sensor
density 100 sensors’/km® . A directional sensor (or emitter) has an azimuth
beamwidth of Tr/9 radians. An omnidirectional sensor (or emitter) has a
beamwidth of 27r radians. *me elevation beamwidth is set to 7r/2 radians for all
cases. The exact Pr(D I Te ©) is found via simulation.

is near the first, El occurring would affect the detection
probability for the second emitter. Unfortunately, the general
dependence is complicated and has eluded analysis.

Instead, we derive a lower bound on Pr(D I n ¢) with
DeMorgan's Law and the union bound:

[-Pr(DIn®)=Pr(D“In°®)=Pr & n°
< EPI‘(Ef). (26)
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We rearrange the terms and find Pr(Ef) from (20) for a single
emitter:

Pr(DIn®) 1 Pr(Ef)

—\ny 7B ) (w/ (1))’ )
@7

=1—n"‘exp

If the emitter locations are modeled as an arbitrary stationary
point process with density Pr(D) is found by taking the
expectation with respect to n *with E[n ¢] = A °IRI.

As an example, we use the parameters in Table Il. Here we
set the sensor density to 100 sensors,/km? and vary the number
of emitters n ¢. We plot the bound of Pr(D I n ) in (27) as a
function of the number of emitters in Fig. 8. We also plot the
exact Pr(D I n ¢) via simulation. We highlight the following
observations. Given that the emitters have the same parameters,
we see from (27) that the lower bound on Pr(D I n ¢) is linear in
n ¢ with slope exp(—A*n°n*7E[h°)(w/(n°n%))°)- The plot
again demonstrates the benefit of omnidirectional sensors. In
particular, we see that the lower bound for omnidirectional
emitters and sensors is close to the upper bound of 1.
Consequently, the true Pr(D I n ¢ ) is close to I for
omnidirectional sensors and emitters in this example. We also
note for desirable, high values of Pr(D I n ©), the lower bound
is fairly tight.

From (27), we can find an upper bound on the sensor density
required for a given confidence of detection. In other words, if
we select a desired Pr(D I rt ¢) a, we find

e ln( ﬁi,_)

- penSnE [}36] (w/(nen* ))é ‘

(28

We observe (28) is logarithmic in n ¢, suggesting that a slight
increase in the sensor density is needed to detect more emitters.
In other words, a significant effort is needed to detect one
emitter, but the extra cost to detect several is marginal.

We also note that the lower bound in (27) is consistent with
the approximations of our model. The simplified gain model in
(6) results in power gains and angle-of-views smaller than the
true ones. Mathematically, let Pr(E) denote the exact
probability, and let PE(S) denote our model approximation of
PE(S). We know Pr(E) 2 Pr(E). Therefore, Pr(E ©) —=I — Pr(E)
I — Pr(E) =Pr(£°). Co Consequently, in
(27), we have Pr(D I no Z’;‘;l '13}(55) 2 1 - 2 1

Z?;l pr(gf ) which 1S consistent.

B. Expected Number of Undetected Emitters

If Pr(D) is low, the metric Pr(D) does not itself reveal how
many emitters are not detected. Perhaps it is tolerable for the
sensor network to detect all but one emitter. It can be difficult
to interpret the situation solely with Pr(D). Here we propose
another metric that may lend more insight. For n emitters
arbitrarily located in a finite region R, we consider the number
of undetected emitters, 0 <n "<n °. We can express E[n "]
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analytically and use the result to design the system to drive
E[n"] 0.

We express nl[Ef], where 11[¢] is the indicator function.
Conditioned on the number of emitters in
the region, we find E[n* | n€] = E[.", 1[£¢] | n¢] =
S Pr(EF) = n® Pr(£°). Therefore,

B 1]~ " @ (A R w/(0%n)).

If the emitter locations are modeled as an arbitrary stationary
point process with density A E, then E[n"] is found by taking
the expectation with respect to n°with E[n ¢] = ,VIRL

This expression is consistent with the following intuitive
cases. As 00 and/or w 00, we have E[n"] — 0. Additionally, as
A S0, 0, O, and/Or w — O, we have E[n"] E[n ¢]. The result
reinforces our previous conclusions. To minimize E[n"], we
desire omnidirectional sensors (V*= 27) with low MDS T Sand
high density AS.

As an application, E[n "] could inform the required sensor
density for scenarios in which it is tolerable to miss some
number of emitters. Without loss of generality, we consider E[n
“In°] and solve for *. For convenience, let Q—

100
S0 80P
EE A
o
~< 60}
-
o
c}% 20t
n®=1,23,4
0 I
10-2 10-1 100

E [nI rue] =M

Fig. 9. A plot of (30) forn °= 1, 2, 3, and 4. We use the parameters in Table Il
with omnidirectional sensors and emitters.

?}‘e"’?sﬂE[hé](ﬂ-’/(?}‘e??S))a- Solving fg¢  provides

1 n®
A== ln(—)
Q \p

e %[10810('”6)
Q logl0(e)

For system design, if it is tolerable to miss an average of E[n "1
n®] V, the corresponding sensor density could be found. As an
example, Fig. 9 plots (30) for omnidirectional sensors and
emitters with the parameters in Table Il. We see that tolerating
a larger average number of undetected emitters lowers the
required sensor density. In Fig. 9, we see that increasing by an

—loglo(B)]*  (30)
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order of magnitude decreases the sensor density by about 35
sensors’/km? . Generally, this trade-off is given by (Q

og10(e)) ! per decade of '1.

V. CONCLUSION AND FUTURE WORK

Since the occurrence of directional emitters is inevitable in
practice, we must account for directional emitters in the design
of a spectrum monitoring system. Previous works on sensor
networks offer insight into this design under the assumption of
omnidirectional emitters but have not considered directional
emitters. We presented a generalized framework to model a
system of directional sensors and emitters, which can specialize
to the omnidirectional case. With the framework, we found the
probability that at least one sensor detects a single emitter in
(20) and lower bound this probability for multiple emitters in
(27). We also found the expected number of undetected emitters
in (29). The analysis shows that omnidirectional sensors
optimize these metrics. Furthermore, for a given probability of
detection, the required sensor density has the relationship oc

(@1?)1_0, which means we need more sensors for emitters with
higher directivity. One caveat for these conclusions is the case
of free space propagation (a = 2) for which azimuth
directionality does not have an
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effect. Finally, the sensitivity of Pr(E) to frequency is ana-
lyzed in (23), and a strategy for multi-band deployment is

developed from analysis of (24).

Additionally, the results help to design a sensor network
to detect directional emitters by making explicit the trade-off

between the sensor capabilities and deployment density. In

particular, we show that for a fixed budget, one benefits from

increasing the MDS (thereby lowering the cost of the sensor)

in order to deploy a greater number of sensors. The increase

in sensor quantity improves the probability of detection more

than a lower MDS. In other words, sensor quantity is more
important than sensor quality.

Future work should analyze the tightness of the bound
in (27). Also, this work can be extended to the problem of

localizing emitters, perhaps through the problem of unique

sensor coverage [54] or through the problem of multiple cov-
erage. Moreover, the framework in Section Il extends to three

dimensional sensor networks, and we can reconsider the prob-
lems in this paper in the more realistic three-dimensional case.

Finally, the system model can be extended to a heterogeneous
sensor network with individual sensor densities for each type

of sensor.
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