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Abstract—Widespread RF spectrum monitoring could enable 
data-driven modeling of spectrum usage, enhance spectral 
utilization, and help automate policy enforcement. Previous 
works in wireless sensor networks offer design insights for RF 
sensors, but they assume emitters that radiate omnidirectionally. 
This paper develops a new framework for directional sensors 
and emitters, which are increasingly common with the growth 
of millimeter wave technologies. We focus on two-dimensional 
random sensor deployments modeled as Poisson point 
processes. Specifically, we determine the probability that a 
sensor network detects a single emitter for a channel model 
including path loss, fading, and the directivity of emitters and 
sensors with random orientations and locations. Our results 
suggest that with a path loss exponent of 4, quartering the 
emitter half-power beamwidth doubles the required average 
sensor density. We also conclude that omnidirectional sensors 
optimize detection probability. For multiple emitters, we 
develop a lower bound on the probability of multi-emitter 
detection and find the average number of undetected emitters. 
Finally, assuming higher sensor quality results in higher sensor 
cost, we consider a fixed-budget deployment and observe that 
decreasing the individual sensor cost by a decade and therefore 
increasing the quantity of sensors reduces the missed detection 
probability by about a decade. 
Index Terms—Directive antennas, radio spectrum 

management, cooperative spectrum sensing. 

I. INTRODUCTION 
A. Background 

VEN though the demand of wireless traffic increases, the 
supply of RF spectrum remains fixed. As a result, usable 
spectrum has become a scarce resource of increasing value [1], 
[2]. Solutions are to increase the amount of usable spectrum 
and/or to use the current spectrum more efficiently. 
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(a) Sensor deployment surrounding emitters 

 
(b) Two-dimensional view 

Fig. l. Illustration of widespread spectrum monitoring system. (a) Randomly 
deployed sensors measure RF transmissions across a wide spectrum over a wide 
geographical area. Emitters with various operating frequencies, locations, and 
antennas can be detected. (b) nvo-dimensional view of system highlighting the 
varying antenna patterns and resulting coverage. Sensor locations and gain 
patterns are denoted with a blue 'o' and solid line, respectively. Emitter locations 
and gain patterns are denoted with a red square and dotted line, respectively. 

Efforts to expand the usable spectrum are underway with 
commercial millimeter-wave (mm-wave) technology (see [3] 
and references therein). Here we focus on more efficient 
utilization of the widely-used sub-6 GHz spectrum, but 
strategies for efficiency apply beyond 6 GHz. Regulatory 
institutions currently rely on theoretical models of limited 
accuracy and unverified claims by licensees to determine 
spectrum usage and efficiency. The result is underutilized 
spectrum in some bands [1],  
Spectrum monitoring (SM) takes measurements of the 

spectrum across frequency, time, and space, as illustrated in Fig. 
1. If widespread, SM could provide the "ground truth" of 
spectrum usage and thereby "close the feedback loop" for 
spectrum management [5]. In particular, SM could provide a 
wealth of data for data-driven modeling of RF environments [6], 
which could overcome the limited accuracy of current 
theoretical models. SM could also provide a data-driven 
approach to find unoccupied spectrum and inform a spectrum 
management mechanism (e.g., a spectrum access system (SAS) 
[7]—[9] 
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 (a) Missed detection. (b) Detection. 

Fig. 2. Example of an omnidirectional sensor (white 'o') attempting to detect a 
directional emitter (red square). In (a) the sensor fails despite the emitter 
residing in the sensor's coverage region because the emission is directed away 
from the sensor. In (b) the sensor succeeds since the emitter radiates toward the 
sensor. 

with an environmental sensing capability (ESC) [101) to access 
it. Additionally, SM could help automate spectrum enforcement 
[I Il, which could significantly strengthen and expedite 
spectrum policy. 
Elements of SM have been pursued in a variety of forms over 

the past decade, including cognitive radios [12], [13], radio 
environment maps [14], dedicated sensor networks [15], and 
crowdsourcing [6],  However, each has experienced 
economic and/or regulatory roadblocks. From previous works, 
we observe that the prospects of spectrum sharing have 
improved from TV white space in the 700 MHz band to the 
Citizens Broadband Radio Service (CBRS) in the 3.5 GHz 
band. With established standards for sensor data formats [21], 
coexistence [22], and interoperability [23], we anticipate that 
opportunities will continue to extend to other frequency bands 
with time. Moreover, we see from previous works that the 
widespread deployment of enough spectrum sensors is a crucial 
problem for SM to be beneficial. 
The literature on wireless sensor networks (WSN) has 

considered the problem of deploying enough sensors to detect 
emitters, and SM designs can leverage these results. However, 
several important issues in RF have not been considered in the 
context of WSN, including directivity of RF emitters, which are 
common in RF due to significant signal attenuation over large 
distances and/or at high frequencies [24, Ch. 2]. Unfortunately, 
previous works on WSN assume the emitters radiate 
omnidirectionally. To the extent that directionality has been 
considered, the focus has only been on directional sensors, such 
as optical, ultrasound, and infrared sensors (e.g., [25] and 
sources therein). Directional transmission also appears on the 
sensor side in the context of WSN communication [26]—[28] 
and secure sensor localization [29]. 
As illustrated in Fig. 2, if the emitters are directional, an 

emitter could reside in the typically-assumed omnidirectional 
coverage region of a sensor yet remain undetected because the 
emitter's signal is directed away from the sensor. This problem 
affects multiple studies [30], [31]. For example, directional 
emitters undermine the well-known Boolean model [32]. The 
same problem exists in other design approaches, such as for 
coverage enhancement algorithms [30], [33]. Consequently, a 

need exists for a framework that considers directional emitters 
along with directional sensors. 
B. Contributions 
This paper considers scenarios in which the deployment is 

achieved via crowdsourcing (e.g., re-using cell phones as 
sensors in a commercial context) or simply dropping sensors 
out of a plane (in a defense context), and are well-modeled by a 
random deployment of sensors. Demand on sensor resources 
needs to be low, and while backhaul is assumed to be in place 
for the sensors, a low required backhaul is desirable to prevent 
disruption to the user in the commercial context (e.g., WiFi and 
LTE) and to satisfy tactical constraints in defense contexts. 
Consequently, we focus on the application of power detection 
of emitters to reduce device processing, power consumption, 
and backhaul traffic. In particular, the sensors return a 
timeaveraged power measurement for a certain center 
frequency (with some bandwidth). Despite the simplicity of 
power detection, the information is nonetheless useful for 
applications such as identifying unused spectrum or bad actors 
within a region. Other scenarios and applications are of interest 
but are outside the scope of this paper. 
In this paper, we create a general framework to model 

directional (and omnidirectional) sensors and emitters within a 
sensor network for SM. The framework supports three 
dimensions, but this paper focuses on the two-dimensional case. 
This work addresses the problem of designing a SM system 
with the aim of power detection in the presence of directional 
emitters. We focus on the effects of sensor and emitter locations 
and orientations. For the case when the sensors form a Poisson 
point process (PPP), we provide a fundamental and general 
analytic result on the probability that an emitter is detected. The 
result incorporates all sources of randomness, including channel 
fading, shadowing, and/or randomly-oriented directional 
antennas. We also analytically lower bound this probability for 
multiple emitters of a given number, and we find a closedform 
expression for the expected number of undetected emitters 
within a finite region. We use these analyses to conclude four 
main points. First, we find an expression to quantify the 
increase in deployment density of sensors with increasing 
emitter directivity. Our results suggest that with a path loss 
exponent of 4 and all other things equal, quartering the emitter 
half-power beamwidth doubles the average number of sensors 
needed for detection. Second, we analytically determine 
optimal sensor characteristics; in particular, we find 
omnidirectional sensors optimize the probability of detection, 
regardless of emitter directivity. Third, we analyze the detection 
probability's sensitivity to frequency and develop a deployment 
strategy for multiple frequency bands. Finally, under the 
constraint of a fixed-budget deployment, we illustrate that 
sensor quantity improves the system probability of detection 
more than sensor uality. In particular, from a survey of current 
software-defined radios, for a given total cost, we observe that 
decreasing the individual sensor cost by a factor of 10 reduces 
the system probability of missed detection by about a factor of 
10. 

C. Related Works 
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Previous works have taken a similar approach as this paper 
to model sensor networks. The works in [34] [37] also model 
sensors deployments as PPPs with simple path loss channel 
models for omnidirectional sensors and emitters. The focus of 
[34] is to find the necessary sensor density based on a Cramér-
Rao bound on emitter localization error, whereas our work uses 
detection probability as the metric. Source detection is similarly 
the focus of [35]—[37], though with slight variations such as 
time-constraints for sensor communication [35], the use of 
estimated likelihood ratios for detection [361, and the effects of 
sensor clustering [37]. Our work differs by using power 
detection based on a more complex channel model that includes 
fading and directional (sensor and emitter) antennas with 
random orientations. 
Directional senors with random orientations and locations 

modeled by a PPP have been considered in [38]. While our 
work has a similar theme in the model, [38] finds the critical 
density for sensor coverage and network connectivity 
percolation for video sensors (with presumed omnidirectionally 
visual targets). In contrast, we focus on the RF domain with 
directional emitters and find the required sensor density for a 
given detection probability rather than percolation. 

D. Outline 
The remainder of this paper is organized as follows. Section 

Il introduces a general framework to model an RF sensor 
network with directional emitters and sensors and formulates 
the problems of interest in two dimensions. Section Ill provides 
the probability of single emitter detection along with several 
applications. Section IV presents results for multiple emitters, 
including a lower-bound on the probability of multi-emitter 
detection and the expected number of undetected emitters. 
Finally, Section V provides closing remarks and future 
directions. 

Il. SYSTEM MODEL 
We now present a general framework to model RF sensor 

networks and the target emitters, which extends to any number 
of dimensions d, though the obvious cases of interest are d 2 
and 3 dimensions. We focus on cases in which the sensor 
deployment is well modeled as uniformly random. As 
illustrated in Fig. 1, we need to describe system parameters of 
sensor and emitter locations, directionality, and capabilities. 
To describe directional sensors, we follow a convention 

similar to that in [25], though tailored to RF applications. In 
summary, we characterize a directional sensor deployed in a d-
dimensional space with the following pieces of information, 
which we describe in more detail later: 

• the sensor location, denoted xs e R d , 
• the sensor orientation, denoted by an orthonormal rotation 
matrix RS e IRdxd 

• the sensor antenna gain pattern, denoted by the positive 
function g s  

• the sensor sensitivity, described by the minimum 
detectable signal (MDS) power TS > 0. 

Similarly, we characterize a directional emitter in a 
ddimensional space with 

• the emitter location, denoted xe e Rd  
• the emitter orientation, denoted by an orthonormal rotation 
matrix R e e Rd x d 

TABLE 1 

 

Fig. 3. A high-level block diagram of all the system components and 
parameters. 

• the emitter antenna gain pattern, denoted by the positive 
function g  

• the emitter transmit power, denoted p e 2 0. 
The superscripts s and e denote the value for a sensor or 

emitter, respectively. If there are n s sensors and ne emitters, we 

NOTATION 
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use the subscripts j e {1 ,nS } and i e {1 to denote the 
index of the sensor and emitter, respectively. In other words, we 
fully describe the jth sensor with the 4-tuple (xé us , and we 
describe the ith emitter with the 4-tuple (Xt , RI? , gi , Pi ). A 
summary of the notation used in this paper is in Table I. 
We now briefly describe the system architecture. A diagram 

of sensors and n e emitters is given in Fig. 3. Generally, we 
collect all sensor data in a centralized database for processing. 
Each sensor can determine its location via a mechanism, such 
as GPS, WiFi, or LTE positioning. Similarly, each sensor can 
determine its orientation RS via a compass or accelerometer. 
The sensor gain g; and sensitivity are inherent to the device and 
can be recorded in the sensor software before deployment. The 
data sent over the backhaul to the database includes the sensor 
characteristics (x; , R} , g; , T} ) and the collected data, d}, for 
j € {1, nS }. The sensor data can be used toward several ends, 
such as estimating the number of emitters, the emitter locations, 
the emitter orientations, and/or the emitter transmission powers 
[39]. However, estimating emitter parameters is outside the 
scope of this paper. 

A. Random Deployment 
In our scenario of interest, the sensor deployment is well 

modeled as random in location and orientation. This model is 
reasonable because we have no prior knowledge of sensor 
locations nor their orientations. Emitters are arbitrarily located 
with random orientations, as well. 
I) Locations: We describe location with a vector x e R d 

representing Cartesian coordinates. In general, the locations of 
a random deployment of sensors are well modeled by a PPP, 
denoted (I'S , with location-dependent density AS (x) [32]. 
Mathematically,  From a d 2 dimensional 
perspective, the deployment is well modeled as uniformly 
random, which implies a homogeneous density,  If d > 2, the 
deployment may no longer be uniformly random in all 
dimensions, but a PPP with an inhomogeneous density 
(x) can be used. Note if we condition on the number of 

locations in a finite region of interest, the locations are iid 
uniform in the region, forming a binomial point process (BPP). 
For the case of a single emitter, the detection probability does 

not depend on the emitter's location since the PPP is stationary 
[32, Sec. 2.6]. For convenience, we state that the emitter is at 
the origin. 
2) Orientations: Describing the orientation of an antenna can 

be achieved in several ways. We define the orientation of the 
sensor antenna via a rotation from a given default orientation. 
In particular, we define the rotation with an orthogonal rotation 
matrix R, which is a product of Givens rotations. Generally, we 
set the convention that the main lobe of the antenna gain pattern 
lies along an axis of the coordinate system. 
For the two-dimensional case, the rotation matrix is cos 

u,' 
R = sin(1) 

where indicates the direction of the main lobe. In the sce- 
nario of a random deployment, the orientations of the sensors 
and emitters are iid uniformly distributed, which means RS and 

R? are iid uniform rotations. Note that uniformly random 
rotations translates into and being iid uniform on [0, 2m). 

I A Givens rotation only occurs within one plane. Consequently, to achieve 
rotation in more than two dimensions, multiple Givens rotations in different 
planes must occur. Consistent with matrix multiplication, the order of these 
rotations matters. 
B. Sensor and Emitter Capabilities 
For simplicity, we consider the case in which the sensors are 

deployed with the same antennas that share a common gain 
pattern (gj(•) gS (•) Y j). Similarly, all emitters share the same 
gain pattern g e (•), which is known. This scenario is reasonable 
because emitters operating in the same frequency range likely 
have similar antennas, and we would prepare the sensors in an 
identical fashion with antennas that operate in the same 
frequency range as the emitters. Usually, publicly available 
regulations limit the transmission power of emitters, and often 
emitters transmit at the legal maximum to obtain the highest 
SNR possible, so we can say that all emitter powers are equal 
and known (pf p e V i). Similarly, it is reasonable to say that the 
sensors are constructed to be approximately the same, so all 
sensors have the same sensitivity (Tj —  
Finally, we consider scenarios in which there are discernible 

differences among the emitter signals and power levels across 
time, frequency, spreading codes, and/or high-level protocols. 
For example, a spectrogram of multiple stationary emitters 
following the LTE standard could illustrate varying power 
levels across time and frequency due to different separation 
distances from the emitters to the sensor. A distribution of the 
different power levels from the spectrogram could reveal 
distinct patterns, each of which would identify a particular 
emitter. Certain signaling structures could be exploited as well, 
e.g., primary and secondary synchronization signals (PSS and 
SSS) in LTE or clear channel assessment (CCA) in WiFi. 
Furthermore, a wide body of machine learning techniques can 
be applied to distinguish emitters based on modulation scheme 
[40], MAC protocol [41], and communication technology [12]. 
In particular, clustering of selected features can distinguish 
spatially separated emitters, even with the same system 
characteristics [42], [43]. As a result, the sensors should be able 
to separate the individual emitter signals through low-level 
signal processing and calculate distinct power measurements 
for each emitter. In particular, for this paper we are interested 
in the sensor calculations of p'. , the time-averaged received 
power from the ith emitter measured at thejth sensor. In 
practice, the sensors provide estimates p s along with an 
estimate of the noise floor No, which could differ from the exact 
p} and No. We address this issue in a later section. 
1) Sensor Sensitivity: The sensor sensitivity is determined by 

several factors [44]. First, let TS denote the power of the 
minimum detectable signal by the sensor. Let the equivalent 
noise figure (v) of the entire RF chain in the receiver be given 
by 

 SNRin Sin / Nin 
(2) 

 SNRout Sout / Nout 
Rearranging the terms to solve for the signal power into the 
device yields 



782 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 8, NO. 2, JUNE 2022 

Authorized licensed  to: UNIVERSITY NOTRE DANE Downloaded on July 13,2022 at  UTC from IEEE Xplore_ Restrictions apply. 

 Sin v (Sout /Nout)Nin• (3) 
Based on our application, the sensor will have a required 
minimum SNRout to perform its task properly. The noise figure 
is inherent to the device, and the input noise is assumed to be 

thermal noise given by Nin kB TB, where B is the bandwidth 
of the system, T is the temperature (in Kelvin) of the system, 
and kB is the Boltzmann constant [45]. If the noise figure v and 
minimum SNRout for the receiver are known, Sin in (3) gives 
the power of the minimum detectable signal (MDS) [44]. For 
convenience, we denote the MDS as TS and 
(linearly) express it as 

  (4) 

Remark 1: The power of the emitter signal arriving at the 
sensor antenna must be larger than the threshold T S in order for 
the sensor to distinguish the emitter signal from noise. 
2) Antenna Gain Pattern: The gain of an antenna describes 

the degree to which the antenna converts input power into radio 
waves or vice versa [45]. To evaluate the antenna gain value, 
we require the position of the antenna (p e Rd ), the location of 
the target (t e Rd ), the rotation of the antenna from a 
conventional orientation (R e R d x d ), and the operating 
frequency (f) as inputs to the gain function: g(p, R, t, f). A plot 
of the gain as a function of direction displays the antenna's 
radiation pattern. Antennas are said to possess directionality2 if 
the antenna gain g(•) is a non-uniform function of the direction 
of departure or arrival. In other words, as one moves around 

2 
The directionality of the antenna gain is usually accomplished through 

specialized antennas, such as a horned antenna, or through a phased array of 
multiple antennas. 
the antenna, the antenna gain changes. As illustrated in Fig. 4, 

the normalized direction of departure is 

 (5) 11t - pll 
We also note that the antenna gain is a function of frequency. 

Generally, an antenna is designed to operate at a particular 
frequency, and operation outside of that band is degraded by 
poor gains or high reflection coefficients [45]. Consider as a 
simple example, a half-wave dipole antenna. If we double the 
operating frequency, the antenna becomes a full wave dipole 
antenna, which has a different pattern than a half-wave dipole. 
For the two-dimensional case, the analysis of the inputs (p, 

R, t) reduces to the azimuth angle of departure, which we find 

as d) arctank ), where care needs to be taken that 
the proper quadrant is selected for a unique solution (see atan2 
in many software packages). See Fig. 5 for an example of a two-
dimensional directional antenna radiation pattern. Note how the 
gain is large in one particular direction (at  = 0) and diminishes 
in other directions. 
We simplify the gain patterns of the sensors and emitters in 

the following way. Let denote the half power beamwidth 
(HPBW) of a directional antenna. The HPBW is defined as the 
angular range between the points at which the gain has 
decreased 3 dB from the peak gain [45]. Also note that the 

 

Fig. 4. An example illustrating the direction of departure. From (a) to (b), we translate the system by —p so that the position of the antenna is at the origin. From 
(b) to (c), we rotate by to align the main beam with the x-axis (the default orientation). This enables the evaluation of the gain function in a standardized way. In 
the opposite direction, we rotate the system by the orientation of the antenna R from (c) to (b) and then translate the system by the position of the antenna p from 
(b) to (a). 

 

Fig. 5. An example antenna gain pattern (solid blue) from MATLAB's toolbox compared to our simplified radiation pattern (dotted red). ne patterns are shown 
in dB in (a) and absolute values in (b). A Cartesian view of the absolute gain is in (c). 
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HPBW is a function of the operating frequency, W (f), whose 
form is specific to the antenna. We simplify the gain to be 
constant within the HPBW and zero elsewhere. See Fig. 5 for 
an example of our simplification, which captures the essence 
of directional antennas. The simplified gain is always less than 
or equal to the true gain. Consequently, detection requires 
more restrictive circumstances under this simplification, which 
we address later in Section IV. 
The HPBW and maximum gain of an antenna are physically 

related [45]. In general, as the HPBW narrows, the maximum 
gain increases. Consequently, the non-zero constant gain in 
our simplification is a function of the antenna beamwidth, both 
in azimuth and elevation. In this paper, we consider the 
scenario in which the sensors and emitters are approximately 
coplanar, which is well-modeled by our two-dimensional 
framework. Consequently, we treat elevation as constant and 
only vary the azimuth beamwidth W. To be thorough, we 
include the elevation beamwidth to show the relationship to 
gain, though 9 is effectively a constant. Without loss of 
generality, we assume antenna efficiencies of I so that antenna 
directivity equals gain. Our simplification is 

g(p, R, t, f) =  (6) 
where arctan is the four-quadrant inverse tangent. The 
expression  is an approximation of the 
antenna's directivity that becomes more accurate with 
narrower beamwidths [45]. The factor of 1/2 comes from using 
the 3 dB point as the constant value. 

C. RF Channel 
The channel is the medium over which the emitters transmit 

and the sensors receive radio waves. In wireless 
communications, the channel model incorporates aspects of 
the environment such as large-scale shadowing and small-
scale fading, which determine how the radio wave changes 
from the emitter antenna to the sensor antenna. From the 
system perspective, we can incorporate the emitter and sensor 
gains into the channel. 
For ease and wide applicability, we use the approximation 

given by the simplified path loss model in [24, eq. (2.28)]. Let 
us briefly define some notation. Let pj be the power received 
by sensor j from emitter i. Let llx€ I denote the Euclidean 
distance between the ith emitter and jth sensor. Let a > 2 be 
the path loss exponent determining the rate of power 
attenuation. Let hi • be the fading coefficient for the channel 
between the ith emitter and jth sensor. hij could be the 
product of a small-scale fading and a shadowing random 
variable. This paper focuses on iid hij. We have 

  (7) 
where K(f) incorporates other aspects of signal attenuation 
and antenna characteristics. A common form of K(f) where is 
a reference distance [24], [46]. If hij 1 and a 2, this choice of 
K(f) results in Friis equation for free space. Other choices of K(f) 
and a can result in the two-ray model, the Hata model, and the 
COST extension to the Hata model [24]. Without loss of 
generality, we set the frequency f constant throughout the 
derivations to simplify notation. 
Finally, we note that the power at the input of the receiver 

of the jth sensor within a given bandwidth is given by p; A 

EPå+N0, (8) 

where No = vkB TB accounts for thermal noise and the receiver 
noise figure. For a single emitter, p; is simply (7) with No added. 
Without a priori knowledge of n e , interpretations on p' alone 
can be complicated if n e > I. Consequently, for 

 
the case of multiple emitters, we consider scenarios in which 
the sensors have the capabilities to separate emitter signals 
and powers via low-level signal processing. As Section Il-B 
mentioned, several previous works have implemented such 
signal processing and can provide estimates To maintain 
generality, this paper does not specify a particular method by 
which sensors distinguish among multiple emitters, but we 
assume the capability in order to analyze the effects of 
multiple emitters on system design in Section IV. For simplicity 
of exposition, we consider scenarios in which the estimate can 
effectively be given by the already-approximated path loss 
model in (7). 
We also note that the receiver chain of the sensor will 

introduce additional noise, which is accounted for by the noise 
figure v of the sensor. As a result, we use the sensor MDS TS 

from (4) when evaluating whether the sensor can distinguish 
any emitter signal from noise. We consider scenarios in which 
sufficient time-averaging occurs such that the estimated noise 
floor is effectively the value of the true noise floor and T S can 
be treated as a constant threshold for detection. We note here 
that while finite-duration sampling inherently results in 
variation in the measured noise power, the variance becomes 
negligible with a reasonably high number of samples. 
Specifically, let the discrete-time samples of thermal noise, 
w(n), be iid zero-mean Gaussian random variables with 
variance No. The measured noise power is given by 

and Z has a gamma distribution with 
mean No and variance 2ND/ K. For large K, the variance 
becomes negligible, and the measured power is effectively 
given by No. 

D. Problem Statement 

llx e  {i}  
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With the model, we can now mathematically define 
detection and state our problem. 
Definition 1 (Detection by Sensor): Detection occurs if a 

sensor distinguishes an emitter signal from noise. From the 
definition of T S in (4), the jth sensor detects the ith emitter if 
and only if 

 Pij T (9) 
Here we note that the sensors employ a fixed threshold for 

detection, which arises from the limiting scenario in which 
sufficient time-averaging occurs such that the sensor 
measurement of the noise floor is effectively the true noise 
floor, No. In terms of the probability of detection and false 
alarm, we want to find PD for the sensors operating at PF 0. The 
threshold TS can be adjusted (via arbitrary SNRout) to be greater 
than No such that PF —Y 0 for an individual sensor as K grows. 
Nonetheless, if PF > 0, the fusion of sensor data via an OR 
function at the network level would cause the network false 
alarm rate to approach 1 as the number of sensors grows. 
Consequently, a more sophisticated fusion method of sensor 
data (e.g., fusion of soft decisions, sensor reputation, 
measurement confidence, and/or verification by nearby 
sensors) would be required for very large deployments. This 
problem is outside the scope of this paper but has been 
considered thoroughly in other works (e.g., [471, [48] and 
sources therein). Additionally, different algorithms could be 
used for detection at the sensor level (e.g., variable thresholds) 
to lower PF for a given PD. With such algorithms, increasing 
the sensor density could also lower PF for a given PD. Thus, the 
results of this paper can be viewed as lower bounds on sensor 
density. Detailed analyses to incorporate such algorithms and 
the trade-offs between PD and PF are beyond the scope of this 
paper. 
For a random deployment of sensors, we want to know the 

required sensor density to successfully detect unknown 
directional emitters. To this end, we begin with the relationship 
between the deployment density of sensors and the probability 
that at least one sensor detects a single emitter. Let us 
mathematically define detection by a sensor network. 
Definition 2 (Detection by Sensor Network): The sensor 

network detects an emitter if at least one sensor detects the 
emitter. We express the event that the sensor network detects 
the ith emitter as 

  (10) 

Remark 2: For the case of a single emitter, we assume the 
emitter to be at the origin o. Since the sensor locations form a 
stationary PPP, there is no loss of generality. The notation for 
sensor network detection simplifies to E. If emitters form an 
arbitrary stationary point process independent of  the emitter at 
o is the typical emitter. 
Starting with the case of a single emitter, we want to find the 

relationship Pr(E) = for a function f. Iff is invertible, we can find 
f for a given confidence. For multiple emitters, we can apply the 

same strategy with the event D by finding the relationship 
between and Pr(D). 

Ill. RESULTS FOR SINGLE EMITTER 
A. General Result 
Proposition 1: Let be a stationary PPP of intensity and 

 a family of iid non-negative random variables 
(marks), independent of with finite moment E[Mx2/Q ]. For 0 > 
0, the random variable 

 (11) xeö 

is Poisson with mean 

 EIN] hro -ÖE[MÖ], (12) 

where M is distributed like all Mx and = 2/0. In particular, 

Pr(N > 0)  
(13) 

Proof: Let FM denote the complementary cumulative 
distribution function of M. N is the cardinality of the point 
process  {x € : Mx > OllxIl Q }. Since the Mx are iid, is 
an independently thinned version of and thus itself a PPP [32, 
Th. 2.36]. The thinning probability of a point at x is > Ollxll Q 
]] = FM(OIlxll Q ). Hence, has the density function N(x) = The 
mean number of points in follows as 

EIN]  

The fourth line is obtained by the substitution u Ora Since E[M 
ö]. is finite, EIN] is finite, and thus N is Poisson distributed. 
Remark 3: If ECM] # I, we can set Mx/E[M] and adjust O to 

O/E[M], thereby normalizing E[M] to I without loss of 
generality. If E[M] 1, then E[M ö ] < 1. Therefore, randomness 
(e.g., fading, shadowing, and/or directional orientation) never 
helps detection. 
We present the following applications of the proposition to 

our problem statement. Let N denote the number of sensors 
whose received power matches or exceeds T S . Therefore, E 
{N > 0}. Mx is a random variable which incorporates fading 
and the directionality of the randomly oriented emitter and 
sensor. Finally, let be an arbitrary received-power threshold 
whose form depends on the scenario. We assume the emitter at 
the origin o transmits at power p e . Without loss of generality, 
we assume K 1 below (p e can be replaced by np e ). 

FM(u)  du 
Aro-5E[M5]. 
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obtain 

B. Applications 
1) Baseline (Isotropic Emitter and Sensors, No Fading): 

For isotropic transmission and reception without fading, 9 TS 
/p e , Mx 1, and the gains are unity. Thus, 

 Pr(E) 1 — . (15) 
2) Directional Emitter, No Fading: Here the emitter transmits 

directionally, in an angle fraction /(27), which results in an 

independent thinning of the PPP by and a power gain  

 Pr(E) 1 — exp (16) 

3) Directional Sensors, No Fading: In this case, the marks 
model the random orientation of the sensors. Due to the 0-1 
nature of the gain function, either a sensor is oriented toward 
the emitter and receives the signal, or a sensor is directed away 
from the emitter and cannot detect the emitter. This behavior is 
captured with a Bernoulli random variable whose mean is the 
fraction of emitter-detecting orientations. Consequently, the 
marks are Bernoulli with mean = /(2T). Hence, E[Mö] = VIS . 
The power gain is  

 Pr(E) = 1 — (17) 
Hence, directionality at the transmitter and directionality at the 
receiver have the same effect on the detection probability. 
4) Directional Emitter and Sensors, No Fading: Combining 

the two previous results, we obtain 

Pr(E) 1 — . (18) 
5) Omnidirectional Emitter With Fading: With iid fading, the 

marks represent the fading coefficients, and we observe from 
(13) that the effect of fading is equivalent to an adjustment in 
the density of the PPP, by a factor corresponding to the ö-th 
moment of the fading random variables. 
For Rayleigh fading, where the are exponential with mean I, 

we have E[Mö] + 6), where the function E(z) e-l e-t d t. 
Substituting ELM ] +6) into (13) provides 

Pr(E) 1 — + 5) (p e  (19) 
Since + 5) < I for a > 2, Rayleigh fading has a negative effect 
on the detection probability. 
Alternatively, the effect of fading can be viewed as a scaling 

of the transmit power by Interestingly, in the case of Rayleigh 
fading, this power "gain" + ö) l /ö is tightly lower bounded by 
1/2 + 6/2. If the power is increased by 2a/(a + 2), the effect 
of Rayleigh fading is compensated (slightly overcompensated, 
actually). 
If (small-scale) fading and shadowing are both present, then 

Mx can be taken to be the product of both random variables. 
6) Directional Emitter and Sensors With Fading: Here the 

marks represent the combined effect of directional reception 
and fading. Denoting the Bernoulli random variables for 
directionality by bx and the fading coefficients by hx, we have 

 = bxhx and E[Mö] = OS E[hö]. As before, directional 
transmission is taken into account by thinning the PPP by o e . 
We obtain 

Pr(E) = 1 — . 
(20) 

This is the most general form for Pr(E) from which the previous 
equations can be derived by proper substitution. 
Also note that all results depend on the ratio of the channel 
parameters C Further, only the ratio w C/T S matters. 
Therefore, (20) could be concisely written as Pr(E) | — 
7) Other Point Processes: Here we consider point 

processes that are more or less regular than the PPP. The PPP 
exhibits complete spatial randomness [32, Sec 3.1]. In contrast, 
point processes such as soft-core and hard-core processes 
exhibit repulsion between points, with the limit being a lattice. 
In the other direction, cluster point processes exhibit attraction 
between points. The PPP is the mid-point on this general spatial 
regularity scale with no interaction among its points. 
If the sensor locations form a cluster point process, we can 

use the result for the PPP as an upper bound on the detection 
probability. Intuitively, clustering increases the amount of 
overlap among the sensor coverage regions. For a given density 
of sensors, as clustering increases, the performance degrades. 
On the other hand, as we decrease the amount of clustering, say 
for a Neyman-Scott process whose clusters are translated to 
points of a PPP [32, Definition 3.4], the point process will 
approach a PPP. 
For crowdsourced sensors, only a subset can be expected to 

participate in sensing. Even if the sensor locations are clustered, 
an independent thinning of the process will be close to a PPP in 
some scenarios [49, Sec. 3.3]. Therefore, it is still reasonable to 
use the PPP model for crowdsourcing. 
If there is a possibility of designing the distribution of the 

sensor locations, more regular point processes perform better 
than the PPP Let us again consider the baseline case of an 
isotropic emitter and isotropic sensors with no fading. The 
distribution that would achieve the highest detection probability 
for a given is the triangular lattice point process [501. In 
particular, let the sensors have sensing radius p = (pe /TS)1/a 
If the lattice spacing is a, then = 2/(a 2 vfi). If a 2 2p, then the 
detection probability is at most  and if a  pv'ä, 
then the detection probability can reach 1 [50]. 
The triangular lattice does indeed perform better than a PPP 

of sensor locations. For a PPP, Pr(E)  
Both 1 and  for a 

triangular lattice match or exceed the PPP's value because x > 1 
— for x > 0. 

While the triangular lattice could be a target distribution, 
in practice variance from the lattice would exist. In particular, a 
reasonable point process model could be a perturbed lattice with 
each location having a two-dimensional Gaussian shift from the 
triangular lattice [32, Definition 2.16]. However, a closed-form 
expression for Pr(E) for a perturbed lattice is elusive. 
Nonetheless, since the triangular lattice achieves the best 
possible Pr(E) for a given [50], its performance can be treated 
as a bound for such deployment distributions. Further, the 
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perturbed lattice quickly approaches a PPP if it is likely that a 
point is displaced by more than twice the mean nearestneighbor 
distance [51, Sec. Il.C]. 
8) Unknown Emitter Gain: The assumption that the emitter's 

gain function is known may not always hold. With Prop. 1, only 
the statistics of the emitter pattern need to be known. In this 
case, we treat g e as random with distribution fg. Here the marks 
represent the combined effect of the fading (hx), directional 
reception (h), and unknown emitter (g e ). In particular, Mx 
bxhxg e , and E[Mö] If fg is independent of fading and sensor 
orientations, E[M ] 

The result is 

Pr(S) 1 — 
(21) 

From Remark 3, this additional randomness decreases the 
detection probability. For multiple emitters, an additional 
assumption that the are iid would be needed for the results to 
hold in Section IV. 

C Observations 
Let us observe the behavior of (20). Note that if the path loss 

exponent a 2, which corresponds to free space, the azimuth 
beamwidths and W e do not affect Pr(S). This rather surprising 
result states that if the environment is free space, the choice of 
(azimuth) directivity does not matter. Intuitively, when 
beamwidth decreases, the antenna gain and thereby the 
transmission range increase. However, if a 2, the extension of 
the range is such that the area of the average coverage sector 
remains constant. 
Let us also observe the influence of the parameters on Pr(E). 

The probability is most sensitive to the sensor density AS . The 
only exception is in the case of free space (a 2) for which the 
sensor density is equally influential as the ratio of system 
parameters w. As the path loss exponent a increases, Pr(E) 
becomes more sensitive to azimuth beamwidth On the other 
hand, as a decreases, Pr(E) becomes more sensitive to the 
variable w. 
Ultimately, we want to know the density of sensors to deploy 

in order to be confident that we detect the emitter present. 
Equation (20) provides us with a metric for system design trade-
offs. If we set a desired Pr(E) 6, we rearrange (20) to obtain 

  (22) 

We see from (22) that the required sensor density oc  le) 1 6 . In 
other words, as the emitter becomes more directional (i.e., as 0), 
the sensor density needs to increase, specifically by a factor of 
( VT) . Hence, the directivity of the emitter(s) has a significant 
influence on the design and deployment of the spectrum 
monitoring system. In particular, we see that with a 4 and all 
other things equal, quartering the emitter 1--IPBW doubles the 
average number of sensors needed for detection: oc 

1 1/2  

In practice, the deployment of sensors is limited by cost, and 
deploying more sensors increases the total cost. For a set 
probability, we can decrease the sensor density in (22) by 
maximizing the sensor beamwidth to 2K. We can also decrease 
by decreasing the sensor elevation beamwidth  , but we are 
slightly constrained. Ideally, we would let  0, but such 
antennas do not physically exist, and if 0, the sensors would 
need to be exactly coplanar, which is impractical. 

 

Fig. 6. The probability of emitter detection by the sensor network as a function 
of sensor density (AS ) and emitter HPBW (W e ), given by (20). We use the 
parameters in Table Il. 

TABLE Il 
PARAMETERS FOR SIMULATIONS 

Parameter Value  

Sensor azimu    rad  

Sensor elevation beamwidth, ar 2 rad  

Sensor MDS, T -110 dBm  

tter evatlon amwl   

Emitter transmission power, p O dBm  

requency,    

path loss exponent,   

 ayelg , exp 

Ultimately, this analysis suggests that the sensors should be 
designed with omnidirectional antennas with 2T. 
Next, we consider the sensor MDS TS . For a given Pr(E), 

lowering TS can allow a decrease in AS . However, lowering TS 
generally increases the cost of each sensor. Usually the RF 
environment is not free-space (a 2), so Pr(E) is less sensitive to 
the sensor MDS TS than the sensor density AS . Therefore, for a 
fixed budget, we improve Pr(E) by letting TS be higher for a 
lower cost sensor and then increasing A S . In other words, we 
lower the cost of the sensor in order to deploy more of them. 
The larger density of sensors improves Pr(E) more than the 

Pr(E) 

100 101 102 
Sensor  Density,  (/km 2  ) 

0.8 

0.6 

0.4 

0.2 
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degradation from a higher MDS. We present an example in a 
later section. 
We plot (20) in Fig. 6 for Rayleigh fading and the example 

parameters listed in Table Il. For the sensor sensitivity, we 
experimentally measured a RadioHound sensor to find a 
minimum detectable signal of around —110 dBm [20]. For 
representative emitters, we consider a dipole (omnidirectional), 
a traditional cell tower sector antenna (w e 2m/3 rad), a narrower 
sector antenna (w e 2m/9 rad), and a mmwave antenna (W e = T/ 
18 rad). Fig. 6 shows that a higher sensor density is needed to 
maintain a constant Pr(E) for increasing emitter directivity. The 
red triangle indicates the approach to calculate the sensor 
deployment density to achieve Pr(E) = 0.9 under the assumption 
that the emitter is omnidirectional. For the same Pr(E), this 
paper also accounts for the emitter HPBW and calculates the 
sensor density indicated by the solid black line. For instance, if 
the system is designed for an omnidirectional emitter but the 
emitter uses a mm-wave antenna, the sensor density would need 
to more than triple, or Pr(E) would decrease to about 0.5. 

D. Frequency Sensitivity and Multiple Frequency Bands 
We return to the fact that W, 9, and K in the previous 

expressions are frequency-dependent. In practice, we have to 
design the sensor network to operate at a given frequency and 
design the antennas to have appropriate beamwidths. Once the 
sensors are deployed and the geometry of their antennas is 
fixed, the performance of the network is sensitive to emitter 
frequency. For the case of no fading, our study of the sensitivity 
indicates that the values of (20) and (22) are not significantly 
affected if the change in frequency relative to the original 
operating frequency (Af /f) is small. In particular, let g denote 
the complement of E. If we perturb the designed operating 
frequency from f to f + Af, and IAf/fl 1/2, then 

Pr(É) If+Af(23) 

where = - ö)Af/f [52, Ch. 4]. From our previous example for 
omnidirectional sensors and emitters with 50/ km2 , the relative 
change of Pr(E) is less than 1% if —0.13 < Af/f < 0.10. In other 
words, at a carrier frequency of I GHz, the frequency can range 
from 870 MHz to 1100 MHz with less than a 1% change in 
Pr(E). Further details and analysis are available in [52]. 
For a relative change in frequency Af/f, we could maintain 

approximately the same performance with a relative change in 
sensor density 

(24) 

If Af/f < 0, then < 0. 
Intuitively, the coverage of the sensors increases with 
decreasing operating frequency, thereby requiring fewer 
sensors. Therefore, to design a deployment for the frequency 
range fl to h, we should deploy the  required for h. The 
performance for the remainder of the band will be equivalent to 
or better than that of h, or a subset of sensors could be used for 
the lower bands such that the desired detection probability is 
achieved. 

E. Fixed-Budget Example 

We return to the observation made in a previous section that 
the sensor MDS T S does not influence the probability of 
detection Pr(E) as strongly as sensor density if a > 2. For a fixed 
monetary budget, one could lower the sensor cost by increasing 
the sensor MDS and thereby deploy more sensors to increase 
the probability of detection. 
Our motivation is a low SWaP-C (size, weight, power, and 

cost) RF sensor that costs on the order of a dollar [20]. The ideal 
is to have the sensor incorporated into widely deployed 
technologies, such as cell phones, tablets, WiFi access points, 
smart appliances, etc. Such devices have a dedicated power 
supply or are regularly recharged by users. The incentive to pay 
the slight overhead to include the sensor in devices is spectrum 
as a service [53]. In other words, the collected data 

TABLE 111 
SOFTWARE DEFINED RADIOS 

Radio  Noise Figure Label 

RadioHound  20 10 dB  

Ettus USRP 
B205mini 

$ 910   

NI USRP 2900  1,031 7 dB c 
Ettus USRP N310 $ 10,000 6.8 dB  

NI USRP 2945  11,503 5 dB  

Airspy Mini $ 100 3.5 dB  

Airs R2  250 3.5 dB  

AD9364 RFIC   2.5 dB  

will enable better spectrum management and usage, thereby 
improving user experience. In militarized contexts, the sensors 
are inexpensive enough to be disposable. The military would 
not try to retrieve or maintain them. Hence, we can disregard 
the cost of maintenance and battery replacement here. 
We consider the cost and MDS of several current 

representative software defined radios (SDRs) in Table Ill from 
Ettus Research, National Instruments, and Airspy, along with 
the RadioHound sensor from [20]. Several SDRs share the same 
MDS, so we select the lowest priced one and omit the rest. The 
reason is that the higher-priced SDRs for a given MDS have 
other benefits not considered by our model, such as a larger 
dynamic range. We determine the MDS of each SDR via (4) 
with an SNRout of I and standard temperature of 290 K. For 
each SDR, we assume the worst-case noise figure for a 
frequency of I GHz given in its specifications. We use a 
bandwidth of 2.56 MHz for all systems, limited by the sampling 
rate of the RadioHound sensor [20]. 
We plot (4) in Fig. 7(a) for the SDRs in Table 111. We 

observe two clusters of SDRs, each with the trend of decreasing 
MDS with increasing cost. The clusters result due to other 
factors in the SDRs that affect price, such as sampling rate, 
filtering capabilities, dynamic range, etc. 
Next, we consider a deployment with a limited budget of 

$1000 per km2 . Based on this budget and the price of the SDR 
sensor, we can calculate the sensor density AS . Using the 
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parameters in Table Il for omnidirectional sensors and emitters, 
we plot Pr(E) in (20) as a function of the sensor cost in Fig. 7(b). 
We have normalized the SDR cost by other factors, including 
the number of receiver chains, number of RF ports, resolution 
of the ADC, sampling bandwidth, and frequency range. For all 
cases, we observe the same trend but with different slopes (m). 
Decreasing sensor cost increases Pr(E). In comparison with Fig. 
7(a), we see that sensors of similar cost have a very similar 
Pr(E) despite the significant difference in MDS. In other words, 
we see that for a fixed budget, the sensor cost is a large factor 
in the metric Pr(E), whereas the MDS is not as influential. In 
particular, we fit an approximately linear relationship in Fig. 
7(b) for which decreasing the individual sensor cost by a factor 
of 10 roughly increases the probability of detection by about a 
factor of 10. We then observe diminishing returns on Pr(E) as 
the sensor cost becomes very low. 
Overall, this example supports decreasing sensor quality to 

decrease cost and thereby increase the sensor quantity. Other 
experiments are consistent with this theoretical result [6], [17], 
[53]. 

 
 101 102 103 104 105 

Sensor cost ($) 

105 

Normalized Sensor Cost (S) 
(b) 

Fig. 7. An example illustrating the trade-off between the sensor MDS and Pr(E) 
for a fixed budget of $1000 per km2 . The plot in (a) shows the MDS from (4) 
versus sensor cost for the representative RF sensors in Table Ill. For these 
sensors, (b) shows Pr(E) from (20) as a function of sensor cost normalized by 
various hardware characteristics. The fitted curves have slopes given by m. The 
Table Il parameters and omnidirectional antennas are used. 

IV. RESULTS FOR MULTIPLE EMITTERS 

A. Lower Bound on PT(D) 
For n e emitters arbitrarily located in a finite region R, we 

want the probability that each emitter is detected by at least one 
sensor. Mathematically, we are interested in the event 

  (25) 

However, the events Ei are dependent. As a simple example, 
consider two omnidirectional emitters. If the second emitter 

 
 1 2 3 4 

Number of emitters, ne 
Fig. 8. The lower bound on the probability that the sensor network detects each 
of n e emitters, given by (27). We use the parameters in Table Il with a sensor 
density 100 sensors/km2 . A directional sensor (or emitter) has an azimuth 
beamwidth of Tr/9 radians. An omnidirectional sensor (or emitter) has a 
beamwidth of 27r radians. •me elevation beamwidth is set to 7r/2 radians for all 
cases. The exact Pr(D I Te e ) is found via simulation. 

is near the first, El occurring would affect the detection 
probability for the second emitter. Unfortunately, the general 
dependence is complicated and has eluded analysis. 
Instead, we derive a lower bound on Pr(D I n e ) with 

DeMorgan's Law and the union bound: 
I-Pr(D I n e ) = Pr(DC I n e ) = Pr   n e  

 EPr(Ef). 
  

(26) 

-99 

-108 

1 
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We rearrange the terms and find Pr(Ef) from (20) for a single 
emitter: 

Pr(D I n e ) 1¯  Pr(Ef) 

= 1 — n e exp  
(27) 

If the emitter locations are modeled as an arbitrary stationary 
point process with density Pr(D) is found by taking the 
expectation with respect to n e with E[n e ] = A e IRI. 
As an example, we use the parameters in Table Il. Here we 

set the sensor density to 100 sensors,/km2 and vary the number 
of emitters n e . We plot the bound of Pr(D I n e ) in (27) as a 
function of the number of emitters in Fig. 8. We also plot the 
exact Pr(D I n e ) via simulation. We highlight the following 
observations. Given that the emitters have the same parameters, 
we see from (27) that the lower bound on Pr(D I n e ) is linear in 
n e with slope The plot 
again demonstrates the benefit of omnidirectional sensors. In 
particular, we see that the lower bound for omnidirectional 
emitters and sensors is close to the upper bound of 1. 
Consequently, the true Pr(D I n e ) is close to I for 
omnidirectional sensors and emitters in this example. We also 
note for desirable, high values of Pr(D I n e ), the lower bound 
is fairly tight. 
From (27), we can find an upper bound on the sensor density 

required for a given confidence of detection. In other words, if 
we select a desired Pr(D I rt e ) a, we find 

  (28) 

We observe (28) is logarithmic in n e , suggesting that a slight 
increase in the sensor density is needed to detect more emitters. 
In other words, a significant effort is needed to detect one 
emitter, but the extra cost to detect several is marginal. 
We also note that the lower bound in (27) is consistent with 

the approximations of our model. The simplified gain model in 
(6) results in power gains and angle-of-views smaller than the 
true ones. Mathematically, let Pr(E) denote the exact 
probability, and let PE(S) denote our model approximation of 
PE(S). We know Pr(E) 2 Pr(E). Therefore, Pr(E C ) I — Pr(E) 
I — Pr(E) Consequently, in 
(27), we have Pr(D I no 2 1 - 2 1 

which is consistent. 

B. Expected Number of Undetected Emitters 

If Pr(D) is low, the metric Pr(D) does not itself reveal how 
many emitters are not detected. Perhaps it is tolerable for the 
sensor network to detect all but one emitter. It can be difficult 
to interpret the situation solely with Pr(D). Here we propose 
another metric that may lend more insight. For n emitters 
arbitrarily located in a finite region R, we consider the number 
of undetected emitters, 0 < n u < n e . We can express E[n u ] 

analytically and use the result to design the system to drive 
E[nu] 0. 
We express n1[Ef], where 11[•] is the indicator function. 

Conditioned on the number of emitters in 

 

E[nu I ne ]  (29) 

If the emitter locations are modeled as an arbitrary stationary 
point process with density A E , then E[nu] is found by taking 
the expectation with respect to ne with E[n e] = ,VIRI. 
This expression is consistent with the following intuitive 

cases. As 00 and/or w 00, we have E[nu]  0. Additionally, as 
A S O, O, O, and/Or w  O, we have E[nu] E[n e ]. The result 
reinforces our previous conclusions. To minimize E[nu], we 
desire omnidirectional sensors (Vs = 27) with low MDS T S and 
high density AS . 
As an application, E[n u ] could inform the required sensor 

density for scenarios in which it is tolerable to miss some 
number of emitters. Without loss of generality, we consider E[n 
u I ne ] and solve for s . For convenience, let Q  

 
 10-2 10-1 100 

E [nu I rue ] =  
Fig. 9. A plot of (30) for n e = 1, 2, 3, and 4. We use the parameters in Table Il 
with omnidirectional sensors and emitters. 

provides 

— loglo(ß)]• (30) 
Q log10(e) 

For system design, if it is tolerable to miss an average of E[n u I 
ne ] V, the corresponding sensor density could be found. As an 
example, Fig. 9 plots (30) for omnidirectional sensors and 
emitters with the parameters in Table Il. We see that tolerating 
a larger average number of undetected emitters lowers the 
required sensor density. In Fig. 9, we see that increasing by an 

100 

for  
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order of magnitude decreases the sensor density by about 35 
sensors/km2 . Generally, this trade-off is given by (Q 

 per decade of '1. 

V. CONCLUSION AND FUTURE WORK 
Since the occurrence of directional emitters is inevitable in 

practice, we must account for directional emitters in the design 
of a spectrum monitoring system. Previous works on sensor 
networks offer insight into this design under the assumption of 
omnidirectional emitters but have not considered directional 
emitters. We presented a generalized framework to model a 
system of directional sensors and emitters, which can specialize 
to the omnidirectional case. With the framework, we found the 
probability that at least one sensor detects a single emitter in 
(20) and lower bound this probability for multiple emitters in 
(27). We also found the expected number of undetected emitters 
in (29). The analysis shows that omnidirectional sensors 
optimize these metrics. Furthermore, for a given probability of 
detection, the required sensor density has the relationship oc 

 which means we need more sensors for emitters with 
higher directivity. One caveat for these conclusions is the case 
of free space propagation (a = 2) for which azimuth 
directionality does not have an 
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