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Abstract—Spectrum monitoring could improve spectral 
management and efTiciency by enabling spectrum sharing, 
strengthening policy enforcement, and facilitating data-driven 
modeling of RF environments. This paper considers spectrum 
monitoring sensor networks in three dimensions to extend 
previous work on two-dimensional models. We derive a closed-
form expression for the probability of emitter detection, which 
acts as a metric for system design. We find optimal antenna 
half-power beamwidths for emitter detection. Additionally, we 
find that for a path loss exponent less than approximately 3.22, 
directional antennas are optimal. Otherwise, omnidirectional 
antennas are optimal. Further, despite potential sub-optimality, 
omnidirectional antennas are found to be robust in changing 
environments. Finally, a survey of antenna gain models is 
evaluated against real antennas to validate the choice of gain 
model in the paper. 
Index Terms—Directive antennas, radio spectrum 

management, cooperative spectrum sensing. 

I. INTRODUCTION 
PECTRUM monitoring (SM) is a collection of sensors that 

measure RF activity over frequency, time, and space The 
measurements could provide the "ground truth" of spectrum 
usage rather than relying solely on theoretical models of limited 
accuracy or unverified claims of usage by incumbents of 
spectral rights. Therefore, SM could close the feedback loop for 
spectrum management by providing spectral observations to 
guide policies and later to see the effects. 
If widespread, SM could enable several applications. SM 

could inform secondary users in dynamic spectrum access (e.g., 
by acting as the environmental sensing capability (ESC) [2], [3] 
for a spectrum access system (SAS) [4], [5]). SM could also 
help automate spectral policy enforcement by 
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finding "bad actors," capturing evidence, and locating the 
culprit emitters [6], [7]. Further, SM could provide big data 
("Big RE') for data-driven modeling of RF environments and 
spectrum usage A thorough discussion of these and other 
potential SM applications can be found in [1 1, Ch. ll. Overall, 
SM could improve spectral efficiency by enabling better 
spectrum management, enforcement of rules, and improved 
applications for secondary use. 
In our previous work [12], we addressed a missing 

component of emitter directivity in wireless sensor networks by 
creating a general framework for both directional emitters and 
sensors to analyze SM system design. In particular, we focused 
on a two-dimensional (2D) deployment design. The 2D model 
provided substantial insights for design choices within a SM 
system, such as the explicit relationship between emitter 
detection probability and average sensor density, a measurable 
trade-off between sensor quality and quantity, and the optimal 
azimuth antenna beamwidth, to name a few. 
The framework extends to three dimensions (3D), which is 

beneficial to address some short-comings of the 2D model. In 
particular, the 2D model does not gracefully account for the 
elevation portion of the antenna pattern. The model shows that 
the optimal elevation beamwidth approaches zero, which is not 
realistic. The conclusion is to have the elevation beamwidth as 
narrow as practical, but no specific value is given. The 3D 
model in this paper, on the other hand, eliminates such 
vagueness and provides an optimal value for elevation 
beamwidth. A closely related issue is that the 2D model limits 
the emitter and sensor locations to be coplanar. The 3D model 
allows for more realistic deployment scenarios in which 
emitters and sensors can operate at varying heights. Similarly, 
the 2D model limits rotation to be solely azimuthal. The 3D 
model, in contrast, realistically captures all possible antenna 
orientations, which are likely to occur in the crowdsourcing 
scenario motivating the deployment model. Finally, because the 
3D model accounts for the full antenna pattern, we are able to 
consider more antenna gain models and evaluate which is most 
accurate for our metric of interest, for both the 2D and 3D cases. 

A. Contributions 
This paper extends the results of [12] to more realistic 3D 

scenarios. In particular, we investigate the effects of emitter 
directivity on SM system design and find the average sensor 

density to achieve a given confidence of detection. Moreover, 
we find optimal antenna beamwidths for sensor design in a SM 
system, which is a function of the environmental path loss 
exponent, a. We show that if a < 3.22, directional antennas 
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optimize the probability of emitter detection. Otherwise, 
omnidirectional antennas are optimal. We further quantify the 
difference between optimal and sub-optimal designs, 
demonstrating that omnidirectional antennas are a robust design 
choice for environments with varying a. Additionally, this 
paper presents a survey of potential antenna gain models for the 
framework in [121 and simulates their accuracy against real 
antennas. The results verify the selection of the gain models 
used in this paper and in [12]. 

B. Related Works 
The survey in [13] reviews the significant differences 

between 2D and 3D wireless sensor networks (WSNs) with a 
focus on network protocols, connectivity, and localization in 
3D WSNs. The motivating 3D examples are aerial and 
underwater WSNs. The survey only mentions the difficultly of 
multi-path fading and recommends directional antennas as a 
topic for future research. Similarly, the work in [14] considers 
3D non-cooperative spectrum sensing in secondary networks 
for air traffic control, but only considers a simple distancebased 
path loss model. In contrast, this paper moves in the 
recommended direction with an RF model including fading, 
shadowing, and antenna directivity. 
Several works consider the placement and orientation of 

directional sensors on a 3D terrain [15]. Many jointly optimize 
multiple objectives, such as maximum coverage, connectivity 
uniformity, and minimum deployment cost  These 
approaches have even been considered for indoor use with 
constraints particular to the building [19]. In contrast, our work 
is motivated by crowdsourcing low-cost sensors (e.g., [20]), 
which results in random sensor locations and orientations. 
While not constrained to a terrain, [21] considers 3D directional 
sensors also with a focus on algorithmic optimization of 
orientations to maximize coverage. The aforementioned 
optimization problems are solved through complex search 
algorithms, which are time-consuming and must be repeated for 
any change in system parameters. Our result provides a closed-
form expression for quick analysis over all system parameters 
to provide design insights. Our work also physically links 
directivity (angle-of-view) to gain (sensing range) to optimize 
antenna design. 
Other works share similar 3D models but differ in focus or 

scope. Jung and Lee consider directional transmission for 
secrecy within WSNs of different spatial distributions [22], 
[23]. Our work shares the random spatial distributions of 
directional nodes but focuses on emitter detection. Some works 
share similar RF models within 3D WSNs, but their focus is on 
emitter localization via measured power and additional 
measurements, such as time of arrival (TOA) or angle of arrival 
(AOA) [24], [25]. Motivated by a low-cost sensor, our work 
considers received power with the simpler goal of detection, 
whereas TOA and AOA require more complex sensors with 
time-synchronization and antenna arrays, respectively. Wei et 
al. consider an unmanned aerial vehicle (UAV) network 
modeled as a homogeneous Poison point 

 

Fig. l. Illustration of a widespread spectrum monitoring system in three 
dimensions. Sensor and emitter gain patterns are shown in blue and red, 
respectively. 

process (PPP) with the motivation of providing service 
coverage in disaster management [261. Their channel model 
includes path loss, fading, and directional antennas. 
Consequently, their work shares many elements of this paper's 
model. However, their model differs by including an additional 
2D PPP for a ground network for end-users. Their focus is the 
UAV network design, particularly the operating height to 
optimize transmission capacity via spectrum sharing with the 
ground network. Additionally, [26] models a particular 
reference antenna and fixes its orientation on the UAVs parallel 
to the ground, In contrast, this paper considers random 
orientations and generalizes the antenna model to trade-off 
angle-of-view and sensing range. 

C. Outline 
The remainder of this paper is organized as follows. Section 

Il presents the 3D framework to model a SM system and states 
the problem of interest. Section Ill provides the general result 
for the probability of a SM system to detect a single emitter and 
analyzes the result for optimal designs. Section IV evaluates 
various gain models against real antennas and verifies the 
model used in this paper. Section V considers system operation 
over multiple frequency bands. Section VI gives a lower bound 
for multi-emitter detection probability and also an expression 
for the expected number of undetected emitters. Finally, 
Section VII summarizes our concluding remarks and directions 
for future work. 

Il. SYSTEM MODEL 
The generalized model used in this paper is described in 

detail in our previous work [12]. We focus on the 3D version 
here. We briefly restate the main model components and 
expound on differences from [12] for three dimensions. 
The scenarios of interest include crowdsourced sensors in the 

commercial context (e.g., cell-phones as sensors). The sensor 
deployment is well-modeled as uniformly random. As 
illustrated in Fig. 1, we need to describe locations and 
orientations via a deployment model, the sensor and emitter 
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Fig. 2. ne components yaw (V), pitch (0), and roll (4) used to describe the 
rotation of a rigid body. 

capabilities via a hardware model, and the RF propagation via 
a channel model. 
Because emitters and sensors share many common 

parameters, this paper uses the superscript s or e to denote the 
parameter for a sensor or emitter, respectively. If there are 
sensors and n e emitters, the subscripts j e {1, . , n S } and 
, n e } denote the index of the sensor and emitter, respectively. 
For example, a generic location will be denoted by x, the jth 
sensor location by xs., and the ith emitter location by x?. 

A. Deployment Model 

We consider scenarios in which we have no prior knowledge 
of sensor or emitter locations nor their orientations. In this case, 
the sensor and emitter deployment is well modeled as random 
in location and orientation with the most uninformative 
distribution. 
I) Locations: We denote location with a vector x e R3 in 

Cartesian coordinates. We consider a random deployment 
within a building in which the deployment of sensors in latitude, 
longitude, and altitude is reasonably modeled as uniformly 
random. As a result, the locations of the sensors are well-
modeled by a homogeneous Poisson point processes (PPP), 
denoted d) S , with density [27]. Mathematically, 

 (xj )j€N. This model could also apply to aerial networks 
[13]. Note that conditioning the number of locations in a finite 
region R C IR3 results in iid uniform locations in R, forming a 
binomial point process (BPP) [27]. 
2) Orientations: We define the orientation of an antenna as a 

rotation from a default orientation. Conventionally, the default 
orientation is such that the antenna's main lobe lies on a 
coordinate system axis. In three dimensions, a rotation can be 
realized in multiple ways, including a uniformly random 
rotation matrix, a normalized vector of four independent 
standard Gaussian random variables (a quaternion 
representation), or appropriate probability distributions for the 
angles of yaw, pitch, and roll. Physically, it is intuitive to use 
the convention of yaw (V), pitch (9), and roll (+) shown in Fig. 
2, which also corresponds to Givens rotations. In particular, we 
denote rotation with an orthogonal matrix R, which is a product 

of Givens rotations. Consistent with matrix multiplication, the 
order of these rotations matters. 
To rotate a rigid body G C IR3 , we multiply by the 

orthonormal Givens rotations, 

Ry(0)  
The general rotation is simply 

 

We rotate the set of points defined by G by rotating all elements 
in the set. Mathematically, R(Ø, O, {R(Ø, O, : x e G}. 
To simplify notation, when we refer to the rotation of the ith 
emitter or jth sensor antenna, we will use the notation Rie and 
R}, respectively, where we have dropped the input  
and  

B. Hardware Model 

As in [12], the emitters share a common gain pattern (gf g e 
V i), and the sensors are deployed with the same antennas (g; g 
s V j). This scenario is reasonable because emitters operating in 
the same frequency range likely have similar antennas, and a 
widespread deployment would likely use mass-produced 
sensors with nearly identical antennas. For similar reasons, we 
say that the sensors have the same sensitivity (Tjs T S j). Finally, 
we consider scenarios in which all emitter powers are equal and 
known (p; p e Y i) because publicly available regulations usually 
limit transmission power, and emitters often transmit at the 
legal maximum to obtain the highest SNR possible. 
Finally, we consider scenarios in which discernible 

differences exist among the emitter signals across time, 
frequency, spreading codes, and/or high-level protocols. More 
details can be found in [12]. 
1) Sensor Sensitivity: Here we define sensor sensitivity and 

the underlying physical factors that determine its value [28]. 
Definition 1 [Minimum Detectable Signal (MDS)]: Let TS 

denote the power of the minimum detectable signal by the 
sensor. 
We mathematically express MDS (linearly) as 

 

where v is the device noise figure, SNRout is an 
applicationbased minimum SNR, kB is the Boltzmann constant, 
T is the system temperature in Kelvin, and B is the system 
bandwidth [29]. A full explanation of this expression is in [12, 
Sec.  
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Remark 1: The power of the emitter signal received by the 
sensor must be greater than T S for the sensor to distinguish the 
emitter signal from noise. 
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x  
 (a) Gain pattern (dB) (b) Gain pattern (absolute) (c) Absolute gain in parameter space 

Fig. 3. An example taken from MATLAB's toolbox of an antenna radiation pattern in three dimensions compared to our simplified radiation pattern. 
2) Antenna Gain Pattern: This paper uses the general antenna 

model from [121. In particular, the antenna gain pattern is 
simplified with the concept of half-power beamwidth (HPBW). 
The HPBW is the angular range between the points at which the 
gain has decreased 3 dB from the peak gain [30]. An antenna 
can be characterized with two HPBWs measured perpendicular 
to each other. For this work, we consider the azimuthal HPBW, 
denoted W, and the elevational HPBW, denoted e. The HPBWs 
and maximum gain of an antenna, denoted go, are physically 
related [29]. In general, as the HPBWs narrow, go increases. 
Formally, the maximum gain is a function of the HPBWs: 
go(W, 9). 
We simplify the gain pattern to be constant at go/2 when the 

direction of departure (DoD), or equivalently direction of 
arrival (DoA), is within the HPBWs and zero elsewhere. To 
evaluate the DOD, we require the antenna position (p e IR3), the 
target location (t e IR3), and the antenna orientation (R e 123 x 3) 
as inputs to the gain function: g(p, R, t). The normalized DOD 
is 

 
11t - pll 

We offer a high-level mathematical expression to conceptualize 
the gain simplification: 

 — e), DoD is within HPBWs (2) 
g(p, R, t)  
 o, else . 
Fig. 3 illustrates the simplification, which captures the essence 
of directional antennas. 
The simplification in (2) can have multiple realizations. In 

particular, one must consider the geometric shape of the 
simplified antenna pattern and the functional form of go(W, 9). 
The simplified shape affects the condition that the DOD is 
within the HPBWs. Clear choices of shape include the spherical 
cap and spherical quadrilateral, illustrated in Fig. 4. 
Exact expressions for the form of go(W, 9) are few in number 

and are often complex, but some approximations have 

developed over the years. We consider the approximations 
given in [29], [31]—[34], which are summarized in Table I. 

x  
(a) Spherical cap (b) Spherical quadrilateral Fig. 4. Illustration 

of simplified antenna pattern shapes. 

First, we discuss forms of go(W, 9) corresponding to two 
very general cases. Directional antenna patterns with a single, 
symmetric lobe are well-modeled with a radiation intensity 
function 

 U (O, d') cosm O, O [0, T/'2],  [0, 2m), (3) 

where m 2 0 can be varied for the width of the beam [29]. 
Similarly, omnidirectional antenna patterns with a single, 
symmetric lobe are well-modeled with a radiation intensity 
function 

 — sinm O, O e [0, T],  [0, 2K). (4) 
Fig. 5 illustrates these functions. With [29, eq. (2-21)], the 
closed-form expressions of (3) and (4) provide an exact go(W, 
9) given in Table I. Note that we assume antenna efficiencies of 
1 without loss of generality. See [11, Appendix A] for the 
derivation. 
The approximation by Kraus in [31] can be motivated from 

the concept of beam solid angle for antenna patterns with one 
narrow major lobe [29, Ch. 2]. Tai and Pereira consider the case 
of broadside arrays of short dipoles and an arithmetic mean of 
two perpendicular planes of the farzone electric field, though 
their result can extend well to any directional single lobe 
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antenna pattern [32]. McDonald creates his approximation for 
omnidirectional antennas based on broadside collinear arrays 
with a radiation pattern based on 

 

 (a) cosm O (b) siren O 

Fig. 5. Illustration of the radiation intensities given by (3) and (4). 

the sinc function [33]. Pozar uses curve-fitting on the common 
omnidirectional radiation pattern in (4) to obtain his result [34]. 
In Section IV, we compare the various combinations of 

shapes and forms of , 9) in Table I to verify which is the best 
model for this paper. For ease of exposition, the remainder of 
the paper will associate a "directional antenna" with the 
approximation given by the spherical cap and gain value C from 
Table I. Likewise, an "omnidirectional antenna" will be 
approximated by the spherical quadrilateral and gain F for 
goop, e). 
Mathematically, the simplified gain function of a directional 

antenna is 

R -l t-P €- Ddir 
Ydir(p, R, t) —(5) 

else 

where Ddir is the set given by 

Ru  { (r, 9) e IR3 • r 1, q/' e [0, 2K), o [0, 9/2]}. 
Similarly, the simplified gain function of an omnidirectional 
antenna is gomni (p, R, t) 

 

These two approximations well-model a wide class of 
antenna patterns despite limitations of symmetry and no side 
lobes. Furthermore, the approximations provide closed-form 
expressions that can be analyzed. 

C. RF Channel Model 
This paper re-uses the channel model in [12], which provides 

a thorough discussion on the model details. Here we highlight 
the essential points. The channel incorporates environmental 
aspects such as large-scale shadowing and smallscale fading to 

determine the power received by a sensor from an emitter. From 
a system perspective, the channel can incorporate the emitter 
and sensor antenna gains. For ease and wide-applicability, we 
use the approximation given by the simplified path loss model 
in [35, eq, (228)] and add a fading variable. Let us briefly define 
some notation. Let pi be the power received by sensor j from 
emitter i. Let llxt€ — xjll denote the Euclidean distance 
between the ith emitter and jth sensor. Let a 2 2 be the path loss 
exponent determining the rate of power attenuation. Let hij be 
from a family of independent and identically distributed (iid) 
random variables to account for fading (or the product of fading 
and shadowing) between the ith emitter and jth sensor. In 
general, we have pi hog; ( x s R S x e x; , Rf,x; K llxt $11 -a pf, 

(7) 
where K incorporates other aspects of signal attenuation and 
antenna characteristics. A common form of K (c/4Tfm) 2 r', 
where is a reference distance and c is the speed of light [35], 
[36]. If a 2 and hij 1, this choice of K results in Friis equation 
for free space. 
In practice, the jth sensor computes a time-averaged power 

within a given bandwidth, which is modeled by 

 

where No vkB TB is the thermal noise in the receiver. Without 
a priori knowledge of n e , interpretations on p? alone can be 
complicated if n e > 1. Consequently, we consider scenarios in 
which the sensors have the capabilities to separate emitter 
signals and powers via low-level signal processing (see [12, 
Sec. Il-B] for more details). We also note that the receiver chain 
will introduce additional noise, which is accounted for by the 
sensor's noise figure v. As a result, we use the sensor MDS T S 
from (1) when evaluating whether the sensor can distinguish 
any emitter signal from noise. 

TABLE 1 
APPROXIMATIONS OF THE MAXIMUM GAIN VALUE go(W , 9) 

 

(6) 

where  
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D. Problem Statement 
This paper focuses on the probability of emitter detection as 

a key metric to aid the design of a SM system. Let us formally 
define emitter detection before stating the problem. 
Definition 2 (Emitter Detection): The jth sensor detects the 

ith emitter if pi T S . Further, the sensor network detects the ith 
emitter if at least one sensor detects the emitter. Let Ei denote 
the ith emitter's detection by the sensor network. 
Mathematically, 

 s} (8) 

Remark 2: In the case of a single emitter, we locate the 
emitter at the origin without loss of generality because the 
sensor locations form a stationary PPP. To simplify notation for 
this case, we drop the index and denote the detection event as 
E. If the emitter locations form an independent stationarity 
point process, the emitter at the origin is the typical emitter [27]. 
Ultimately, we want to find Pr(E) as a function of the system 

parameters and use the expression to find optimal parameter 
values, particularly for the sensor design. Additionally, we want 
to see how system parameters affect the sensor density 
necessary to achieve an arbitrary confidence of emitter 
detection. 

Ill. RESULTS FOR SINGLE EMITTER 
A. General Result 

Proposition I: Let be a stationary PPP of intensity and 
(Mx)xe+ a family of iid non-negative random variables 
(marks), independent of with finite moment E[Mx3/Q ]. For 
> 0, the random variable 

 

is Poisson with mean 

EIN] öE[Mö], 

where M is distributed like all NIX and ö 3/0. In particular, 

Pr(N > 0) 1- 
 = 1 —exp(  öE[Mö]). (9) 

Proof: The proof is analogous to that given in [12], but with 
ö 3/0 and with integration over IR3 . 
Remark 3: Let Cd be the volume of the unit ball in d 

dimensions [27, Eq. (2.7)]: 

 Cd  • (10) 
r(d/2+ 1)  

Particular to this paper, 03 T. To relate this proposition to that 
in [12], let ö d/a and E[N] = öE[M ö] for d 2 and 3. 
Remark 4: Without loss of generality, E[M] can be 

normalized to 1 b' setting M' Mx/E[M] and 1/E[M]. Because 
E[M ] E[M] 1, randomness in the channel (due to fading, 

shadowing, or randomly oriented directional antennas) never 
increases detection probability. 
In the context of our problem statement, N is the number of 

sensors that detect the emitter at the origin. Consequently, the 
probability of emitter detection Pr(E) Pr(N > 0), which is given 
by (9). 

B. Applications 
Let be the ratio of the gain function's solid angle to a sphere's 

solid angle (4T steradians). For a spherical cap and 
quadrilateral, = sin2 (9/4) and (W /(27T)) sin(9/2), respectively. 
Without loss of generality, let K 1 in the equations below (p e 
can be replaced with t€p e ). 
l) Baseline (Isotropic Emitter and Sensors, No Fading): 

Isotropy means the gain equals I in all directions. Consequently, 
is the ratio ,/p e . With no fading, M 1. The result is 

Pr(E) 1 —  
2) Non-Isotropic Emitter, No Fading: The emitter transmits 

in the solid angle fraction ff. The result is an independent 
thinning of the PPP by Additionally, there is a power gain of g 
e . Therefore, 

Pr(E) = I —  
3) Non-isotropic Sensors, No Fading: In this case, the sensor 

antenna receives in the solid angle fraction The directionality 
can be taken to be the fading distribution. In this case, the marks 
NIX are Bernoulli random variables with mean Therefore, E[M 
ö] There is also a power gain of g s . Thus, 

Pr(E) 1 —  
Note that the effect of sensor directionality has the same form 
as emitter directionality. 
4) Non-Isotropic Emitter and Sensors, No Fading: We 

combine the previous two results to obtain 

Pr(E) = I —exp  
5) Non-Isotropic Emitter With Fading: In this case, the iid 

marks Mx represent fading. The effect is independent thinning 
of the PPP by the ö-th moment of M. If Rayleigh fading IS 
present, where Mx are iid exponential with mean 1, then 
E[Mö] =  + 5). Thus, 

 Pr(E) 1 — exp  C3F(1 -f-  

Remark 5: The fading term can be considered a power gain 
+ö) l /ö , which has a lower bound given by 1/2+(5/2. To 

(over-)compensate for the fading loss, the emitter gain can be 
increased by 2/(1 + ö). 
Remark 6: If both shadowing and fading are present, can 

be the product of both random variables. 
6) Non-Isotropic Emitter and Sensors With Fading: Here the 

marks combine the effects of both fading and sensor 
directionality. Let bx denote the Bernoulli random variables for 
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directional sensors and hx denote the iid fading random 
variables. Thus, Mx bxhx and E[Mö] rtE[hö ]. The result is 

Pr(E) 1 — exp  (11) 
We note that Pr(E) only depends on the ratio w g e gS np%/T S 
. Therefore, (11) can be compactly written as Pr(E) = 1 —

 
To find the average sensor density required for an arbitrary 

confidence of detection, p, we substitute for Pr(E) and solve for 
AS: 

 -  (nerd  (12) 
7) Unknown Emitter Gain: As noted in [12], the emitter gain 

may not always be known. However, Prop. I only requires the 
statistics of the emitter gain to be known. In particular, let Mx 
bxhxg e , where g e is now a random variable. The variables bx 
and hx account for sensor directionality and fading, as 
described previously. We find E[Mö ] bhg e ) ö] =  which 
is substituted 
into (9) for 
Pr(E). If h and 
g e are 
independent,  

Pr(E) 1 — 
(13) 

Recall from Remark 4 that the additional randomness from an 
unknown emitter gain never increases Pr(E). Finally, note that 
for (13) to apply in Section VI for multiple emitters, we 
additionally require that the g/ are iid. 

C. Other Point Processes 
The PPP exhibits complete spatial randomness [27, Sec. 3.1]. 

Other point processes can exhibit attraction, resulting in 
clusters. In the other direction, point processes can exhibit 
repulsion between points, resulting in a more regular pattern. 
Consequently, the PPP is an interesting cross-over point that 
can act as a bound for other point processes. 
1) Clustered Point Processes: Given the manner in which 

people naturally tend to congregate, crowdsourcing the sensor 
deployment could result in clustering. A sensor network 
whose sensor locations form a cluster point process will have a 
detection probability no better than that of a PPP. Intuitively, 
overlap among sensor coverage regions increases as clustering 
increases, and the detection probability consequently decreases. 
In the other direction, as clustering decreases for, e.g., a 
Neyman-Scott cluster process whose clusters are translated to a 
parent PPP [27, Def. 3.4], the point process approaches a PPP. 
Therefore, the performance of the PPP is an upper bound on the 
performance of a cluster point process. Since the expression for 
detection probability of a cluster process would be unwieldy, 
the bound provided by the PPP is a useful result. 
In a practical crowdsourcing scenario, not all sensors will 

participate simultaneously. Under certain circumstances, an 

independent thinning of a cluster point process will be close to 
a PPP [37, Sec. 3]. Hence, the PPP model is still reasonable for 
a crowdsourced sensor deployment. 
2) More Regular Point Processes: More regular point 

processes, such as soft-core and hard-core processes, could 
resemble sensors spaced between floors within a building or 
even spaced between separate buildings. Such point processes 
have a higher detection probability than the PPP for the same 
density. Intuitively, since the points of a regular point process 
repel from each other, the sensor coverage regions overlap less. 
In particular, for isotropic antennas with no fading, the face-
centered cubic (FCC) lattice (or the hexagonal close packing 
lattice) performs the best and bounds the performance of any 
other point process [38]. For this lattice, let the spacing between 
sensors be a. The density is = y/ä/a3 . In the case of no fading 
with an isotropic emitter and sensors, the sensing range is p = 
from (7). If a > 2p, the detection probability is at most c•gp3 and 
if a the detection probability can reach I. Since 2 1 — e ¯æ , the 
performance of the FCC lattice indeed exceeds that of the PPP. 
The FCC's detection probability in more general cases is 
explored in Appendix C. 
If it is possible to design the spatial deployment of the 

sensors, the FCC lattice is the obvious choice. In practice, the 
deployment of sensors would inevitably vary from a targeted 
distribution. If the points of a lattice are randomly perturbed, 
the result approaches a PPP if points are displaced a large 
enough distance [39, Sec. II.C]. Thus, the PPP result is still 
quite relevant even if the sensor deployment can be designed. 
3) Inhomogeneous PPP: For PPPs, the density could be 

location dependent, denoted (x). For instance, the density could 
vary with altitude. For inhomogeneous densities, Prop. I would 
need the following modifications. 
Let {x e : Mx > IllxIl Q } be the independently thinned version 

of from Prop. I. Define g(x) as the probability of retaining the 
point from in at location x. In this case, g(x) EM [1[Mx > 
Illxll&]] FM(711xll O ), where FM is the complementary 
cumulative distribution function of M. If is an inhomogeneous 
PPP with density N remains a Poisson random variable, but 
now with mean 

 EIN] Mt) d t  

where f (x) is a spatial probability distribution related to 
In particular, if we condition to have n points in a finite region 
R (resulting in a binomial point process), those n points are 
distributed in R according to f (x). The proof for (14) is found 
by substituting an inhomogeneous density within the proof 
given in [27, Sec. 2.7.3]. 

Since N is Poisson, we still have Pr(N > 0) 1 exp(—E[N]) 
as in Prop. 1, but with no further simplification. The result will 
be particular to the forms of ,\(x), f(x), and FM and will likely 
require numeric computation. 

D. Optimal HPBWs 

have 
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The antenna design ofthe sensor can be optimized for 
detection probability. For either emitter or sensor antenna, note 
that 

Fig. 6. The optimal elevation HPBW e* for the probability of emitter detection 
Pr(E) as a function of path loss exponent a. The optimal applies to both 
emitters and sensors (i.e., = = e*). 

argmaxPr(E) argmax og . 

We find the solution by taking the respective partial derivative 
and setting the result to zero: O and  
O. For an omnidirectional antenna, 2n by definition (and by 
inspection of for spherical quadrilaterals). For a directional 
antenna, by symmetry of the spherical cap, so We use a numeric 
root solver to find the zeros of and numerically confirm that the 
solution is a maximum. 
See Appendix A for expressions of the derivatives of 

directional and omnidirectional antennas. Since 9* depends on 
a, Fig. 6 plots 9* versus a. We offer some observations. First, 
the optimal HPBW 9* monotonically increases with a. 
Therefore, in the limit as a 00, 9* approaches its maximum 
value of T. Qualitatively, as the propagation environment 
worsens, the optimal antenna becomes more isotropic. 

 
With the optimal HPBWs, we compare the optimal (E) to 

determine in which scenarios we should use directional or 
omnidirectional antennas for the sensors. If all other system 
parameters are equal, comparing the optimal antenna factor 
(g* between directional and omnidirectional antennas 

suffices. Here and g* are evaluated with and 9*. See Fig. 7. 

Directional sensors have a higher (E) for low values of a, 
while omnidirectional sensors have a higher (E) for higher 
values of a. In particular, the two lines intersect at a 3.22, which 

can be found numerically from the expression Odir(gdir) omm 
(g*omm.) ö . In other words, if a < 3.22, directional sensors with 
optimal 1--1PBWs given by Fig. 6 result in a higher Pr(E) than 
omnidirectional sensors. On the other hand, a higher probability 
of detection is achieved using omnidirectional sensors if a > 
3.22. 
Fig. 7. The antenna factor as a function of path loss exponent a for both 
directional and omnidirectional antennas with optimal HPBW e* from Fig. 6. 

The intuition for this conclusion is in the trade-off between 
the sensor's angle-of-view and sensing range, which are 
inherently linked to the antenna directivity and gain, 
respectively. In general, if the sensor's angle-of-view decreases, 
the range increases. However, the increase in range is 
influenced by the path loss exponent a. Let us consider the 
extreme cases. If the path loss exponent is very high (a + 00), 
any increase in gain is quickly lost to path loss attenuation, and 
the resulting increase in range is marginal. Consequently, the 
sensor covers a larger area by having a wider angle-of-view. On 
the other extreme, for very low a, any increase in range is 
undeterred by the path loss attenuation. Consequently, it is 
worthwhile to trade-off angle-of-view to obtain a larger range. 
Between these extremes, the trade-off is equivalent at a 3.22. 
The degree to which directional antennas improve Pr(E) if a 

< 3.22 depends on the other system parameters. Let C = and D 
— (g%€p e /T S ). Consider the case of Rayleigh fading for 
which h is exponential with mean 1 and E[hö] = + 6). Under 
these conditions, 
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Pr(E) 1  

Fig. 8 plots the difference . as a func- 
tion of D and a (with C 1) and as a function of C and a (with D 
1). The dotted line gives the value of D or C, respectively, at 
which — Pr* (E) . I is largest for a given a. See 
Appendix B for details. 
We observe that at particular values of D and C, a directional 

antenna can improve Pr*(E) by about 7.5%. However, other 
choices of D and C result in negligible improvement in Pr* (E). 
Therefore, while directional antennas are mathematically 
optimal if a < 3.22, in practice omnidirectional antennas could 
perform nearly as well depending on D and 
C. From a design perspective, if D and C are such that 

Pr• (E)dir - Pr• (E)omm 102 

0.05 

101 

100 
-0.05 

10-1 
-0.1 

10-2 

Path loss exponent, a 

102 

101 

co 100 

10-1 

10-2 
 3 4 5 6 7 

Path loss exponent, a 
(b) 

Fig. 8. The difference Pr* (E)dir — omm• (a) as a function of path loss 
exponent a and system constant D, and (b) as a function of a and system 
constant C. 

(E)dir - (E)omm. is low for a < 3.22, an omnidirectional 
antenna could be a more robust design as it is optimal for a 3.22 
and only marginally suboptimal if a S 3.22. This suggests the 
use of omnidirectional antennas for scenarios in which a is 
expected to vary. 

IV. MODEL VERIFICATION FOR SINGLE EMITTER 
With several approaches to approximate the gain function, 

we want to validate the model used in this paper, which includes 
both a shape and value approximation. To evaluate the different 
approaches, we use Pr(E) because it is the key metric in this 
work and depends on both the gain value and shape. Because 
we want the approximations that are most accurate, we compare 
the gain approximations to representative real antennas. In 
particular, we use the finite length dipole as our comparison for 
omnidirectional antennas. Similarly, for directional antennas, 
we use the representative patch antenna and horn antenna as our 
benchmarks. 
Our approach to determine Pr(E) via simulation follows. 

First, we simulate random deployments of sensors and the 
emitter. The emitter is located at the origin, and sensor locations 
are randomly generated according to a homogeneous PPP for 
the finite region. The 3D region is large enough to allow for all 
possible sensor locations that could detect the emitter. We 
additionally increase the region size further to prevent edge 
effects when simulating the PPP within the finite region. The 
emitter and sensor orientations are uniformly random. 
Second, we simulate an RF environment governed by (7). 

Without loss of generality, the simulations do not include 
fading coefficients (i.e., hj 1). With closed-form gain functions 
for the real antennas, we can numerically evaluate the gain, g(p, 
R, t), and calculate p;. We can then evaluate the event E. Using 

3 5 
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the Monte Carlo method, we generate many realizations of 
random deployments and estimate Pr(E) as the fraction of trials 
in which E occurred. 
Across simulated trials, the following conditions hold. The 

emitter antenna remains the same, but the orientation is always 
random. The emitter and sensors share the same type of 
antenna. For instance, if the emitter uses a finite length dipole, 
the sensors do, as well, though the lengths may be different. 
Again, if the emitter's antenna is approximated by gain A with 
the spherical quadrilateral shape, the sensors' antennas are, as 
well, but with potentially different HPBWs. This design is not 
necessary to show which approximation is most accurate 
compared to a real antenna. However, to limit numerous 
possible combinations, we selected that the sensors and emitter 
have the same type of antenna to emphasize the effect on Pr(E). 

A. Finite Length Dipole 
For the finite length dipole, we use the far-field expressions 

for the normalized radiation intensity given in [29, eq. (4-64)]: 

 

where k = 2m/A is the radian spatial frequency, commonly 
called the wave number, and I is the length of the dipole, 
commonly given as in terms of the wavelength A such that kl 
does not depend on A. With [29, Eq. (2-21)], we can determine 
the gain of the finite length dipole and its HPBW for a given 
length l. A detailed derivation to find a closed-form expression 
for the gain is given in [29, Sec. 4.5.4]. 
The parameters for the simulation of omnidirectional 

antennas are in Table Il. We vary the length of the dipole for 
the sensor, which consequently varies the elevation HPBW as . 
The results comparing the finite length dipole to the 
approximations of the gain function are given in Fig. 9. 
We offer a few brief observations. First, if we simulate the 

gain pattern resulting from (4), the result is indistinguishable 
from the finite length dipole. This could be useful for future 
simulations and comparisons because (4) is simpler to analyze 
and simulate. Second, the gain approximations with results 
closest to those of the real antenna are gains A and F from Table 
I. Consequently, our analyses in this work and [12] focus on 
those particular gain value approximations. We also 

TABLE 11 
PARAMETERS FOR SIMULATION OF FINITE LENGTH DIPOLE 

 
sensor density, 0.016 sensors/m 
sensor MDS, TS -110 dBm 
emitter power, pe -60 dBm 
operating frequency, f 1 GHz 
emitter elevation HPBW, 0.5743 rad 
path loss exponent, a 3 

far 
field distance, ro 

Sensor Half-power Beamwidth, es (rad) 
Fig. 9. The simulated Pr(E) for a finite length dipole and for the radiation 
intensity sinm 0 given in (4). The closed form expressions of Pr(E) for the other 
approximations in Table I with a spherical quadrilateral shape are provided for 
comparison. 

observe a large gap between the results of the finite length 
dipole and those of the approximations. The gap indicates the 
conservative approach in simplifying the gain function. If we 
were to determine a required sensor density for a given Pr(E), 
the results indicate that our models produce upper bounds on 
the sensor density. In particular, let Pr(E) denote the true 
probability of detection with a real antenna, while Pr(E) denotes 
the probability of detection given by our model. Since Pr(E) > 
Pr(E), the sensor density predicted by Pr(E) is much larger than 
it needs to be to obtain an equivalent value of Pr(E). In other 
words, the expressions for sensor density in Section Ill and [12] 
are upper bounds on the true required sensor density. 

B. Patch Antenna 
For the microstrip patch antenna, we use the cavity model for 

a closed form expression of the radiation intensity U (O, V) [29, 
Sec. 14.2.2]. In particular, a rectangular patch antenna with 
width W, length L, and height H is modeled as two radiating 
slots with a dominant TMÆ mode. The 

TABLE 111 
PARAMETERS FOR SIMULATION OF DIRECTIONAL PATCH ANTENNA 
 Value 

2 
12 
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sensor density, sensor 
MDS, TS emitter power, pe 
operating frequency, f 
emitter elevation HPBW, 
emitter azimuth HPBW, we 
path loss exponent, a far 
field distance, ro 

antenna height, H dielectric 
constant of substrate, 

0.1 sensors/m 
-110 dBm 
-60 dBm 
1 GHz 
1.34 rad 
L63 rad 
3 
2(L2 + vv2)/A m 
(A/(4rro)) r& 
(0. IA, 0.5A] 
2.2 

TABLE IV 
PARAMETERS FOR SIMULATION OF DIRECTIONAL PATCH ANTENNA 
Parameter Value 
sensor density, sensor MDS, 
emitter power, pe operating 
frequency, f emitter elevation 
HPBW, ee emitter azimuth 
HPBW, w e path loss 
exponent, a far field distance, 

horn waveguide width, a horn 
waveguide height, b horn flare width 
and height. al and bl horn altitude 
length, PI and 22 

0.04 sensors/m 
-110 dBm 
-60 dBm 
1 GHz 
1.77 rad 
1.51 rad 
3 
2(L2 + vv2)/A m 
(A/(4Trro)) r; 
0.25A m 
0.25A m 
[0.25A, 0.5Al m 
6A m 

normalized radiation pattern is given by 

kLe 2 — sin 
O sin 

2 

X  
2 

Z — COS O, 2 

where Le is the effective length of the patch antenna given by 
[29, eq. (14-3)]. The length and width of the patch antenna are 
determined via the procedure outlined in [29, Sec. 14.2.1.C] for 
the substrate RT/duroid 5880, a given height H, and a desired 
operating frequency of 1 GHz. Again, with [29, eq. (2-21)], we 
can derive a closed form expression for the gain function. 
To simulate the rectangular patch antenna, we use the 

parameters in Table IV. We vary the sensor's patch antenna 
height H from 0.1A to 0.5A and find the antenna width W and 
effective length Le from the procedure in [29, Sec. 14.2.1.C] to 
achieve efficient antennas that could be used in practice. The 
changes in antenna geometry result in different antenna patterns 
and HPBWs. We plot Pr(E) against the resulting HPBWs in Fig. 
10. Note that for our patch antenna design, the elevation HPBW 
and the azimuth HPBW are physically related and cannot be 
varied independently. Consequently, we show and the 
corresponding on separate axes. The gain approximations from 
Table I are based on the same HPBWs as the patch antenna. 
Note that the symmetric spherical cap shape uses the 1--IPBW 
to make the approximation conservative because < here. We 
also simulate the antenna pattern resulting from (3). 

 
Sensor Half-power Beamwidth, v s (rad) 

Fig. 10. The simulated Pr(E) for a rectangular patch antenna and for the 
radiation intensity cosm O given in (3). The closed form expressions of Pr(E) 
for the other approximations of directional antennas in Table I are provided for 
comparison. 

 
(a) Pyramidal horn an- (b) Side view (c) Top view 

Fig. 11. The geometry of the pyramidal horn antenna, reproduced from [29, 
Fig. 13.18]. 

We offer the following observations on the results in Fig. 10. 
The simulation of (3) overestimates Pr(E) for the patch antenna 
but is close in value. The closest analytic lower bound is that 
resulting from the spherical quadrilateral shape with gain A 
from Table I. Based on the trends of the plotted lines, though, 
the spherical cap shape with gain C could be a tighter lower 
bound if larger HPBWs were considered. 

C. Horn Antenna 
We model the pyramidal horn antenna as outlined in [29, Sec. 

13.4]. Fig. 11 shows the geometry of the antenna, matching the 
notation of [29]. The electric field equations can be found in 
[29, eq. (13-48)]. After being appropriately scaled and squared 
[29, eq. (2-12a)], the electric field equations give rise to the 
normalized radiation intensity U(O, V). For brevity, we omit 
the full expression and refer the reader to [29, eq. (13-48)], but 
we note the large complexity of the expression and the frequent 
occurrence of Fresnel integrals. This indicates that despite 
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having a closed form expression, the gain of the pyramidal horn 
antenna is expensive to evaluate. 

 
Sensor Half-power Beamwidth, v s (rad) 

Fig. 12. The simulated Pr(E) for a horn antenna and for the radiation intensity 
cosm O given in (3). The closed form expressions of Pr(E) for the other 
approximations of directional antennas in Table I are provided for companson. 

For the simulation of the directional horn antenna, we use the 
parameters in Table IV. We vary the sensor's horn antenna flare 
width UI and height bl simultaneously from 0.25A to 0.5A. 
Both the waveguide width a and height b are held constant at 
0.25A, and PI P2 6A [29, Sec. 13.4]. The changes in the antenna 
geometry result in different antenna patterns and HPBWs. 

We plot Pr(E) against the resulting 1--1PBWs in Fig. 12. 
Note that for our design of the horn antenna, the elevation 
HPBW and the azimuth HPBW are physically related and 
cannot be varied independently. Consequently, we show  
and the corresponding on the bottom axis. The gain 
approximations from Table I are based on the same HPBWs as 
the horn antenna. To make the approximation conservative, the 
symmetric spherical cap shape uses the HPBW because  < 
for the horn antenna under consideration. We also simulate (3). 
We offer the following observations on the results in Fig. 12. 

The simulation of (3) closely approximates Pr(E) for the horn 
antenna. The other approximations significantly underestimate 
Pr(E). The closest closed-form approximation to the horn 
antenna result is the spherical cap shape with gain C from Table 
I. Nonetheless, trend extrapolation indicates that the spherical 
quadrilateral shape with gain A would be a better 
approximation for smaller HPBWs. 
Ultimately, simulating the horn antenna is time consuming. 

The simulation of (3) offers a very close approximation with far 
less computation. For analytic lower bounds, the approximation 
achieved from the spherical cap shape and gain 

C is the tightest of those in this paper. 
D. Conclusion 
The results from Fig. 9 suggest that when performing our 

analysis with closed-form expressions for omnidirectional 
antennas in 3D, we should use the spherical quadrilateral shape 
with gain F in Table I. Similarly, the results in Fig. 12 suggest 
that we should use the spherical cap with gain C for directional 
antennas. Note that gain F and C have inherently assumed 
shapes of spherical quadrilateral and spherical cap, 
respectively, so the value and shape models are consistent. 
For analysis of closed-form expressions in two dimensions, 

the shape of both the spherical cap and spherical quadrilateral 
reduce to the azimuth HPBW W. Since the shape 
approximations are equivalent in 2D, the accuracy of the gain 
approximations reduces to the accuracy of go(W, 6). The results 
in [12] inform us that the optimal antennas will be 
omnidirectional with narrow elevation beamwidths. 
Consequently, the results in Fig. 9 suggest the use of gain A for 
two-dimensional analysis because gain A is more accurate for 
lower 9 in omnidirectional antennas. Thus, we use gain A for 
our two-dimensional analysis in [12]. 

V. FREQUENCY SENSITIVITY AND 
MULTIPLE FREQUENCY BANDS 

A derivation of the frequency sensitivity of Pr(E) is provided 
in [Ill, [12] for 2D scenarios. Reproducing the results for 3D is 
straightforward with the small-angle and Binomial 
approximations. We briefly discuss the results here for 
completeness. 
For a fixed antenna geometry, the HPBWs and are functions 

of frequency. Similarly, K is often modeled as having a I/f 2 
frequency dependence. In practice, we design the sensor 
antennas for a target frequency, but after deployment, the 
antennas cannot be modified. Consequently, the performance is 
sensitive to emitter frequency. With no fading (h I), analysis 
indicates that Pr(E) in (I I) and in (12) are not affected much if 
Af/f is small. 
Mathematically, let g denote the complement of E. Let us 

consider a rectangular (or circular) aperture antenna modeled 
with the Kraus approximation. If we perturb the frequency to f 
+ Af and if IAf/fl 1/4, we obtain 

 (Pr(É) (15) 
where (4 2ö)Af/f. Both the spherical cap and quadrilateral yield 
this same result. 
For example, if a sensor deployment achieves Pr(E) — .95 

for a 3, and we allow no more than a 1 % relative change in 
Pr(E), then Af/f can range from —0.035 to 0.029. If f is 1 GHz, 
the frequency can vary —35 MHz to 29 MHz with no more than 
a 1% change in performance. 
Furthermore, the change in performance can be compensated 

by adjusting the sensor density. In particular, to retain the same 
performance for a frequency change Af, the new sensor density 
+ should follow 

(16) 
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If Af < 0, then < 0, and if Af > 0, then > 0. In other words, 
lower frequencies require fewer sensors. This point is helpful 
in designing a sensor deployment for a frequency range fl to h. 
In particular, the deployment should be designed for the highest 
frequency h. For the lower bands, the performance will be better 
than that of h, or fewer sensors would need to be active to 
maintain the same performance. 

VI. RESULTS FOR MULTIPLE EMITTERS 
If we consider multiple emitters, the results are analogous to 

those in [12, Sec. IV]. Consequently, we briefly write the main 
results for completeness but refer the reader to [12] for details, 
derivations, and applications. 
Let there be n e arbitrarily located emitters in a finite region 

R C IR3 . Define multi-emitter detection by the sensor network 
as the event D Ei. We lower bound the probability of multi-
emitter detection given n e as 

 Pr(D I  1 — n e exp 
 (17) 

Additionally, let n u e {O I of undetected emitters. Given n e , 
the average number of undetected emitters is 

 E[n u I ne ] n e exp  (18) 
If the emitter locations form an arbitrary stationary point 
process with density Y, the conditioning in both expressions 
can be removed by taking the expectation with respect to n e , 
where E[n e ] ,VIRI and IRI denotes the volume of R. 

VII. CONCLUSION AND FUTURE WORK 
While providing a beneficial baseline for design, the 

twodimensional SM model in [12] does not provide a satisfying 
design criterion for elevation HPBW, does not fully represent 
realistic antenna orientations, and impractically constrains 
emitter and sensor locations to be co-planar. To address these 
issues, this paper extends the framework and results to three 
dimensions. Optimal values of elevation HPBW were presented 
in Fig. 6 as a function of path loss exponent, a. With optimal 
HPBWs, we found that certain environments favor different 
antennas. If a < 3.22, directional antennas are optimal for 
emitter detection. Otherwise, omnidirectional antennas are 
optimal. Nonetheless, the performance difference between 
optimal and suboptimal antennas could be small as shown in 
Fig. 8. Omnidirectional antennas were found to be a robust 
choice for environments with varying a. Additionally, the three-
dimensional model allowed for a survey of various antenna gain 
models. This paper evaluated these models against simulations 
of real antenna patterns and verified the models used in this 
paper and in [12]. Ultimately, this work re-enforced many of 
the conclusions from [12] while providing additional insight 
into optimal elevation HPBW and the effects of location and 
orientation in three dimensions. 
Future work should further investigate the use of 

nonstationary point processes to model more diverse scenarios. 

Additionally, the framework could be extended to consider 
other data products of spectrum monitoring, such as emitter 
localization and/or transmit power estimation. Further research 
is needed to determine the system design modifications 
required to achieve these more complex data products, as well. 

APPENDIX A DERIVATION OF OPTIMAL HPBWs 
For space considerations, we leave out the complete 

derivation and present final expressions. For a directional 
antenna, 

 
and for an omnidirectional antenna, 

 

-f- COS(e/2)  

where the digamma function 

IPO)  
We use a numeric root solver to find the zeros of these 
derivatives and numerically confirm that the solution is a 
maximum. 

APPENDIX B DERIVATION OF OPTIMAL C AND D 
The dotted lines in Fig. 8 have closed-form expressions for 

any arbitrary C or D, respectively. The expressions can 

 
Intuitively, D* and C* indicate parameter values for which 

the difference in performance between directional and 
omnidirectional antennas is most significant. As Fig. 8 
illustrates, other values of D and C diminish the difference in 
performance between the two types of antennas. 

3/0—1 

(  (T/omni% mni 6)  )  ̄   (Odirg\ir)) 
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APPENDIX C DERIVATION OF Pr(E) FOR FCC 
LATTICE 

Let L C 123 denote the FCC lattice with a point at the origin, 
o. Let BV denote the Voronoi cell for point v e L. For the FCC 
lattice, all Voronoi cells are congruent rhombic dodecahedra. 
Let denote the randomly shifted FCC lattice, {v e L : v + 
U } , where U is uniformly distributed over Bo. Denote as the 
number of points from in the region W C IR3 . Since the all 
points are translated by U e Bo, we know (b(Bv) 1, Y v e L. 
Define Mx, -y, and N as in Prop. 1. Denote {x e  : Mx > 

Illxll ü }, which has cardinality N. Since the DIX are iid, is an 
independently thinned version of with probability of retaining 
a point EM [ll[Mx > = FM(111x110)• 

Given U  
The third line results from the iid Mx. Since Pr(E) - — Pr(N > 
O) I — Pr(N = O), we have 

 Pr(E) Pr(N > o I  

IBOI J B 11 (19) 
0 xeIL+u 

The region Bo and its volume IBO I are determined by the 
Iattice spacing a and the rhombic dodecahedron geometry. M 
and are application specific with examples given in Section 
Ill-B. Unfortunately, (19) does not offer much insight or an easy 
numeric approach to solve, except perhaps for some closedform 
expressions of FM. The least cumbersome approach to estimate 
Pr(E) would likely be simulated Monte Carlo trials for a given 
a, a, -y, and FM. 
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