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Abstract—Spectrum monitoring could improve spectral
management and efTiciency by enabling spectrum sharing,
strengthening policy enforcement, and facilitating data-driven
modeling of RF environments. This paper considers spectrum
monitoring sensor networks in three dimensions to extend
previous work on two-dimensional models. We derive a closed-
form expression for the probability of emitter detection, which
acts as a metric for system design. We find optimal antenna
half-power beamwidths for emitter detection. Additionally, we
find that for a path loss exponent less than approximately 3.22,
directional antennas are optimal. Otherwise, omnidirectional
antennas are optimal. Further, despite potential sub-optimality,
omnidirectional antennas are found to be robust in changing
environments. Finally, a survey of antenna gain models is
evaluated against real antennas to validate the choice of gain
model in the paper.

Index Terms—Directive antennas, radio

management, cooperative spectrum sensing.

spectrum

1. INTRODUCTION
PECTRUM monitoring (SM) is a collection of sensors that
measure RF activity over frequency, time, and space [1].The
measurements could provide the "ground truth" of spectrum
usage rather than relying solely on theoretical models of limited
accuracy or unverified claims of usage by incumbents of
spectral rights. Therefore, SM could close the feedback loop for
spectrum management by providing spectral observations to

guide policies and later to see the effects.

If widespread, SM could enable several applications. SM
could inform secondary users in dynamic spectrum access (e.g.,
by acting as the environmental sensing capability (ESC) [2], [3]
for a spectrum access system (SAS) [4], [5]). SM could also
help automate spectral policy enforcement by
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finding "bad actors," capturing evidence, and locating the
culprit emitters [6], [7]. Further, SM could provide big data
("Big RE') for data-driven modeling of RF environments and
spectrum usage A thorough discussion of these and other
potential SM applications can be found in [1 1, Ch. 1. Overall,
SM could improve spectral efficiency by enabling better
spectrum management, enforcement of rules, and improved
applications for secondary use.

In our previous work [12], we addressed a missing
component of emitter directivity in wireless sensor networks by
creating a general framework for both directional emitters and
sensors to analyze SM system design. In particular, we focused
on a two-dimensional (2D) deployment design. The 2D model
provided substantial insights for design choices within a SM
system, such as the explicit relationship between emitter
detection probability and average sensor density, a measurable
trade-off between sensor quality and quantity, and the optimal
azimuth antenna beamwidth, to name a few.

The framework extends to three dimensions (3D), which is
beneficial to address some short-comings of the 2D model. In
particular, the 2D model does not gracefully account for the
elevation portion of the antenna pattern. The model shows that
the optimal elevation beamwidth approaches zero, which is not
realistic. The conclusion is to have the elevation beamwidth as
narrow as practical, but no specific value is given. The 3D
model in this paper, on the other hand, eliminates such
vagueness and provides an optimal value for elevation
beamwidth. A closely related issue is that the 2D model limits
the emitter and sensor locations to be coplanar. The 3D model
allows for more realistic deployment scenarios in which
emitters and sensors can operate at varying heights. Similarly,
the 2D model limits rotation to be solely azimuthal. The 3D
model, in contrast, realistically captures all possible antenna
orientations, which are likely to occur in the crowdsourcing
scenario motivating the deployment model. Finally, because the
3D model accounts for the full antenna pattern, we are able to
consider more antenna gain models and evaluate which is most
accurate for our metric of interest, for both the 2D and 3D cases.

A. Contributions

This paper extends the results of [12] to more realistic 3D
scenarios. In particular, we investigate the effects of emitter
directivity on SM system design and find the average sensor
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density to achieve a given confidence of detection. Moreover,
we find optimal antenna beamwidths for sensor design in a SM
system, which is a function of the environmental path loss
exponent, a. We show that if a < 3.22, directional antennas
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optimize the probability of emitter detection. Otherwise,
omnidirectional antennas are optimal. We further quantify the
difference between optimal and sub-optimal designs,
demonstrating that omnidirectional antennas are a robust design
choice for environments with varying a. Additionally, this
paper presents a survey of potential antenna gain models for the
framework in [121 and simulates their accuracy against real
antennas. The results verify the selection of the gain models
used in this paper and in [12].

B. Related Works

The survey in [13] reviews the significant differences
between 2D and 3D wireless sensor networks (WSNs) with a
focus on network protocols, connectivity, and localization in
3D WSNs. The motivating 3D examples are aerial and
underwater WSNs. The survey only mentions the difficultly of
multi-path fading and recommends directional antennas as a
topic for future research. Similarly, the work in [14] considers
3D non-cooperative spectrum sensing in secondary networks
for air traffic control, but only considers a simple distancebased
path loss model. In contrast, this paper moves in the
recommended direction with an RF model including fading,
shadowing, and antenna directivity.

Several works consider the placement and orientation of
directional sensors on a 3D terrain [15]. Many jointly optimize
multiple objectives, such as maximum coverage, connectivity
uniformity, and minimum deployment cost [16]-[18]. These
approaches have even been considered for indoor use with
constraints particular to the building [19]. In contrast, our work
is motivated by crowdsourcing low-cost sensors (e.g., [20]),
which results in random sensor locations and orientations.
While not constrained to a terrain, [21] considers 3D directional
sensors also with a focus on algorithmic optimization of
orientations to maximize coverage. The aforementioned
optimization problems are solved through complex search
algorithms, which are time-consuming and must be repeated for
any change in system parameters. Our result provides a closed-
form expression for quick analysis over all system parameters
to provide design insights. Our work also physically links
directivity (angle-of-view) to gain (sensing range) to optimize
antenna design.

Other works share similar 3D models but differ in focus or
scope. Jung and Lee consider directional transmission for
secrecy within WSNs of different spatial distributions [22],
[23]. Our work shares the random spatial distributions of
directional nodes but focuses on emitter detection. Some works
share similar RF models within 3D WSNSs, but their focus is on
emitter localization via measured power and additional
measurements, such as time of arrival (TOA) or angle of arrival
(AOA) [24], [25]. Motivated by a low-cost sensor, our work
considers received power with the simpler goal of detection,
whereas TOA and AOA require more complex sensors with
time-synchronization and antenna arrays, respectively. Wei et
al. consider an unmanned aerial vehicle (UAV) network
modeled as a homogeneous Poison point
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Fig. 1. Illustration of a widespread spectrum monitoring system in three
dimensions. Sensor and emitter gain patterns are shown in blue and red,
respectively.

process (PPP) with the motivation of providing service
coverage in disaster management [261. Their channel model
includes path loss, fading, and directional antennas.
Consequently, their work shares many elements of this paper's
model. However, their model differs by including an additional
2D PPP for a ground network for end-users. Their focus is the
UAV network design, particularly the operating height to
optimize transmission capacity via spectrum sharing with the
ground network. Additionally, [26] models a particular
reference antenna and fixes its orientation on the UAVs parallel
to the ground, In contrast, this paper considers random
orientations and generalizes the antenna model to trade-off
angle-of-view and sensing range.

C. Outline

The remainder of this paper is organized as follows. Section
Il presents the 3D framework to model a SM system and states
the problem of interest. Section Ill provides the general result
for the probability of a SM system to detect a single emitter and
analyzes the result for optimal designs. Section IV evaluates
various gain models against real antennas and verifies the
model used in this paper. Section V considers system operation
over multiple frequency bands. Section VI gives a lower bound
for multi-emitter detection probability and also an expression
for the expected number of undetected emitters. Finally,
Section VII summarizes our concluding remarks and directions
for future work.

1. SYSTEM MODEL

The generalized model used in this paper is described in
detail in our previous work [12]. We focus on the 3D version
here. We briefly restate the main model components and
expound on differences from [12] for three dimensions.

The scenarios of interest include crowdsourced sensors in the
commercial context (e.g., cell-phones as sensors). The sensor
deployment is well-modeled as uniformly random. As
illustrated in Fig. 1, we need to describe locations and
orientations via a deployment model, the sensor and emitter
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Fig. 2. ne components yaw (V), pitch (0), and roll (4) used to describe the
rotation of a rigid body.

capabilities via a hardware model, and the RF propagation via
a channel model.

Because emitters and sensors share many common
parameters, this paper uses the superscript s or e to denote the
parameter for a sensor or emitter, respectively. If there are n®
sensors and n © emitters, the subscriptsj e {I,.,n5} and{1,...
, 1 ¢} denote the index of the sensor and emitter, respectively.
For example, a generic location will be denoted by x, the jth
sensor location by x°., and the ith emitter location by x?.

A. Deployment Model

We consider scenarios in which we have no prior knowledge
of sensor or emitter locations nor their orientations. In this case,
the sensor and emitter deployment is well modeled as random
in location and orientation with the most uninformative
distribution.

I) Locations: We denote location with a vector x ¢ R? in
Cartesian coordinates. We consider a random deployment
within a building in which the deployment of sensors in latitude,
longitude, and altitude is reasonably modeled as uniformly
random. As a result, the locations of the sensors are well-
modeled by a homogeneous Poisson point processes (PPP),
denoted d) S, with density [27]. Mathematically,

s _ (xj )JEN. This model could also apply to aerial networks
[13]. Note that conditioning the number of locations in a finite
region R C IR?results in iid uniform locations in R, forming a
binomial point process (BPP) [27].

2) Orientations: We define the orientation of an antenna as a
rotation from a default orientation. Conventionally, the default
orientation is such that the antenna's main lobe lies on a
coordinate system axis. In three dimensions, a rotation can be
realized in multiple ways, including a uniformly random
rotation matrix, a normalized vector of four independent
standard Gaussian random variables (a  quaternion
representation), or appropriate probability distributions for the
angles of yaw, pitch, and roll. Physically, it is intuitive to use
the convention of yaw (V), pitch (9), and roll (+) shown in Fig.
2, which also corresponds to Givens rotations. In particular, we
denote rotation with an orthogonal matrix R, which is a product

of Givens rotations. Consistent with matrix multiplication, the
order of these rotations matters.

To rotate a rigid body G C IR®, we multiply by the
orthonormal Givens rotations,

[cosyp —sinyy 0
) = [siny costp 0
| 0 1
[ cos 6 sin f
(@)= 10
—sinf 0 cosf
1 0
() =10 cos¢p —sing
Ry(0) |0 sing cos¢

The general rotation is simply

R(1,0,$) = R, (v)Ry(0)Ra ().

We rotate the set of points defined by G by rotating all elements
in the set. Mathematically, R(9, O, $)G ={R(Q, O, : x e G}.
To simplify notation, when we refer to the rotation of the ith
emitter or jth sensor antenna, we will use the notation Ri® and

R}, respectively, where we have dropped the input ¥i, 05, ¢f]

andhb:? ! 9:7? ’ qf)j J:

B. Hardware Model

As in [12], the emitters share a common gain pattern (gf g ©
V i), and the sensors are deployed with the same antennas (g; g
$V j). This scenario is reasonable because emitters operating in
the same frequency range likely have similar antennas, and a
widespread deployment would likely use mass-produced
sensors with nearly identical antennas. For similar reasons, we
say that the sensors have the same sensitivity (Tj* T 5j). Finally,
we consider scenarios in which all emitter powers are equal and
known (p; p °Y i) because publicly available regulations usually
limit transmission power, and emitters often transmit at the
legal maximum to obtain the highest SNR possible.

Finally, we consider scenarios in which discernible
differences exist among the emitter signals across time,
frequency, spreading codes, and/or high-level protocols. More
details can be found in [12].

1) Sensor Sensitivity: Here we define sensor sensitivity and
the underlying physical factors that determine its value [28].

Definition 1 [Minimum Detectable Signal (MDS)]: Let TS
denote the power of the minimum detectable signal by the
Sensor.

We mathematically express MDS (linearly) as

2 y(SNRout)kg BT,

where v is the device noise figure, SNRout is an
applicationbased minimum SNR, kB is the Boltzmann constant,
T is the system temperature in Kelvin, and B is the system
bandwidth [29]. A full explanation of this expression is in [12,
Sec.II-B].

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 13,2022 at 18:49:24 UTC from IEEE Xplore_ Restrictions

apply



766 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. §, NO. 2, JUNE 2022

Remark 1: The power of the emitter signal received by the
sensor must be greater than T S for the sensor to distinguish the
emitter signal from noise.
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(a) Gain pattern (dB)

(b) Gain pattern (absolute)

Antenna Gain

) r/2
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Fig. 3. An example taken from MATLAB's toolbox of an antenna radiation pattern in three dimensions compared to our simplified radiation pattern.

2) Antenna Gain Pattern: This paper uses the general antenna
model from [121. In particular, the antenna gain pattern is
simplified with the concept of half-power beamwidth (HPBW).
The HPBW is the angular range between the points at which the
gain has decreased 3 dB from the peak gain [30]. An antenna
can be characterized with two HPBWs measured perpendicular
to each other. For this work, we consider the azimuthal HPBW,
denoted W, and the elevational HPBW, denoted e¢. The HPBWs
and maximum gain of an antenna, denoted go, are physically
related [29]. In general, as the HPBWs narrow, go increases.
Formally, the maximum gain is a function of the HPBWs:
go(W, 9).

We simplify the gain pattern to be constant at go/2 when the
direction of departure (DoD), or equivalently direction of
arrival (DoA), is within the HPBWs and zero elsewhere. To
evaluate the DOD, we require the antenna position (p e IR?), the
target location (t e IR%), and the antenna orientation (R e 12°*%)
as inputs to the gain function: g(p, R, t). The normalized DOD
is

oyl I
11t-pll
We offer a high-level mathematical expression to conceptualize
the gain simplification:

90(¥.¢), DoD is within HPBWs

glp, R, )

@)

0, else .

Fig. 3 illustrates the simplification, which captures the essence
of directional antennas.

The simplification in (2) can have multiple realizations. In
particular, one must consider the geometric shape of the
simplified antenna pattern and the functional form of go(W, 9).
The simplified shape affects the condition that the DOD is
within the HPBWs. Clear choices of shape include the spherical
cap and spherical quadrilateral, illustrated in Fig. 4.

Exact expressions for the form of go(W, 9) are few in number
and are often complex, but some approximations have

developed over the years. We consider the approximations

given in [29], [31]—[34], which are summarized in Table I.
¥4 7

VY
(a) Spherical cap (b) Spherical quadrilateral Fig. 4. Illustration

of simplified antenna pattern shapes.

First, we discuss forms of go(W, 9) corresponding to two
very general cases. Directional antenna patterns with a single,
symmetric lobe are well-modeled with a radiation intensity
function

U (O, d") cos™O, O [0, T/2], [0, 2m), 3)
where m 2 0 can be varied for the width of the beam [29].
Similarly, omnidirectional antenna patterns with a single,
symmetric lobe are well-modeled with a radiation intensity
function

U(0,%)—sin™0, O e [0, T], [0, 2K). 4)

Fig. 5 illustrates these functions. With [29, eq. (2-21)], the
closed-form expressions of (3) and (4) provide an exact go(W,
9) given in Table I. Note that we assume antenna efficiencies of
1 without loss of generality. See [11, Appendix A] for the
derivation.

The approximation by Kraus in [31] can be motivated from
the concept of beam solid angle for antenna patterns with one
narrow major lobe [29, Ch. 2]. Tai and Pereira consider the case
of broadside arrays of short dipoles and an arithmetic mean of
two perpendicular planes of the farzone electric field, though
their result can extend well to any directional single lobe
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antenna pattern [32]. McDonald creates his approximation for
omnidirectional antennas based on broadside collinear arrays
with a radiation pattern based on

These two approximations well-model a wide class of
antenna patterns despite limitations of symmetry and no side
lobes. Furthermore, the approximations provide closed-form
expressions that can be analyzed.

C. RF Channel Model

This paper re-uses the channel model in [12], which provides
a thorough discussion on the model details. Here we highlight
the essential points. The channel incorporates environmental
aspects such as large-scale shadowing and smallscale fading to

TABLE 1

APPROXIMATIONS OF THE MAXIMUM GAIN VALUE go(W , 9)
Label  Author go(¥, ©) Notes
A Kraus é—% directional single lobe
B Tai & Pereira w—“g%z— ) directional single lobe
C [29] 2(m+ 1), m= s . directional single, symmetric lobe; derived from (3)

In (cm ( %) )

D McDonald 9_‘—3?4’;%},% omnidirectional single lobe
E Pozar —172.4 4+ 191,/0.818 4+ w/(1800)  omnidirectional single lobe
F [29] ol a ——l—j'“(l’ idirectional singl tric lobe; derived from (4)

— , m= omnidirectional single, symmetric lobe; derived from

Vil (—2|—1 { -a}) In ((;DR(%’-) ¢
(a) cos™O (b) sire" O determine the power received by a sensor from an emitter. From

Fig. 5. Illustration of the radiation intensities given by (3) and (4).

the sinc function [33]. Pozar uses curve-fitting on the common
omnidirectional radiation pattern in (4) to obtain his result [34].

In Section IV, we compare the various combinations of
shapes and forms of , 9) in Table I to verify which is the best
model for this paper. For ease of exposition, the remainder of
the paper will associate a "directional antenna" with the
approximation given by the spherical cap and gain value C from
Table I. Likewise, an "omnidirectional antenna" will be
approximated by the spherical quadrilateral and gain F for
goop, e).

Mathematically, the simplified gain function of a directional
antenna is

in(})

feoisy + 1 R -1'-P€- Ddir
Ydir(p, R, t) —(5) 4

’ else
where Ddir is the set given by
Ru { (r, 9) e IR®* r 1, g/' e [0, 2K), o [0, 9/2]}.

Similarly, the simplified gain function of an omnidirectional

antenna is gomni (p, R, t)

(o)

ln(COSqZ- g )
— o wd) Y T meen € Domnt
ﬁ 2 ln(cos q‘-re ) &1
0, else

where ['(z) £ [5° t* et dt and Dopp; is

{(’”"“9) eR*:r=1,9€0,2n),0¢ [r§9= “EG]}'

a system perspective, the channel can incorporate the emitter
and sensor antenna gains. For ease and wide-applicability, we
use the approximation given by the simplified path loss model
in [35, eq, (228)] and add a fading variable. Let us briefly define
some notation. Let pi be the power received by sensor j from
emitter i. Let lIxt€ — xjll denote the Euclidean distance
between the ith emitter and jth sensor. Let a 2 2 be the path loss
exponent determining the rate of power attenuation. Let hij be
from a family of independent and identically distributed (iid)
random variables to account for fading (or the product of fading
and shadowing) between the ith emitter and jth sensor. In
general, we have pi hog; (x R 8x °x; , Rf,x; K lIxt $11 -a pf,
(M

where K incorporates other aspects of signal attenuation and
antenna characteristics. A common form of K —(c/4Tfm) 21,
where is a reference distance and c is the speed of light [35],
[36]. If a 2 and hij 1, this choice of K results in Friis equation
for free space.

In practice, the jth sensor computes a time-averaged power
within a given bandwidth, which is modeled by

ne
p; £ pj+ No,
i=1

where No vkB TB is the thermal noise in the receiver. Without
a priori knowledge of n ¢, interpretations on p? alone can be
complicated if n *> 1. Consequently, we consider scenarios in
which the sensors have the capabilities to separate emitter
signals and powers via low-level signal processing (see [12,
Sec. [1-B] for more details). We also note that the receiver chain
will introduce additional noise, which is accounted for by the
sensor's noise figure v. As a result, we use the sensor MDS T S
from (1) when evaluating whether the sensor can distinguish
any emitter signal from noise.
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D. Problem Statement

This paper focuses on the probability of emitter detection as
a key metric to aid the design of a SM system. Let us formally
define emitter detection before stating the problem.

Definition 2 (Emitter Detection): The jth sensor detects the
ith emitter if pi T S. Further, the sensor network detects the ith
emitter if at least one sensor detects the emitter. Let Ei denote
the ith emitter's detection by the sensor network.
Mathematically,

{ph27 ®)

Remark 2: In the case of a single emitter, we locate the
emitter at the origin without loss of generality because the
sensor locations form a stationary PPP. To simplify notation for
this case, we drop the index and denote the detection event as
E. If the emitter locations form an independent stationarity
point process, the emitter at the origin is the typical emitter [27].

Ultimately, we want to find Pr(E) as a function of the system
parameters and use the expression to find optimal parameter
values, particularly for the sensor design. Additionally, we want
to see how system parameters affect the sensor density
necessary to achieve an arbitrary confidence of emitter
detection.

1. RESULTS FOR SINGLE EMITTER

A. General Result

Proposition I: Let be a stationary PPP of intensity Aand
(Mx)xe+ a family of iid non-negative random variables
(marks), independent of with finite moment E[Mx3/?]. For

> (), the random variable

N2 1M~ > 9]
xed

is Poisson with mean

_ A4 5
EIN]~ 377 oE[M?],
where M is distributed like all NIX and 6 3/0. In particular,
Pr(N > 0) 1-

=1 —exp( EMD). (9

Proof: The proof is analogous to that given in [12], but with
6 3/0 and with integration over IR3.

Remark 3: Let Cd be the volume of the unit ball in d
dimensions [27, Eq. (2.7)]:

Cd _ .

r(d2+ 1)

Particular to this paper, 03 T. To relate this proposition to that
in [12], let 6 d/a and E[N] =°E[M ] for d 2 and 3.

Remark 4: Without loss of generality, E[M] can be

normalized to 1 b' setting M' Mx/E[M] and 1/E[M]. Because

E[M ] E[M] 1, randomness in the channel (due to fading,

(10)

shadowing, or randomly oriented directional antennas) never
increases detection probability.

In the context of our problem statement, N is the number of
sensors that detect the emitter at the origin. Consequently, the
probability of emitter detection Pr(E) Pr(N > 0), which is given

by (9).

B. Applications

Let be the ratio of the gain function's solid angle to a sphere's
solid angle (4T steradians). For a spherical cap and
quadrilateral, = sin? (9/4) and (W /(27T)) sin(9/2), respectively.
Without loss of generality, let K 1 in the equations below (p ©
can be replaced with t€p ©).

1) Baseline (Isotropic Emitter and Sensors, No Fading):
Isotropy means the gain equals I in all directions. Consequently,
is the ratio ,/p ¢. With no fading, M 1. The result is

Pr(E) 1 _exp(—)«""c;;(pe/rs)‘i).

2) Non-Isotropic Emitter, No Fading: The emitter transmits
in the solid angle fraction ff. The result is an independent
thinning of the PPP by Additionally, there is a power gain of g
¢. Therefore,

Pr(E) = I _exp(—)\sne%(yepe/Ts)‘s)-

3) Non-isotropic Sensors, No Fading: In this case, the sensor
antenna receives in the solid angle fraction The directionality
can be taken to be the fading distribution. In this case, the marks
NIX are Bernoulli random variables with mean Therefore, E[M
®] There is also a power gain of g *. Thus,

Pr(E) 1 _EXD(—AS?}SCz(ygpe/TSJE)-

Note that the effect of sensor directionality has the same form
as emitter directionality.

4) Non-Isotropic Emitter and Sensors, No Fading: We
combine the previous two results to obtain

_\8_€_8 e 5 €/ _85\0
Pr(E) =1 —exp A" es(g g p"/T7) )
5) Non-Isotropic Emitter With Fading: In this case, the iid
marks Mx represent fading. The effect is independent thinning

of the PPP by the 6-th moment of M. If Rayleigh fading IS
present, where Mx are iid exponential with mean 1, then

E[M?%] = +5). Thus,

Pr(E) 1 —exp C3F(1 -f-6)(¢°p®

Remark 5: The fading term can be considered a power gain
['(1+6) ' /%, which has a lower bound given by 1/2+(5/2. To
(over-)compensate for the fading loss, the emitter gain can be
increased by 2/(1 + ).

Remark 6: If both shadowing and fading are present, Mxcan
be the product of both random variables.

6) Non-Isotropic Emitter and Sensors With Fading: Here the
marks combine the effects of both fading and sensor
directionality. Let bx denote the Bernoulli random variables for
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directional sensors and hx denote the iid fading random
variables. Thus, Mx bxhx and E[M?] rtE[h® ]. The result is

8 €. 8 817 € 8 e _8\0
Pr(E) 1 _exp(—/\ n°n° 3E[R°)(¢°9"p" /77) ).(11)

We note that Pr(E) only depends on the ratio w £¢g ¢ g5 np%/T S
. Therefore, (11) can be compactly written as Pr(E) = 1 —
exp(—ASn°n® 3 E[h%|w?).

To find the average sensor density required for an arbitrary
confidence of detection, p, we substitute for Pr(E) and solve for
AS:

In(1/(1- (nerd3BlR°1’). (12

7) Unknown Emitter Gain: As noted in [12], the emitter gain
may not always be known. However, Prop. I only requires the
statistics of the emitter gain to be known. In particular, let Mx
bxhxg ¢, where g ©is now a random variable. The variables bx
and hx account for sensor directionality and fading, as
described previously. We find E[M®] bhg ) ®] = (hg® )°], which

is substituted s s 5

into (9) for >0t E[(hg®)°] =E[R°]E[(9°)°], and we Raye
Pr(E). If h and )

g e are exp(-XnERIEL"))(o*p /r*)°).
independent,

Pr(E) 1 —
(13)

Recall from Remark 4 that the additional randomness from an
unknown emitter gain never increases Pr(E). Finally, note that
for (13) to apply in Section VI for multiple emitters, we
additionally require that the g/ are iid.

C. Other Point Processes

The PPP exhibits complete spatial randomness [27, Sec. 3.1].
Other point processes can exhibit attraction, resulting in
clusters. In the other direction, point processes can exhibit
repulsion between points, resulting in a more regular pattern.
Consequently, the PPP is an interesting cross-over point that
can act as a bound for other point processes.

1)  Clustered Point Processes: Given the manner in which
people naturally tend to congregate, crowdsourcing the sensor
deployment could result in clustering. A sensor network
whose sensor locations form a cluster point process will have a
detection probability no better than that of a PPP. Intuitively,
overlap among sensor coverage regions increases as clustering
increases, and the detection probability consequently decreases.
In the other direction, as clustering decreases for, e.g., a
Neyman-Scott cluster process whose clusters are translated to a
parent PPP [27, Def. 3.4], the point process approaches a PPP.
Therefore, the performance of the PPP is an upper bound on the
performance of a cluster point process. Since the expression for
detection probability of a cluster process would be unwieldy,
the bound provided by the PPP is a useful result.

In a practical crowdsourcing scenario, not all sensors will
participate simultaneously. Under certain circumstances, an

independent thinning of a cluster point process will be close to
a PPP [37, Sec. 3]. Hence, the PPP model is still reasonable for
a crowdsourced sensor deployment.

2)  More Regular Point Processes: More regular point
processes, such as soft-core and hard-core processes, could
resemble sensors spaced between floors within a building or
even spaced between separate buildings. Such point processes
have a higher detection probability than the PPP for the same
density. Intuitively, since the points of a regular point process
repel from each other, the sensor coverage regions overlap less.
In particular, for isotropic antennas with no fading, the face-
centered cubic (FCC) lattice (or the hexagonal close packing
lattice) performs the best and bounds the performance of any
other point process [38]. For this lattice, let the spacing between
sensors be a. The density is = y/d/a’. In the case of no fading
with an isotropic emitter and sensors, the sensing range is p =
from (7). If a> 2p, the detection probability is at most cegp® and
if a the detection probability can reach I. Since 2 1 —e ™ &, the
performance of the FCC lattice indeed exceeds that of the PPP.
The FCC's detection probability in more general cases is
explored in Appendix C.

If it is possible to design the spatial deployment of the
sensors, the FCC lattice is the obvious choice. In practice, the
deployment of sensors would inevitably vary from a targeted
distribution. If the points of a lattice are randomly perturbed,
the result approaches a PPP if points are displaced a large
enough distance [39, Sec. II.C]. Thus, the PPP result is still
quite relevant even if the sensor deployment can be designed.

3)  Inhomogeneous PPP: For PPPs, the density could be
location dependent, denoted (x). For instance, the density could
vary with altitude. For inhomogeneous densities, Prop. I would
need the following modifications.

Let {x e : Mx > IlIxI1 ?} be the independently thinned version
of from Prop. I. Define g(x) as the probability of retaining the
point from in at location x. In this case, g(x) EM [I[Mx >
IlIx11&]] FM(711x1l © ), where FM is the complementary
cumulative distribution function of M. If is an inhomogeneous
PPP with density N remains a Poisson random variable, but
now with mean

EIN] Mt) d tf(x)g(x) dx,
where f (x) is a spatial probability distribution related to A(X).
In particular, if we condition to have n points in a finite region
R (resulting in a binomial point process), those n points are
distributed in R according to f (x). The proof for (14) is found
by substituting an inhomogeneous density within the proof
given in [27, Sec. 2.7.3].

Since N is Poisson, we still have Pr(N > 0) 1 _exp(—E[N])
as in Prop. 1, but with no further simplification. The result will
be particular to the forms of ,\(x), f(x), and FM and will likely
require numeric computation.

D. Optimal HPBWs
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The antenna design ofthe sensor can be optimized for
detection probability. For either emitter or sensor antenna, note
that

B - - el e i et s Wi e e

*® B
aa]
o
= — — —Directional
.S T Omnidirectional
= 2
&
=
[
T
E s
g 4
-
o,
o

2 4 6 8 10

Path loss exponent, a

Fig. 6. The optimal elevation HPBW e* for the probability of emitter detection

Pr(E) as a function of path loss exponent a. The optimal &*applies to both
emitters and sensors (i.e., = = e*).

argmaxPr(E) argmax og .

We find the solution by taking the respective partial derivative
and setting the result to zero: O andny~ =

O. For an omnidirectional antenna, 2n by definition (and by
inspection of for spherical quadrilaterals). For a directional
antenna, by symmetry of the spherical cap, so We use a numeric
root solver to find the zeros of and numerically confirm that the
solution is a maximum.

See Appendix A for expressions of the derivatives of
directional and omnidirectional antennas. Since 9* depends on
a, Fig. 6 plots 9* versus a. We offer some observations. First,
the optimal HPBW 9* monotonically increases with a.
Therefore, in the limit as a 00, 9* approaches its maximum
value of T. Qualitatively, as the propagation environment
worsens, the optimal antenna becomes more isotropic.

*
With the optimal HPBWs, we compare the optimal (E) to
determine in which scenarios we should use directional or
omnidirectional antennas for the sensors. If all other system
parameters are equal, comparing the optimal antenna factor
n* (g* between directional and omnidirectional antennas
suffices. Here and g* are evaluated with and 9*. See Fig. 7.

Directional sensors have a higher (E) for low values of a,
while omnidirectional sensors have a higher (E) for higher
values of a. In particular, the two lines intersect at a 3.22, which

0.8
w 0.7
— — —Directional
Omnidirectional
0.6 ' '
1
— A
Sl
S ‘\
2 \\
[ \
.
18] \\
E‘ .
< b ¥ 3
0.5 5L
— o~ 3.22 ‘“"'-...____
0.4
0.3
2 4 6 8

Path loss exponent, a
can be found numerically from the expression Odir(gdir) omm
(g*omm.) ®. In other words, if a < 3.22, directional sensors with
optimal 1--1PBWs given by Fig. 6 result in a higher Pr(E) than
omnidirectional sensors. On the other hand, a higher probability
of detection is achieved using omnidirectional sensors if a >
3.22.

Fig. 7. The antenna factor as a function of path loss exponent a for both
directional and omnidirectional antennas with optimal HPBW e* from Fig. 6.

The intuition for this conclusion is in the trade-off between
the sensor's angle-of-view and sensing range, which are
inherently linked to the antenna directivity and gain,
respectively. In general, if the sensor's angle-of-view decreases,
the range increases. However, the increase in range is
influenced by the path loss exponent a. Let us consider the
extreme cases. If the path loss exponent is very high (a + 00),
any increase in gain is quickly lost to path loss attenuation, and
the resulting increase in range is marginal. Consequently, the
sensor covers a larger area by having a wider angle-of-view. On
the other extreme, for very low a, any increase in range is
undeterred by the path loss attenuation. Consequently, it is
worthwhile to trade-off angle-of-view to obtain a larger range.
Between these extremes, the trade-off is equivalent at a 3.22.

The degree to which directional antennas improve Pr(E) if a
< 3.22 depends on the other system parameters. Let C = and D
— (g%€p ©/T 5). Consider the case of Rayleigh fading for
which h is exponential with mean 1 and E[h®] = + 6). Under
these conditions,

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on July 13,2022 at 18:49:24 UTC from IEEE Xplore
Restrictions apply



772 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 8, NO. 2, JUNE 2022

Pr(E) 1

Fig. 8 plots the difference . as a func-
tion of D and a (with C 1) and as a function of C and a (with D
1). The dotted line gives the value of D or C, respectively, at
which [Pr*(€) gir— Pr* (E) . I is largest for a given a. See
Appendix B for details.

We observe that at particular values of D and C, a directional
antenna can improve Pr*(E) by about 7.5%. However, other
choices of D and C result in negligible improvement in Pr* (E).
Therefore, while directional antennas are mathematically
optimal if a < 3.22, in practice omnidirectional antennas could
perform nearly as well depending on D and
C. From a design perspective, if D and C are such that

Pre (E)dir - Pre (E)omm 102

0.05
101
100
-0.05
10-1
-0.1
10-2

(a)
Pr*(€)aie — Pr* (&) omni

0.05

-0.05

-0.1

Path loss exponent, a

102
101
co 10°
10-1
10-2
3 4 5 6 7
Path loss exponent, a
(b)

Fig. 8. The difference Pr* (E)dir — omme (a) as a function of path loss
exponent a and system constant D, and (b) as a function of a and system
constant C.

Pr*(E)dir - (E)omm. is low for a < 3.22, an omnidirectional
antenna could be a more robust design as it is optimal for a 3.22
and only marginally suboptimal if a S 3.22. This suggests the
use of omnidirectional antennas for scenarios in which a is
expected to vary.

IV. MODEL VERIFICATION FOR SINGLE EMITTER

With several approaches to approximate the gain function,
we want to validate the model used in this paper, which includes
both a shape and value approximation. To evaluate the different
approaches, we use Pr(E) because it is the key metric in this
work and depends on both the gain value and shape. Because
we want the approximations that are most accurate, we compare
the gain approximations to representative real antennas. In
particular, we use the finite length dipole as our comparison for
omnidirectional antennas. Similarly, for directional antennas,
we use the representative patch antenna and horn antenna as our
benchmarks.

Our approach to determine Pr(E) via simulation follows.
First, we simulate random deployments of sensors and the
emitter. The emitter is located at the origin, and sensor locations
are randomly generated according to a homogeneous PPP for
the finite region. The 3D region is large enough to allow for all
possible sensor locations that could detect the emitter. We
additionally increase the region size further to prevent edge
effects when simulating the PPP within the finite region. The
emitter and sensor orientations are uniformly random.

Second, we simulate an RF environment governed by (7).
Without loss of generality, the simulations do not include
fading coefficients (i.e., hj 1). With closed-form gain functions
for the real antennas, we can numerically evaluate the gain, g(p,
R, t), and calculate p;. We can then evaluate the event E. Using
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the Monte Carlo method, we generate many realizations of
random deployments and estimate Pr(E) as the fraction of trials
in which E occurred.

Across simulated trials, the following conditions hold. The
emitter antenna remains the same, but the orientation is always
random. The emitter and sensors share the same type of
antenna. For instance, if the emitter uses a finite length dipole,
the sensors do, as well, though the lengths may be different.
Again, if the emitter's antenna is approximated by gain A with
the spherical quadrilateral shape, the sensors' antennas are, as
well, but with potentially different HPBWs. This design is not
necessary to show which approximation is most accurate
compared to a real antenna. However, to limit numerous
possible combinations, we selected that the sensors and emitter
have the same type of antenna to emphasize the effect on Pr(E).

A. Finite Length Dipole

For the finite length dipole, we use the far-field expressions
for the normalized radiation intensity given in [29, eq. (4-64)]:

2
% cos 9) — cos(%)

sin f

U0, ) = cos (

1

where k = 2m/A is the radian spatial frequency, commonly
called the wave number, and I is the length of the dipole,
commonly given as in terms of the wavelength A such that kl
does not depend on A. With [29, Eq. (2-21)], we can determine
the gain of the finite length dipole and its HPBW for a given
length 1. A detailed derivation to find a closed-form expression
for the gain is given in [29, Sec. 4.5.4].

The parameters for the simulation of omnidirectional
antennas are in Table Il. We vary the length of the dipole for
the sensor, which consequently varies the elevation HPBW a®.
The results comparing the finite length dipole to the
approximations of the gain function are given in Fig. 9.

We offer a few brief observations. First, if we simulate the
gain pattern resulting from (4), the result is indistinguishable
from the finite length dipole. This could be useful for future
simulations and comparisons because (4) is simpler to analyze
and simulate. Second, the gain approximations with results
closest to those of the real antenna are gains A and F from Table
I. Consequently, our analyses in this work and [12] focus on

those particular gain value approximations. We also
TABLE 11
PARAMETERS FOR SIMULATION OF FINITE LENGTH DIPOLE

Parameter Value

sensor density, 0.016 sensors/m
sensor MDS, TS -110 dBm
emitter power, p° -60 dBm
operating frequency, f 1 GHz

emitter elevation HPBW, 0.5743 rad

path loss exponent, a 3

far field distance, rq 2(1.25A)2/A m

K (c/(4m fro))*rg
dipole length, [ [0.01A, 1.24A]
1-
memmm Finite Length Dipole
swssminn [ (f), ) = sin™ f
el Gain A, Quad.
0.8} Gain B, Quad.
Gain D, Quad.
e (Gain B, Quad.
0.6 Gain F, Quad.
o~ i A-J_ﬁ___:‘ ==
e
—
Ay
04}
0.2}
0 L L I
/8 /4 3 /8 L 2

field distance, ro

Sensor Half-power Beamwidth, e (rad)

Fig. 9. The simulated Pr(E) for a finite length dipole and for the radiation
intensity sin™ 0 given in (4). The closed form expressions of Pr(E) for the other
approximations in Table I with a spherical quadrilateral shape are provided for
comparison.

observe a large gap between the results of the finite length
dipole and those of the approximations. The gap indicates the
conservative approach in simplifying the gain function. If we
were to determine a required sensor density for a given Pr(E),
the results indicate that our models produce upper bounds on
the sensor density. In particular, let Pr(E) denote the true
probability of detection with a real antenna, while Pr(E) denotes
the probability of detection given by our model. Since Pr(E) >
Pr(E), the sensor density predicted by Pr(E) is much larger than
it needs to be to obtain an equivalent value of Pr(E). In other
words, the expressions for sensor density in Section Il and [12]
are upper bounds on the true required sensor density.

B. Patch Antenna

For the microstrip patch antenna, we use the cavity model for
a closed form expression of the radiation intensity U (O, V) [29,
Sec. 14.2.2]. In particular, a rectangular patch antenna with
width W, length L, and height H is modeled as two radiating

slots with a dominant TMZ mode. The
TABLE 111
PARAMETERS FOR SIMULATION OF DIRECTIONAL PATCH ANTENNA

Value
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sensor density, sensor 0.1 sensors/m

MDS, TS emitter power, p° -110 dBm
operating frequency, f .60 dBm
emitter elevation HPBW, 1
emitter azimuth HPBW, w*® GHz
path loss exponent, a far 1.34 rad
field distance, ro L63 rad
3
antenna height, H dielectric 2 (L2 i sz) /A m
constant of substrate,
(A/(4rro)) r&
(0.1A, 0.5A]
2.2
TABLE IV
PARAMETERS FOR SIMULATION OF DIRECTIONAL PATCH ANTENNA
Parameter Value
sensor density, sensor MDS, 0.04 sensors/m
emitter power, p° operating -110 dBm
frequency, f emitter elevation
HPBW, ee emitter azimuth -60 dBm
HPBW, w ¢ path loss 1 GHz
exponent, a far field distance, 1.77 rad
1.51 rad
horn waveguide width, a hom 3
waveguide height, b horn flare width 2(L2 +vv2)/Am
and height. al and bl horn altitude .
length, PI and 22 (A/(4Trro)) 13
0.25A m
0.25A m
[0.25A, 0.5Al m
6A m
normalized radiation pattern is given by
. ,sinX sinZ kLe 2 —sin
= |sinf——— cos .
X Z O sin
= —sinf cos 2
X
2
Z——CO0SO0,2

where Le is the effective length of the patch antenna given by
[29, eq. (14-3)]. The length and width of the patch antenna are
determined via the procedure outlined in [29, Sec. 14.2.1.C] for
the substrate RT/duroid 5880, a given height H, and a desired
operating frequency of 1 GHz. Again, with [29, eq. (2-21)], we
can derive a closed form expression for the gain function.

To simulate the rectangular patch antenna, we use the
parameters in Table IV. We vary the sensor's patch antenna
height H from 0.1A to 0.5A and find the antenna width W and
effective length Le from the procedure in [29, Sec. 14.2.1.C] to
achieve efficient antennas that could be used in practice. The
changes in antenna geometry result in different antenna patterns
and HPBWs. We plot Pr(E) against the resulting HPBWs in Fig.
10. Note that for our patch antenna design, the elevation HPBW
and the azimuth HPBW are physically related and cannot be
varied independently. Consequently, we show and the
corresponding on separate axes. The gain approximations from
Table I are based on the same HPBWs as the patch antenna.
Note that the symmetric spherical cap shape uses the 1--IPBW
to make the approximation conservative because < here. We
also simulate the antenna pattern resulting from (3).

. . s -
09r
----- Rect. Patch
[re— U(B’ (‘{J) = cos™ f
08f —d—Gain A, Quad.
= A =Gain A, Cap
0.7t Ga.l:n B, Quad.
Gain B, Cap
8 = » =Gain C, Cap
i L
A e e A "
E -l m s - - ----- —-=
08t == === ===
04r
L T I . SO -
0;;" R . A-
i | |
’ 9 /20 w2 11w /20
Sensor Half-power Beamwidth, ©° (rad)
L i L i
0.50T 0.57vr 0.65T

Sensor Half-power Beamwidth, v *(rad)

Fig. 10. The simulated Pr(E) for a rectangular patch antenna and for the
radiation intensity cos™ O given in (3). The closed form expressions of Pr(E)
for the other approximations of directional antennas in Table I are provided for
comparison.

-

M
-~

(a) Pyramidal horn an-

(b) Side view

(c) Top view

Fig. 11. The geometry of the pyramidal horn antenna, reproduced from [29,
Fig. 13.18].

We offer the following observations on the results in Fig. 10.
The simulation of (3) overestimates Pr(E) for the patch antenna
but is close in value. The closest analytic lower bound is that
resulting from the spherical quadrilateral shape with gain A
from Table 1. Based on the trends of the plotted lines, though,
the spherical cap shape with gain C could be a tighter lower
bound if larger HPBWs were considered.

C. Horn Antenna

We model the pyramidal horn antenna as outlined in [29, Sec.
13.4]. Fig. 11 shows the geometry of the antenna, matching the
notation of [29]. The electric field equations can be found in
[29, eq. (13-48)]. After being appropriately scaled and squared
[29, eq. (2-12a)], the electric field equations give rise to the
normalized radiation intensity U(O, V). For brevity, we omit
the full expression and refer the reader to [29, eq. (13-48)], but
we note the large complexity of the expression and the frequent
occurrence of Fresnel integrals. This indicates that despite
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having a closed form expression, the gain of the pyramidal horn
antenna is expensive to evaluate.

0.91

=== Horn Antenna

0.8 |=m=e==U(8,1) = cos™ @ (¥)
—d—Gain A, Quad.

07k mnbem Gain A, Cap(¥)

: Gain B, Quad.

3 Gain B, Cap(¥)
0.6 |--w—Gain C, Cap(¥)

3k

i
. = --‘-d-_-JT__-d.:‘_'_.:-_--: & A
0.4} e i
o.ﬁ.A‘:A_;:‘A
;i-
o 0.597 0.62 0.657

Sensor Half~-power Beamwidth, ©* (rad)

0.5Im 0.557r 0.607r

Sensor Half-power Beamwidth, v *(rad)

Fig. 12. The simulated Pr(E) for a horn antenna and for the radiation intensity
cos™ O given in (3). The closed form expressions of Pr(E) for the other
approximations of directional antennas in Table I are provided for companson.

For the simulation of the directional horn antenna, we use the
parameters in Table IV. We vary the sensor's horn antenna flare
width UI and height bl simultaneously from 0.25A to 0.5A.
Both the waveguide width a and height b are held constant at
0.25A, and PI P2 6A [29, Sec. 13.4]. The changes in the antenna
geometry result in different antenna patterns and HPBWs.

We plot Pr(E) against the resulting 1--1PBWs in Fig. 12.
Note that for our design of the horn antenna, the elevation
HPBW and the azimuth HPBW are physically related and
cannot be varied independently. Consequently, we show ©%
and the corresponding on the bottom axis. The gain
approximations from Table I are based on the same HPBWs as
the horn antenna. To make the approximation conservative, the
symmetric spherical cap shape uses the HPBW because ¥* <
for the horn antenna under consideration. We also simulate (3).

We offer the following observations on the results in Fig. 12.
The simulation of (3) closely approximates Pr(E) for the horn
antenna. The other approximations significantly underestimate
Pr(E). The closest closed-form approximation to the horn
antenna result is the spherical cap shape with gain C from Table
I. Nonetheless, trend extrapolation indicates that the spherical
quadrilateral shape with gain A would be a better
approximation for smaller HPBWs.

Ultimately, simulating the horn antenna is time consuming.
The simulation of (3) offers a very close approximation with far
less computation. For analytic lower bounds, the approximation
achieved from the spherical cap shape and gain

C is the tightest of those in this paper.
D. Conclusion

The results from Fig. 9 suggest that when performing our
analysis with closed-form expressions for omnidirectional
antennas in 3D, we should use the spherical quadrilateral shape
with gain F in Table I. Similarly, the results in Fig. 12 suggest
that we should use the spherical cap with gain C for directional
antennas. Note that gain F and C have inherently assumed
shapes of spherical quadrilateral and spherical cap,
respectively, so the value and shape models are consistent.

For analysis of closed-form expressions in two dimensions,
the shape of both the spherical cap and spherical quadrilateral
reduce to the azimuth HPBW W. Since the shape
approximations are equivalent in 2D, the accuracy of the gain
approximations reduces to the accuracy of go(W, 6). The results
in [12] inform us that the optimal antennas will be
omnidirectional ~with narrow elevation beamwidths.
Consequently, the results in Fig. 9 suggest the use of gain A for
two-dimensional analysis because gain A is more accurate for
lower 9 in omnidirectional antennas. Thus, we use gain A for
our two-dimensional analysis in [12].

V. FREQUENCY SENSITIVITY AND
MULTIPLE FREQUENCY BANDS

A derivation of the frequency sensitivity of Pr(E) is provided
in [I11, [12] for 2D scenarios. Reproducing the results for 3D is
straightforward with the small-angle and Binomial
approximations. We briefly discuss the results here for
completeness.

For a fixed antenna geometry, the HPBWs and are functions
of frequency. Similarly, K is often modeled as having a I/f 2
frequency dependence. In practice, we design the sensor
antennas for a target frequency, but after deployment, the
antennas cannot be modified. Consequently, the performance is
sensitive to emitter frequency. With no fading (h I), analysis
indicates that Pr(E) in (I I) and in (12) are not affected much if
Af/f is small.

Mathematically, let g denote the complement of E. Let us
consider a rectangular (or circular) aperture antenna modeled
with the Kraus approximation. If we perturb the frequency to f
+ Afand if IAf/f] 1/4, we obtain

(Pr(E) (15)

where (4 20)Af/f. Both the spherical cap and quadrilateral yield
this same result.

For example, if a sensor deployment achieves Pr(E) — .95
for a 3, and we allow no more than a 1 % relative change in
Pr(E), then Af/f can range from —0.035 to 0.029. If fis 1 GHz,
the frequency can vary —35 MHz to 29 MHz with no more than
a 1% change in performance.

Furthermore, the change in performance can be compensated
by adjusting the sensor density. In particular, to retain the same
performance for a frequency change Af, the new sensor density
+ should follow

(16)
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If Af<0, then <0, and if Af> 0, then A)X%> 0. In other words,
lower frequencies require fewer sensors. This point is helpful
in designing a sensor deployment for a frequency range fl to h.
In particular, the deployment should be designed for the highest
frequency h. For the lower bands, the performance will be better
than that of h, or fewer sensors would need to be active to
maintain the same performance.

VI. RESULTS FOR MULTIPLE EMITTERS

If we consider multiple emitters, the results are analogous to
those in [12, Sec. IV]. Consequently, we briefly write the main
results for completeness but refer the reader to [12] for details,
derivations, and applications.

Let there be n © arbitrarily located emitters in a finite region
R C IR®. Define multi-emitter detection by the sensor network
as the event D Ei. We lower bound the probability of multi-
emitter detection given n °as

Pr(DI 1—n‘exp (—/\SU“HH {;;,,IE[h'S]w'S)‘

(17)

Additionally, let n e {O I of undetected emitters. Given n °,
the average number of undetected emitters is

...,n%} denote the Rumber

T - D 41, 0
E[n“Ine]neexp( A'n°n' oaE[hlw ) (18)

If the emitter locations form an arbitrary stationary point
process with density Y, the conditioning in both expressions
can be removed by taking the expectation with respect to n ¢,
where E[n ¢] ,VIRI and IRI denotes the volume of R.

VII. CONCLUSION AND FUTURE WORK

While providing a beneficial baseline for design, the
twodimensional SM model in [12] does not provide a satisfying
design criterion for elevation HPBW, does not fully represent
realistic antenna orientations, and impractically constrains
emitter and sensor locations to be co-planar. To address these
issues, this paper extends the framework and results to three
dimensions. Optimal values of elevation HPBW were presented
in Fig. 6 as a function of path loss exponent, a. With optimal
HPBWs, we found that certain environments favor different
antennas. If a < 3.22, directional antennas are optimal for
emitter detection. Otherwise, omnidirectional antennas are
optimal. Nonetheless, the performance difference between
optimal and suboptimal antennas could be small as shown in
Fig. 8. Omnidirectional antennas were found to be a robust
choice for environments with varying a. Additionally, the three-
dimensional model allowed for a survey of various antenna gain
models. This paper evaluated these models against simulations
of real antenna patterns and verified the models used in this
paper and in [12]. Ultimately, this work re-enforced many of
the conclusions from [12] while providing additional insight
into optimal elevation HPBW and the effects of location and
orientation in three dimensions.

Future work should further investigate the use of
nonstationary point processes to model more diverse scenarios.

Additionally, the framework could be extended to consider
other data products of spectrum monitoring, such as emitter
localization and/or transmit power estimation. Further research
is needed to determine the system design modifications
required to achieve these more complex data products, as well.
APPENDIX A DERIVATION OF OPTIMAL HPBWs

For space considerations, we leave out the complete
derivation and present final expressions. For a directional
antenna,

g g In(1/2)

0™ = Ebm(e/z)(ln(cos@/m i
[l( In(1/2) . ) 3 In(1/2) sin2(9/4)]
2\ In(cos ©/2) @ In?(cos ©/2) cos(©/2) |

and for an omnidirectional antenna,
In(1/2) 3

1 F(2In<:0¢~;9 2)+?)

2 ~ In(1/2

VAT (rmiedrs + 1)

[i In(1/2) sin?(0/2)
2a In?(cos(©/2)) cos(©/2)

-£- COS(e2) »

) 3/0—=1

3/
6 —

where the digamma function
ad

PO) dz

We use a numeric root solver to find the zeros of these

derivatives and numerically confirm that the solution is a
maximum.

_T'()
I(z)’

In(T'(z))

APPENDIX B DERIVATION OF OPTIMAL C AND D

The dotted lines in Fig. 8 have closed-form expressions for
any arbitrary C or D, respectively. The expressions can
be found by solving 77 |Pr*(£)gir — Pr*(€)omnil = 0 and
55 [Pr* () gir — Pr*(€)gmni| = 0. The results are
l MNomni ggrnni lfé
* (air 93;r )
CT(1+9) ((Womniggmni) = (ndirggir))

In ( Nomni ng ni )
S ————omni/
* (ndir Gadir )

 DT(1 + 6)((Womnianni) — (Qidhin)

Intuitively, D* and C* indicate parameter values for which
the difference in performance between directional and
omnidirectional antennas is most significant. As Fig. 8
illustrates, other values of D and C diminish the difference in
performance between the two types of antennas.
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APPENDIX C DERIVATION OF Pr(E) FOR FCC
LATTICE

Let L C 123 denote the FCC lattice with a point at the origin,
0. Let BV denote the Voronoi cell for point v e L. For the FCC
lattice, all Voronoi cells are congruent rhombic dodecahedra.
Let denote the randomly shifted FCC lattice, ® ={veL :v+
U } , where U is uniformly distributed over Bo. Denote as the
number of points from in the region W C IR?. Since the all
points are translated by U e Bo, we know (b(Bv) 1, Y ve L.

Define Mx, -y, and N as in Prop. 1. Denote {x e & : Mx >
I1Ix11 ¥}, which has cardinality N. Since the DIX are iid, is an
independently thinned version of with probability of retaining
a point EM [lI[Mx >=FM(111x110)=

Given U = u, ® is nonrandom (& = L + u). Thus,
Pr(®'(By) = 1| U) = Fps(7||v +ul|%), and the complement
Pr(®'(By) = 0| U) = Fp(y||v + ul|%). Therefore,

Pr(N=0|U)=Pr m{d:"(Bv) = [)} | U
veL
=Pr[ [ {Mc<AIxI®}| U
xeL+u
= I FmGlx®).
XeL+u
Given U

The third line results from the iid Mx. Since Pr(E) - — Pr(N >
0) I — Pr(N = 0O), we have

Pr(E) = [ Prll PrN> 0 0)fu(u
S
IBOIJ B 11 Py (7]x]|*) du.(19)

0 xelL+u

The region Bo and its volume IBO I are determined by the
lattice spacing a and the rhombic dodecahedron geometry. M
and “are application specific with examples given in Section
[11-B. Unfortunately, (19) does not offer much insight or an easy
numeric approach to solve, except perhaps for some closedform
expressions of FM. The least cumbersome approach to estimate
Pr(E) would likely be simulated Monte Carlo trials for a given
a, a, -y, and FM.
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