

Technical Note

A Colorimetric Dip Strip Assay for Detection of Low Concentrations of Phosphate in Seawater

Hojat Heidari-Bafroui * , Amer Charbaji , Constantine Anagnostopoulos and Mohammad Faghri

Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA; charbaji@uri.edu (A.C.); anagnostopoulos@uri.edu (C.A.); faghrim@uri.edu (M.F.)

* Correspondence: h_heidari@uri.edu

Abstract: Nutrient pollution remains one of the greatest threats to water quality and imposes numerous public health and ecological concerns. Phosphate, the most common form of phosphorus, is one of the key nutrients necessary for plant growth. However, phosphate concentration in water should be carefully monitored for environmental protection requirements. Hence, an easy-to-use, field-deployable, and reliable device is needed to measure phosphate concentrations in the field. In this study, an inexpensive dip strip is developed for the detection of low concentrations of phosphate in water and seawater. In this device, ascorbic acid/antimony reagent was dried on blotting paper, which served as the detection zone, and was followed by a wet chemistry protocol using the molybdenum method. Ammonium molybdate and sulfuric acid were separately stored in liquid form to significantly improve the lifetime of the device and enhance the reproducibility of its performance. The device was tested with deionized water and Sargasso Sea seawater. The limits of detection and quantification for the optimized device using a desktop scanner were 0.134 ppm and 0.472 ppm for phosphate in water and 0.438 ppm and 1.961 ppm in seawater, respectively. The use of the portable infrared lightbox previously developed at our lab improved the limits of detection and quantification by a factor of three and were 0.156 ppm and 0.769 ppm for the Sargasso Sea seawater. The device's shelf life, storage conditions, and limit of detection are superior to what was previously reported for the paper-based phosphate detection devices.

Keywords: phosphate detection; paper-based device; molybdenum blue method; colorimetric assay

updates

check for

Citation: Heidari-Bafroui, H.; Charbaji, A.; Anagnostopoulos, C.; Faghri, M. A Colorimetric Dip Strip Assay for Detection of Low Concentrations of Phosphate in Seawater. *Sensors* **2021**, 21, 3125. https://doi.org/10.3390/s21093125

Academic Editors: Peter Kruse and Lorena Parra

Received: 1 April 2021 Accepted: 22 April 2021 Published: 30 April 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Phosphorus (P) plays a crucial role in the growth of marine life as an essential nutrient for living organisms. However, in an aqueous solution, a fully oxidized form of phosphorus, i.e., phosphate, takes a critical part in the eutrophication process. Phosphates are categorized into three forms: orthophosphates, condensed phosphates, and organic phosphates. In the monitoring of water quality, phosphates are commonly referred to as orthophosphates [1]. Excessive concentrations of phosphate due to the predominant usage of phosphate-based pesticides and fertilizers [2], along with intentional or accidental inappropriate human activities [3,4], are known to be harmful to environmental aquatic systems. The US Environmental Protection Agency (US EPA) has set the desired limit of 0.150 ppm or 150 parts-per-billion (ppb) for the total phosphate concentration in streams flowing into a lake or reservoir [5]. Thus, in order to preserve the quality of water within an acceptable range of phosphate, it is crucial to monitor the phosphate content in these environments. The traditional methods of quantitative water analysis use specialized and expensive equipment with highly qualified operators to analyze samples taken from sites and shipped to laboratories [6]. Therefore, the detection of low phosphate and other nutrient concentrations in the field, rapidly and effectively in complex aqueous matrixes, has become an exciting and active area of research [7–9].

Sensors 2021, 21, x FOR PEER REVIEW

A wide range of analytical methods have been developed for phosphate concentration in adjustive and construction in adjustive and construction in adjustive and construction in the property of the property o

H_3 FARM M_2 M_3 M_4 M_4

One recent method for good ucting inexpensive analysis of nutrients in water which irifield daplavable istispas polenand sagy-to-use by unskinski led aperatorizeti lizes papera vierd er nach eine Europe eine Bergeren der abasan deviressend the colorinatis energies of 1380 Through the colorinatis chapt inbased assays have been rised to the detection of absorbate in system as a property of the property of the control of the con avid te least man Tablan char et proper de le constructivo de la const (BETENS BURGLER AD TRANSPORT TRANSPORT TO THE PROPERTY OF THE tiand a stassium antimony all hartuite dissolved in a histogroup viation of sulfusions id the de Me Breauso et dan auto zechetik norm probeten unita etikisc goddina et 124 Juden ilifestatura ay ya a ah an ay a ah ah ay a a interpretaries no restrictive die control de la control de databilizentha maybahelan mayizasenta byezh diene ethylerne nelvent eta sinatasta databilizentha eta bila datab arienerover la celle cite setature devise incume estature de Etermentaria en celle cite de de la companya de la adation of the molyholomum coexection to proceed on the tenter of the tenter of the contract o representation of the control of the attable the finite and equalifications segretarized the ready educations are an artificial in a there dillected the principle of the control of the -cthoring by the transfer of the state of th radiornal initiates before attended and the control of the control tweet intellity of the cooler interiors of all forms to the slote frice terms find the lay Was have 110001. rt (272), 200 oliv prod 20 prinche politicist his soortseisingt pro literary of the production in the production of the felitation income transcriptor to deposit a management to the first participation of the property of the first participation of t -partable find the particular and the particular separation of the particular of the particular separation of the particular separat tisficient this thank the continues in a travel for the continues in a travel for a chemistristipaleaperthatechediciation dedores with establishment ideas of toposphotonical cweters and heavilater. Molyb date dissolved in deignized (D) water and sulfunicacid we're water and sea where more peate difference of the device some intercious in the construction was the construction of the constr stored stated to the area of the first in orden to detect low concentrations and inhospitate in stwater and suffuric acid were 2 Materials and Methods 12 Materials and Methods 2 Materials and Methods 2 stored separately to enhance the lifetime of the device. Ascorbic acid and antimony were 2.1 Solution Preparation 2.5 Water in Staige Methods paper strip.

A stock solution of phosphate (100 ppm) was freshly created by dissolving 0.0126 g 2.1. Solution Preparation 2.1. Solution Preparation of Preparation (Sigma-Aldrich, MO, USA) in 100 mL of ASTM Type 1 deighistory solution of phosphate (Sigma-Aldrich, MO, USA) in 100 mL of ASTM Type 1 deighistory of the phosphate (Sigma-Aldrich) by dissolving the phosphate (Sigma-Aldrich, MO, USA) in 100 mL of ASTM Type 1 deionized water (resistivity > 18 MΩ/cm, LabChem-LC267405). Then, by diluting the stock

taken from the Sargasso Sea was filtered through a $0.2~\mu m$ filter to remove any organic matter and was then used to evaluate the performance of the device in the presence of the ions usually found in seawater. The Sargasso Sea region is recognized as a region with low nutrient content [35].

2.2. Reagents

All chemicals are analytical reagent grade and were obtained from Sigma-Aldrich (Saint Louis, MO, USA). Each glassware and vial was first washed with a phosphate-free detergent and then washed with 1 M hydrochloric acid and rinsed with DI water three times. The development of the molybdenum blue complex and its stability mainly depends on [H⁺], ammonium molybdate, and ascorbic acid concentrations in the final solution. These concentrations have been thoroughly optimized, and the interference studies were reported in [29]. The concentrations in the final solution for the device presented in this study are the same with [29] except for the concentration of $[H^+]$, i.e., the concentration of sulfuric acid. Molybdenum reagent was prepared by dissolving 1.054 g ammonium hepta-molybdate tetrahydrate in 10 mL DI water and stored in a plastic dropper bottle. This solution is indefinitely stable in room conditions [36,37]. A total of 10 mL of 3.6 M sulfuric acid was created by first slowly adding 2.02 mL of 95% w/w sulfuric acid to 2.5 mL deionized water and then by adjusting the final volume of solution to 10 mL with DI water. This solution was stored in a glass dropper bottle, and its expiration date is two years, according to the supplier. The reducing reagent was prepared as a solution of 0.5 M ascorbic acid and 6 mM potassium antimony tartrate hydrate in DI water.

2.3. Device Preparation

Whatman blotting paper (WHA10547922-Whatman® gel blotting paper, Grade GB003) strips (10×100 mm) were fully saturated with the reducing reagent by immersing in the solution for 5 min. The strips were then allowed to air dry in room conditions for two hours. This paper grade was selected since it is made from pure cellulose with high absorbency and without any additives. The dried reducing reagent used on the detection zone was entirely stable on the strips for several months. A pair of backing cards, 60 mm wide by 100 mm long, each ~0.254 mm thick (MIBA-010, DCNovations, CA, USA), were utilized to stick the reducing strips on them so as to improve the strength and allow for easy handling of the strips by the operator. These backing cards are specifically produced for use in lateral flow devices. They have an acrylic pressure-sensitive and non-reactive adhesive that supports the devices built on them, as well as provides minimum interference [38]. Finally, a guillotine cutter was used to cut the dip strips with a width of 5 mm (Figure 1).

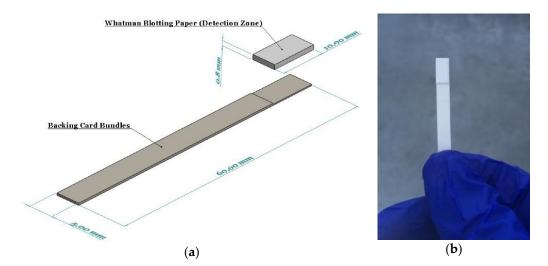


Figure 1. (a): Gurch matin showing the component and diversions of the slinstrip (16). The cospending with ascorbic acid and antimory dried to a show the continuous dried on the detection zone.

2.4. Device Operation and Analysis Procedure

To conduct the test, a small sample volume of 600 μL was mixed with 20 μL of sulfuric acid in a micro vial, and the mixture was properly shaken by hand for 5 s. 40 μL of

021. 21. x FOR PEER REVIEW

Figure 1: (a) A schematic showing the components and dimensions of the dip strip; (b) The assembled device with ascorbic acid and antimony dried on the detection zone:

3.4. Bevice Operation and Analysis Brocedure

2.4. Device Operation and Analysis Procedure volume of 600 HL was mixed with 20 HL of sulfurication of an interest significant the test, a small sample volume of 600 HL was mixed with 20 HL of sulfurication of an interest significant was added to the mixture was opposed which the formation of the move definition of the strip was then display into the solution of 20% and then keepin ions for one minute. The strip was then display into the solution of 20% and then keepin ions for one minute. The strip was then display into the solution of 20% and then keepin ions for one minute. The strip was then display in mage from the detection zone the calor was allowed to form for 30% and then we allowed to form for 30% and then the calor was allowed to form for 30% and then using a dealth of the formation of 30% and then using a dealth of the formation of 30% and the strip and allowed the strip is showing the steps redeal to detect by make the displaying the displaying the steps redeal to detect by make the strip of the first of the feet of the strip is another was subsequently measured by make the formation of the strip is another which the strip is another which the feet of the strip is another which the strip is another which the strip is procedured to the strip is another which the strip is procedured to the strip is another which the strip is procedured to the strip is another which the strip is procedured to the strip is another which the strip is procedured to the strip is procedured to the strip in the strip in the strip in the strip is another which the strip is procedured to the strip in the

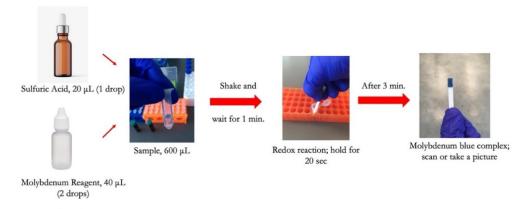
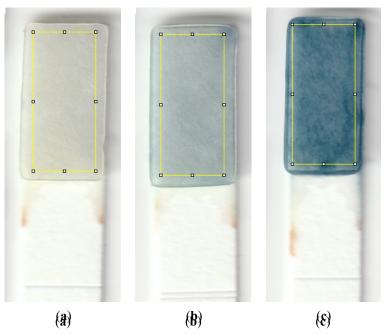



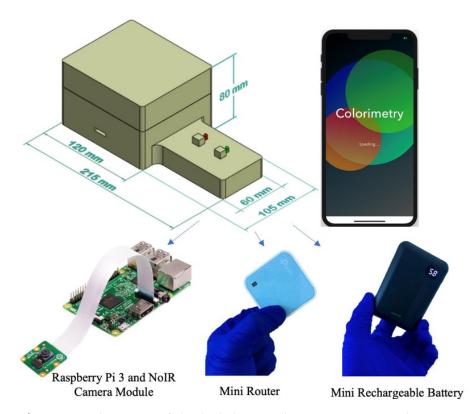
Figure 2. Illustration of phosphate detection procedure using the dip strip.

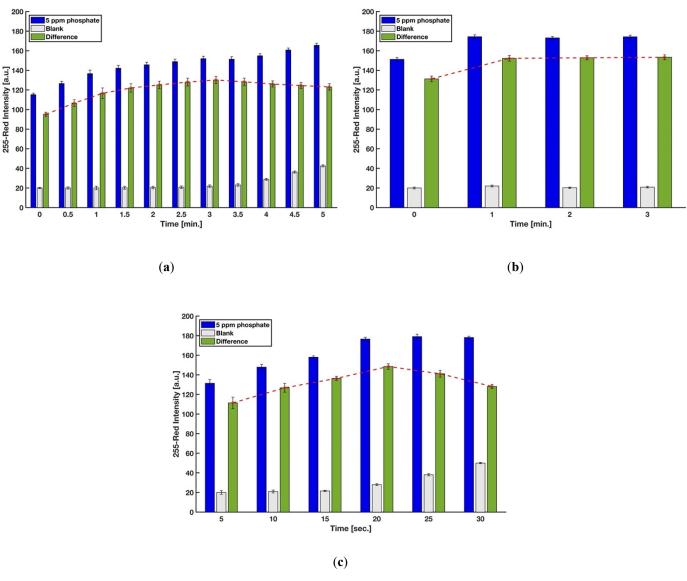
Figure 3. Detection zones showing the color that forms for a sample with a phosphate concentration of (a) 0.1 ppm, (b) 1 ppm, and (c) 10 ppm. The yellow rectangle is the region of interest utilized to quantify the color intensity using ImageJ; this area is 95 by 215 pixels, which is approximately 4 by 9 mm.

mately 4 by 9 mm.

2.5. Portable Infrared Lightbox

An inexpensive and portable lightbox was previously developed to in tection limits of paper-based devices for detecting phosphate [39]. This light the absorbance of the molybdenum blue reaction in the infrared region absorbance of the molybdenum blue reaction in the infrared opens of the controller. In the infrared region since the packable battery for the absorbance of the molybdenum blue reaction in the infrared region since the packable battery for the absorbance of this reaction occurs in the infrared a minitared region since the packable battery for the absorbance of this reaction occurs in the infrared zone of the spectrum. The lightbox includes in the infrared zone of the spectrum. The lightbox includes in the infrared zone of the spectrum. The lightbox includes in the infrared zone of the spectrum. The lightbox includes in the infrared zone of the spectrum. The lightbox includes in the infrared zone of the spectrum. The lightbox includes in the infrared zone of the spectrum. The lightbox includes interpretable in the infrared zone of the spectrum. The lightbox includes in the infrared zone of the spectrum. The lightbox includes in the infrared zone of the spectrum. The lightbox includes in the infrared zone of the spectrum. The lightbox includes in the infrared zone of the spectrum. The lightbox includes in the infrared zone of the spectrum. The lightbox includes in the lightbox includes in



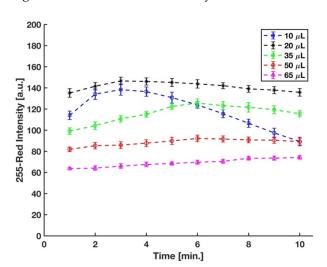

Figure An Sahamatic 1964 the lighthouse and its components that its wirelassly controlled to manufactor contest images in 64th in detection 20 ness in the infrared zone [39].

3. Results and Discussion

31. Results and Discussion ice

In this procedure, the timing for scanning, mixing of the molybdenum reagent with the action may be principle out the farth in the procedure results. The reaction time for generating the molybdenum blue complex on the latthis procedure, standiming prospondence intervine of the malybdenum the farthid sample; underly being the strip intervine news, predisely conreductive accurate results. The difference between the regime rating the molybdenum of ppin was the precise controlling indicator to eliminate the effect of the auto-reduction of the process controlling indicator to eliminate the effect of the auto-reduction of the process controlling indicator to eliminate the effect of the auto-reduction of the process controlling indicator to eliminate the effect of the auto-reduction of the process controlling indicator to eliminate the effect of the auto-reduction of the process controlling indicator to eliminate the effect of the auto-reduction of the process controlling indicator to eliminate the effect of the auto-reduction of the process of color intensity for each of the process after that. Hence, the reaction time of a min was chosen for further experiments. However, the analysis of the results for 2.5, 3.5 and the process controlling indicator to a be process the first of the end of the process of the results for 2.5 and the process of color intensity between the process of the results for 2.5 and t

the entire solution before the addition of the reducing agent. Lastly, six levels for the holding time, i.e., holding of the test strip into the micro vial filled by the sample, sulfuric acid, and molybdenum reagent, were considered in order to study the effect of this time, which is proportional to the amount of the phosphomolybdic acids (H₃PMo(VI)₁₂O₄₀) absorbed by blotting paper. Figure 5c implies that 20 s is the optimum time for having the highest amount of molybdenum blue complex on the detection zone after the test operation.


Higure 5. Effect of (a) reaction time, (b) the time for mixing the molybdianum reagent with the acidic sample, and (a) the time for dipping the strip into the mixture solution on color intensity, (n=3) and the error bases how the standard deviation).

3.2. Of hierinitimes fishefur heacids by blancum reagent was added to the mixture of sulfuric acid and sample and prior to dipping the strip was also evaluated in order to obtain the higher color formation on the detection zone. As indicated in Figure 5b, waiting for at least one minute improved the difference between red intensities of 5 and 0 ppm phosphate solutions. This short time is needed for the heteropoly acids to completely form in the entire solution before the addition of the reducing agent. Lastly, six levels for the holding time, i.e., holding of the test strip into the micro vial filled by the sample, sulfuric acid, and molybdenum reagent, were considered in order to study the effect of this time, which is proportional to the amount of the phosphomolybdic acids (H₃PMo(VI)₁₂O₄₀) absorbed by blotting paper. Figure 5c implies that 20 s is the optimum time for having the highest amount of molybdenum blue complex on the detection zone after the test operation.

3.2. Optimization of Sulfuric Acid's Volume

In the experimental setup, the sulfuric acid concentration was controlled by the volume of acid added to the micro vial. Acid concentration plays a significant role in the formation of the phosphomolybdenum blue, as well as its rate of formation. It has been well-established that a strong acid condition is needed to prevent auto-reduction of

In the experimental setup, the sulfuric acid concentration was controlled by the volume of acid added to the micro vial. Acid concentration plays a significant role in the formation of the phosphomolybdenum blue, as well as its rate of formation. It has been well-established that a strong acid condition is needed to prevent auto-reduction of molybdenum in the absence of phosphate [24]. Different strong acids, such as sulfuric acid, hydrochloric acid, perchloric acid, and nitric acid, have been used in the molybdenum blueolybubenturoriphtbspilbaundeurcpibasjalbaut3[2H]oWiffeneurustsfrungaariidkasukkensnaukturipaeid, felmedrachhasianeathdapeachdeniaracidadholeniarloracidcides(obadiziused aidtheanalfebd cautmahlue recnethed for phosphathostation 1/40dehluHoviev 124544 furicated has broke transly professed drivethismeteledesintentheidevellpprobleristatiele (oxiditangerelle) intenfetexy 451. Uther durien forcention.ct/phoeephoreclybelorusecycidd2he4boenethevollariclo/crosin theehydrachlaric the 44 the secretary of the mean that the second secretary is the second ofstudy is a literic registration of the continuous properties of the continuous continu plealy tian was determined an incremuling the aliference between the certain result of the formulex active in and another testion reason then exist by the First and Orpanisher Hoppins wate evannelsnattivadifferants, ulturicacid unlumest Wastarted exithe 20 who who who reid ta have acthe same concentration of the acid in the final solution with Ref. [29]; however, as shown in Figure 6, the maximum sensitivity was reached with 20 μL of sulfuric acid.

Figigate Effecte of old blue restabilities and in the translation are color to tensistive (#3 and the translation).

3.3. Role of Antimony in Phosphate Detection

The use of antimony (5b) in the molybdenum blue methodology was introduced by by Murphy and Riley in 1962 [20] to greatly accelerate the reduction process by ascorbic acid without a need for prolonged heating steps. They determined that the final solution without a need for prolonged heating steps. They determined that the final solution contains antimony and phosphorus (5b:P) in a 1:1 atomic ratio. However, it has long been shown that a 2:1 ratio of 5b:P is present in the reduced complex instead of a 1:1 shown that a 2:1 ratio of 5b:P is present in the reduced complex instead of a 1:1 ratio [21,23], while the stoichiometry of the reduced phosphoantimonylmolybdate species and and the reasons for the accelerating effect of antimony on the reduction kinetics have the reasons for the accelerating effect of antimony on the reduction kinetics have not completely been elucidated [24]. It was proposed that two Mo(V1) atoms may be substituted by two Sb(III) atoms in the Keggin structure, and the form of complex is by two Sb(III) atoms in the Keggin structure, and the form of complex is probably [PSb2Mono4]ⁿ⁻ 121; however, an electrospray ionization mass spectrometry (ESI-MS) study established that Mo is not replaced by Sb in the Keggin ion, and there is no observation for the presence of [PSb2Mono4]ⁿ⁻ in the final complex [46,47].

vation for the presence of Il-Sp2Mou.O. In the final complex 146.47 in contrast with other reports, a negative In a recent investigation by Divya et al. [45], in contrast with other reports, a negative effect of using antimony on the formation of molybdenum blue complex and its sensitivity effect of using antimony on the formation of molybdenum blue complex and its sensitivity for detection of phosphate was recorded. However, their 3 mL final reaction mixture was for detection of phosphate was recorded. However, their 3 mL final reaction mixture was for detection of phosphate was recorded. However, their 3 mL final reaction mixture was for detection of phosphate was recorded. However, their 3 mL final reaction mixture was for detection of phosphate was recorded. However, their 3 mL final reaction mixture was for detection of phosphate was recorded. However, their 3 mL final reaction mixture was for detection. However, the fate of the being heated for incubational for the final process can cause some problems, including increasing the effect of silicon interference [48] as well as degrading the final molybdenum blue product [49]. To this end, the impact of Sb in the detection of phosphate for the present device was evaluated with three replications by comparing the red intensity obtained from the detection zone of the device with antimony dried on blotting paper along with ascorbic acid and the device without antimony on the reduction reagent dried on the detection zone. As shown in Figure 7a, Sb is needed to have a rapid formation with

reduction. However, the heating process can cause some problems, including increasing the effect of silicon interference [48] as well as degrading the final molybdenum blue product [49]. To this end, the impact of Sb in the detection of phosphate for the present device was evaluated with three replications by comparing the red intensity obtained from the detection zone of the device with antimony dried on blotting paper along with ascorping acid and the device without antimony on the reduction reagent dried on the detection zone. As shown in Figure 7a, Sb is needed to have a rapid formation with an intense color of the molybdenum blue on the detection zone. In addition, in the previously reported partitions are delivered the probabilist were directly properly attentions and allowed in the probabilist with the probabilist and the probabilist with the probabilist and the probabilis menyiously reported paper-based devices for plassibility datestion (with 2 horizona y may be a mention). wdderd to the acidic malybren um ceasent i Therefore, the effect of dissolving an timony with undshdatering Alevater erimi xinsuwith askerbica cide and ening it as partio fit be reducing preagents, was a tindied by comparing the right of or product to smed, on the detection expire 95 th threative approaches produte statistically comparing figures its foreignether study of the control of the valtained by the type princed was considering the critical tryslue of 2,776 and the calculated (p-value of 3,776 and the calculated (p-value of 3,477 and the calculated (p-value of 3,477 and the calculated (p-value of 3,477 and the calculated of 5,477 and 5,477 was observed (p-value = 0.519, dr = 4). However, a liquid reagent consisting of dissolved date in DI water is not stable and is turned to turbid, presumably because of hydroxide S_0 with molybdate in DI water is not stable and is turned to turbid, presumably because of salts [24]. hydroxide salts [24].

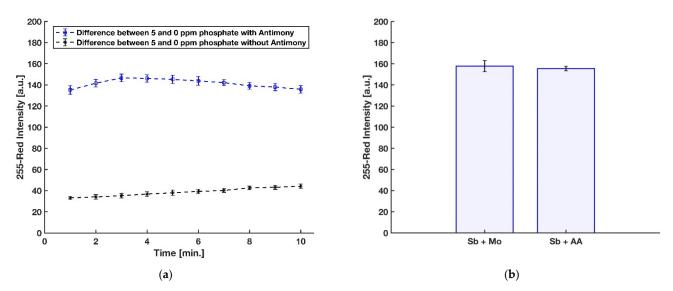
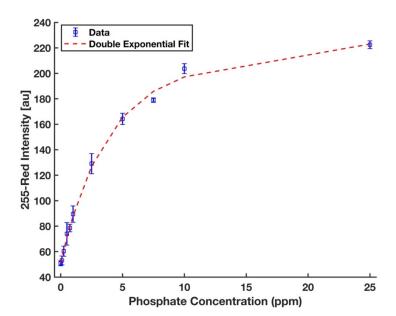


Figure 7. (4) Effect of havivar or timenthy with respective action on localist entities (4). The effect is religious antimenthy with and successful the first of the first of the control of the control

3.4. Calibration Curve and Detection Limit in DI Water


3.4. Calibration of probabilities to the Librate with three replicates was run for each concentration of probabilities adopted and entire three traplications was introduced to concentration of probabilities and probabilities and the control of the probabilities and the control of the contro

$$y_{LOP} = y_{plank} + 3\partial_{plank} \tag{3}$$

$$y_{ligg} \equiv y_{plank} + 100 q_{plank} \tag{4}$$

where y_{blank} is the mean intensity of the blank ((Oppm)); σ_{blank} is its standard deviation. Figure 8-show that the alimbian over developed for the device and that the alimbian over developed for the device and that the intensity to rote the entire range of data ($R^2 = 0.997$). The limits of detection and quantification are 0.134 ppm and 0.472 ppm, respectively. For evaluation of the reproducibility of the device performance, 5 ppm phosphate was studied with five replicates, and the percent of relative standard deviation (%RSD) value was 1.8%, which indicates a highly reproducible performance.

entire range of data (R^2 = 0.997). The limits of detection and quantification are 0.134 ppm and 0.472 ppm, respectively. For evaluation of the reproducibility of the device performance, 5 ppm phosphate was studied with five replicates, and the percent of relative standard deviation (%RSD) value was 1.8%, which indicates a highly reproducible perfer-

Figure 8: A double exponential calibration curve for phosphate solutions in the form $y_1^2 = u_1^2 \times x_2 + u_1$

3.5. Caliboration Curve and Detection Limit in Security with Wisible and Infrared Illumination

The phosphate detection efficacy off the device was also examined in a real seewater sample from the Sangasso Sea, which differs in both salinity and traces of ion content from DI water. Therefore, a completely randomized essonder which there expirit at easy as not or fenctachromatentication phophoeph starsptephethether Sargasses Seaseaseaseatent Tha Trages gost the thet detication reconserver a paper with the risibile dilight conditions by the scanner and im the mean-infrared zone by a recently developed infrared lighthox that is wirelessly controlled by a smartphone and communicates with it 1991. The technicitiens it yo to love as selected to forethnappily of the thnageographe token by the mach the Thewnymighted groups calcinstensities was dree dreams at the contraction of the contracti reservente than notification receives this has insetted by furlaw purples and a concentration or fore the electron prior practing assesses seave are vintricipled blue) and interpreted (ard) illumina in which alles were were subtracted by responsance diameterally due to Solition curves the theorem $\forall \bar{a}_1 a_1 \times expr(b_1 \times x_1) + d_2 \times exp(b_2 \times x_1)$ were senerated, Where $a_1 = 59.78$, $b_2 = -0.345$, $a_2 = 1.27.7$, $b_2 = 0.024$, a_1 and a_2 = 0.992 for the initial light and a_1 4 51.55,87 41-0.528,525-83.38,323,40.009, and rand 985 for 195 if or the interingent of the third by limits of detection and quantification for phosphate with visible in lumination as 8.438 ppmu and 1.961 ppm, respectively. By using the portable infrared lightbox, the device would not only be a fully portable and field-deployable one, but it can also detect phosphate in only be a fully portable and field-deployable one, but it can also detect phosphate in the the lower concentrations as limits of detection and quantification in the intrared zone are 0.156 0.156 ppm and 0.769 ppm, respectively. This accounts for an enhancement in sensitivity by ppm and 0.769 ppm, respectively. This accounts for an enhancement in sensitivity by a factor of three and is due to the fact that the maximum absorption of the molybdenum blue occurs in the intrared region of the spectrum (around 850 nm) [53].

3.6. Stability of the Device

The main deficiencies of the previously reported paper-based devices for the detection of phosphate in water were the stability of reagents and the lifetime of the devices. The acidic molybdenum reagent in which molybdate dissolves in sulfuric acid tends to reduce after a while due to the auto-reduction of Mo (VI) to Mo (V) [21,26]. In contrast, molybdate dissolved in DI water by itself has a long shelf life, and the same is true for sulfuric acid. Having antimony with molybdate at an aqueous form reduces the stability of the molybdenum reagent since antimony slowly leans towards precipitation. In the present

method, antimony was added to ascorbic acid and dried on the detection zone. It has been demonstrated that in the molybdenum blue method in phosphate detection, acidified molybdate does not interact with antimony and, more importantly, antimony does not change the intervalence charge-transfer (IVCT) bands of the pre-formed phosphomolybdenum blue [18,21]. Our results also showed that there are no discernable differences in the color intensity of the complex formed in the detection zone when antimony is present in the molybdate reagent or in the reducing agent. The ascorbic acid reagent in liquid form is also not stable due to the formation of dehydroascorbic acid [29], while according to the supplier, it is stable in powder form for several years at room temperature if stored in dark and dry conditions. Our experiments also show that ascorbic acid is stable for several months in dried form on blotting paper, which is made up of pure cellulose fibers without any additives. To this end, the stability assessment of the device was performed by comparison between the color developed on the detection area of new devices and the device stored under ambient conditions for four months with 5 ppm phosphate samples. The experimental t-value between two devices was 0.43, considering the critical two-tailed t-value of 2.31 for a degree of freedom of 8 at the 95% confidence level (p-value = 0.68), no statistically significant difference between results obtained by freshly fabricated devices and those stored under ambient conditions after four months was observed ($M_1 = 159.7$, $SD_1 = 2.1$; $M_2 = 158.8$, $SD_2 = 4.3$).

Sensors 2021, 21, x FOR PEER REVIEW

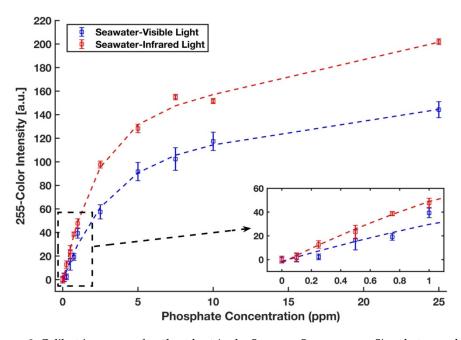


Figure alibration to reason for the physical method are season as a season with the visible light (but) and from the displication with the visible light (but) and from the displication with the visible light (but) and from the displication with the visible light (but). The error harsespecient the standard deviation of the measurements.

the chemical reagents being used. The molybdenum reagent is indefinitely stable in room tion of phosphate in where the stability of teagents and devices for the detection of phosphate in where the stability of teagents and the fire ascerbic add did not the according to the stable of the detection of phosphate in which through the dissolves in sufficience of the detection of the according to the dissolves of the detection of the according to the dissolves of the sufficiency of the detection of the same is true for sulfuric acid. Having antimony with molybdate at an aqueous form reduces the stability of the prolybdenum reagent since antimony slowly leans towards precipitation. In the present method, antimony was added to ascorbic acid and dried on the detection zone. It has been demonstrated that in the molybdate and according to the detection of the detection of

parts per billion (ppb) range, it suffers from a short shelf life and the requirement for storage under frozen conditions. Ribeiro [30] and Racicot et al. [31] tried to solve this problem by adding ethylene glycol as a stabilizer for the acidic molybdate/antimony reagent and reported a 2D colorimetric paper-based device. However, our tests have demonstrated that using ethylene glycol not only reduces the sensitivity of the device but also significantly increases the viscosity of the reagent, making the flow extremely slow in microfluidic channels as well. Moreover, operating this 2D device is a time-consuming procedure that is not in line with the aim of paper-based devices for rapid and point-of-site testing. This is the case since in the device they reported in [30,31], the ascorbic acid reagent needs to be added to the device in four separate 3 µL aliquots and requires a waiting time of at least 20 min between each ascorbic acid addition prior to use of the device. Additionally, the sequence of reaction is not ideal since the reagents mix with each other before sample addition, which results in unwanted reagent reduction. Some commercial paper-based test strips with a long shelf life are also available in the market for detecting phosphate in water. However, their main drawback is their low sensitivity based on the qualitative results obtained via a color chart [39]. Recently, electrochemical paper-based devices (ePADs) have received extensive attention due to their advantages, such as eliminating subjective color comparison by users, high stability, and high selectivity [54]. Cinti et al. [55] developed an ePAD with screen-printed electrodes and wax-printed reaction zones to detect phosphate in water based on the voltammetric measurement of the formation of the phosphomolybdic complex. In order to collect and analyze data, as well as make their device suitable for onsite operation, a portable electrochemical instrument in connection with a laptop was utilized. While this electrochemical sensor could detect a low concentration of phosphate in a few minutes, the preparation procedure was relatively complicated. By using the dip strip developed in this paper, an individual operator can easily detect phosphate in the parts per billion range in the field. Ammonium molybdate dissolved in DI water and the sulfuric acid are separately stored in plastic and glass dropper bottles, respectively, and thus remain stable for two years under room conditions. For further assessment, a comparison is provided in Table 1 between the testing conditions and results attained by the paper-based dip strip presented in this work and those obtained with paper-based devices previously reported.

Table 1. Comparison of detecting phosphate in DI water using the dip strip in this study with previously reported devices.

Device	Working Range (ppm)	LOD (ppm)	Repeatability	Reaction Time (min.)	Shelf Life	Ref.
3D colorimetric paper-based device	0.6–30	0.153	Less than 2% RSD	40	122 days stored in freezer at $<$ -20 °C	[29]
2D colorimetric paper-based device	0.1–10	0.160	N/A	4	9 months in refrigerator at <4 °C	[31]
Quantofix phosphate test kit	0.1–50	1.352	2.1% RSD	1	2 years under room temperature	[39]
Electrochemical paper-based device	1–30	0.38	Less than 6% RSD	2.5	30 days at room temperature	[55]
Dip strip with wet chemistry	0.1–25	0.134	1.8% RSD	3	4 months and expected to be 2 years under room temperature	This work

4. Conclusions

In this paper, a new dip strip paper-based device that uses a wet chemistry approach was reported to detect phosphate in water samples, including real seawater. This device overcomes the drawbacks observed in previous paper-based devices. The main advantages of the device developed in this paper is an increased shelf life, improved reproducibility of results, simpler design, and decreased testing duration. The limits of detection and quantification for this device are 0.134 ppm and 0.472 ppm for DI water and 0.438 ppm and 1.961 ppm for the Sargasso Sea seawater, respectively. This device is also fully compatible to integrate with a portable imaging lightbox for on-site phosphate measurements with the limits of detection and quantification as low as 0.156 ppm and 0.769 ppm, respectively. Future work will include implementing paper-based actuators to adapt this wet chemistry approach into an autonomous paper-based platform [56]. Additionally, further research using this wet chemistry protocol could be done to detect phosphate in other matrices such as food, soil, and saliva samples.

Author Contributions: Conceptualization, H.H.-B.; methodology, H.H.-B.; software, H.H.-B. and A.C.; validation, H.H.-B.; formal analysis, H.H.-B. and A.C.; investigation, H.H.-B.; resources, C.A. and M.F.; writing—original draft preparation, H.H.-B.; writing—review and editing, H.H.-B., A.C., C.A., and M.F.; visualization, H.H.-B.; supervision, C.A. and M.F.; project administration, C.A. and M.F.; funding acquisition, C.A. and M.F. All authors have read and agreed to the published version of the manuscript

Funding: This research was partially funded by the Rhode Island Established Program to Stimulate Competitive Research (EPSCoR), which is funded by the National Science Foundation (NSF) under Award #OIA-1655221.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article. Additional data not presented in this article is available on request from the corresponding author.

Acknowledgments: The authors would like to thank Bethany Jenkins and her group members at the University of Rhode Island for providing the Sargasso Sea sample.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

- 1. Zhu, X.; Ma, J. Recent advances in the determination of phosphate in environmental water samples: Insights from practical perspectives. *TrAC Trends Anal. Chem.* **2020**, *127*, 115908. [CrossRef]
- 2. Sateanchok, S.; Pankratova, N.; Cuartero, M.; Cherubini, T.; Grudpan, K.; Bakker, E. In-Line Seawater Phosphate Detection with Ion-Exchange Membrane Reagent Delivery. *ACS Sens.* **2018**, *3*, 2455–2462. [CrossRef]
- 3. Yaroshenko, I.; Kirsanov, D.; Marjanovic, M.; Lieberzeit, P.A.; Korostynska, O.; Mason, A.; Frau, I.; Legin, A. Real-Time Water Quality Monitoring with Chemical Sensors. *Sensors* **2020**, 20, 3432. [CrossRef] [PubMed]
- 4. Piazza, S.; Sambito, M.; Feo, R.; Freni, G.; Puleo, V. Optimal positioning of water quality sensors in water distribution networks: Comparison of numerical and experimental results. In Proceedings of the CCWI 2017—Computing and Control for the Water Industry, Sheffield, UK, 5–7 September 2017.
- Kent, R.; Johnson, T.D.; Rosen, M.R. Status and trends of orthophosphate concentrations in groundwater used for public supply in California. *Environ. Monit. Assess.* 2020, 192, 550. [CrossRef]
- 6. Sambito, M.; Freni, G. Strategies for Improving Optimal Positioning of Quality Sensors in Urban Drainage Systems for Non-Conservative Contaminants. *Water* **2021**, *13*, 934. [CrossRef]
- 7. Sarwar, M.; Leichner, J.; Naja, G.M.; Li, C.Z. Smart-phone, paper-based fluorescent sensor for ultra-low inorganic phosphate detection in environmental samples. *Microsyst. Nanoeng.* **2019**, *5*, 1–10. [CrossRef]
- 8. Heidari-Bafroui, H.; Ribeiro, B.; Charbaji, A.; Anagnostopoulos, C.; Faghri, M. Infrared Lightbox and iPhone App for Improving Detection Limit of Phosphate Detecting Dip Strips. *Int. J. Chem. Mol. Eng.* **2020**, *14*, 179–185.
- 9. Charbaji, A.; Smith, W.; Anagnostopoulos, C.; Faghri, M. Zinculose: A new fibrous material with embedded zinc particles. *Eng. Sci. Technol. Int. J.* **2021**, 24, 571–578. [CrossRef]

10. Jońca, J.; Fernández, V.L.; Thouron, D.; Paulmier, A.; Graco, M.; Garçon, V. Phosphate determination in seawater: Toward an autonomous electrochemical method. *Talanta* **2011**, *87*, 161–167. [CrossRef]

- 11. Sun, S.; Chen, Q.; Sheth, S.; Ran, G.; Song, Q. Direct Electrochemical Sensing of Phosphate in Aqueous Solutions Based on Phase Transition of Calcium Phosphate. *ACS Sens.* **2020**, *5*, 541–548. [CrossRef]
- 12. Gache, S.A.M.; Angelini, A.A.R.; Sabeckis, M.L.; Flecha, F.L.G. Improving the stability of the malachite green method for the determination of phosphate using Pluronic F68. *Anal. Biochem.* **2020**, 597, 113681. [CrossRef]
- 13. Snigur, D.; Chebotarev, A.; Bulat, K.; Duboviy, V. Fast room temperature cloud point extraction procedure for spectrophotometric determination of phosphate in water samples. *Anal. Biochem.* **2020**, *597*, 113671. [CrossRef]
- Salem, J.K.; Draz, M.A. Selective colorimetric nano-sensing solution for the determination of phosphate ion in drinking water samples. Int. J. Environ. Anal. Chem. 2020, 1–10. [CrossRef]
- 15. Moonrungsee, N.; Pencharee, S.; Jakmunee, J. Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. *Talanta* **2015**, *136*, 204–209. [CrossRef]
- 16. Zhao, H.X.; Liu, L.Q.; De Liu, Z.; Wang, Y.; Zhao, X.J.; Huang, C.Z. Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots. *Chem. Commun.* 2011, 47, 2604–2606. [CrossRef]
- 17. Du, Q.; Zhang, X.; Cao, H.; Huang, Y. Polydopamine coated copper nanoclusters with aggregation-induced emission for fluorometric determination of phosphate ion and acid phosphatase activity. *Microchim. Acta* 2020, 187, 1–9. [CrossRef]
- 18. Rahman, M.A.; Park, D.S.; Chang, S.C.; McNeil, C.J.; Shim, Y.B. The biosensor based on the pyruvate oxidase modified conducting polymer for phosphate ions determinations. *Biosens. Bioelectron.* **2006**, *21*, 1116–1124. [CrossRef]
- 19. Franz, P.; Gassl, V.; Topf, A.; Eckelmann, L.; Iorga, B.; Tsiavaliaris, G. A thermophoresis–based biosensor for real–time detection of inorganic phosphate during enzymatic reactions. *Biosens. Bioelectron.* **2020**, *169*, 112616. [CrossRef]
- 20. Murphy, J.; Riley, J.P. Determrnation Single Solution Method for the in Natural. Anal. Chim. Acta 1962, 27, 31–36. [CrossRef]
- 21. Going, J.E.; Eisenreich, S.J. Spectrophotometric studies of reduced molybdoantimonylphosphoric acid. *Anal. Chim. Acta* **1974**, 70, 95–106. [CrossRef]
- 22. Dick, W.A.; Tabatabai, M. Kinetic parameters of phopsphates in soils and organic waste materials. *Soil Sci.* **1984**, *137*, 7–15. [CrossRef]
- Drummond, L.; Maher, W. Determination of phosphorus in aqueous solution via formation of the phosphoantimonylmolybdenum blue complex. Re-examination of optimum conditions for the analysis of phosphate. Anal. Chim. Acta 1995, 302, 69–74. [CrossRef]
- 24. Nagul, E.A.; McKelvie, I.D.; Worsfold, P.; Kolev, S.D. The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box. *Anal. Chim. Acta* **2015**, *890*, 60–82. [CrossRef] [PubMed]
- 25. Ibnul, N.K.; Tripp, C.P. A solventless method for detecting trace level phosphate and arsenate in water using a transparent membrane and visible spectroscopy. *Talanta* **2021**, 225, 122023. [CrossRef] [PubMed]
- 26. Jayawardane, B.M.; Wongwilai, W.; Grudpan, K.; Kolev, S.D.; Heaven, M.W.; Nash, D.M.; McKelvie, I.D. Evaluation and Application of a Paper-Based Device for the Determination of Reactive Phosphate in Soil Solution. *J. Environ. Qual.* **2014**, 43, 1081–1085. [CrossRef] [PubMed]
- 27. El-Sayed, A.Y.; Hussein, Y.Z.; Mohammed, M.A. Simultaneous determination of phosphate and silicate in detergents and waters by first-derivative spectrophotometry. *Analyst* **2001**, *126*, 1810–1815. [CrossRef]
- 28. Charbaji, A.; Heidari-Bafroui, H.; Anagnostopoulos, C.; Faghri, M. A New Paper-Based Microfluidic Device for Improved Detection of Nitrate in Water. *Sensors* **2021**, *21*, 102. [CrossRef] [PubMed]
- 29. Jayawardane, B.M.; McKelvie, I.D.; Kolev, S.D. A paper-based device for measurement of reactive phosphate in water. *Talanta* **2012**, *100*, 454–460. [CrossRef] [PubMed]
- 30. Ribeiro, B. *Development of a Paper-Based Microfluidic Device for the Detection of Orthophosphate in Water*; University of Rhode Island: Kingston, RI, USA, 2019.
- 31. Racicot, J.M.; Mako, T.L.; Olivelli, A.; Levine, M. A Paper-Based Device for Ultrasensitive, Colorimetric Phosphate Detection in Seawater. *Sensors* **2020**, *20*, 2766. [CrossRef]
- 32. Waghwani, B.; Balpande, S.; Kalambe, J. Development of microfluidic paper based analytical device for detection of phosphate in water. *Int. J. Innov. Technol. Explor. Eng.* **2019**, *8*, 592–595.
- 33. Lawal, A.T.; Adeloju, S.B. Polypyrrole Based Amperometric and Potentiometric Phosphate Biosensors: A Comparative Study. *J. Appl. Sci.* **2012**, *12*, 315–325. [CrossRef]
- 34. Kumar, M.; Puri, A. A review of permissible limits of drinking water. Indian, J. Occup. Environ. Med. 2012, 16, 40. [CrossRef]
- 35. Fawcett, S.E.; Johnson, K.S.; Riser, S.C.; Van Oostende, N.; Sigman, D.M. Low-nutrient organic matter in the Sargasso Sea thermocline: A hypothesis for its role, identity, and carbon cycle implications. *Mar. Chem.* **2018**, 207, 108–123. [CrossRef]
- 36. Tsigdinos, G.A.; Chen, H.Y.; Streusand, B.J. Molybdate Solutions for Catalyst Preparation. Stability, Adsorption Properties, and Characterization. *Ind. Eng. Chem. Prod. Res. Dev.* **1981**, 20, 619–623. [CrossRef]
- 37. Weiss, J.; Weis, T. Handbook of Ion. Chromatography, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2005.
- 38. Kasetsirikul, S.; Shiddiky, M.J.; Nguyen, N.T. Challenges and perspectives in the development of paper-based lateral flow assays. *Microfluid. Nanofluid.* **2020**, 24, 17. [CrossRef]
- 39. Heidari-Bafroui, H.; Ribeiro, B.; Charbaji, A.; Anagnostopoulos, C.; Faghri, M. Portable infrared lightbox for improving the detection limits of paper-based phosphate devices. *Meas. J. Int. Meas. Confed.* **2020**. [CrossRef]

40. Knochen, M.; Rodríguez-Silva, J.C.; Silva-Silva, J. Exploitation of reaction mechanisms for sensitivity enhancement in the determination of phosphorus by sequential injection analysis. *Talanta* **2020**, *209*, 120589. [CrossRef]

- 41. van Staden, J.F.; Taljaard, R.E. On-line monitoring of phosphate in natural water and effluent streams using sequential injection analysis. *Microchim. Acta* **1998**, *128*, 223–228. [CrossRef]
- 42. Pinit, S.; Chadchawan, S.; Chaiwanon, J. A simple high-throughput protocol for the extraction and quantification of inorganic phosphate in rice leaves. *Appl. Plant. Sci.* **2020**, *8*, e11395. [CrossRef]
- 43. Galhardo, C.X.; Masini, J.C. Spectrophotometric determination of phosphate and silicate by sequential injection using molybdenum blue chemistry. *Anal. Chim. Acta* **2000**, *417*, 191–200. [CrossRef]
- 44. Koronkiewicz, S.; Trifescu, M.; Smoczynski, L.; Ratnaweera, H.; Kalinowski, S. A novel automatic flow method with direct-injection photometric detector for determination of dissolved reactive phosphorus in wastewater and freshwater samples. *Environ. Monit. Assess.* 2018, 190, 133. [CrossRef]
- 45. Divya, S.; Sharmila, P.; Dinakaran, J.; Yamal, G.; Rao, K.S.; Pardha-Saradhi, P. Specific H+ level is crucial for accurate phosphate quantification using ascorbate as a reductant. *Protoplasma* **2020**, 257, 319–330. [CrossRef] [PubMed]
- 46. Takahashi, M.; Tanaka, M. Analysis of Complex-formation Reaction in Molybdenum Blue Method by ESI-MS. *Bunseki Kagaku* **2012**, *61*, 1049–1054. [CrossRef]
- 47. Nakamura, I.; Miras, H.N.; Fujiwara, A.; Fujibayashi, M.; Song, Y.F.; Cronin, L.; Tsunashima, R. Investigating the Formation of 'Molybdenum Blues' with Gel Electrophoresis and Mass Spectrometry. *J. Am. Chem. Soc.* **2015**, *137*, 6524–6530. [CrossRef] [PubMed]
- 48. Zhang, J.Z.; Fischer, C.J.; Ortner, P.B. Optimization of performance and minimization of silicate interference in continuous flow phosphate analysis. *Talanta* **1999**, *49*, 293–304. [CrossRef]
- 49. Pai, S.C.; Wang, T.Y.; Fang, T.H.; Jiann, K.T. Effect of Heating on the Color Formation Reaction in the Murphy and Riley Method for the Determination of Phosphate in Natural Waters. *J. Environ. Anal. Chem.* **2015**, 2, 4. [CrossRef]
- 50. Motulsky, H.; Christopoulos, A. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting; GraphPad Software Inc.: San Diego, CA, USA, 2003.
- 51. Cao, P.; Zhu, Y.; Zhao, W.; Liu, S.; Gao, H. Chromaticity Measurement Based on the Image Method and Its Application in Water Ouality Detection. *Water* **2019**, *11*, 2339. [CrossRef]
- 52. Miller, J.; Miller, J.C. Statistics, and Chemometrics for Analytical Chemistry, 5th ed.; Pearson Education Limited: Harlow, UK, 2005.
- 53. He, Z.; Honeycutt, C.W. A Modified Molybdenum Blue Method for Orthophosphate Determination Suitable for Investigating Enzymatic Hydrolysis of Organic Phosphates. *Commun. Soil Sci. Plant. Anal.* **2005**, *36*, 1373–1383. [CrossRef]
- 54. Noviana, E.; McCord, C.P.; Clark, K.M.; Jang, I.; Henry, C.S. Electrochemical paper-based devices: Sensing approaches and progress toward practical applications. *Lab. Chip* **2020**, *20*, 9–34. [CrossRef]
- 55. Cinti, S.; Talarico, D.; Palleschi, G.; Moscone, D.; Arduini, F. Novel reagentless paper-based screen-printed electrochemical sensor to detect phosphate. *Anal. Chim. Acta* **2016**, *919*, 78–84. [CrossRef] [PubMed]
- 56. Charbaji, A.; Heidari-Bafroui, H.; Kumar, A.; Rahmani, N.; Anagnostopoulos, C.; Faghri, M. Characterization and Modeling of Paper-based Bi-Material Actuator Cantilever; Application in Phosphate Detection. In Proceedings of the Innovations in Microfluidics, Boston, MA, USA, 18–19 March 2021.