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Abstract: Nutrient pollution remains one of the greatest threats to water quality and imposes
numerous public health and ecological concerns. Phosphate, the most common form of phosphorus,
is one of the key nutrients necessary for plant growth. However, phosphate concentration in water
should be carefully monitored for environmental protection requirements. Hence, an easy-to-use,
field-deployable, and reliable device is needed to measure phosphate concentrations in the field.
In this study, an inexpensive dip strip is developed for the detection of low concentrations of
phosphate in water and seawater. In this device, ascorbic acid/antimony reagent was dried on
blotting paper, which served as the detection zone, and was followed by a wet chemistry protocol
using the molybdenum method. Ammonium molybdate and sulfuric acid were separately stored in
liquid form to significantly improve the lifetime of the device and enhance the reproducibility of its

check for performance. The device was tested with deionized water and Sargasso Sea seawater. The limits of
updates detection and quantification for the optimized device using a desktop scanner were 0.134 ppm and
Citation: Heidari-Bafroui, H.; 0.472 ppm for phosphate in water and 0.438 ppm and 1.961 ppm in seawater, respectively. The use of
Charbaji, A.; Anagnostopoulos, C.; the portable infrared lightbox previously developed at our lab improved the limits of detection and
Faghri, M. A Colorimetric Dip Strip quantification by a factor of three and were 0.156 ppm and 0.769 ppm for the Sargasso Sea seawater.

Assay for Detection of Low The device’s shelf life, storage conditions, and limit of detection are superior to what was previously
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reported for the paper-based phosphate detection devices.
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phosphorus, i.e., phosphate, takes a critical part in the eutrophication process. Phosphates
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with regard to jurisdictional claims in  phosphates. In the monitoring of water quality, phosphates are commonly referred to
published maps and institutional affil- a5 orthophosphates [1]. Excessive concentrations of phosphate due to the predominant

iations. usage of phosphate-based pesticides and fertilizers [2], along with intentional or accidental
inappropriate human activities [3,4], are known to be harmful to environmental aquatic

systems. The US Environmental Protection Agency (US EPA) has set the desired limit of
By 0.150 ppm or 150 parts-per-billion (ppb) for the total phosphate concentration in streams
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A wide range of analytical methods have been developed for phosphate concentra-
tion 1pﬁaqmlmpmpﬂws@fmhmﬂm%k@l@etbeeh@lmeé@p@éfpslpl{@eghqt@p@ncm@a@wmm

Al 3 mm@mﬂ@m a@%@ﬁeg
H@W@ma%éﬂm@}nﬁtﬁ@mm dihgeidcirprivonetipaabitia

M@yﬂémw Pasidtpéstial bg}

cablioinepsay tikHY slirodiven trsrrtacadiaprriidnbrtopmshsapith

Bl deitikion [ Aleman i sty spherse acres s WWMWMW'
EWMI% Wm@m Fothprdatis Y mmh@%@@&qﬂm na ”[@@MS
(mmﬁ%w W g HOdABRIBIR: : E@F'H(%ﬂi%m @H‘fﬁ [REOE] ﬁme
tﬂﬁ v m]mm@ﬂg‘e % ,’lr.g-‘:l @w&m&m&m%@%?@m Q zll'r %ﬁld
M@m@gm&m&%@g@ém IGRODED ﬁhl r. ik 33s Th mmfgam_

Jagiiegyoseasde é@mthmt?bhsrbdybqumbl}l@p@dduﬁﬁﬁ%a1 otes the rate of reaction
and eliminating th need for ah atm rocess to form the stable molybdenum blue prod-

uct [25-27].  FOa *— HROEHOD))y 12120 ()
mﬁe&’%ﬂﬁ%ﬁ%ﬂé@%ﬂkw HETER RN

‘ R AL ORI
EhiRPeb SRR RIRRE BT YealreeaR sl iR grerriRabr
HESpEEAER S *m@@%tﬂi@mmﬁ&gs

&@ B@m@é@lﬁ@m@é edikigecanpapssebiiosraviel theRerandarétibair
d&@%b@iﬂfﬁi@%ﬁ?ﬂ@i@ﬂ&mm sphedoihedneowianralsbilipgiitahén
@tﬂﬁmﬁy@ﬁmmmmmmmﬁm &%@ﬁ%ﬁ@%ﬁﬁ&%ﬁ@%@m
[adpapessehed mptipidaaheihon shemrErbdnariyshowimissodidic weviebdhainakaiche
tm@mm@mmm@mmm@@mem@mmwgw
R QY pirrey v vabopiaseibarcsprivalindt e b el opimmy tinpesrHoraliatie
fMM@M@%W@W%@M*WW@%@BWG
ot (HAE RROAN srpw Huaherrsshelid it Broéthesniliativas RORRRER e -
né@@;tﬁh@@%@@t@o@p@@ﬁb@%@@@ﬁ%&ﬁﬁ%} thdémcentiiors iwetrared foya
cheinistrystivhiRAporehisdid diicdnlo dedivd witbiacidomsholititatidnncy Riepsnhpinirn-
aseruihhewae Mobddats dissolyadinslsinnizedBrvaterAnshe Wi picapichreste
m@m@s@ sRéRERtbeidslimaiohthedeyica sk atidorsisag imenisiey

%@Eﬁ%ﬁ?&’fﬁ@&%&%@%@@t o apneeRtrtionnntiphasphatgen
Sﬁ*’ﬁ@ﬁ W ggqlci}l)ssolved in deionized (DI) water and sulfuric acid were
ity a

Separate ance the lifetime of the device. Ascorbic acid and antimony were

fi@f@éﬂﬁfﬁﬁéﬁ” ﬁiﬂfﬁﬁw paper strip.

oC solut1?n of phosphate (100 ppm) was freshly created by dissolving 0.0126 g

st
2.1 dgll oluti M hoalghate (Sigma-Aldrich, MO, USA) in 100 mL of ASTM Type 1
ek 43 R AL 890 ey A

sgﬁéfpf%% ﬁ% @es@ﬁg@fa%mﬁﬁhamlmwlchmgeﬁ@r@bﬁmmﬁzs
@mﬁéwsgﬁf&ﬁﬁa@z&gg FRERRME e, By dissbyinadaidér s

sodium dihydrogen’phosphate (Sigma- Aldrlch MO, USA) in 100 mL of ASTM Type 1
deionized water (resistivity > 18 MQ/cm, LabChem-LC267405). Then, by diluting the stock
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taken from the Sargasso Sea was filtered through a 0.2 um filter to remove any organic
matter and was then used to evaluate the performance of the device in the presence of the
ions usually found in seawater. The Sargasso Sea region is recognized as a region with low
nutrient content [35].

2.2. Reagents

All chemicals are analytical reagent grade and were obtained from Sigma-Aldrich
(Saint Louis, MO, USA). Each glassware and vial was first washed with a phosphate-free
detergent and then washed with 1 M hydrochloric acid and rinsed with DI water three
times. The development of the molybdenum blue complex and its stability mainly depends
on [H*], ammonium molybdate, and ascorbic acid concentrations in the final solution.
These concentrations have been thoroughly optimized, and the interference studies were
reported in [29]. The concentrations in the final solution for the device presented in this
study are the same with [29] except for the concentration of [H*], i.e., the concentration
of sulfuric acid. Molybdenum reagent was prepared by dissolving 1.054 g ammonium
hepta-molybdate tetrahydrate in 10 mL DI water and stored in a plastic dropper bottle.
This solution is indefinitely stable in room conditions [36,37]. A total of 10 mL of 3.6 M
sulfuric acid was created by first slowly adding 2.02 mL of 95% w/w sulfuric acid to 2.5 mL
deionized water and then by adjusting the final volume of solution to 10 mL with DI
water. This solution was stored in a glass dropper bottle, and its expiration date is two
years, according to the supplier. The reducing reagent was prepared as a solution of 0.5 M
ascorbic acid and 6 mM potassium antimony tartrate hydrate in DI water.

2.3. Device Preparation

Whatman blotting paper (WHA10547922-Whatman® gel blotting paper, Grade GB003)
strips (10 x 100 mm) were fully saturated with the reducing reagent by immersing in the
solution for 5 min. The strips were then allowed to air dry in room conditions for two hours.
This paper grade was selected since it is made from pure cellulose with high absorbency
and without any additives. The dried reducing reagent used on the detection zone was
entirely stable on the strips for several months. A pair of backing cards, 60 mm wide by
100 mm long, each ~0.254 mm thick (MIBA-010, DCNovations, CA, USA), were utilized to
stick the reducing strips on them so as to improve the strength and allow for easy handling
of the strips by the operator. These backing cards are specifically produced for use in
lateral flow devices. They have an acrylic pressure-sensitive and npn-reactive adhesive

h rts th i ilt on them 11 roVi minimum interference [38].
Finally, a guillotine cutter was used to cut the dip strips with a width of 5 mm (Figure 1).

Whatman Blotting Paper (Delection Zone)
\

.8 21002

(a) (b)

Figure 1. (;guieemafia showing ihsirompgneriz srbeHosnsions efthe sisnstopib Hibeaspemdasdaviga with ascorbic
acid and antigndeyieliedthndberBitecti@aranmtimony dried on the detection zone.

2.4. Device Operation and Analysis Procedure

To conduct the test, a small sample volume of 600 uL. was mixed with 20 pL of sul-
furic acid in a micro vial, and the mixture was properly shaken by hand for 5 s. 40 pL of
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Figure 3. Detection zones showing the color that forms for a sample with a phosphate concentration
of (a) 0.1 ppm, (b) 1 ppm, and (c) 10 ppm. The yellow rectangle is the region of interest utilized to
quantify the color intensity using Image]; this area is 95 by 215 pixels, which is approximately 4 by
9 mm.
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mately 4 by 9 mm.
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3. Results and Discussion
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decrease of color intensity was observed after that. Hence, the reaction tinr
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the entire solution before the addition of the reducing agent. Lastly, six levels for the hold-
ing time, i.e., holding of the test strip into the micro vial filled by the sample, sulfuric acid,
and molybdenum reagent, were considered in order to study the effect of this time, which
is proportional to the amount of the phosphomolybdic acids (HsPMo(VI)1204) absorbed
by blotting paper. Figure 5¢ implies that 20 s is the optimum time for having the higérloefs]t4
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3.2. Ophminiiomg fisméfwrlveAcii6lybotlensim reagent was added to the mixture of sulfuric
acid and sample and prior to dipping the strip was also evaluated in order to obtain the
higher color formation on the detection zone. As indicated in Figure 5b, waiting for at least
one minute improved the difference between red intensities of 5 and 0 ppm phosphate
solutions. This short time is needed for the heteropoly acids to completely form in the
entire solution before the addition of the reducing agent. Lastly, six levels for the holding
time, i.e., holding of the test strip into the micro vial filled by the sample, sulfuric acid, and
molybdenum reagent, were considered in order to study the effect of this time, which is
proportional to the amount of the phosphomolybdic acids (H3PMo(VI)1,040) absorbed
by blotting paper. Figure 5c implies that 20 s is the optimum time for having the highest
amount of molybdenum blue complex on the detection zone after the test operation.

3.2. Optimization of Sulfuric Acid’s Volume

In the experimental setup, the sulfuric acid concentration was controlled by the
volume of acid added to the micro vial. Acid concentration plays a significant role in
the formation of the phosphomolybdenum blue, as well as its rate of formation. It has
been well-established that a strong acid condition is needed to prevent auto-reduction of
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In the experimental setup, the sulfuric acid concentration was controlled by the vol-
ume of acid added to the micro vial. Acid concentration plays a significant role in the
formation of the phosphomolybdenum blue, as well as its rate of formation. It has bgen, ,
lybdenum in the absence of phosphate [24]. Different strong acids, such as sulfuric acid,
hydrochloric acid, perchloric acid, and nitric acid, have been used in the molybdenum
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acthe same concentration of the acid in the final solution with Ref. [29]; however, as shown in
Figure 6, the maximum sensitivity was reached with 20 uL of sulfuric acid.

200

$-10puL
180- _i_m.ul_
35 uL
160} " L
-4-65uL
Ct i Rk ke o
3 L = 5 =
2.140 3- _)%:__i___}_-ﬁ- W
2120 z gz -
7} E— ﬁ‘_‘
: &
£ 100 ) _i
3 B Sk et bt BEE b
2wl maeiResfEeE 2
E ar—-4——-¥»—4}-—¢-——}-—-;———5——&-——:
8 e0f
(4"}
a0t
20}
0 'l 1 X , l
’ ’ ¢ " 8 10

Time [min.]

Figigare Gffetfeof oolwbneref sfibulfioacidia ithéhmixtvreeoroboldn temsiisi tn (7 3 dhahichéhersordoalpars
shewotherrdansaddrdediatioion).

3.5-RAROly ANy i Briolprmpe e Hetedtien

THEE %ﬁﬁtb‘??f)%b (30 i the meieRdar B iis A NedoIaes }ﬁ?PoHHESQ‘b
%y%‘emib G Rileyan| %?%J %5%%@5&&&9@@{@}%a%%tr%% &,%ns@ SR OSSR

wi‘t%ou ithauk 3 fesd 8hEE %ng&ng seefl%gfhesdetl r&lﬁé%f% soinﬁ%%%%%?n
cont alps antlmo y

tams a [?émon anru l15)(1r1 a i lpa?om cargtmcgfl wever ‘i\t%’er’lgﬁaﬁee

sho%\%1 3 f gﬁ%’ eser}tp1f1e§ nt n C cfecglmg ex Tk l%)éim ra%o
513 Y t e stoichio %{l e lc‘fe t mo ate species
ome r ti ct o an oan n t e gk% r?ectecss ave
the reasons or éc’agge e atl, eeﬁ’a 151 t mon fa%ze not coms
plet%g %m‘i% 5bé/1 was r Ic)l'?s 1§1?§705E}Eu e angmh rna OIBSUIFU% CPle
%@, T%%n struct Eit ]tiqe fm glex 1S
kﬁ‘ weve an ‘elec ros ray 10n1zat10rt1 & ]}P tgfnﬁg)él;
t a]ghs‘ﬁegetﬁa?ﬂ/lo ?s:ﬁ%)i Eﬂ;e g 1nnt]ﬁlssl<e%ec r(]])fﬁea d'thereis
S u rva 1on or t o 1S no 401;,11 e ‘T gr%l]s no obser-

BeES o (e
vatlon ort ¢ presen e o zg)on%/[% 40; % na co e

recEntIvest th cORtE: her reports, a ne at1ve

effent %ece%t nyestsa lomp{e e %%é 1“68“%{381 B‘Pﬂe‘ 9the” SPAT1 A BEREHN Sy
ef#%‘ft@éeé%%asf%%%w&s%égrﬂze&%a%& Ht?&é’é%ﬂe%“&t&t’&l&iofﬂﬂ%%%ﬁ&?ﬁ?&%HtX’Was
f%&%t ﬁé%a e@eﬁet@;?lmgfseme?otm%efntbfag?@h@ﬁ%&r&%ﬁgﬁ&fmé% Bithe
fipd fesnsrbational il Hristl aaindn s i fordss srhandahngateotdbng

the effect of silicon interference [48] as well as degrading the final molybdenum blue
product [49]. To this end, the impact of Sb in the detection of phosphate for the present
device was evaluated with three replications by comparing the red intensity obtained
from the detection zone of the device with antimony dried on blotting paper along with
ascorbic acid and the device without antimony on the reduction reagent dried on the
detection zone. As shown in Figure 7a, Sb is needed to have a rapid formation with
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reduction. riowever, the heating process can cause some problems, including increasing
the effect of silicon interference [48] as well as degrading the final molybdenum blue prod-
uct [49]. To this end, the impact of Sb in the detection of phosphate for the present device
was evaluated with three replications by comparing the red intensity obtained from the
Sensors 2021, 21, 3125 detection zone of the device with antimony dried on blotting paper along with ascgipig
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3.4. Calibration Curve and Detection Limit in DI Water
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1%919@&% send (4) to calculate the limits of detection (LOD) and quantification (LOQ),

respectively [52],
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the entire range of data (R? =0.997). The limits of detection and quantification are 0.134 ppm
and 0.472 ppm, respectively. For evaluation of the reproducibility of the device performance,
5 ppm phosphate was studied with five replicates, and the percent of relative standard
deviation (%RSD) value was 1.8%, which indicates a highly reproducible performance.
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3.6. Stability of the Device

The main deficiencies of the previously reported paper-based devices for the detection
of phosphate in water were the stability of reagents and the lifetime of the devices. The
acidic molybdenum reagent in which molybdate dissolves in sulfuric acid tends to reduce
after a while due to the auto-reduction of Mo (VI) to Mo (V) [21,26]. In contrast, molyb-
date dissolved in DI water by itself has a long shelf life, and the same is true for sulfuric
acid. Having antimony with molybdate at an aqueous form reduces the stability of the
molybdenum reagent since antimony slowly leans towards precipitation. In the present
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method, antimony was added to ascorbic acid and dried on the detection zone. It has
been demonstrated that in the molybdenum blue method in phosphate detection, acidified
molybdate does not interact with antimony and, more importantly, antimony does not
change the intervalence charge-transfer (IVCT) bands of the pre-formed phosphomolybde-
num blue [18,21]. Our results also showed that there are no discernable differences in the
color intensity of the complex formed in the detection zone when antimony is present in
the molybdate reagent or in the reducing agent. The ascorbic acid reagent in liquid form
is also not stable due to the formation of dehydroascorbic acid [29], while according to
the supplier, it is stable in powder form for several years at room temperature if stored
in dark and dry conditions. Our experiments also show that ascorbic acid is stable for
several months in dried form on blotting paper, which is made up of pure cellulose fibers
without any additives. To this end, the stability assessment of the device was performed
by comparison between the color developed on the detection area of new devices and the
device stored under ambient conditions for four months with 5 ppm phosphate samples.
The experimental t-value between two devices was 0.43, considering the critical two-tailed
t-value of 2.31 for a degree of freedom of 8 at the 95% confidence level (p-value = 0. 68) no
statistically significant difference between results obtained by freshly fabricated deVices
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phomolybdenum blue [18,21]. Our results also showed that there are no discernable dif-
ferences in the color intensity of the complex formed in the detection zone when antimony
is present in the molybdate reagent or in the reducing agent. The ascorbic acid reagent in
liguid form is also not stable due to the formation of dehydroascorbic acid [29], while
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parts per billion (ppb) range, it suffers from a short shelf life and the requirement for storage
under frozen conditions. Ribeiro [30] and Racicot et al. [31] tried to solve this problem
by adding ethylene glycol as a stabilizer for the acidic molybdate/antimony reagent and
reported a 2D colorimetric paper-based device. However, our tests have demonstrated that
using ethylene glycol not only reduces the sensitivity of the device but also significantly
increases the viscosity of the reagent, making the flow extremely slow in microfluidic
channels as well. Moreover, operating this 2D device is a time-consuming procedure that
is not in line with the aim of paper-based devices for rapid and point-of-site testing. This
is the case since in the device they reported in [30,31], the ascorbic acid reagent needs to
be added to the device in four separate 3 uL aliquots and requires a waiting time of at
least 20 min between each ascorbic acid addition prior to use of the device. Additionally,
the sequence of reaction is not ideal since the reagents mix with each other before sample
addition, which results in unwanted reagent reduction. Some commercial paper-based test
strips with a long shelf life are also available in the market for detecting phosphate in water.
However, their main drawback is their low sensitivity based on the qualitative results
obtained via a color chart [39]. Recently, electrochemical paper-based devices (ePADs) have
received extensive attention due to their advantages, such as eliminating subjective color
comparison by users, high stability, and high selectivity [54]. Cinti et al. [55] developed an
ePAD with screen-printed electrodes and wax-printed reaction zones to detect phosphate
in water based on the voltammetric measurement of the formation of the phosphomolybdic
complex. In order to collect and analyze data, as well as make their device suitable for
onsite operation, a portable electrochemical instrument in connection with a laptop was
utilized. While this electrochemical sensor could detect a low concentration of phosphate
in a few minutes, the preparation procedure was relatively complicated. By using the
dip strip developed in this paper, an individual operator can easily detect phosphate in
the parts per billion range in the field. Ammonium molybdate dissolved in DI water and
the sulfuric acid are separately stored in plastic and glass dropper bottles, respectively,
and thus remain stable for two years under room conditions. For further assessment, a
comparison is provided in Table 1 between the testing conditions and results attained by
the paper-based dip strip presented in this work and those obtained with paper-based
devices previously reported.

Table 1. Comparison of detecting phosphate in DI water using the dip strip in this study with previously reported devices.

. Working . Reaction Time .
Device Range (ppm) LOD (ppm) Repeatability (min.) Shelf Life Ref.
3D colorimetric
Less than 2% 122 days stored in
paper—based 0.6-30 0.153 RSD 40 freezer at <—20 °C [29]
device
2D colorimetric 9 months in
paper-based 0.1-10 0.160 N/A 4 refrigerator at [31]
device <4°C
Quantofix 2 years under room
phosphate 0.1-50 1.352 2.1% RSD 1 y [39]
. temperature
test kit
Electrochemical o
paper-based 1-30 0.38 Less than 6% 25 30 days at room [55]
. RSD temperature
device
4 months and
Dip strip with 0.1-25 0.134 1.8% RSD 3 expected to be This work

wet chemistry

2 years under room
temperature
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4. Conclusions

In this paper, a new dip strip paper-based device that uses a wet chemistry approach
was reported to detect phosphate in water samples, including real seawater. This device
overcomes the drawbacks observed in previous paper-based devices. The main advantages
of the device developed in this paper is an increased shelf life, improved reproducibility
of results, simpler design, and decreased testing duration. The limits of detection and
quantification for this device are 0.134 ppm and 0.472 ppm for DI water and 0.438 ppm and
1.961 ppm for the Sargasso Sea seawater, respectively. This device is also fully compatible
to integrate with a portable imaging lightbox for on-site phosphate measurements with
the limits of detection and quantification as low as 0.156 ppm and 0.769 ppm, respectively.
Future work will include implementing paper-based actuators to adapt this wet chemistry
approach into an autonomous paper-based platform [56]. Additionally, further research
using this wet chemistry protocol could be done to detect phosphate in other matrices such
as food, soil, and saliva samples.
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