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ABSTRACT. Marine fisheries represent a social-ecological system driven by both complex ecological processes and human interactions.
Ecosystem-based fisheries management requires an understanding of both the biological and social components, and management
failure can occur when either are excluded. Despite the significance of both, most research has focused on characterizing biological
uncertainty rather than on better understanding the impacts of human behavior because of the difficulty of incorporating human
behavior into simulation models. In this study, we use the fisheries in Narragansett Bay (Rhode Island, USA) as a case study to
demonstrate how coupled modeling can be used to represent interactions between the food web and fishers in a social-ecological system.
Narragansett Bay holds both a commercial fishery for forage fish, i.e., Atlantic menhaden (Brevoortia tyrannus) and a recreational
fishery for their predators, i.e. striped bass (Morone saxatilis) and bluefish (Pomatomus saltatrix). To explore trade-offs between these
two fisheries, we created a food web model and then coupled it to a recreational fishers’ behavior model, creating a dynamic social-
ecological representation of the ecosystem. Fish biomass was projected until 2030 in both the stand-alone food web model and the
coupled social-ecological model, with results highlighting how the incorporation of fisher behavior in modeling can lead to changes
in the ecosystem. We examined how model outputs varied in response to three attributes: (1) the forage fish commercial harvest scenario,
(2) the predatory (piscivorous) fish abundance-catch relationship in the recreational fishery, and (3) the rate at which recreational fishers
become discouraged (termed “satisfaction loss”). Higher commercial harvest of forage fish led to lower piscivorous fish biomass but
had minimal effects on the number of piscivorous fish caught recreationally or recreational fisher satisfaction. Both the abundance-
catch relationship and satisfaction loss rate had notable effects on the fish biomass, the number of fish caught recreationally, and
recreational fisher satisfaction. Currently, the lack of spatial and location-specific fisher behavior data limits the predictive use of our
model. However, our modeling framework shows that fisher behavior can be successfully incorporated into a coupled social-ecological
model through the use of agent-based modeling, and our results highlight that its inclusion can influence ecosystem dynamics. Because
fisher decision making and the ecosystem can influence one another, social responses to changing ecosystems should be explicitly
integrated into ecosystem modeling to improve ecosystem-based fisheries management efforts.
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INTRODUCTION
Natural resource managers and policy makers are faced with how
to sustain resources used in a coupled social-ecological system
(Schlüter et al. 2012, Guerrero et al. 2018). These linked systems
provide a variety of ecosystem services through a combination of
natural components and social, economic, political, and cultural
factors (Boyd and Banzhaf 2007). Managing these social-
ecological systems is difficult because of their adaptive,
heterogeneous, multi-scaled, and time-varying nature (Liu et al.
2007). Marine fisheries are an important global industry
representing the many qualities of a social-ecological system,
which include complex environmental and ecological processes
and a large human influence (Fulton et al. 2011). Achieving
fisheries sustainability requires an understanding of the biological
factors, i.e., fish stocks, as well as the social aspects, including
coastal community livelihood and economic interest (Guerrero
et al. 2018).  

Fisheries science has strived to incorporate an understanding of
the physical, biological, and ecological factors of an ecosystem,
including the use of food web models that capture inter-species

dynamics. Ecopath with Ecosim (EwE) is a food web model that
simulates energy flow and biomass of organisms (Polovina 1984,
Christensen and Pauly 1992). A guiding principle of EwE is
energetic mass-balance, meaning that for each group in the model,
the energy removed, i.e., predation or fishing, must be balanced
by the energy consumed (Coll et al. 2009). The energy balance
among groups is represented by two linear equations,
corresponding to production and consumption. The static,
energy-balanced food web snapshot of Ecopath is made
temporally dynamic through Ecosim, which uses time series data
and re-expresses these linear equations as time-varying
differential equations. Through Ecosim, users can simulate how
the food web responds to variations in drivers such as fishing
mortality or primary production (Coll et al. 2009, Heymans et al.
2016). EwE is widely used for evaluating the ecosystem impacts
of fisheries (Pauly et al. 2000). For example, Buchheister et al.
(2017) used EwE to simulate different Atlantic menhaden
(Brevoortia tyrannus) harvest levels along the U.S. East Coast and
found that of their predators, Atlantic striped bass (Morone
saxatilis) were the most sensitive to these changes. In fact, when
menhaden were fished at maximum sustainable yield, striped bass
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Fig. 1. Conceptual diagram of our social-ecological model, consisting of the Ecopath with Ecosim
(EwE) food web model and the agent-based fisher behavior model. ABM = agent-based model.

yield and biomass were predicted to decline by ~60% (Buchheister
et al. 2017). Although EwE can simulate changes in fishing effort,
it does not have a way to include feedbacks from dynamic fisher
behavior.  

Management failure often occurs when fisheries are managed
solely based on single-species needs and the social context is
ignored (Cooper and Jarre 2017). In particular, human behavior
has been identified as a large source of uncertainty in fisheries
science and ecosystem-based fisheries management given that
resource-users frequently behave differently than the expectations
of managers and economic theory (Fulton et al. 2011). In a
coupled social-ecological system, this uncertainty can compound
through linkages between systems, creating an unreliable model
(Cenek and Franklin 2017). A great deal of research continues to
focus on increasing ecological knowledge despite the need to
incorporate social and economic objectives. The push to account
for human behavior in fisheries management has led to its
inclusion in some recent modeling efforts (Ono et al. 2017,
Matsumura et al. 2019, Kaemingk et al. 2020). Agent-based
modeling (ABM) is a promising method for representing human
behavior and is well-suited for ecosystem-based fisheries
management (Burgess et al. 2020). In ABMs, a set of rules governs

how autonomous “agents,” e.g., individual people or fishing
boats, interact with each other and the modeled environment
(Macal and North 2005). ABMs are especially useful in resource-
extraction systems, like fisheries, where heterogeneity exists both
in the agents and the environment itself  (Nolan et al. 2009).
Although a useful tool, the use of ABMs in fisheries science and
economics is underutilized (Cooper and Jarre 2017).  

The overall objective of this study was to develop a coupled social-
ecological model to understand the extent to which the inclusion
of fisher dynamics impacts ecological outcomes. Specifically, we
study how our model projections respond to three factors that
have the potential to affect social-ecological interactions: (1)
changes in commercial fisheries harvest, (2) changes in the
likelihood of catch in the recreational fishery, and (3) the rate at
which recreational fishers become discouraged and change their
behavior. Response variables include fish biomass, the number of
fish caught by the recreational fishery, and recreational fisher
satisfaction at the end of a season. To do this, we create an agent-
based model of recreational fisher and fish dynamics (hereafter
referred to as the “fisher behavior model”) and couple it with an
EwE model (hereafter referred to as the “food web model”; Fig.
1). To our knowledge, this is the first attempt at linking these types
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of models despite each being established research tools. We run
the coupled EwE-ABM model (hereafter referred to as the
“social-ecological model”) under different scenarios and describe
differences between model runs. In this work, we forecast
organism biomass under various scenarios to demonstrate the use
of our model. However, there is currently a lack of quantitative
data on fisher behavior parameters, and thus we tested a range of
assumed values. Therefore, our goal is not to predict how fish
biomass in Narragansett Bay will change over time. Instead, we
demonstrate a framework to link two established modeling
methods and show how including the dynamics of human
decision making can alter model forecasts and thus impact
management.

METHODS

Study site and context
Narragansett Bay (Rhode Island, U.S.) has a long history of
fishing as well as data collection. The first quantitative fisheries
data in Narragansett Bay were collected in the late 1800s because
of conflict between trap and hook-and-line fishers, who claimed
that fish stocks were declining (Oviatt et al. 2003). These early
records indicated that catch was dominated by anadromous
species (alewife [Alosa pseudoharengus], American shad [Alosa
sapidissima], rainbow smelt [Osmerus mordax]), boreal species
such as winter flounder (Pseudopleuronectes americanus), and
migratory species like Atlantic menhaden. These previously
dominant species declined in the late 20th century (Oviatt et al.
2003), corresponding to shifts in environmental conditions and
species community compositions, with warm-water species
including scup (Stenotomus chrysops) and butterfish (Peprilus
triacanthus) becoming common (Collie et al. 2008). Today, the
fishing industry supports a significant portion of the Rhode
Island economy. In 2016, the Rhode Island commercial seafood
industry had a total economic output of $419 million and
supported over 4000 jobs (Mercer and Sproul 2018). The
recreational fishery also plays a large economic role, accounting
for $412 million in sales, $176 million in income, and supporting
over 4000 jobs in 2016 (National Marine Fisheries Service 2018).
Recreational boaters, including fishers, compose close to two
thirds of all users in upper Narragansett Bay (Dalton et al. 2010).

The fisheries of Narragansett Bay provide a case study to explore
fisheries trade-offs in a coupled social-ecological system. The
commercial fishery that targets forage fish such as Atlantic
menhaden operates primarily in the mid and upper Bay in areas
of Greenwich Bay, Bristol Harbor, and Mount Hope Bay (Fig.
2). In addition to being commercial fishing targets, forage fish
play an important role in the Narragansett Bay food web; they
are the conduit of energy between the lower trophic level
planktonic species and the upper trophic level predators, like
piscivorous fishes, sea birds, and marine mammals (Innes-Gold
et al. 2020). Because of this linkage, forage fish are important to
the Narragansett Bay recreational fishery as a major food source
for the targeted predator species. These predators, including
striped bass and bluefish (Pomatomus saltatrix), are economically
and socially valuable as popular recreational fishing targets (data
query from the National Marine Fisheries Service, Fisheries
Statistics Division). Although forage fish abundance is highly
variable because of recruitment dynamics, overfishing can

exacerbate these fluctuations and result in overfished populations
with widespread ecosystem effects, particularly on forage fish
predators (Essington et al. 2015). Conversely, exploitation of
predators through fishing has been shown to cascade down and
affect forage fish population dynamics (Engelhard et al. 2014).

Fig. 2. (A) The location of Narragansett Bay, RI relative to the
Northeast United States and (B) the distribution of forage fish
commercial fishing in Narragansett Bay.

The trade-off  between the role of forage fish as supporting a
directed commercial fishery and providing the food base for
recreationally targeted piscivorous fish poses a complex challenge
for management, which is not unique to Narragansett Bay. Along
the entire U.S. East Coast (Buchheister et al. 2017) and globally
(Houle et al. 2013), the question of how harvesting prey and their
predators affect one another, and how overall harvest should be
managed in this context, has been studied and debated at length
(Kuffner 2017, Chase 2019). Although this question has been
explored for broader geographic ranges, Narragansett Bay has
distinctly different dynamics given that it is an estuarine nursery
ground for many fish species (Meng et al. 2002, Mateo et al. 2011).
Additionally, these past studies have not explicitly incorporated
how fisher behavior may change in response to shifts in the food
web. Currently, fisheries managers in Narragansett Bay are faced
with evaluating how forage fish harvest directly impacts the
species’ population dynamics and the recreational fisheries they
support, without the proper tools to do so.

Food web model
The Narragansett Bay food web model was created using EwE
(Innes-Gold et al. 2020). The mid and upper trophic level
functional groups were piscivorous fish, forage fish, benthivorous
fish, carnivorous benthos, squid, suspension feeding benthos,
cultured shellfish, and seabirds. The lower trophic level functional
groups were deposit feeding benthos, gelatinous zooplankton,
zooplankton, phytoplankton, benthic algae, and detritus. The
commercial and recreational fisheries were also represented. In
this study, we were primarily interested in the forage fish (Atlantic
menhaden, alewife, Atlantic herring [Clupea harengus], blueback
herring [Alosa aestivalis], bay anchovy [Anchoa mitchilli], Atlantic
moonfish [Selene setapinnis]) and the piscivorous fish (Striped
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bass, bluefish, summer flounder [Paralichthys dentatus], weakfish
[Cynoscion regalis], spiny dogfish [Squalus acanthias]) functional
groups. Functional group biomass data for the food web model
were primarily informed by the University of Rhode Island
Graduate School of Oceanography or Rhode Island Department
of Environmental Management bottom trawl surveys.
Production / Biomass (P/B) values were calculated as Z, total
mortality, the sum of natural and fishing mortality. Consumption
/ Biomass (Q/B) values primarily came from Fishbase (Froese and
Pauly 2019) and Thomas-Brey’s invertebrate consumption
equations (http://www.thomas-brey.de/science/virtualhandbook/
navlog/index.html). Ecotrophic efficiency (EE) cannot be
measured in the field and thus was solved for by Ecopath using a
linear equation for all groups (Christensen et al. 2005).
Recreational fishery landings came from the U.S. National
Oceanic and Atmospheric Administration’s (NOAA) National
Marine Fisheries Service query tool (https://www.st.nmfs.noaa.
gov/st1/recreational/queries/), and commercial landings were
either estimated from a data request for NOAA Vessel Trip
Reports or scaled down from Rhode Island state landings (https://
www.accsp.org/). Diet data were sourced from a variety of
literature and data collection methods. The forcing functions used
in the food web model were phytoplankton biomass (g/m²),
cultured shellfish biomass (g/m²), and fishing mortality (F;
estimated as catch / biomass as recommended by Christensen et
al. 2005, Heymans et al. 2016) for functional groups targeted by
fisheries. See Innes-Gold et al. (2020) for further details on model
inputs and data sources.

Fisher behavior model
We have created a fisher behavior ABM based on the piscivorous
fish recreational fishery of Narragansett Bay using NetLogo
(Wilensky 1999). Although we refer to this ABM as the “fisher
behavior model,” it includes both recreational fisher and fish
population dynamics, detailed below. Our fisher behavior ABM
used the overview, design concept, and details protocol (Grimm
et al. 2006, 2010, 2020).

Purpose and patterns
The goal of this model is to create a dynamic representation of
the Narragansett Bay recreational fishery to be linked to the food
web model and examine the impact of fisher behavioral
components on model projections. We will use this coupled social-
ecological model to quantify how the commercial harvest of
forage fish, the abundance-catch relationship, and fisher
satisfaction loss rate influence fish biomass, the amount of
piscivorous fish caught by recreational fishers, and their
satisfaction.

Entities, state variables, and scales
The first type of agent is a fish. In order to represent fish
population dynamics, fish agents were assigned several attributes.
Attributes included age, length, reproductive status (all start as
“ready to spawn” and after spawning change to “not ready to
spawn” for the remainder of the year), and sex (assuming a 1:1
sex ratio; Terceiro 2010, Sharov et al. 2013). Values were sourced
from data on striped bass, bluefish, and summer flounder, the
three most common recreational fishing targets included in the
piscivorous fish functional group. It was necessary to include these
stock characteristics so that the fish population was able to recover
and sustain itself, rather than continuously decline as fishing

occurred. Because these values were not easily obtained from the
EwE model, they were sourced from literature. Two types or
“breeds” of recreational fisheries were represented in the fisher
behavior model: shore fishers and boat fishers. Fishers can have
varied satisfaction levels, ranging from 2 to 10 (Shafer 2007),
which dictates their participation in the fishery. This model
represented the entirety of Narragansett Bay, with no further
spatial components.

Process overview
Each time step was one week. Weeks 1–26 were “open season”
for recreational fishing, representing May–October, and weeks
27–52 are “closed season,” representing the rest of the year. This
assumes that recreational fishing takes place in half  the year. At
each weekly time step, some fish agents first die because of natural
mortality. Fish also reproduce, grow, and age. Shore and boat
fishers decide if  they will go fishing based on their satisfaction
level. The active fishers then attempt to catch a fish. If  they are
successful at catching a fish, they decide whether to keep or release
the fish. Fisher satisfaction increases if  a fish is caught and
decreases if  an active fisher catches nothing, making them less
likely to become active and fish the following week. The model
then goes on to the next weekly time step.

Design concepts
Emergence: Fish population dynamics are sustained over the
course of a model run by having each individual fish age, grow,
reproduce, and die because of natural mortality and fishing
mortality at each weekly time step. This maintains the overall
population structure.  

Adaptation: A fisher adapts based on its fishing success of
previous time steps. If  successful, the fisher becomes more likely
to fish again at the subsequent time step.  

Stochasticity: We have represented the following processes as
stochastic probabilities: fish natural mortality, release mortality,
a fisher’s decision to fish, likelihood of catch, and likelihood of
keeping a fish.  

Observation: We observe the number of fish caught and kept, as
well as the number remaining in the population at the end of a
season. We also note the average fisher satisfaction at the end of
each season.

Initialization and input data
Initial fish population sizes were calculated by converting the food
web model-projected piscivorous fish biomass in 2019, which
differed on the commercial harvest scenario, to a count of fish
(Table 1). To do this, the g/m² biomass was converted into a total
biomass for the whole Bay by multiplying the value by the area
of the Bay (380 km²; Narragansett Bay Estuary Program 2017).
This total biomass was then divided into different portions
representing the different fish size classes (Table A1.1, estimated
using striped bass data from NJ Division of Fish & Wildlife 2010,
Sharov et al. 2013). The average length of the fish in each size
class was converted to a weight using a published striped bass
length-weight equation (Kimmerer et al. 2005). The total biomass
of fish in each size class was divided by the weight of an individual
in that size class to get an approximate number of fish in that size
class that are in the Bay. These size class count totals were summed
to get an overall total number of fish and transformed by scaling
values down by a factor of 1000 for runs in NetLogo. The
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inclusion of a size/age-structured population allowed for fish to
have size-specific growth rates and age-specific mortality rates,
which is particularly important for a size driven recreational
fishery.

Table 1. The four scenarios of commercial forage fish harvest, the
resulting 2020 piscivorous fish biomass, and the starting number
of fish for the fisher behavior model (converted from the
piscivorous fish biomass and divided by a factor of 1000).
 
Commercial Harvest
Scenario

2020 Piscivorous fish
biomass
(g/m²)

Starting number of fish
for the fisher behavior

model

Zero (F = 0) 9.39 15,100
Status Quo (F = 0.202) 9.26 15,000
Intermediate (F = 1.68) 8.50 13,700
Extreme (F = 3.167) 8.01 12,900

Individual fish’s lengths (inches) were set using a random draw
from a Poisson distribution. Forty percent of the fish population
was drawn from a Poisson distribution with a mean of five inches,
30% from a mean of 10 inches, and 30% from a mean of 25 inches,
done to approximately resemble published length distributions
(NJ Division of Fish & Wildlife 2010, Sharov et al. 2013). The
fish age attribute was calculated from their assigned length using
the Von Bertalanffy equation (Equation 1), where k is a growth
coefficient that represents the rate at which L infinity, or the
asymptotic maximum length (hereafter Linf), is approached
(Froese and Pauly 2019). For our fish agents, k was set to 0.2 and
Linf to 50 inches. 

Age=−52
k

ln (1− inches
Linf ) (1)

Inches= Linf (1−exp( k
52

age)) (2)

U t=qAt
b (3)

  

For all trials, each fisher’s satisfaction was assigned by randomly
drawing from a normal distribution with a mean of five (SD =
1), assuming that there is some variation in the satisfaction levels
of fishers and that the majority of fishers start off  with an
intermediate satisfaction level (Arlinghaus 2006, Pascoe et al.
2015). Initial participant total for each breed of fisher was based
on the number of annual recreational fishing trips in Rhode Island
from 2018 converted to weekly participation assuming all fishing
took place in six months of the year (data query from the National
Marine Fisheries Service, Fisheries Statistics Division). The
resulting numbers were 35,000 shore and 9000 boat fishing trips
per week, scaled down by a factor of 1000 to 35 and nine,
respectively. The same starting number of fish and fishers were
used for each model run.

Submodels
1. Natural mortality: There is age-dependent natural mortality.

As a fish ages, the probability of dying by natural mortality
decreases. The weekly natural mortality estimates used were
0.041 (age zero), 0.022 (age one), 0.004 (age two), 0.003 (age
three), 0.001 (age four and up). Fish have a maximum
lifespan of 21 years. 

2. Somatic growth and maturation: Fish grow according to the
Von Bertalanffy growth equation (Equation 2). Linf was set
to 50 inches, and k was set to 0.2. Fish age + 1 week at each
time step. 

Age=−52
k

ln (1− inches
Linf ) (1)

Inches= Linf (1−exp( k
52

age)) (2)

U t=qAt
b (3)

exp
  

1. Reproduction: An age 5+ female fish can spawn once per
season (NOAA Fisheries 2020a, b, c). To allow for some
density dependence, a female fish spawns 12 recruits if  the
fish population is < 5000, seven recruits if  the population is
5000–15,000, and three recruits of the population is >
15,000. 

2. Fishing activity: If  a random number generated between 1
and 10 is less than a fisher’s satisfaction level, then they
become “active” and will go fishing. Because the minimum
satisfaction value is two, there is always a chance a fisher
will become active, but a lower satisfaction level means less
likely to fish. 

3. Deciding to keep or release a fish: If  a fisher catches a keeper
size fish, known as a keeper, (28–35 inches, current striped
bass regulations in RI; Rhode Island DEM 2020), a 0.85
probability was set for the fisher to retain the fish, and a 0.15
probability that they will release it. If  they catch a sublegal
fish, they release it. 

4. Release mortality: Released keepers and sublegal fish have
a 7% and 10% chance of dying upon release, respectively (in
range of species-specific studies: Diodati and Richards 1996,
Lucy and Holton 1998, Malchoff and Lucy 1998, Nelson
1998, Atlantic States Marine Fisheries Commission 2015). 

5. Abundance-catch relationship: The likelihood of a fisher
catching a fish varied depending on the abundance of fish.
In this study, we ran versions of the fisher behavior model
with three different types of catch-abundance relationship:
(1) a power function, (2) a linear relationship, (3) a static
percentage (Fig. 3). The relationship between the probability
of capturing a fish from shore or land is defined first as a
power function (Equation 3, from Gaertner and Dreyfus-
Leon 2004). We created four separate power functions for
the probability of a fisher catching a sublegal fish from a
boat, a sublegal fish from shore, a keeper from a boat, and
a keeper from shore (Table A1.2). 

Age=−52
k

ln (1− inches
Linf ) (1)

Inches= Linf (1−exp( k
52

age)) (2)

U t=qAt
b (3)

  

In this power function (Equation 3), Ut is catch per unit effort
(CPUE) at time t, q is catchability, At is abundance at time t, and
b is the shape parameter. b was solved for after other parameters
were entered (values used can be found in Table A1.2). For Ut, we
used Marine Recreational Information Program data for
recreational fishing trips, selecting “Inland Rhode Island” as our
area of interest (https://www.st.nmfs.noaa.gov/st1/recreational/
MRIP_Survey_Data/). The number of shore or boat trips that
caught one or more piscivorous fish (striped bass, bluefish,
summer flounder) was divided by the total number of trips in the
year to calculate a percent of trips that were successful in catching
a keeper. The number of shore or boat trips that released one or
more of these piscivorous fish was divided by the total number
of trips in the year to calculate a percent of trips that were
successful in catching a sublegal fish, assuming all released fish
were of sublegal size. For keepers and sublegal fish caught from
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boats, data from the year 2017 was used. For keepers and sublegal
fish caught from shore, recent years had very low success rates,
creating a function that plateaued at a very low rate, and therefore
an average of the success rates in the past 25 years was used. For
keepers, catchability (q) was set at 0.04 for boats and 0.02 from
shore. For sublegal fish, q was set at 0.08 for boats and 0.04 for
shore. These values were derived from catchability work on the
smallmouth (Micropterus dolomieu) and largemouth bass
(Micropterus salmoides) in hook and line recreational fishery,
which were the best available data for hook and line fishing
(Hangsleben et al. 2013, Wildenhain 2016, Hansen 2018).
Abundance at time t (At) was calculated by converting a
piscivorous fish biomass (taken from the food web model time
series) in 2017 to legal and sublegal fish counts using the methods
described above for calculating the starting number of fish. We
then solved for the shape parameter. We chose to run trials with
a power functions because they are regularly used to understand
how observed catch relates to species abundances (Hilborn 1985,
Gaertner and Dreyfus-Leon 2004).

Fig. 3. The three types of abundance-catch relationships tested,
split by fish size (keeper or sublegal) and method of fishing
(boat or shore).

Linear relationships have also been used to relate abundance and
catch (Paloheimo and Dickie 1964, Campbell 2004). Four
variations of the linear functions were created for catching
sublegal fish and keepers from boat or shore methods (Table
A1.2). The linear abundance-catch relationships for catching
keepers and sublegal fish were created by defining a slope between
the origin and the point of high fish abundance where the power
curve began to plateau approaching a maximum point, meaning
the catch rate was no longer increasing (5000 keepers, 10,000
sublegal fish). Finally, the static percentage abundance-catch
relationship was set at the average percent of trips that were

successful over the past 25 years, calculated from the Marine
Recreational Information Program data (Table A1.2). A trip was
classified as successful using the method described in the power
function section.  

1. Satisfaction loss rate: The rate at which fishers become
discouraged if  they have an unsuccessful fishing trip, i.e.,
zero catch, which we have termed “satisfaction loss,” directly
determines how likely the fisher is to continue fishing. We
ran three different versions of the fisher behavior model to
test how sensitive model results are to the rate of satisfaction
loss. The three levels of satisfaction loss were one, half, and
zero points lost at each week an active fisher catches nothing.
In all trials, satisfaction increases by 0.1 points if  a sublegal
fish is caught and increases by one point when a keeper size
fish is caught because recreational fishers have been shown
to have increased satisfaction when they catch more fish
(Pitman et al. 2019). 

Model calibration
We set several model parameters so that the population would
remain stable in the absence of fishing. When available, we started
with parameter values from previous studies on striped bass,
bluefish, and/or summer flounder, then made incremental
adjustments until the population neither declined to zero nor
increased to infinity and matched the observed size distribution
(NJ Division of Fish & Wildlife 2010, Sharov et al. 2013) as well
as possible. In our model, the number of recruits per spawner
ranged from 3 to 12, depending on the abundance of fish. This
spawner range was calculated by dividing a number of striped
bass recruits by a number of spawners (Sharov et al. 2013),
converting metric tons of spawner to number of spawners using
an average spawner weight of 2000g, which is in the range of
published spawner weights (Morse 1981, Kimmerer et al. 2005,
Robillard et al. 2008). Martino and Houde (2012) estimated
striped bass age-zero mortality to be 0.068, which we lowered to
0.041 to reproduce the approximate observed number of age-1
fish. Other age-specific mortalities were calculated by converting
striped bass instantaneous mortality (Atlantic States Marine
Fisheries Commission 2015) to annual mortality using Equation
A1.1 (Gulland 1969) and then to weekly mortality using Equation
A1.2 (Krebs 2014). The initial weekly mortality rates for ages 1,
2, 3, 4, 5, and 6+ were 0.022, 0.013, 0.009, 0.005, 0.004, and 0.003,
respectively (Atlantic States Marine Fisheries Commission 2015).
These were lowered to maintain a stable population over the long
term. Other adjustments including raising the lifespan from 18.6
(the average lifespan of striped bass, bluefish, and summer
flounder; Froese and Pauly 2019) to 21 years, raising the L.inf of
40 inches (the average of the three species; Froese and Pauly 2019)
to 50 inches, and increasing the K of 0.18 (the average of the three
species; Froese and Pauly 2019) to 0.2.  

Although we initiated the model based on an unweighted average,
the adjusted values fall within the range for these three species
(striped bass, bluefish, summer flounder) and it is, in fact, the case
that the populations of these species in Narragansett Bay are not
equal, so changing the initial unweighted estimate is not
unreasonable. We focused the tuning first on the age-specific
mortality data because they came from striped bass alone, and
data were not available for bluefish and summer flounder. So as
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to not lower the mortalities to unrealistic levels, we made slight
adjustments in the other parameters to achieve population
stability. With these adjusted values, the model was run for 200
years with no fishing and determined to be stable, represented as
no increasing or decreasing trend in the population or size
distribution.

Model coupling
Here we describe the two-way linkage of the food web and fisher
behavior models, which together we have termed the “social-
ecological model” (Fig. 1). Our work began with the EwE food
web model described by Innes-Gold et al (2020), which ran from
1994 to 2018. In separate trials, each of the four commercial
harvest F values were added to the existing time series used as a
forcing function in the food web model (1994–2018) in the year
2019. All other forcing functions were held constant at their 2018
values. The food web model was then run for one additional year,
outputting predicted piscivorous fish biomass in 2020. The total
piscivorous fish biomass (in g/m²) was then converted to number
of fish to start the fisher behavior model (Table 1), based on a
striped bass length distribution (Table A1.1). Table 1 shows how
each commercial harvest scenario led to a different piscivorous
fish biomass and thus a different starting number of piscivorous
fish for the fisher behavior model. The fisher behavior model was
run for one season (26 weeks), and the number of removals (kept
fish + dead discards) was converted to a piscivorous fish fishing
mortality rate (F). The number of removed fish was converted
into a caught biomass (g/m²) using the reverse of the methods
described to convert the g/m² biomass into a count of fish. The
caught biomass (g/m²) was then divided by the biomass that had
been used as the input to the fisher behavior model for that
timestep to calculate an F value. Because the original piscivorous
fish F value used in the food web model was the summation of
commercial and recreational F, the new F value calculated from
the fisher behavior model was added to a commercial F value,
assumed to be constant from 2018 for the projections (~0.03).
This combined F value was then put back into the forcing function
time series as the piscivorous fish F in 2020 (and all other forcing
functions remained constant). The food web model was then run
again for an additional year, through 2021, where the resulting
piscivorous fish biomass was used as the input to the fisher
behavior model and the process was repeated. This iterative
process was applied each year through 2030.

Trial types

Commercial harvest trials
The commercial harvest trials were done solely in the food web
model. We simulated four scenarios to explore how different
amounts of commercial forage fish harvest affect piscivorous fish
and other functional groups. Forage fish fishing mortality is a
forcing function time series used in the food web model and is
applied to the forage fish functional group. We tested the following
range of forage fish fishing mortality scenarios: a closed fishery
with zero harvest (F = 0), status quo (an average from the
2014-2018 F values in the food web model time series, F = 0.202),
an intermediate scenario (the average of the status quo and
extreme scenarios, F = 1.68), and an extreme scenario (the highest
F value in the food web model time series, which was from the
year 2000, F = 3.167). In separate trials, each F value was entered

starting in the year 2019 and held constant for the next 10 years
(example: F = 0 for 2019–2029). In each of the food web model
forecasts, the other forcing functions (F for other functional
groups, phytoplankton biomass, cultured shellfish biomass) were
held constant at their 2018 value for the next 10 years. The
response variables studied in this test were the biomasses of the
mid and upper trophic level functional groups.

Abundance-catch relationship trials
The abundance-catch relationship trials were conducted in the
coupled social-ecological model. One source of uncertainty in
this model is the relationship between fish abundance and the
probability of a fisher successfully catching a fish because this
relationship has not been defined for Narragansett Bay. The three
types of functions described above were used in separate fisher
behavior model trials to predict whether or not a given fishing
trip will be successful in catching a sublegal or keeper size fish
based on the number of sublegal or keeper size fish available (Fig.
3). All of these trials used a satisfaction loss rate of 0.5. Each of
the trials (power, linear, static) was conducted in each of the four
commercial forage fish harvest scenarios (12 trials total) and
compared only to the other trials in the same scenario. Each
specific trial was run in the coupled social-ecological model for
10 years (until 2030). Testing these different abundance-catch
relationships allowed for assessing how sensitive the response
variables of piscivorous fish biomass, the number of fish caught,
and fisher end of season satisfaction were to the assumed
relationship.

Satisfaction loss rate trials
The satisfaction loss rate trials were also conducted in the coupled
social-ecological model. The satisfaction loss rate of recreational
fishers is also a source of uncertainty in the model. Such
uncertainty can be consequential given that satisfaction rate
directly determines future participation and effort in the fishery.
We conducted three trials where fishers lose one, half, or zero
satisfaction points after an unsuccessful trip, i.e., zero fish are
caught. During these trials, the abundance-catch relationship was
always defined using the power function because that was the null
model. Each of the three trials (one, half, zero) was conducted in
each of the four commercial forage fish harvest scenarios (12 trials
total) and only compared to other trials in the same scenario.
Each trial was run in the coupled social-ecological model for 10
years (until 2030). In this test, the three response variables were
also piscivorous fish biomass, number of fish caught, and fisher
end of season satisfaction.

Analysis
In the commercial harvest scenario trials, we report differences in
the organism biomass forecasted by the food web model at the
year 2030. In the abundance-catch relationship trials, we detail
differences between the linear, static, and power trials for three
response variables: piscivorous fish biomass, the number of fish
caught and kept, i.e., “keepers,” and end of season satisfaction.
For the satisfaction loss trials, differences between the one, half,
and zero trials using the same three response variables are
described. No statistical tests were conducted so as to avoid
drawing inappropriate conclusions from simulation modeling
(White et al. 2014).
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RESULTS

Commercial harvest scenario trials
In the stand-alone food web model forecasts, the highest
biomasses of all fish groups occurred when forage fish harvest
was prohibited (Fig. 4). In the year 2030, the extreme,
intermediate, and status quo harvest scenarios yielded forage fish
biomasses that were 44.9%, 64.1%, and 94.7% of the biomass
under zero harvest, respectively (Table A1.3). Piscivorous fish
indicated a similar pattern to their prey (forage fish), albeit of
smaller magnitude (Fig. 4). The extreme, intermediate, and status
quo harvest scenarios yielded piscivorous fish biomasses that were
75.4%, 81.7%, and 96.8% of the predicted biomass under zero
harvest, respectively (Table A1.3). The other mid- and upper-
trophic level groups showed a range of responses to these various
forage fish harvest scenarios; carnivorous benthos biomass was
largely unaffected, while benthivorous fish biomass decreased
slightly with increasing forage fish harvest. Both large and small
squid also responded in the same pattern, with increasing forage
fish harvest leading to lower projected squid biomass (Fig. 4). The
sharpest initial declines in biomass were seen in forage fish and
both groups of squid in the intermediate and extreme harvest
scenarios (Fig. 4). For all groups, the forecasted biomasses were
similar for the zero and status quo harvest scenarios because the
status quo fishing mortality was very low.

Fig. 4. The Ecopath with Ecosim food web model biomass
trajectories under four different scenarios of commercial forage
fish harvest. Note that scenario forecasts for carnivorous
benthos were similar, with forecasts overlaying each other.

Abundance-catch relationship trials
Varying the nature of the abundance-catch relationship in the
fisher behavior model led to differences in all three response
variables (Fig. 5a). Our model trials using a power function to
define the abundance-catch relationship predicted a higher number
of fish caught, higher fisher satisfaction, and lower fish biomass
(Fig. 5a, A1.1). Trials with a linear or static relationship predicted
fewer fish caught, lower fisher satisfaction, and a higher subsequent
biomass (Fig. 5a). In some scenarios, i.e. zero commercial harvest,
the linear and static trials did not produce large differences in
response variables, while in other scenarios, i.e., intermediate
commercial harvest, they did (Fig. 5a). The power function trials
generally produced fish biomass and a number of fish caught that
had larger differences from the static or linear trial results, which
were often similar. For end of season satisfaction, this distinction
was less present (Fig. 5a). The different commercial forage fish
harvest scenarios led to large differences in piscivorous fish
biomass, with higher harvest leading to lower forecasted biomass,
although the zero and status quo harvest scenarios produced
similar biomass projections (Fig. 6a). Notably, the harvest
scenarios caused few notable differences in number of keepers
caught and in fisher end of season satisfaction (Fig. 6a).

Satisfaction loss rate trials
The satisfaction loss rate produced distinctly different outcomes
in the number of fish caught and fisher end of season satisfaction
but had fewer distinguishable patterns on piscivorous fish biomass
(Fig. 5b). The satisfaction loss rate of zero led to a higher number
of fish caught, higher fisher satisfaction, and lower projected fish
biomass, while the satisfaction loss rate of one led to a lower
number of fish caught, lower fisher satisfaction, and higher
projected piscivorous fish biomass (Fig. 5b, A1.2). As before, the
higher commercial forage fish harvest led to lower piscivorous fish
biomass (Fig. 6b). The harvest scenarios caused few pronounced
differences in number of keepers caught and fisher end of season
satisfaction (Fig. 6b).

DISCUSSION
By linking a food web model with a fisher behavior model, we have
demonstrated a social-ecological method that could be useful for
testing social responses to environmental and anthropogenic
perturbations. We have shown that including a human dimensions
component can lead to large differences in model-predicted values
of ecological variables, i.e. fish biomass. This can be seen when our
coupled model forecasts are compared to the stand-alone food web
model forecasts, which did not include the fisher behavior model.
By coupling these two models together, the predicted biomass
values differed from those predicted by the food web model alone,
regardless of which trial type was run. This lends strong support
to previous calls for inclusion of human behavior in ecosystem
modeling and ecosystem-based fisheries management (Hall-Arber
et al. 2009, Hornborg et al. 2019). Previous EwE models have
employed a value chain extension (Christensen et al. 2011) or
simulated fisheries management strategies within EwE (Martell et
al. 2002, Chagaris et al. 2015), but to our knowledge, EwE has not
been linked to an ABM or a dynamic fisher behavior model.
Creating a two-way coupling between an EwE model and a
temporally dynamic model of fisher behavior, i.e., an ABM, has
allowed for a more complete understanding of the social-ecological
system and for users to elucidate important mechanisms that can
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Fig. 5. The mean and data spread (of each 8-year trial) of piscivorous fish biomass, the number of keepers caught, and fisher end of
season satisfaction for the four harvest scenarios. Color indicates the type of fisher behavior model trial, where the top row (A)
shows the abundance-catch relationship trials, and the bottom row (B) shows the satisfaction loss rate trials.
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Fig. 6. The mean and data spread (of each 8-year trial) of piscivorous fish biomass, the number of keepers caught, and recreational
fisher end of season satisfaction across harvest scenarios, where the top row (A) shows the abundance-catch relationship trials, and
the bottom row (B) shows the satisfaction loss rate trials. Color indicates the scenario of commercial forage fish harvest.
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lead to different responses of the system. Such a framework
presents the possibility of exploring social-ecological scenarios
using models, including not only investigating human impacts on
the ecosystem but also how resource users respond to changes in
the ecosystem. Because managers regulate the actions of humans,
research and modeling efforts aiming to inform management must
consider the social domain as part of the ecosystem.

Commercial harvest scenario
The food web model indicated that the current (status quo) low
level of fishing pressure on forage fish is not having a dramatic
impact on forage or piscivorous fish biomass in Narragansett Bay.
If  there is higher fishing pressure, i.e., the extreme scenario, the
model projected that there would be a decrease in all three groups
of fish and squid, but that this had fairly minimal impacts on the
number of fish caught by the recreational fishery. It is very unlikely
that future commercial fishing pressure on planktivorous fish
would reach the extreme level tested given the current catch limits
in place. Both size classes of squid showed fairly large decreases
between the different forage fish harvest scenarios because forage
fish made up a sizable proportion (27% for small squid, 50% for
large squid) of squid diet in this Narragansett Bay model (Innes-
Gold et al. 2020). It is worth noting that this food web model had
less precise fits for both groups of squid compared to the three
fish groups, which may lead to less reliable projections (Innes-
Gold et al. 2020). In the food web model, predators switched prey
if  their preferred prey source was diminished, which buffered
some of the food web impacts from the harvest of forage fish.
Allowing prey switching is ecologically justified because estuarine
predators have repeatedly been shown to switch their diet based
on varying prey availability in changing environments (Pihl et al.
1992, Nobriga and Feyrer 2008, Szczepanski 2013; M. Heinichen
unpublished manuscript). Overall, the forage fish harvest scenario
did not appear to be a main driver in the number of piscivorous
fish caught recreationally or recreational fisher satisfaction.  

Although these results suggest that current forage fishing pressure
within Narragansett Bay is not having large social or ecological
impacts, this may not be generalizable to forage fish harvest
elsewhere. Forage fish harvest has been found to have impact
predator biomass on larger scales, depending on the species of
interest (Buchheister et al. 2017). There are several reasons why
our scale of impact on predator biomass might have been smaller.
By grouping multiple species together in our forage and
piscivorous fish functional groups, we were unable to determine
which species had the strongest responses. Buchheister et al.
(2017) found that striped bass responded strongly to changes in
menhaden harvest, while other predators did not respond as
strongly. Because this EwE model was designed for broad,
ecosystem-level questions and grouped striped bass in with other
piscivorous fish, i.e. bluefish and summer flounder, it cannot be
used to isolate changes in specific species. Additionally,
Narragansett Bay is not the most heavily commercially fished
estuary along the U.S. East Coast. The Chesapeake Bay, for
example, has much higher harvest levels of forage fish and a strict
management system in place meant to account for the ecosystem
services of menhaden (SEDAR 2015).  

It is also important to note that in the forecasts we performed,
other forcing functions (phytoplankton biomass, cultured
shellfish biomass, fishing mortality for other fished groups) were

held constant at their 2018 levels. This was done to isolate the
effects of forage fish harvest and explore specifically how forage
fish fishing pressure impacts the ecosystem. Given the importance
of phytoplankton as a driver in the EwE model (Innes-Gold et
al. 2020) and history of nutrient inputs into Narragansett Bay
(Nixon et al. 2008), future simulations could explore the combined
effects of varying fishing pressure and phytoplankton (as a proxy
for nutrient inputs). For example, reduced primary production
could lead to decreased forage fish because of the strong link
between plankton and forage fish (Cury et al. 2000). Given that
the relationship between nutrient reductions and primary
producers is non-linear (Oviatt et al. 2017), this is an area
warranting future work.

Abundance-catch relationship
Varying the abundance-catch relationship in the coupled model
simulations led to changes in the number of fish caught and
subsequent fish biomass and fisher satisfaction. We chose to test
the abundance-catch relationship because higher abundance of
fish has led to higher catch in other recreational fisheries (Pitman
et al. 2019), however there is no consensus on the best method to
approximate this relationship. For certain species, abundance and
catch per unit effort (CPUE) can have a proportional relationship,
but for other single or grouped species, CPUE has been found to
be a poor abundance index (Richards and Schnute 1986, Haggarty
and King 2006). Historically, the linear method to relate
abundance and catch was commonly used for stock assessments
(Cooke and Beddington 1984). Although the linear method has
since been questioned as an oversimplification of this relationship
(Peterman and Steer 1981, Bannerot and Austin 1983), it has also
been found to perform better than a power curve in some cases
(Tsuboi and Endou 2008). The power function is another
common method and has been suggested as a more appropriate
alternative to a linear function (Hilborn 1985, Harley et al. 2001,
Gaertner and Dreyfus-Leon 2004). We chose to include an
additional, static relationship, because there may be no
relationship between abundance and catch (Tsuboi and Endou
2008). The lack of consensus on a defined abundance-catch
relationship may be due to differences in species vulnerabilities to
fishing gear (Tsuboi and Endou 2008). Other factors can also
influence CPUE, such as fish maturity, fish density, area swept,
year, season, fishing gear, and fisher behavior (Richards and
Schnute 1986, Large 1992).  

Our work shows the importance of testing multiple abundance-
catch relationships when there is uncertainty. In our model, the
three different abundance-catch relationships led to very different
model outcomes because of their underlying functional form.
When using the power function, the predicted number of fish
caught at times was double the number predicted in the linear or
static trials. This difference led to discrepancies in fishers’ end of
season satisfaction, which then affected their likelihood to
continue fishing. In comparison, the commercial harvest scenario
of forage fish had fewer impacts on the number of piscivorous
fish caught or recreational fisher satisfaction. These results
showed that the abundance-catch relationship needs to be clearly
defined to have confidence in model projections. We have,
therefore, highlighted another area for future research:
quantifying the abundance-catch relationship for recreational
fishers in Narragansett Bay. The nature of this relationship varies
depending on the location and species (Gaertner and Dreyfus-
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Leon 2004, Tsuboi and Endou 2008), making it difficult to
transfer the relationship derived from one fishery to another. The
factors that play into this relationship are both social, i.e., fishing
gear and behavior, and ecological, i.e. fish abundance, density,
and population dynamics. It is particularly challenging to account
for behavioral changes that affect catch rates, affirming the need
for future research to focus on decreasing uncertainty outside of
a purely ecological setting (Fulton et al. 2011).

Satisfaction loss rate
In the coupled model simulations, the satisfaction loss rate led to
large differences in the measured response variables. Our
satisfaction variable is a proxy for the many factors that go into
a fisher’s decision-making process on if  they will fish at a given
time, with satisfaction increasing upon catching a fish (Pitman et
al. 2019). In our model, when fishers became discouraged quickly
and went fishing less frequently, it led to projections of fewer fish
being caught and higher fish biomass. On the other hand, when
the failure of a previous trip did not cause fishers to become
discouraged, projections of the number of fish caught doubled.
Similar to the abundance-catch relationship, the satisfaction loss
rate led to changes in all response variables, while commercial
harvest scenario mainly affected fish biomass. Because of this
impact, quantifying the rate at which fishers exit the fishery is also
important in order to have reliable model projections.  

Key data gaps to fill include discovering the extent to which a
previous trip influences a fisher’s decision to fish and if  a
successful trip increases satisfaction more than an unsuccessful
trip decreases it, which has been suggested by an ABM of a coral
reef recreational fishery (Shafer 2007). Ideally, these data would
be collected from surveys of the recreational fishing community
in Narragansett Bay because this could differ between locations
due to diverse behavior among recreational fishers (Mackay et al.
2020). Some useful survey questions comprise how likely they
would be to keep or release a keeper, as well as how much their
interest in fishing would change depending on their previous
fishing success. This could also be done by monitoring fishers and
inferring their behavior from collected data (Friedlander et al.
2014). In other locations, there has been high heterogeneity in
fishers’ willingness to leave the fishery, with many continuing to
fish even when they were unsuccessful (Cinner et al. 2009, Muallil
et al. 2011). Skill level could also impact fisher satisfaction.
Although data limitations did not allow us to include a fisher skill
level attribute, future research could parameterize this variable by
collecting data on the number of years each fisher had been
angling along with their fishing success. In other locations, less
skilled fishers seem to be more inclined to leave the fishery as
stocks decline (van Poorten et al. 2016). Although success on
previous trips, as well as skill level, may be an important part of
a fisher’s decision to fish, the model could also benefit from the
incorporation of other factors, such as fisher economic status,
weather, and fuel price (Cinner et al. 2009, Cooper and Jarre 2017,
Daw et al. 2017). Even though Narragansett Bay has a plethora
of long-term environmental datasets, there is a definitive lack of
social data describing fishery attributes that is needed to give
nuance into fisher decision making. Understanding the behavior
of recreational fishers is essential to promote the sustainability
and resilience of recreational fisheries (Arlinghaus and Cooke
2009, Arlinghaus et al. 2013)

Management implications
The results from our coupled model demonstrate that the
inclusion of the human dimension, and more specifically how the
social system is represented, i.e., how parameters such as
satisfaction loss are defined, can change model outcomes. These
findings add to the growing amount of literature pinpointing the
need for human behavior to be incorporated into environmental,
and specifically fisheries, management using ecosystem-based
approaches (i.e., Fulton et al. 2011, Asah et al. 2014, Hornborg
et al. 2019). The relatively few papers that take steps in
incorporating fisher behavior into management often focus on
economic indicators (Hornborg et al. 2019). Whereas economic
incentives drive commercial fisheries, this may not be the case for
recreational fisheries. For example, studies of fisher behavior have
shown that in addition to economic gain, factors like the desire
to conform to social norms, uphold identity, and experience
esteem are also important drivers (Hall-Arber et al. 2009). In fact,
it is common for fishers to be willing to pay for the opportunity
to fish (Cantrell et al. 2004, Johnston et al. 2006). For many fishers
who continue to fish despite economic loss, fishing can be a form
of recreation and a way to preserve self-image (Wijermans et al.
2020). Satisfaction was chosen as our model variable because it
is flexible enough to capture these non-economic behavioral
motivators. In this study, we have shown that incorporating
recreational fishing dynamics can lead to different forecasts of
fish biomass and the number of fish caught, thus affecting the
food web. The model coupling framework we have demonstrated
could be particularly useful for management strategy evaluations,
where there is the need to assess and balance conflicting objectives
of different stakeholders (Smith et al. 1999). Going forward, it is
imperative for scientists and managers to work with stakeholders
to define the required metrics for assessing performance prior to
conducting this research.  

We did not incorporate spatial dynamics into the food web or
fisher behavior models because of a lack of fish and fisher
distribution data in Narragansett Bay. The spatial distribution of
forage fish may be particularly important to include because their
distribution has the potential to impact their piscivorous
predators more than their abundance does (Hilborn et al. 2017).
Were these data available, adding a spatial component would
allow for increased realism and the exploration of additional
social-ecological questions, such as how fishing success varies over
time at different locations throughout the Bay. Spatial distribution
would also allow for the inclusion of additional behavioral
elements, such as competition and collaboration between fishers,
which have shown to be important particularly in small-scale
fisheries (Pollnac and Poggie 1991, Basurto et al. 2016). The
population age structure used in our model was estimated from
striped bass data. Incorporating similar data for bluefish and
summer flounder, when available, would help resolve the effect
the population age structure has on the model outputs. Fish
population age structure is an area of research that could be
further explored using the multi-stanza tool of the EwE model,
which breaks functional groups up into size classes. In addition,
we held commercial fishing pressure static but in the range of
historical data. In order to create a model with the intention of
forecasting ecosystem change, the fisher behavior model should
be expanded to include commercial fleet dynamics and their
response to real-time fishery profitability. Given these limitations,
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drawing concrete conclusions from our fisher behavior model on
how the Narragansett Bay recreational fishery will change over
time should not be inferred from this work. We aimed to create a
reproducible yet flexible methodology for incorporating human
behavior in a coupled social-ecological model built using
established modeling platforms. We have also demonstrated that
including these dynamics yields much different projections of
important metrics such as fish biomass, catch, and fisher
satisfaction. This model focuses on realism and generality as a
goal, and accuracy can be further improved by filling the data
gaps mentioned previously (Levins 1966).  

Consideration of the entire ecosystem has become a high priority
in fisheries management as rapid environmental and human
change becomes the new normal; ecosystem-based fisheries
management has been an ultimate goal for fisheries management
agencies globally, with limited implementation success to date.
Perhaps one of the most significant applications to-date, the
Atlantic States Marine Fisheries Commission adopted the use of
Ecological References Points for the management of Atlantic
menhaden along the U.S. Atlantic coast, moving away from a
single-species approach and now having quota specification
informed by managing menhaden harvest in the context of itself
and predators, i.e., striped bass (SEDAR 2020). However, for full
ecosystem-based fisheries management implementation, these
ecosystem approaches must formally include the human
dimensions via simulation models. The inclusion of fisher
behavior is especially important when asking questions about
fisheries trade-offs, such as the trade-offs associated with
ecological reference points for menhaden (Chagaris et al. 2020).
Recreational fishers have expressed concern that menhaden
fishing is depleting the prey source for the predators they prefer
to target (Chase 2019). In a system such as this one, the changing
behavior of fishers could have profound impacts on the ecosystem
as well as other fishing sectors. We have shown that incorporating
fisher behavior into models can change fish biomass projections
and thus should be a priority for future ecosystem-based fisheries
management efforts. Furthermore, we have provided a
methodology for the creation of such a coupled model. Perhaps
the main barrier to the successful inclusion of human behavior
in models, at this point, is the lack of data on these human
dimensions. In order to understand how ecosystems will change
over time, researchers need to collect and incorporate data on the
behavior of resource users. Although the absence of data on
spatial distribution of fish and fishers, as well as region-specific
fisher behavior, limits the predictive use of our social-ecological
model, it is a useful tool for three main reasons. First, it has
allowed us to explore general patterns of the linkage between the
commercial and recreational fisheries of Narragansett Bay.
Knowing the extent to which these two fishing sectors are linked
is important when deciding if  and how they should be considered
in the management of one another. Second, our social-ecological
model provides a base model to which new data can be added to
expand the accuracy of the model’s representation of the
Narragansett Bay recreational fishery. Finally, there are no
examples of coupled EwE and agent-based models that we are
aware of, making this method novel and providing a framework
of how to incorporate human behavior for other fisheries to
follow.
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Appendix 1. Supplementary material. 
 
 
The equation used to convert instantaneous mortality to annual mortality: 
 

𝑆 = 𝑒−𝑍     [A1.1] 
 

Where S is the annual survival and Z is the instantaneous mortality (Gulland 1969).  
 
The equation to convert annual mortality to weekly mortality:  

𝑆𝑤  =   𝑆
1

52     [A1.2] 
 

Where Sw is the weekly survival rate (Krebs 2017). 
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Table A1.1. The age and size distribution used to convert piscivorous fish biomass (g/m2) to a 
number of fish (estimated from NJ Division of Fish & Wildlife 2010, Sharov et al. 2013). 
Weight was estimated using a striped bass length-weight equation (Kimmerer et al. 2005). 
 
Age (years) Length (inches) Weight (g) Proportion of population 
1   7.07 71.23 0.25 
2 12.86 460.46 0.22 
3 17.60 1225.58 0.18 
4 21.48 2282.08 0.15 
5 24.48 3509.48 0.1 
6 27.25 4798.87 0.05 
7 29.38 6068.37 0.025 
8 31.13 7263.93 0.015 
9 32.55 8354.56 0.002 
10 33.72 9326.35 0.002 
11 34.68 10177.01 0.002 
12 35.46 10911.55 0.002 
13+ 36.10 11539.12 0.002 
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Table A1.2. The power, linear, and static abundance-catch relationships used to represent the 
likelihood of catching a keeper or sublegal fish from shore or boat fishing methods, where A 
represents abundance. Value sources for these equations can be found in the main text (see 
“Submodels” section).  

Relationship Keeper/Boat Keeper/Shore Sublegal/Boat Sublegal/Shore 
Power 0.04𝐴0.40 0.02𝐴0.23 0.08𝐴0.26 0.04𝐴0.25 
Linear 0.0002𝐴 0.00003𝐴 0.00008𝐴 0.00009𝐴 
Static 0.40 0.07 0.67 0.34 
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Table A1.3. Forecasted biomasses (g/m2) for the six mid and upper trophic level functional 
groups at the year 2030 under the four scenarios of commercial forage fish harvest. 

Functional Group Zero (F=0) Status Quo (F=0.202) Intermediate (F=1.68) Extreme (F=3.167) 
Forage Fish 20.16 19.09 12.93 9.06 
Piscivorous Fish 9.92 9.60 8.10 7.48 
Benthivorous Fish 14.14 13.93 12.88 12.34 
Carnivorous Benthos 12.74 12.75 12.73 12.63 
Large Squid 1.15 1.12 0.93 0.80 
Small Squid 0.96 0.91 0.64 0.52 
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Fig. A1.1. Piscivorous fish biomass forecasts of the coupled social-ecological model for the four 
scenarios of commercial forage fish harvest compared to the food web (EwE) forecast. The 
different color lines represent the three variations of abundance-catch relationship in the social-
ecological model, and the black line represents the stand-alone food web forecast.
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Fig. A1.2. Piscivorous fish biomass forecasts of the coupled social-ecological model for the four 
scenarios of commercial forage fish harvest compared to the EwE forecast. The three different 
color lines are the variations of satisfaction loss rate in the social-ecological model, and the black 
line represents the stand-alone food web forecast. 
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