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Abstract—This article develops a model to plan energy-
efficient speed trajectories of electric trucks in real time by
considering the information of topography and traffic ahead of
the vehicle. In this real-time control model, a novel state-space
model is first developed to capture vehicle speed, acceleration,
and state of charge. An energy minimization problem is then
formulated and solved by an alternating direction method of
multipliers (ADMM) that exploits the structure of the prob-
lem. A model predictive control (MPC) framework is further
employed to deal with topographic and ftraffic uncertainties
in real time. An empirical study is finally conducted on the
performance of the proposed eco-driving algorithm and its
impact on battery degradation. The simulation results show
that the energy consumption by using the developed method is
reduced by up to 5.05%, and the battery life is extended by more
than 100% compared to benchmarking solutions.

Index Terms— Alternating direction method of multipliers
(ADMM), autonomous and electric trucks, battery life extension,
energy minimization, heavy-duty (HDT) truck, model predictive
control (MPC), speed control.

I. INTRODUCTION

EAVY-DUTY trucks (HDTs) account for 70% of all

freight transport and 20% of transportation-sector green-
house gas (GHG) emissions in the USA [1]. Therefore, the
decarbonization of HDTSs is essential for developing sustain-
able transportation and one technology that could deliver this
is the battery-electric (BE) HDT [2], [3]. The electrification
of HDT has developed greatly in recent years, and according
to McKinsey, it was reported that BE trucks could account
for 15% of global truck sales by 2030 [4]. However, the
development of BE HDT is greatly limited to the present
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lithium-ion battery technology, especially due to the low
energy density and short cycle life [5].

One way to address this technology bottleneck is to develop
the next-generation battery with largely improved energy den-
sity and cycle life [6], which, however, generally requires
decades and cannot meet the requirement of immediate usage.
Another way is to reduce vehicle energy consumption and
battery aging through intelligent energy management and
speed control strategies, which is owed to the eco-driving
control techniques. Indeed, many algorithms have been devel-
oped for the eco-driving of both passenger vehicles [7]-[10]
and HDTs [11]-[15]. In [7], eco-driving techniques were
discussed and formulated as an optimal control problem that
consisted of the minimization of the vehicle consumption
over a time and distance horizon, and then, a closed-form
solution of the optimal trajectories was derived. Xu et al. [8]
proposed a cooperative method of traffic signal control and
vehicle speed optimization for connected automated vehicles,
which optimized the traffic signal timing and vehicles’ speed
trajectories at the same time. Zeng and Wang [9] proposed
an optimal speed planning solution for a vehicle running on
a given route with multiple stop signs, traffic lights, and so
on. Malikopoulos ef al. [10] addressed the problem of speed
control of a number of automated vehicles before they entered
a speed reduction zone on a freeway. Although involving
different driving scenarios with traffic signals, speed limits,
and so on [7]-[10], for model simplification purposes, the
passenger vehicle modeling generally neglects the impacts of
road topographies and aerodynamics, which greatly affects
the energy consumption of HDTs featured with a heavy and
large body [16]. Some literature developed battery aging-
conscious energy management strategies for hybrid electric
vehicles (HEVs) by optimally splitting the driving power
[17]-[20], but how to drive the electric vehicles (EVs) in
an energy-efficient way with minimized battery aging still
remains an open problem. In fact, due to the long-haul
driving requirement, the shortcomings of batteries, such as low
energy density and short cycle life, are greatly enlarged with
the BE HDT. An eco-driving algorithm considering battery
aging is thus especially required for the BE HDT optimal
control.

The eco-driving control of HDTs is mainly focused
on the internal combustion engine (ICE)-powered HDTs.
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TABLE I
SEGMENT VARIABLES DEFINITION FOR SEGMENT i
Notation Definition Explanation
T; The travel time trough segment & -
t; The starting time of segment 1 t1 =041 =t; + T3
v;(t) The instantaneous EV velocity in segment ¢ ty <t <t
x5 The initial velocity at the beginning of segment ¢ x; = v;(t;), it is the system state.
ay The EV acceleration in segment i This value is the system input and assumed to be constant in the short segment.
pi(t) The instantaneous power of the battery output in segment ¢ Negative in charging and positive in discharging.
Ii(t) The instantaneous current of the battery output in segment i Negative in charging and positive in discharging.
Yi The SOC change in segment i This value is the system output.

Hellstrom ef al. [11] developed a predictive cruise controller
where the dynamic programming (DP) method was used
to solve the optimal control problem numerically. In [11],
a preprocessing algorithm was developed to downsize the
search space of DP so that the algorithm complexity was
reduced for real-time operation. Guo and Wang [12] inves-
tigated the problem of speed planning and tracking control of
a platoon of trucks and presented a two-layered hierarchical
framework for truck platoon coordination: a speed planning
layer for en route speed profile calculation and a control layer
for vehicle speed tracking. Held ef al. [13] developed fuel-
efficient driving algorithms for applications with varying speed
limits in urban driving, while Borek ef al. [14] developed
economic optimal control strategies with traffic involved and
navigation at signalized intersections by using infrastructure-
to-vehicular communication. The speed control of traditional
HDT generally involves the optimization of gear selections
(integer) when the DP method is often introduced [11], [12],
[14], [15]. Compared to traditional HDTs, the speed control
of BE HDT generally involves noninteger optimization, which
thus provides the chance for introducing more efficient opti-
mization algorithms than the DP method. To the best of the
authors’ knowledge, this is the first article focused on the
optimal eco-driving control of BE HDT, considering impacts
of both the energy consumption and battery aging.

In this work, three major contributions are made. First,
a novel state-space model is constructed to capture the depen-
dencies of vehicle speed, acceleration, and battery state of
charge (SOC). Based on this model, the optimization problem
for energy minimization is further formulated, with both road
topographies and surrounding traffic involved. Then, a model
predictive control (MPC) approach based on an alternating
direction method of multipliers (ADMM) is developed by
considering topographical and traffic uncertainties so that the
efficient real-time speed control is realized. Finally, effects of
the speed control algorithm on battery degradation are sys-
tematically evaluated by introducing an EV-oriented (battery)
aging model, and an empirical study is further conducted to
validate the performance of the eco-driving strategy with and
without surrounding traffic.

The rest of this article is organized as follows. Section II
describes a state-space model describing truck system dynam-
ics. Section III defines the energy optimization problem and
develops optimization and control algorithms. Section IV
shows the truck energy consumption results based on the
developed method, followed by Section V showing the battery
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Fig. 1. Schematic.

aging evaluation results. Finally, Section VI concludes this
article.

II. STATE-SPACE EQUATION MODELING

In this section, a state-space model connecting the vehicle
speed, acceleration, and energy consumption is constructed,
where the vehicle speed and battery SOC are the model state
and output, respectively. The modeling processes are presented
in detail as follows.

Let the total trip be divided into N equally spaced segments
of unit length, and segment i begins at #;. The schematic is
shown in Fig. 1 and the definition of segment variables is listed
in Table I.

The state-space model is defined as

Xig1 = Fi(xi,ai), yi = Gi(xi,a;)

where F;(-,-) is the state transition and G;(-, ) is the output
function.

A. State Transition Function

Note that the length of each road segment in Fig. 1 is
considered as unit length “1” for easy derivation purposes, but
it will be parameterized in the empirical studies (Section IV)
based on the practical conditions. In this case, x;, a;, and T;
are related by

'}'}
f(x;-—l—a;-r)dr:l:>a;ﬂ2+2x52}—2:0 D)
0

which gives

—Xi +/x} + 24
] i_—'

_ 2 21;‘ _
TP T a;

i
The state transition is then given by

Xipt = Xi+a;T; = \[x}42a; = F;(xi, @) = \/x]+2a;.  (2)
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B. Output Function
1) SOC Change Within Each Road Segment: SOC indicates

the ratio of battery remaining capacity to nominal capacity, and
thus, the SOC change within each road segment is defined as

Jo ide [ pitdt 5
C a uc ®)
where C represents the battery nominal capacity and U
represents the battery terminal voltage that is assumed constant
within the commonly used SOC ranges [21].
2) Longitudinal Dynamics of Vehicle: The equation describ-
ing the longitudinal dynamics of vehicles is shown as

Yi=Gi(x;,a;) =

4)
with
) 1
F‘-mr(l‘) = Epairﬂfcl:)wi2 ®)
F[* = mgC,cos(a;) + mgsin(a;)

where m is the vehicle mass; F}m" (t) is the track force gen-
erated by the electric motor (EM); Ffi’ (1) is the air resistance
with p, indicating the air mass density, Ar indicating the
vehicle frontal area, and Cp indicating the aerodynamic drag
coefficient; and F** is the resistance consisting of the road
frictional resistance and the gravitational resistance with C;
indicating the rolling resistance factor and a; indicating the
slope of segment i. To simplify the derivation process, it is
assumed that f2* = (1/2)pair AfCp and F[* = ﬁ‘.(o), where S
is independent of road segment conditions, while ﬁi(o) depends
on the slope of each road segment.

3) Output Function Modeling: The track force FI™°K(t) is
produced by the battery power. When the battery discharges,
pi(t) > 0, the electric power is converted to positive track
force according to

F™*(t) = BFpi(t)/vi(r)

where A7 indicates the vehicle discharging efficiency.
When the battery is charged by the kinetic energy,
pi(t) < 0, the motor produces negative track force as

FI™ (1) = B pi(t) /vi (1)

where 1/4~ indicates the vehicle charging efficiency. Here,
we assume that all the brakings can be accommodated through
the electric brakes and are regenerative brakings; thus, friction
braking is not included. This assumption is consistent with
the practice, where the use of friction brakes is minimized to
improve energy efficiency and reduce wear [22].

Then, the instantaneous battery power output is expressed
as

ﬂ+, F}lrack > 0
p~, otherwise

1
pi(t) = z-0oi OF"(t), pi= [ (5)

B
where p; includes the efficiencies of the battery charg-
ing/discharging, the ac/dc converter, the EM, and the trans-
mission gearbox. The transmission energy losses caused by the
gearbox are small and the transmission energy efficiency is set
to a constant close to 100% [15]. The EM efficiency varies
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as the torque and rotational speed of the motor, which can
also be considered a constant based on the motor efficiency
map and the vehicle speed limit in this study. The detailed
simplification process of the EM efficiencies is presented in
Appendix A.

Note that the sign of track force can be verified from (4), and
thus, whether B; equals S or S~ is determined by the vector
of (x;,a;), that is, the track force can be positive, negative,
changing from positive to negative, or vice versa within each
road segment. These four cases lead to different modeling
processes of output function, which are presented in detail
in Appendix B.

Generally, the output function can be expressed as

[1) 1 2
Gi(xi,a) =" +yVai +yx

where the expressions of vector y;(x;,a;) are concluded in
Table V (Appendix B).

III. FORMULATION AND SOLUTION OF THE ENERGY
MINIMIZATION PROBLEM

A. Problem Formulation of Energy Minimization

The total energy consumed (E) is given by the cumulative
SOC change. In this case,

N+1
[ (1 (2
E= Z(}'j )+}',’ )ai +7; )xiz)-

i=1

(6)

From (1) and (2), there is

2 2
Xi — X
Xiy1 = X; +a;T; N a; :%
a;?}2+2x,-ﬂ—2:0 i:xt'+1+xi_
T; 2

By substituting @; in the total energy expression, there is

Nt
E=no(x)+ > ni(x)x} @)
i=1
where x = [x1, X2, ..., Xy41] and
N
0
Mo(x) = z?f{ :
i=1
(1)
@ N .
o i=1
71 2
(1) (1)
ni@)=1,®_% Y1 ;_53 N
y; ) + 7 El 3 s 3
(1)
N .
—_ =N+ 1.
2 r=ANT

The minimum energy control is to minimize the energy
consumption subject to a total trip-time constraint ¢ and the
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optimization problem PME is thus formulated as

N+1
minimize JME(x) = no(x) + Z ni (J:))ci2

T;20,x;20
i=1

N
st. > Ti=t1, i=1,...,N
i=1

Tixi+Tixiyyn=2, i=1,...,N
X; =x =X, i=1,...,.N+1

where x; and X; are, respectively, the lower and upper speed
limits, and the traffic information can be introduced easily
by adapting the speed limits to surrounding traffic. Note that
PME involves two sets of variables, including the speed x
and the travel time T to be optimized. Although the above
optimization is nonconvex, optimizing x for fixed T can be
solved easily. For fixed x, solving T that satisfies the con-
straints amounts to solving a linear equation. Thus, a method
of alternately solving x and T can be derived accordingly.

B. ADMM-Based Optimal Solution

The ADMM is a simple but powerful algorithm that is
well suited to distributed optimization problems as described
in PME, It takes the form of a decomposition-coordination
procedure, in which the solutions to small local subproblems
are coordinated to find a solution to a large global problem.
ADMM can be viewed as an attempt to blend the benefits of
dual decomposition and augmented Lagrangian methods for
constrained optimization [23].

As in the method of multipliers, the augmented Lagrangian
is formed by relaxing the constraints in PME as

L, T, 1,4, p) = no(x) + D mi(x)x} +A(ZTE - r)

+ > piTixi + Tixipn —2)

2
()

:
+> —"2‘ (Txi + Txi1 — 2% (8)
i

where ¢ = [pu1, pa, ..., yN]T and A are the Lagrange
multipliers associated with constraints in PME and p =
[p1, p21, p22,--- ,pgN]T are the penalty coefficients.

Minimizing the Lagrangian (8) with respect to (x, T') is non-
trivial. The difficulty can be lessened considerably if x and T
are solved separately, which gives rise to an iterative approach
to solving PME. In particular, when the speed trajectory x is
fixed, o(x) and #;(x) are determined. Equation (8) can thus
be expressed as a quadratic function of T

L=T"A(x,p)T + T b(x, pu,2,p) + ¢, T, i, 2,p) (9

[T\, T, ---,Tn]", A € RV*N is a matrix
coefficient of the quadratic term, b € R" is a vector coefficient
of the first-order term, and ¢ € R is a constant. Minimizing the

where T =
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Algorithm 1 ADMM Algorithm Is Given by the Following

Iterations

1: Initialize u, 1, p, the speed trajectory x©, and the trip
time 7.

2: repeat

3:  Solve the primal variables:

x"D = argmin L(x, T™, u™, 2™, p) (10)
T = argmin L(x™V, T, u™, 2™, p)
1
= —EA_' (™ p)b(x ™D, 1™ 2™ ). (11)
4:  Update the multipliers:
A@+D) _ () +p(z Ti(ﬂ+l) _ T) (12)
i

i i

#}rx+l) _ #}rx) + pai (T{n+1)xgn+1)

+ Ti(n+1)x(ﬂ+l) . 2)_ (13)

i+1

5: until the solution difference between two iterations is small
enough with [x“*) — x®|j, + |T®HD — T®W|, < ¢
and the constraints of the optimization problem are met
with [|(3 Tf{rx+l) B r)+2i(?}{n+])xi{n+]) + ?}(H])xi(ﬁ]) .
2)||l2 < &2, where &) and &; are two predefined positive real
numbers close to zero.

Lagrangian with respect to T can be obtained in closed form.
The ADMM algorithm to solve PME is shown in Algorithm 1.

Note that (10) that updates x™ to x*+1 can either solved by
a standard solver or, perhaps more easily for a large problem,
by first-order (gradient) updates.

Also, note that the sign of track force will not change sud-
denly as the speed trajectory x gradually changes. A positive
track force within road segment i changes gradually as that in
Case III (Appendix B) before finally turning into a negative
track force. In other words, the sign change of track force for
each road segment actually represents the move of zero track
force point (see Fig. 16 in Appendix B). The continuity of
track force determines the continuity of energy consumption
in feasible solutions.

Suppose that there is a feasible solution xp and the vector
parameter y;(xp) is determined accordingly, and there will be
lim,_, , 7:(x) = yi(x0). Because #;(x) consists of y;(x), there
will also be lim,_, ., #;(x) = #;(xo). Since xo can be any
feasible solution, the objective function is continuous in the
feasible solutions of x, which guarantees the local convergence
of the proposed algorithm. In our simulation, it is observed
that convergence happens approximately (or on average) in
50-100 iterations.

C. MPC-Based Vehicle Speed Control

MPC is a rolling-window closed-loop control that incor-
porates real-time operating conditions. For optimal BE HDT
control, MPC solves an N-segment open-loop control and
implements only the control of the first segment [24].
Fig. 2 shows the information flow of the MPC framework.
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Fig. 2. Information flow of the MPC framework.

TABLE II
SPECIFICATIONS OF THE TESLA SEMI TRUCK AND BATTERY PACK

Parameters Description Value
m Vehicle mass 40,000 kg
Cr Rolling resistance coefficient with tyre type 0.0055
Aj The frontal area 10 m?
Cp Aerodynamic drag coefficient 0.36
Ep Nominal energy in total 250 kWh *4
U Nominal voltage (one battery pack) 800 V
(& Nominal capacity (one battery pack) 312.5 Ah
gt Vehicle discharge efficiency (battery to wheel) 0.85
,BL— Vehicle charge efficiency (wheel to battery) 0.80

A cloud-based platform for traffic information and situational
awareness sends the updated information to the onboard
controller, including road altitudes, speed limits, accidents,
and emergencies ahead. Based on the traffic information from
the cloud platform and local sensing results (such as the
distance of the car in front of the truck), the embedded
ADMM algorithm calculates the optimal velocity and trip
time within a small number of limited road segments, say
N = 30. Only the velocity of the first segment is executed
in truck operation. Note that the accurate road topographies
and speeds of the preceding vehicle required by the onboard
controller in this research are assumed to be available. The
road grades can be estimated by fusion of GPS and vehicle
real-time data, with measurements from previous runs over
the same road segment [25]. The preceding vehicle trajectory
can be planned or computed by the preceding vehicle and
communicated to the following one [7], [8], [12], [13] or they
can be computed by the following vehicle itself by exploring
past and present measures of the distance and relative speed
collected by onboard sensors [26], [27].

I'V. CASE STUDY

Simulations were performed on the road data of highway
E4 between the cities of Sodertilje and Norrképing in Swe-
den [11]. The road slope and altitude are shown in Fig. 3. The
electric truck modeled was a Tesla Semi tractor and trailer.
The specifications of the truck and battery pack [2] are given
in Table II. Note that the truck had four separate motors
to drive the front four wheels individually, and each motor
was powered by a battery pack with the nominal voltage and
capacity being, respectively, 800 V and 312.5 Ah.

Algorithm parameters were initialized as follows. The
length of each road segment / was set to 50 m, and the number
of segments N was set to 30. The setting of 50-m length

ADMM algorithm

On-board controller
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Sodertilje Position (km) Norképing
Fig. 3. Estimated road topography (altitude and slope) from Sodertilje to

Norrkoping.

for each segment, whose value can be adjusted according to
practical conditions, has been proven to be feasible in prac-
tice [11], [28]. Therefore, the prediction horizon was 1500 m.
The speed lower bound was set to 0 km/h. In the case without
traffic involved, the speed upper bound was set to the EU
legal maximum of 90 km/h and the speed lower bound was
set to 75 km/h [11], while in the case under traffic, the speed
was limited to surrounding traffic. Simulations were conducted
in the environment of MATLAB 2020a based on a Macbook
Pro with a processor of 8-Core Intel Core i9 @2.4 GHz and
a memory of 32 GB.

A. Optimal Speed Control Without Traffic Involved

In this case, the trip time r was set equal to the trip time of
that using a uniform speed of 85 km/h to travel through the
same distance.

1) Overall Performance: Two simulations were conducted
based on the road data between Sodertilje and Norrkdping
to compare the performance of the ADMM controller and
the uniform speed cruise control (CC) controller. The CC
speed was set at 85 km/h, and the relative changes of energy
consumption and trip time between the two controllers are
shown in Fig. 4. A negative value indicates that the ADMM
controller has a lower value than the CC does. The results
show that, compared to the CC, the ADMM controller saved
4.28% energy from Sdodertilje to Norrképing and 4.83%
energy from the return, while the trip time between these two
controllers was similar to each other in both directions.
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Fig. 4. Simulation results on the road data from Sddertiilje to Norrkoping
and the return.

2) Performance Comparison: Since there is no published
work on energy-efficient eco-driving of BE HDT, the com-
parisons were made with energy-efficient driving algorithms
for traditional trucks [11] where DP and proportional-integral
control (PIC) were proposed. Also, the optimal speed tra-
jectories from [11] are directly introduced for performance
comparisons. According to [11], the PIC is a standard con-
troller available from Scania. All parameters that could affect
the vehicle energy consumption were set to the same as
those in [11]. Fig. 5 presents the comparison results between
ADMM, DP, PIC, and CC based on the road slopes in [11,
Figs. 7 and 9]. The speed value of the CC was set to have
the same trip time as that of PI. The relative changes in
energy consumption and trip time (ASOC and AT) of ADMM
to other methods are also presented in Fig. 5 for each road
scenario.

Since the charging/discharging efficiency of the vehicle is
less than 1, the regenerative braking is only able to regenerate
a part of the consumed energy. Besides, moving the truck
forward also consumes energy to overcome different kinds
of resistances, and this energy consumption further reduces
the efficiency of regenerative braking. Therefore, energy con-
sumption can be reduced by avoiding any undesirable braking.

Fig. 5(a) shows that the HDT kept constant speed based
on ADMM except during downhill stretches, where the truck
decelerated first, then accelerated, and finally decelerated again
to a constant speed. The ADMM-based energy consumption on
the downhill was close to zero as shown in Fig. 5(b), which
indicates that the truck moved forward in the most energy-
conserving fashion with little undesirable braking, whereas
more braking events were observed in Fig. 5(b) for all other
methods, including the DP, PIC, and CC. Note that traditional
trucks needed to downshift (decelerate) to increase the driving
force when going uphill [see DP- and PIC-based speed trajec-
tory in Fig. 5(a)], which caused the undesirable acceleration
and braking on the downhill [see DP- and PIC-based energy
consumption in Fig. 5(b)] to meet the trip-time requirement.
Because the BE HDT powered by the motor was able to
go uphill without decelerating and with a high speed, it left
wider improvement space for improving energy consumption
when going downhill than the traditional truck did. This
phenomenon, which has never been revealed in the literature,
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indicates that the BE HDT adapts to the road topography
in a more energy-efficient way than the ICE HDT does.
In each case, the CC performed the worst since it used the
most undesirable braking and thus consumed the most energy
to keep a constant speed when going downhill. The energy
consumption results in Fig. 5(b) show that, with a similar
trip time, the ADMM-based BE HDT, respectively, consumed
1.72% and 1.78% less energy than the DP- and PIC-based ICE
HDT and 1.93% less energy than the CC-based BE HDT.

Fig. 5(c) shows the optimal speed trajectories on a road
with a long downhill segment where braking was inevitable
for the BE HDT within the speed upper limit. In this case,
the ADMM used less braking and thus consumed less energy
than other methods did [Fig. 5(d)]. Obviously, the driving
characteristics of BE HDT was quite different from that of the
ICE-powered HDT. The energy consumption results show that
the ADMM-based BE HDT, respectively, consumed 2.22%
and 2.99% less energy than the DP- and PIC-based ICE HDT
and 9.02% less energy than the CC-based BE HDT while
keeping a similar trip time. Note that the reason that ADMM
saves more energy than DP in the two cases is mainly due to
the different vehicle types (e.g., BE HDT versus ICE HDT).
The energy consumption values are expected to be similar if
the two controllers are both developed for the BE HDT.

3) Performance Under Different Upper Speed Bounds: The
speed upper bound was set to 90 km/h to follow the EU
legal maximum speed limit. This speed limit can, however,
be broken in some cases as the ICE HDT does in Fig. 5(c).
Fig. 6 shows the optimization results under the upper speed
bounds being set to 90, 92, and 95 km/h. For the case when
the vehicle speed is generally less than the upper speed bound,
the speed trajectories under different speed constraints are
similar to each other [Fig. 6(a)], leading to similar energy
consumption trajectories and thus similar relative changes of
SOC reduction shown in Fig. 6(b).

For the case when the maximum speed corresponding to
each scenario is reached, the speed trajectories are still similar
to each other at other segments for reducing undesired braking
[Fig. 6(c)]. Although the energy consumption with an upper
speed bound of 90 km/h is a little smaller than those with
different speed limitations, the energy consumption trajectories
are still similar to each other [Fig. 6(d)], indicating the high
performance of the ADMM-based controller against different
upper speed bounds.

4) Performance With Vehicle Parameter Uncertainty:
Because the models of battery and EM are simplified to con-
stant efficiencies for constructing the vehicle energy consump-
tion model, the performance of the ADMM controller against
uncertain vehicle charge (1/f~)/discharge (f7) efficiencies is
thus evaluated. The standard deviations of 1/8~ and S+ are
assumed to be 0.02 and 0.025, respectively. Also, the 3o rule-
based interval for 1/8~ and A7 are, respectively, [0.74, 0.86]
and [0.775, 0.925] under this assumption, indicating uncer-
tainty of more than 15% for the discharge/charge efficiencies.

Ten sets of discharge/charge efficiencies were generated
based on the assumed standard deviations. The ADMM
controller operated on one efficiency set at each time and
optimized the speed trajectory. The corresponding relative
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which is indicated by SOC reduction.

changes of energy consumption on all ten efficiency sets were
then obtained and the statistics with respect to different road
topographies are presented in Fig. 7. Fig. 7(a) shows that the
ASOC values are a little lower than those with the exact
efficiencies for each comparison, and the 3¢ variations are all
within 0.1%. Fig. 7(b) shows similar comparison results with
those using the exact efficiency values and the 30 variations
are all within 0.2%, which indicates the high robustness of the
ADMM controller against uncertain vehicle parameters. This
robustness of the ADMM controller validates the effectiveness
of the energy consumption model of the truck derived in
Section II for speed optimization purposes.

Optimization results under different upper speed bounds. (a) and (c) Speed optimization results. (b) and (d) Corresponding energy consumption,

5) Performance Under Different Looking-Ahead Horizons:
In practice, the prediction horizon can change according to
the traffic, road topography, computation requirement, and
so on. Generally, the longer the prediction horizon is, the
more information that is gained from the future and the
heavier the computation burden is. Fig. 8 shows the con-
trol results based on different looking-ahead horizons. The
number following H indicates the number of segments N.
For example, H20 indicates an N of 20 and the prediction
horizon is thus 1000 m. Under each prediction horizon, the
SOC reduction of the ADMM-based controller is compared
with that of the CC-based controller and a relative change of
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SOC is then deduced and presented in Fig. 8. Fig. 8 shows
that the energy consumption generally decreases, while the
computation time increases as the horizon increases. After
H30, the relative change of SOC (absolute value) decreases
a little in Fig. 8(a) and increases slowly in Fig. 8(b). Also, the
computation times at H30 are both less than 1.2 s, which is
lower than the maximum turnaround time of 2 s for real-time
operation in this case. It is thus reasonable to set the number
of segments to 30 in the simulation.

Note that if the looking-ahead road topography or traffic is
uncertain, the prediction horizon may be reduced to improve
the prediction confidence of the future information. In this
research, it is assumed that the exact information of the traffic
and road topography is known ahead.

B. Optimal Speed Control Under Traffic

As indicated before, the surrounding traffic can be intro-
duced easily to the optimization PME. Appendix C shows
the detailed modeling processes where the vehicle drives in a
safe and energy-efficient way, and specifically, the upper speed
limit X; is adapted to the speed of the preceding vehicle.

1) Traffic Stochastic Modeling: Traffic around the truck
needs to be simulated for traffic-based optimal speed control.
Here, the exponential distribution was used to generate the
stochastic traffic. The exponential distribution is a standard dis-
tribution that can model the interarrivals between vehicles [29].
Let events “1” and “0” represent, respectively, that there is a
preceding vehicle or not. The traffic is a Markov process if
the exponential distribution is used to represent the elapsed
time between event “1” and “0” [30]. A continuous random
variable X is said to have an exponential distribution if it has

probability density function

Ae—;{x
0

, x>0

Jx(x]4) :{

, x=<0

where 4 > 0 is called the rate of the distribution. Here,
X represents the traveling distance instead of the duration time
as the distance and the duration time can always transform
between each other in this case. X; is used to represent
the traveling distances with preceding vehicles and X, is
used to represent the traveling distances without preceding
vehicles, and the mean values of these two distributions are
thus gy = 1/4; and py = 1/2;. The traffic situation is decided
by the values of u; and p». A large u; and a small g, indicate
heavy traffic and vice versa. x; and u» can be calibrated based
on available real traffic flow data.

2) Model Initialization: Some model parameters need to
be initialized for defining the traffic characteristics. In this
study, the minimum headway h, from the preceding vehicle
was set to 1.2 s for the autonomous following trucks to
ensure traffic safety [31]. The initial distance d; from the
preceding vehicle was assumed within [2, 4] s headway with
uniform distribution, and the speed of the preceding vehicle v,
was assumed within [70, 80] km/h with uniform distribution.
Heavy traffic is characterized by (x; = 3 and u» = 2). Light
traffic is characterized by (u; = 2, g2 = 3), and normal traffic
is characterized by (¢ = 3 and u» = 3). Note that in this case,
the trip time 7 is highly dependent on the traffic situations and
thus cannot be determined in advance.

3) Speed Control Results With Traffic Involved: In this
section, we first investigated the energy consumption results
for trucks following a preceding vehicle on a flat road (road
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Fig. 9. Simulation results based on flat roads. (a) Speed trajectories based

on ADMM and CC with a preceding vehicle velocity of 22 m/s and an initial
spacing of 90 m. (b) SOC reductions as the position. (c) Speed trajectories
based on ADMM and CC with a preceding vehicle velocity of 20 m/s and an
initial spacing of 70 m. (d) SOC reductions as the position.

slope = 0). Then, we further investigated the truck energy
consumption following a preceding vehicle on a road with
varying slopes. Finally, the truck energy consumption results
from Sodertilje to Norrkdping and the return were evaluated
based on heavy and light traffic, respectively. In the scenarios
with surrounding traffic involved, since no DP- or PIC-based
speed trajectory can be introduced for comparisons, only the
CC-based speed trajectory was used as a benchmark.

Fig. 9 shows the simulation results on flat roads with dif-
ferent velocities of the preceding vehicle and initial distances.
Note that the CC speeds were obtained based on two rules:
first, the CC travel time was the same as that based on ADMM,
and second, the headway for CC was also set to 1.2 s. It was
observed that the ADMM controller saved more energy than
the CC did in both cases because the ADMM controller braked
less on flat roads. In case 1, the ADMM used resistances (air
and frictional) to decelerate, while the CC used additional
braking, which thus consumed more energy. In case 2, the
ADMM controller braked for a little while at first and then
decelerated perfectly depending on resistances, whereas the
CC controller braked until reaching the desired speed. Fig. 9
shows that our method still worked on saving energy for trucks
following a preceding vehicle, and more energy was expected
to be further saved with the road slopes involved.

Fig. 10 shows the simulation results with road slopes from
Fig. 5. It was observed that the ADMM still braked less
and was more energy-efficient. Fig. 10(b) and (d) shows that
the energy consumption based on ADMM was, respectively,
reduced by 6.07% and 19.46% compared to that based on
CC. These results indicate that our method still performed
excellently on energy consumption improvement for trucks
following a preceding vehicle on roads with varying slopes.

Fig. 11 shows the statistical results under stochastic traffic
from Sodertilj to Norrkdping and the return. For each direc-
tion, ten traffic scenarios covering heavy (u; = 3 and py = 2),
light (z; = 2 and p» = 3), and normal (x; = 3 and p» = 3)
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traffic were generated randomly and implemented to verify
the performance of ADMM. For each traffic scenario, the
preceding vehicle turns in and out randomly, and the total
driving ranges with a preceding vehicle (labeled “Traffic”’) and
without any preceding vehicles (labeled “No traffic”) are listed
in Table III. From Sdodertdlj to Norrkdping, Scenarios 1-3
indicate heavy traffic, Scenarios 4-7 indicate light traffic, and
Scenarios 8-10 indicate normal traffic. For the return direction,
Scenarios 1-4 indicate heavy traffic, Scenarios 5-7 indicate
light traffic, and Scenarios 8—10 indicate normal traffic.

Under each traffic scenario, the relative change of energy
consumption between ADMM and CC was calculated, and
the mean values and 3¢ variations were further obtained
by summarizing the simulation results under different traffic
scenarios. It was observed that from Sodertilj to Norrkoping,
the energy consumption of ADMM was reduced by 4.05%
with a 3¢ interval being [3.27%, 4.83%] compared to that
based on CC, while from Norrkdping to Sodertilj, the saved
energy was up to 5.07% with a 3¢ interval being [3.73%,
6.40%]. These results of energy saving indicate that our
method adjusts well to different traffic situations for minimal
energy consumption purposes.

V. EVALUATION OF BATTERY AGING
UNDER ECO-DRIVING

Energy minimization is only one of the issues of BE
HDT eco-driving control. The impact of driving algorithm on
battery health is also relevant. Limited to the current battery
technology, the battery life, which is generally shorter than
the EV life [32], is even shorter for BE HDT due to the long-
haul driving requirement. Therefore, battery aging in BE HDT
needs not only to be online monitored but also to be further
improved.

Indeed, many studies have been conducted on battery SOH
estimation in recent years, e.g., Chen ef al. [33] developed a
promising method by using dual H infinity filters to estimate
battery SOH in real time and the high estimation accuracy
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TABLE III
DETAILS OF TEN TRAFFIC SCENARIOS

Direction Label Sl(km) S2(km) S3(km) S4(km) S5(km) S6(km) S7(km) S8(km) S9(km) S10(km)
Sodertil) to  Traffic T 69.75 70.65 44.7 483 40.15 427 49.1 56.45 51.35
Norrkdping  No traffic  35.6 41.4 42.2 68.85 63.65 73.3 71.65 63.95 55.0 63.75
Norrkoping  Traffic 727 61.5 69.7 78.45 355 45.2 40.15 58.15 35.55 56.65
to Sodertdlj  No traffic 409 49.15 44.45 358 80.5 67.4 72.85 59.2 61.35 60.65
3 the moment 71, and Q; 4 = Qn — Qwn. SOCgy =
W Mczan value Q . .
s I 30 vasiation ((1/(211 — Q1)) 5. (SOC(Q) — SOCayp)*d @)'/? indicates
- the normalized standard deviation from SOC,y,. It is assumed
g that the thermal management system of vehicle is able to
Bs keep the battery pack at a constant temperature of 25 °C and
2 model parameters k—k4 are thus initialized at this specific
£ s n temperature [36].
E 55
B. Optimal Speed Control Impact on Battery Aging
]
1 1) Parameter Presetting of Simulation: The battery aging
3 Sodertalje- Norrkoping- model indicates that, in general, the battery life is longer within
Norrkoping Sodertalje

Fig. 11. Simulation results of energy consumption under stochastic traffic
from Sodertilj to Norrkoping and the return.

was verified by the hardware-in-loop experiment, while there
is limited literature on managing EV real-time operations for
extending battery life. It is demonstrated here the positive
effect of the proposed approach on battery aging.

A. EV Battery Life Model

Battery aging includes cycling aging and calendar
aging [34]-[36]. For a long-haul BE HDT, one suitable oper-
ation mode would be shipping during the day and charging at
night. This operation mode indicates that the truck battery pack
will be cycled most of the day. In this case, it is only needed
to evaluate the cycling aging of batteries for the BE HDT.

The battery cycling aging model used in this article is devel-
oped in [36]. This model is selected for two reasons. First, this
model analyzes the effect of regenerative braking on battery
aging and involves this effect in the aging model. Second,
the model is verified by a large amount of experimental data
simulating EV operations. The total capacity fade at a constant
temperature is expressed as

Q': = ‘:q (SOCavgs SOCdev) x Q
where ¢ is the total capacity fade, Q is the ampere-hour (Ah)
charge processed during charging/discharging, and ¢’ is the

capacity fading rate and its unit is Ah faded per Ah processed
by batteries. The capacity fading rate is expressed as

(14

& = kySOC ey € 5%Cms 4 fyK450Cae

(15)

where ki—k4 are four model fitting parameters. SOCy, =
(1/(Qt1-10)) f%}' SOC(Q)dQ indicates the average SOC,
with Qq being the amount of charge processed at the
moment 0, Q;; being the amount of charge processed at

the SOC cycling range of a lower SOC average value. There-
fore, the ending SOC instead of the initial SOC is adjusted
to the same value for each controller for fair comparisons.
Generally, a long-haul HDT should run more than 500 km
each working day. The road data from Sodertilj to Norrkdping
and the return (about 240 km long) were thus repeated to
generate the road data profile with the wanted travel distance.
It was assumed that the truck shipped during the day and got
charging at night. Slow charging was preferred for extending
the battery life, and thus, the charging rate was set at 0.1 C in
simulation. Note that the truck was expected to be used each
working day, and thus, it would operate 260 days each year.
Currently, the EV battery degradation limit is agreed upon
30% limit [32].

2) Battery Aging Without Traffic Involved: Here, three cases
were simulated where for each case, the truck drove a prede-
termined distance or the battery pack reached a predetermined
ending SOC each day.

Case 1: The truck traveled 800 km long each day, which
is the Tesla claimed truck driving range with batteries fully
charged. For fresh new battery packs, the battery (depths of
discharge) DODs for the ADMM and CC benchmark were,
respectively, 90.86% and 95.12% at the end of trip and the Ah
throughputs of one battery pack were, respectively, 328.8 and
400.3 Ah. It was observed that, after speed control using
ADMM, the charge delivered by battery was reduced by
71.5 Ah, which accounted for 22.9% of the battery nominal
capacity (312.5 Ah). As the capacity degradation is propor-
tional to the Ah throughput (see battery aging model), the
ADMM controller was expected to reduce battery aging by
more than 20% compared to the CC policy. This significant
improvement showed that, when compared with the CC policy,
the proposed eco-control algorithm not only minimized energy
consumption but also extended battery life.

The improvement of battery health came from the fact that
the proposed minimum energy control avoided undesirable
braking. Note that the battery delivered about twice the
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TABLE IV
BATTERY AGING AND LIFE ESTIMATION RESULTS FOR CASE 1

SOCavz SOCger dE(x10~%Ah) & (%, one year)
cc 0.53 0.47 1.94 11.30
ADMM 0.50 0.45 1.64 8.36
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Fig. 12. Battery aging and life estimation results for Case 2 of ADMM (dark
red line) and CC (blue line).

regenerative charge by each undesirable braking compared
with the case when undesirable brakings were avoided.

In this case, the SOC cycling ranges for ADMM and
CC benchmarks were [95.74%, 4.88%] and [100%, 4.88%],
respectively. The battery aging evaluation results are presented
in Table I'V. It was surprising to find that the one-year-capacity
fading ¢ of battery based on ADMM was reduced by 35.2%
compared to CC. The ADMM controller led to lower battery
DOD and thus smaller SOC,,, and SOCge, than the CC
controller did. This low battery DOD caused a reduction of
15.5% on the capacity fading rate 6¢ using ADMM compared
to using CC, which explains why ADMM reduced the capacity
degradation of battery much higher than the aforementioned
value of 20%.

Cases 2 and 3: Generally, an EV needs to be recharged
when the battery SOC is lower than 10%-20%. Therefore,
in Cases 2 and 3, the battery ending SOC for CC was,
respectively, setting to 10% and 20%, which corresponds
to a CC-based truck travel distance of 761 and 675 km
each day for fresh new batteries. For fair comparisons, the
driving range based on ADMM was set to the same value as
that based on CC. Figs. 12 and 13 show the battery aging
results for Cases 2 and 3, respectively, where the CC-based
driving range within the corresponding DOD is also presented.
It was observed that the driving range decreased as the battery
capacity degraded. In Case 2 (Fig. 12), the CC- and ADMM-
based battery lives were 3.74 years and 7.81 years long,
respectively, indicating a life extension of 108.8% for the
ADMM. At the battery end of life (EOL) for CC, the truck
driving range decreased to about 517 km, equal to a range
shrinkage of 32% compared to the initial driving range.

In Case 3 (Fig. 13), because the battery DOD was 10%
shorter than that in Case 2, the CC- and ADMM-based battery
lives were both longer and were about 6 years and 10.5 years
long, respectively, indicating a life extension of 75% for
ADMM. In this case, the reduction of driving range was
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Fig. 14. ADMM-based life extension results under traffic.

equal to 202 km, which amounts to range shrinkage of up
to 43%, indicated the necessity to reduce battery aging from
EV driving perspectives.

3) Battery Aging Under Traffic: In this case, the optimal
speed profiles under traffic were used, and as described before,
the generated stochastic traffic scenarios from Sodertilje to
Norrkoping and the return covered heavy, light, and normal
traffic. For each scenario, the road altitudes and traffic from
Sodertilj to Norrkdping and the return were connected and
repeated to generate the desired road profiles for simulation,
leading to totally ten simulated situations under different
traffics. Fig. 14 shows the ADMM-based life extension results
compared to CC for these ten traffic scenarios, where the
CC-based ending SOC each day was set to 15% over different
aging stages. The ADMM-based driving range each day was
also set to the same value as that based on CC for fair
comparisons. It was observed that the ADMM-based life
extension ranged from 80% to 110%, with a mean value of
up to 93.2%.

VI. CoNCLUSION

This article has developed a methodology of controlling
truck speed with minimal energy consumption and extended
battery life. The novel state-space equations are constructed to
describe the system dynamics of the truck. The dependencies
of truck operation speed and energy consumption are captured
by a state-space model with truck speed as the state and
battery SOC as the output. An energy minimization problem
is defined, where a novel optimization technique based on
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the principle of ADMM is introduced for optimal solutions,
coupled with an MPC strategy to deal with the uncertainty
of the upcoming road topography and traffic for planning the
truck speed in real time. The performance of the developed
method is verified based on real highway altitudes between
the cities of Sodertiilj and Norrkdping in Sweden.

The simulation results show that the developed method is
able to exploit topographical conditions for improved energy
management, both in terms of minimizing total battery dis-
charge and prolonging battery lifetime. It shows that the
ADMM control consumes less energy under different sce-
narios than the DP control, PIC, and uniform speed CC.
Generally, ADMM consumes 4%-5% less energy than CC
does. It is surprising to find that ADMM generally extends
battery life by more than 1 time than CC does. These results
suggest the necessity to improve battery energy consumption
and aging by optimizing truck speed trajectories. The battery
energy and aging improvement values still hold when the
traffic is introduced, which indicates that our method is also
able to be used in electric buses and passenger EVs in urban
driving.

APPENDIX A
EM MODELING

The EM is assumed to have similar efficiencies under
traction and regenerative braking modes. The EM power PEM
is expressed as

71T drivin

pEM _ 307 (nm, TEM)’ &
i, T™My(n,, TEM

- ’?( z ), braking

30

where TEM indicates the EM torque, n,, indicates the rota-
tional speed of the EM, and #(n,,, T™) indicates the motor
efficiency depending on n,, and TEM. The EM efficiency map
of the Tesla Semi is presented in Fig. 15 [37].

Remark: 1t was claimed that the Tesla Semi shares a number
of parts with its Model 3, including the same motor [38]
(Fig. 15).

The vehicle speed v and the EM rotational speed n,, is
connected by

300

g
T F'whi

N =1

where i, indicates the gear ratio and ryy indicates the radius
of the vehicle wheel. Note that the truck speed on highway is
limited within [75, 90] km/h [11]. In this case, the rotational
speed range of EM is within [7000, 9000] r/min at a gear
ratio of 19:1 [39]. Within this rotational speed range, the
EM operates at a highly efficient mode with efficiencies
being around 94%. Therefore, the EM efficiency can also
be considered a constant when calculating the powertrain
efficiency f;.

APPENDIX B
OuTPUT FUNCTION MODELING

Four cases are considered here.
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Fig. 15. EM efficiency map of Tesla Semi.

Case I: F/™*(t) > 0 within segment i, i.e., the battery
always discharges. Note that since the term 1/UC in (3) is
a constant, which will be removed temporarily for concise
expression in the following derivations but will be added back
in the simulation results:

T; T;
Gi(xi,a;) = pi(t)dt = 5 v((r)F““k(I) dt
©
= LI‘ +4i / (x; + a;t) dt
’2:: (x,- +a;t) dt
©
= m;‘ﬂ ﬁf [(xt +atT) 2]
+ 4fa;+ [(i +aiT)* — x}]
~ 5 (ma +ﬁ‘°)) iu (2 +a)
_ }’i(O) +}_( a( +}_‘{) 2 (16)
where 3% = (8 /p%), 7" = ((m + p)/+), and y

(ﬁalr) f ﬁ+)

Case II: F/™*(r) < O within segment i, i.e., the battery
always charges. The derivation for Case I applies. Substituting
BT by B, there is

Gi(xi,a;) = }’,( 0 +}'; ﬂ( +}';{ x?

B/, 7" = ((m+ p*r)/p~), and

where y(
(2) (ﬁalr / ﬁ ).
Case III: The sign of FI™ changes from positive to
negative, i.e., there exists f}* such that

F**® =0, n<r<t
FoK(t) <0, tf <t <t
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Ti=ti—t;

T T

—_

& L t Ly
Fl_n'nrk(U =0 F[_trark(t) =10

i1

Fig. 16. Schematic: the track force is positive before £ and then changes
to negative after this moment.

Note that ¢/ is a function of (x;, ;). The schematic of this
case is shown in Fig. 16.
The output function is the sum of two subsegments

Gi(xi,a;) = G (xi, a;) + G; (i, ;)

where

g
GF(xi,ai) = f pi(t)dt

(0)
ma; + ﬁ‘
= B /0 (x; + a;t) dt
air
I;Jr (x,v +a;t)’ dt
(0)
_ma;+p; 2
Tap [+ it =27
ﬁair 4
Faagel ) =] an

where T;* = — ;. Let the distance traveled when p;(f) > 0
is L}, and we have
T

Li(xi,a;) = (x; +a;t) dt.

Following the state transition function (2), there is:

v; (f*) =X; + a,-Tf = ‘{I? + ZG;L:

Substituting the above into (17), there is

L?(;i: a;) (mai N ﬁ‘go))

L} (xi, ai) "

_|_ - oo
Bt

1 ~(2
= }';( )(xu a;) + ?’( )(x,, a;)a; + }';'( )()Cg, ai)x;'z

where 700,a) = (LB)/BD. 70(a) =
(Li/B*)m + L)), and 72 (xi, @) = (LB*) /B,
Here, it is emphasized that the coefficients y‘(m, 7; W
‘(2) depend on the vehicle state (x;, a;).
To compute G (x;, a;), there is

Gi(xi,a) =

(x7 + aiL} (xi, a;))

and

fis1

G; (x;,a;) = pi(t)dt

1

©
ma;
= mai + B / (xf +ait) dt
B~ 0

air T*
!; (xF +ait)’ dt
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TABLE V
VALUE OF VECTOR PARAMETER y; UNDER DIFFERENT CASES
v; Case 1 Case II Case III Case IV
NO) o @ L:al® L@ L:p® f,;,s(“)
L e e, B= B+
(1) m+||93“ m_Hgau- \' (m—{—,ﬂa“L;) + ﬁi— ‘ (m + ﬁau‘Lt) + _+_
POOAT BT Im g (L] +1)] m+ B3 (L +1)]
(2) ,{38" 'emr L;ﬂa" Etﬁalr L:ylsauf En_clgau
Yo pF E I -t v

where T* = T; — T and x} = v;(t*). The distance traveled
when p;(f) <0 is

Tl_c
Li(xi,a;)=1— L} (x;,a) 2/ (xf + ait) dt.
0
Again, there is

Xipg =x+aT = (x;’)2 +2a;L}.

Therefore, there is

,B_E (ma,' - ﬁ,-(o)) + % [(x;’)2 + a;-f,i*]

= g(ma; + ﬁ}o)) - %[xf +a;(Lf +1)]

where the following fact was used:

x?:x;—’—ﬂjn*:‘/ms L:—’_‘E::l

Now, there is

G; (x;,a;) =

_ (0 —(1 _(2
Gi (xi,a) = 70 (i, @) + 7.0 (i, ai)a; + 7,2 (i, a;)x?

where 700G, a) = (L), 7 (a) =
(L:/B)m + B (Lt + 1)1, and 72 (x;, a;) = (L f5)/B7).

Combining the two cases, there is
Gi = G (xi,a;) + G; (xi, @)

=900, a) + 7V (i, ada; + 92 (i, anx? (18)

where y;(xi, a;) = 7i(xi, a;) + 7i (xi, @)
Case IV: The sign of F™% changes from negative to
positive, i.e., there exists ¢} such that

{ﬁ““" ) <0,

L<t<tf

F%@1) >0, tf <t <fiy.

The derivation in this case follows the same as in Case III
and thus shares the same expression for G;(x;, ;) as (18) with,
however, different values of yj(o), y‘.(]), and yi(z)

Therefore, the sign of track force within segment i is
determined by the vector (x;, a;), and the expressions of vector

parameter y; under different cases are listed in Table V.

APPENDIX C
DERIVATION OF UPPER SPEED LIMIT

A safe headway between the truck and the preceding vehicle
must be maintained all the time to ensure the driving safety,
that is, the maximum permissible speed of the truck in the
next segment must be limited according to the speed of the
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preceding vehicle. The headway is defined as the time that
elapses between the arrival of the leading vehicle and the
following vehicle at the designated test point. Let us use h,
to indicate the headway, and thus, there is

vf
where d is the spacing between the two vehicles and v ¢ is the
velocity of the following vehicle. To ensure the driving safety
of the truck through segment i, there is
di + T, —1 > h,

2 (19)
T} =
Xi + Xiq
where d; is the spacing from the preceding vehicle at the
beginning of segment i, [ is the parameterized length of each

road segment, and v, is the velocity of the preceding vehicle
and is assumed constant. Based on (19), then there is

Li=hexi+ J(hexi = Lo + 8he(r, 0 om,)

Xit1

Xit1 = 2, = Ui
Li —hexi — ‘/(hrxi — L)’ + 4he (1,5 5m,)
Xip1 = 0=
2h,
(20)

where L; =d; —1,i = 1,2, ..., N. Therefore, the maximum
permissible value of x;y; during optimization is X;;; =
min(vmax, UL‘;“M), where vy i8 the legally maximum permis-
sible speed in EU.
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