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ABSTRACT: Empirically generated indices are used to evaluate the skill of a global climate model in representing the
monsoon intraseasonal oscillation (MISO). This work adapts the method of Suhas et al., an extended empirical orthogonal
function (EEOF) analysis of daily rainfall data with the first orthogonal function indicating MISO strength and phase. This
method is applied to observed rainfall and Community Earth System Model (CESM1.2) simulation results. Variants of the
CESM1.2 including upper ocean parameterizations for Langmuir turbulence and submesoscale mixed layer eddy restratifi-
cation are used together with the EEOF analysis to explore sensitivity of the MISO to global upper ocean process represen-
tations. The skill with which the model variants recreate the MISO strength and persistence is evaluated versus the observed
MISO. While all model versions reproduce the northward rainfall propagation traditionally associated with the MISO, a ver-
sion including both Langmuir turbulence and submesoscale restratification parameterizations provides the most accurate

simulations of the time scale of MISO events.
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1. Introduction

Variability in the Indian monsoon on multiple time scales
has been an area of intense research due to its significant
societal and economic importance to the subcontinent and
Indian Ocean periphery. Variations both from year to year
(interannual) and over the course of a single season (intra-
seasonal/subseasonal) are much harder to predict, and have
been a topic of significant interest to researchers (Goswami
et al. 2016; Kuppam and Mawsynram 2019). For the pur-
poses of predictive skill, interannual and intraseasonal vari-
ability appear to be distinct phenomena, allowing—perhaps
requiring—weather models to account for them separately
(Krishnamurthy and Shukla 2000).

Orenstein’s current affiliation: Department of Applied Physics and
Applied Mathematics, Columbia University, New York, New York.

Johnson’s current affiliation: Applied Physics Laboratory, Uni-
versity of Washington, Seattle, Washington.

Sane’s current affiliation: Program in Atmospheric and Oceanic
Sciences, Princeton University, Princeton, New Jersey.

Corresponding author: Baylor Fox-Kemper, baylor@brown.edu

DOI: 10.1175/JCLI-D-21-0337.1

One primary mode of variability is the Indian monsoon intra-
seasonal oscillation (MISO), which causes brief periods of espe-
cially intense rainfall during the Asian monsoon on the Indian
subcontinent and over the Bay of Bengal (BOB). At the most
basic level, the MISO is defined as a deviation from the sea-
sonal monsoon rainfall trend, which gradually increases over
the course of the summer, peaks around late July, then
decreases to its off-season intensity (Krishnamurti and Ardanuy
1980). This is generated in part by the annual north-south
movement of the monsoonal intertropical convergence zone
(Goswami and Mohan 2001). As a result, MISO events occur in
an extremely complex circulation context, making them difficult
to predict more than a few weeks in advance (Mo 2001). None-
theless, they exhibit a northward propagation and some predict-
ability, and they can be isolated using the empirical pattern
recognition techniques of Suhas et al. (2013) as shown in Fig. 1.
The MISO has significant marine influences and impacts,
involving ocean—atmosphere heat and freshwater exchange, and
is extremely dependent on the particular geometry and physical
characteristics of the BOB (Goswami et al. 2016). Y. Li et al.
(2016, 2018) demonstrate important mixed layer-related biases
in the simulations of the BOB in the Coupled Forecast System
(CFSv2), and speculate that improving mixed layer physical
process representation may help. The Indian monsoon is a
known source of error in phase 5 of the Coupled Model Inter-
comparison Project (CMIP5) models (Li et al. 2015).

Previous work has looked at the relationship between the
interannual and intraseasonal variations in the Indian monsoon.
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FIG. 1. Example of EEOF index method for summer 2007 observed precipitation. (top) The value of the EEOF1
index over the course of the monsoon season. (bottom) A transposed Hovmoller diagram showing the zonally aver-
aged precipitation anomaly data from that period used in the EEOF method (described in section 2c). Diagonal areas
of high precipitation correspond to northward-propagating rainbands, which in turn correspond to periods of positive

EEOF1 (portions of the top plot in red).

Goswami and Mohan (2001) found that while the two behaviors
act on different time scales, they are not independent phenom-
ena. Since they exhibit similar spatial patterns, the interannual
variation in monsoons can be viewed as an anomaly in intrasea-
sonal (i.e., MISO) activity. The authors inferred that the chaotic
nature of intraseasonal oscillations therefore spelled defeat for
researchers trying to predict year-to-year monsoon trends.
Empirical methods offer a way to circumvent this limitation by
isolating modes of variation in chaotic data, and here they are
extended to use in model evaluation. Through this combination
of models and pattern recognition, skill in reproducing the
MISO statistics can be assessed, which in turn may be used to
improve forecast systems.

Not only are MISOs important to the intensity of the mon-
soon overall, but positive phases (indicated by red shading of
the time series in Fig. 1, top panel) have been shown to be
correlated with a greater frequency of tropical cyclones form-
ing in the BOB (Akter and Tsuboki 2014). Moreover, those
storms associated with a positive MISO phase tend to form at
a central point in the northern BOB and travel northwest
across India, steered by the low pressure boundary known as
the monsoon trough. This origin point corresponds with the
location of greatest MISO variation in the Bay, meaning that
variability in the MISO may affect weather events in the
region (Goswami et al. 2003).
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A key result here is that the connectivity of rainfall over the
subcontinent to the MISO variability over the BOB is sensitive
to upper ocean physics in a coupled model. The bay is particu-
larly important as MISOs form in the Indian Ocean to the south
and move northward, and previous studies have found a zone of
peak variation to be centered on the bay (Goswami et al. 2003;
Goswami and Xavier 2003; Sengupta et al. 2001).

The Community Earth System Model, version 1.2 (CESM1.2:
Hurrell et al. 2013) is a global coupled modeling system. The par-
ticular variants being used for this study use the standard atmo-
sphere, sea ice, and land components, but differ in key ocean
model parameterizations (Table 1). The goal in studying the
MISO in these configurations was to determine if its statistics are
sensitive to the upper ocean physics (as shown with less direct
attribution to specific upper ocean processes in Y. Li et al. 2016,
2018; Samanta et al. 2018; Zhang et al. 2018), and whether opti-
mization of these physical parameterizations might usefully

TABLE 1. List of CESM case studies used in this study.

KPP Langmuir Submesoscale
CTRL X X X
noL T X X
noSM X X
noLTSM X




15 MARCH 2022

improve skill in coupled forecast systems (e.g., Pattanaik et al.
2012). The specific upper ocean physical processes being evalu-
ated are wave-induced mixing, or Langmuir turbulence, as
parameterized by Q. Li et al. (2016) and submesoscale mixed
layer eddy restratification as parameterized by Fox-Kemper et al.
(2008, 2011). As of CESM1.2 the submesoscale parameterization
is standard, but the Langmuir turbulence parameterization, built
upon the KPP scheme (Large et al. 1994), was only included as a
default setting in CESM2 (Danabasoglu et al. 2020). The
CESM1.2 variants being evaluated here are prototypes including
both parameterizations that preceded CESM2, but are similar in
terms of the ocean model setup.

Recent studies have shown the potential for upper ocean pro-
cesses to impact the frequency and intensity of the MISO. Zhang
et al. (2018) found a quadrature relationship between SST and
precipitation in smoothed observations, indicating that these two
quantities share a relationship which they posited involves warm
SSTs promoting atmospheric convection. This opens up a poten-
tial role for SST-and the ocean mixing and restratification pro-
cesses that affect it—in the phasing of monsoon active cycles.
Samanta et al. (2018) showed that imposing a realistic mixed layer
depth (MLD) profile in the BOB onto an ocean—atmosphere cou-
pled forecast model improved its skill with respect to SST and
rainfall. Therefore it is reasonable to hypothesize that processes
that impact the MLD will influence monsoon variability.

Upper ocean mixing in the BOB is set by processes that
inhibit mixing, such as buoyancy input from warming and
freshwater fluxes, and those that enhance mixing such as wind
driven mixing or convection. In addition to surface forcing at
the air-sea interface, other processes are known to be leading
order determinants of upper ocean turbulence. In particular,
this work focuses on the restratifying effects of submesoscale
baroclinic instability and enhanced mixing due to Langmuir
circulation and turbulence, a variety of mixing that derives
some of its energy from surface waves (McWilliams et al.
1997; Li et al. 2019). Submesoscale restratification plays an
essential role in the upper ocean buoyancy budget where
there are strong horizontal density gradients. Large freshwa-
ter input into the BOB from river runoff (e.g., from the Bra-
maputra River) is stirred into the interior of the bay and
creates sharp buoyancy fronts and filaments (MacKinnon et al.
2016; Ramachandran et al. 2018; Spiro Jaeger and Mahadevan
2018; Sarkar et al. 2016). Instabilities that occur at submeso-
scale fronts act to slump horizontal buoyancy gradients to create
vertical stratification and inhibit upper ocean mixing (Boccaletti
et al. 2007; Fox-Kemper et al. 2008). Conversely, Langmuir tur-
bulence results from wind-wave interaction, which creates par-
allel rotating cells ~10' m deep and is known to enhance
turbulence in the ocean surface boundary layer (Langmuir 1938;
Leibovich 1983; McWilliams et al. 1997; McWilliams and Sulli-
van 2000; Li et al. 2019). The shoaling/deepening effects of these
processes have been parameterized for coarse-resolution mod-
els such as global circulation models and coupled weather fore-
cast models that cannot simulate these processes directly.

Previous studies have defined MISOs using a variety of indi-
ces, including atmospheric vorticity at 850 hPa (Goswami et al.
2003), zonal wind (Goswami and Mohan 2001), and sea surface
temperature at a stationary buoy (Sengupta et al. 2001). These
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choices reflected authors’ assumptions about MISO dynamics;
for instance, Goswami and Mohan (2001)’s use of zonal wind in
the BOB as a metric reflected their view that MISOs were an
expression of breaks in the prevailing monsoon winds.

The methodology presented here is different in two ways.
First, it uses rainfall data, meaning MISOs are measured by
their effects, not their causes, insulating the analysis from dis-
cussions of the mechanisms of individual MISO phases. While
increased rainfall alone does not define a MISO, it is a well-
established relationship (and the most impactful on human
activity). Second, this work expands on the technique of
Suhas et al. (2013), using an EEOF analysis to identify the
oscillatory signal of the MISO rainfall data. Empirical orthog-
onal function (EOF) analysis decomposes complex datasets
into their primary modes of variability, revealing which geo-
graphic and temporal patterns are most significant to the
overall variability (Thomson and Emery 2001). This allows
spatially stationary oscillatory patterns (e.g., standing waves)
to be revealed (Fox-Kemper 2004). EEOF analysis takes this
a step further, using in this case multiple snapshots over a
short time window as the “pattern” being recognized con-
structed to reveal propagating modes of variability (Eshel
2012; Weare and Nasstrom 1982). The EEOFs tend to isolate
the northward propagation characteristic of the classical
MISO phase progression (Suhas et al. 2013).

This work uses an EEOF methodology to isolate MISO
events and compare different formulations of upper ocean
parameterizations within CESM with observations. The
comparison provides insight into how much of a difference
upper ocean processes have on MISO events, as well as
more generally how well the CESM1.2 simulates the MISO.
CESM is a climate rather than a weather forecast model, so
the issue of model skill is focused on the model’s ability to sim-
ulate a realistic MISO with reasonable magnitude and recur-
rence, rather than its ability to produce good forecasts from
observed initial conditions. However, as the National Centers
for Environmental Prediction (NCEP) Coupled Forecast Sys-
tem (CFS) that is often used in this region shares significant
code and capabilities with CESM, implications for what consti-
tutes a skillful CESM is expected to resemble what constitutes
a skillful CFS. To that end, Section 2 lays out the ocean turbu-
lence parameterizations which we evaluate in detail and the
details of the EEOF procedure. Section 3 discusses the metrics
used to visualize and evaluate the results of the EEOF method,
as well as presenting the effect of the parameterizations on
other model variables and their similarity to observations.
Finally, section 4 considers the significance of these results and
what they imply about the model versions.

2. Methods
a. Observational data

Following Suhas et al. (2013), the observational rainfall
dataset used for model comparison is the Global Precipitation
Climatology Project (GPCP), a reanalysis based on both satel-
lite and historical observations (Huffman et al. 1997, Adler
et al. 2003; Huffman et al. 2009). This dataset in 1° X 1°
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horizontal resolution was obtained for 1 October 1996-30
September 2015, and was then regridded onto the 1.9° X 2.5°
resolution of the CESM atmospheric model for comparison.

Additionally, we used MLD climatology data from Montégut
et al. (2004), accessed through the French Research Institute
for Exploitation of the Sea (IFREMER). The data used here
define the MLD using potential temperature, which is more
comparable to the MLD definition used in the model output.
Specifically, Montégut et al. (2004) defined the bottom of the
mixed layer as the depth at which potential temperature 6 has
decreased by 0.2°C from 6 at 10-m depth (meaning the MLD is
assumed to always be at least 10 m). SST data for further model
comparison are taken from the Group for High Resolution Sea
Surface Temperature (GHRSST) global Level 4 sea surface
temperature analysis of the National Centers for Environmental
Information (NCEI) (Reynolds et al. 2007), which integrates
satellite output with observations from moorings and profiling
floats.

b. CESM

This work uses the National Center for Atmospheric
Research (NCAR) Community Earth System Model, version
1.2 (CESM1.2). Previously, CESMv1 was found to have the
smallest bias in simulating the monsoon compared to other
CMIP5 models (Anand et al. 2018). The model configuration
includes a fully coupled atmosphere (CAM4) and land
(CLM4.0) on a 1.9° X 2.5° nominal grid, and ocean (POP2)
along with sea ice (CICE4) on the gx1 version 6 grid (1° nomi-
nal resolution), and waves (WAVEWATCH 111 v3.14) on a
coarser grid (Q. Li et al. 2016). The model is run for 100 years
with steady preindustrial conditions. This analysis uses the
last 30 years of integration after which the model is assumed
to be sufficiently equilibrated in the upper ocean, as MLDs
are stable when different decades at the end of the simulation
are compared. Boundary layer turbulence is parameterized
using the K-profile parameterization (KPP) mixing scheme
(Large et al. 1994), and the additional effects of restratifica-
tion by submesoscale mixed layer eddies (Fox-Kemper et al.
2011) and enhanced vertical mixing through Langmuir turbu-
lence (Q. Li et al. 2016) can be switched on or off. The differ-
ent simulations for comparison are all forced with the same
conditions and from the same initial conditions, differing only
in this aspect (Table 1).

The effects of submesoscale baroclinic instability is parame-
terized as an overturning streamfunction (Fox-Kemper et al.
2008, 2011):

As . HPV,b X%
v, ==—C, =" "% L), 1
L T u(z) @)

. @

wz) = ll - (27; + ])2

where C, is a constant set to 0.06, H is MLD as determined by
a density difference from the surface, b is the buoyancy
formed from the density p and background density p, by b =
g(po — p)/po, Vb is the gridscale horizontal buoyancy gradient
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and the factor As/L; includes the horizontal grid scale and a
frontal scaling factor that accounts for the coarse horizontal
resolution of the model (Fox-Kemper et al. 2011). The typical
effect of this parameterization is to shoal the mixed layer by
overturning lateral fronts wherever they are present to
increase the vertical stratification, at a rate consistent with
simulations and observations of mixed layer eddy processes.

The Langmuir turbulence parameterization developed by
Q. Li et al. (2016) accounts for the additional vertical bound-
ary layer mixing that occurs when Stokes drift from surface
waves (which is extracted from the WAVEWATCH III com-
ponent model across the globe and depends on the winds and
ocean currents of the other model components) interacts with
near-surface boundary layer turbulence resulting in down-
ward accelerations by a wave-current interaction called the
Stokes shear force (Suzuki and Fox-Kemper 2016). The rate
of additional mixing beyond wind-driven mixing is estimated
in large-eddy simulations resolving Langmuir turbulence
(Van Roekel et al. 2012) and included in KPP following the
parameterization form suggested by McWilliams and Sullivan
(2000). The parameterization mostly increases the vertical
turbulent velocity scale within the boundary layer by an
enhancement factor &:

ku” ku*
W="C s W=—18, 3
) s & 3)
&= |cosa|\/1 + (ciLa) 2 + (c;La) % 4)

The angle « is the predicted angle between the Langmuir
cell orientation and the surface wind orientation, ¢; = 1.5,
¢, = 5.4 are dimensionless constants, and La is the surface
layer-averaged, turbulent Langmuir number formed from
projecting both the wind stress and Stokes drift into the
Langmuir cell orientation (Van Roekel et al. 2012; Q. Li

et al. 2016), or
u*cosa
La=————. 5
Vs eos(um — ) ®

Here 6, is the angle between the wind and the wave direction,
(us) is the Stokes drift averaged over the surface layer—i.e., the
upper 20% of the mixed layer (Harcourt and D’Asaro
2008)—and « is found from application of the “law of the wall”
as derived in Van Roekel et al. (2012). The additional effects of
Langmuir mixing on entrainment at the mixed layer base (Li and
Fox-Kemper 2017) were not used for this study.

In summary, the submesoscale restratification depends on
the horizontal buoyancy gradient and MLD and acts to shoal
the ML. Conversely, Langmuir turbulence depends on waves
and wind direction and strength, and acts to deepen the mixed
layer. The combinations of parameterizations and cases are
outlined in Table 1. These parameterizations rely on different
resolved variables and therefore have different temporal and
geographical influences over the BOB and globally. It should
be noted that both of these parameterizations are the default
in CESM2 (Danabasoglu et al. 2020), so the sensitivity under
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study is the effect of turning each of or both of them off. The
“control” run includes both parameterizations. For this study,
each model version listed in Table 1 was initialized identically
for 30-yr runs.

For analysis of the MISO, the annual mean and first three har-
monics of the precipitation fields were removed, so that only sub-
seasonal precipitation anomaly variations were retained. Then, a
zonal average of precipitation data between 12.5°S-20.5°N and
80.5°-90.5°E isolated the region of interest. This choice has the
advantage of eliminating any topography from the analysis
region.

¢. EEOF analysis

EEOFs are an application of singular value decomposition
(SVD) which treats the decomposed values as representations
of the temporal and spatial variability of a dataset (Thomson
and Emery 2001). This study uses zonally averaged daily pre-
cipitation anomalies as its input data. The following equation
shows the archetypal SVD in matrix notation:

M = USVT (6)

where M is a spatiotemporal dataset organized with rows and
columns as spatial grid locations and time steps, U and V are
its left and right singular vectors, and S is the matrix of singu-
lar values. The matrix V is a square matrix with the same
dimensions as the spatial grid of the original data matrix and
each of its columns is a normalized pattern or mode of spatial
variability that repeats in the anomaly data. The different pat-
terns are guaranteed to be orthogonal. The left matrix U is a
square matrix the size of the number of time steps in the data
matrix, and each of its columns captures the normalized time
series of each corresponding spatial mode, respectively. The
time series are also orthogonal. The matrix S is a diagonal
matrix capturing the amplitude and relative importance of
each mode, typically ordered from the largest amplitude to
the smallest. Note that orthonormality of U and V implies that
the sum of the diagonals of S equals that of the original data
matrix times its transpose, indicating that the spatiotemporal
variance explained by each mode is captured by the corre-
sponding singular value squared. The fraction of the variance
represented by a particular mode is captured by the corre-
sponding diagonal element squared divided by the sum of the
squares of all of the diagonal elements of S. Similarly, (6)
implies that the original data can be reconstructed from U, S,
V, or approximated by retaining only a limited number of
modes with the largest entries on the diagonal of S.

A temporal extended EOF (EEOF) involves expanding the
original M matrix by concatenating a duplicate of the dataset
which is offset (or “lagged”) in time. Thus, the lagged data fol-
lows the same form as (6) has for a dataset with more spatial grid
points. By simultaneously performing EOF analysis on the same
data from slightly different starting times, a mode in a temporal
EEOF captures not a single spatial pattern, but a sequential pat-
tern of two consecutive days of evolving features (Weare and
Nasstrom 1982). Here, an EEOF with lags ranging from 1 to 16
days (17 total days) is used to recognize patterns in the short-term
evolution of the precipitation—i.e., the range of time expected
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for the MISO development. Terminology for EOFs and EEOFs
varies widely: EEOFs with a number indicating their relative
importance in terms of the corresponding S entry (e.g., EEOFI,
EEOF?2) and the time series describing the evolving amplitude of
each set of lagged patterns are called principal components again
numbered by importance (e.g., PC1, PC2). If the S values are all
distinct, then each EEOF and PC are unique and distinct.

Sampling errors introduced by the EEOF method are eval-
uated using the methodology of North et al. (1982), who
defined an approximation for the error of the eigenvalue cor-
responding to one EEOF:

SAa ~ Ao(2/N)'2, (7

where N is the number of time intervals represented in the
data, A, is the ath eigenvalue, and A, is its associated sam-
pling error. Here, solving for the significance values S? in
terms of the EOF decomposition allows us to write the
following:

582 ~ S2(2/N)'? (8)

assuming that the sum of the diagonal of S? is constant in
time, which is reasonable. North et al. (1982) also gave an
approximate relationship between sampling error of eigen-
functions and eigenvalues:

O\
A,

8Dy x == Dy, ©)
where @, is the eigenfunction after the ath eigenfunction,
o0d,, is the sampling error associated with the ath eigenfunc-
tion, and AA, = A, — A. Functionally, this means that the
magnitude of the orthogonal function relative to its sampling
error depends on the magnitude of the corresponding S?
value relative to its sampling error.

It is important to note that EOF analysis in general is purely
empirical and lacks dynamical cause-and-effect (Dommenget
and Latif 2002), so the decomposed modes may not have any
physical significance unless independently shown to do so.
EOFs may produce apparent order in data beyond what is pre-
sent. EOF analysis is particularly troubling if the real modes of
variability are not orthogonal in time or space. EOF analysis
can also be confusing when representing propagating patterns
(Fox-Kemper 2004), but the EEOF approach makes rapidly
propagating patterns simple to describe with a single EEOF.
In this case, the MISO is well understood to be a north-south
phenomenon, making it more natural to apply an EEOF
method than in the case of, for instance, a spatial dataset with
no a priori assumptions about modes of variability. The
method is not being used here to identify unseen patterns but
to evaluate one already identified.

As shown by Suhas et al. (2013) the EEOFs produced in this
manner agree with other indices of MISO variability. Figure 1
shows the variation in PC1 over a few positive and negative
phases of EEOF1, and the corresponding zonal-mean precipita-
tion over the region below. It is clear that the northward-propa-
gating precipitation pattern is captured by the PC1 time series,
and the EEOF spatial pattern of propagation similarly matches
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FIG. 2. Average difference in precipitation anomaly between
positive and negative MISO1 phases. Maps show the difference
between the average precipitation anomalies at all times for
MISO1 > 95th percentile and all times for MISO1 < 5th percentile
for (top) the observations (GPCP) and for the cases (Table 1):
(middle) CTRL = both Langmuir and submesoscale and noLT =
submesoscale only, and (bottom) noSM = Langmuir only and
noLT/SM = neither parameterization. Color bar applies to all sub-
figures. Black boxes indicate the region used in the EEOF method.
Yellow stippling indicates where the sign of change is not signifi-
cant, i.e., where the inner 80% of a distribution of bootstrapped
synthetic means is not purely positive or negative.

the precipitation propagation (not shown). Following Suhas et al.
(2013), EEOF1 and EEOF2 are normalized by their standard
deviations, and are hereafter referred to as MISO1 and MISO2.
For the purposes of this work, MISO maxima and minima are
identified here as peaks and troughs in MISO1 (delineated by
the 5th and 95th percentiles over the whole record). Other EOF-
based definitions are common, e.g., for evaluating the Madden—
Julian oscillation (MJO) (such as Kim and North 1999) or other
climate variability signals (Weiss et al. 2019). In this case, MISO1
isolates the primary north-south mode of oscillation.

d. Composite maps

Composite maps of the difference in regional rainfall anomaly
between active and break phases of the MISO are a complemen-
tary metric to the MISO1 pattern once the maximum and
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minimum MISO stages are found (Fig. 2). While the EEOF is
formulated based only on rainfall in the BOB, composite plots of
these time periods show a wider region, illustrating how the
MISO phases defined by the EEOF manifest in the Indian
Ocean as a whole. Furthermore, the composite precipitation
averages are not limited by orthogonality of spatial patterns, or
the fact that the linear construction of the EEOFs ensures sym-
metries that may not be present: e.g., EEOF1 in a positive phase
is exactly the same as the negative of EEOF1 in a negative phase.
Figure 3 illustrates that the composites over positive and negative
phases indeed differ in spatial pattern.

3. Results and discussion

Solely matching the time scale of simulated MISO phenom-
enon identified by the EEOF analysis to that previously
observed for the MISO does not indicate a complete model
success, but together with a good spatial structure of the
EEOFs and the patterns of the composite maps (Fig. 2), alter-
native mechanisms become increasingly unlikely. The short
lag interval (1-16 days) chosen for EEOF-based MISO detec-
tion is insufficient to cover a full repetition of a MISO event
followed by another, but it does capture the characteristic
northward trend of the precipitation maximum within an indi-
vidual event (Fig. 1). This shows the advantage of the EEOF
method, which immediately isolates northward-propagating
behavior.

The composite maps (Fig. 2) of the difference in precipi-
tation anomaly between MISO positive and negative phase
peaks (MISO1 maxima and minima) show clear regions of
strong variability throughout the BOB and the surrounding
region. The GPCP data has a strong positive center stretch-
ing from the BOB across India to the Arabian Sea. Closer
to the equator, there is a diffuse precipitation minimum dur-
ing the MISO positive phase. These precipitation patterns
are not an input to the detection algorithm for EEOF1, but
are consistently correlated with it. The models do a fair job
of capturing the BOB center of activity, but tend to either
overestimate the precipitation anomaly over Indonesia or
underestimate the precipitation anomaly over western
India. None of them show a positive anomaly region stretch-
ing as far west as in the GPCP data. Conversely, in all of the
models, the opposing precipitation anomaly near the equa-
tor is too strong compared to the observations. However, it
can be noted that none of the model phase means have any
significant spatial correlation with the observations: —0.00
for the CTRL run, —0.09 for noLT, 0.11 for noLT/SM, and
0.06 for noSM. 50.8% of the gridcell points in the CTRL run
positive phase mean are different from the observations at a
5% significance level (meaning 49.2% are not), while 49.2%
are for the negative phase. Similarly, for the noLT run the
values are 44.0% different for the positive phase and 50.9%
for the negative; for the noLT/SM run, 53.7% for the posi-
tive phase and 43.6% for the negative; and for the noSM
run, 52.2% for the positive phase and 62.0% for the nega-
tive. By that measure, the most significant differences from
the observations occur for the noSM run’s negative phase
mean and the noLT/SM run’s positive phase mean, while
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FIG. 3. Average positive and negative precipitation phases. Maps show the average precipitation anomalies at all times for (top)
MISO1 > 95th percentile and (bottom) all times for MISO1 < 5th percentile. Shown are the cases (Table 1): CTRL = both Lang-
muir and submesoscale, noLT = submesoscale only, noLT/SM = neither parameterization, and noSM = Langmuir only. Color bar,
black box, and stippling are as in Fig. 2.

the fewest significant differences occur for the noLT/SM  monsoon season average SST in the EEOF region. These data
run’s negative phase mean and the noLT run’s positive are further broken up in the right subfigure, which shows that all
phase mean. model versions but noSM have a negative bias in the difference

It is important to provide context to these phase maps by look-  between the North and South halves of the EEOF region. That
ing at the SST distribution of the model version. As shown in the  gradient has been previously established (Samanta et al. 2018)
left subfigure of Fig. 4, all four models have a slight cold bias in  and is supported by the observations used here.
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FIG. 4. Kernel density plots of monsoon season average SST in (left) the EEOF region and (right) daily temperature difference between
the north and south components of the EEOF region. Observations are from the Group for High Resolution Sea Surface Temperature
(GHRSST) global Level 4 sea surface temperature analysis of the National Centers for Environmental Information (NCEI) (Reynolds
et al. 2007). Shown are the cases (Table 1): CTRL = both Langmuir and submesoscale, noLT = submesoscale only, noLTSM = neither
parameterization, noSM = Langmuir only, and Obs = observations.

Brought to you by UNIVERSITY OF RHODE ISLAND | Unauthenticated | Downloaded 07/14/22 05:35 PM UTC



T
—F—Grep

ol —F— CTRL
—F— noLT
—F— noLTSM

ol —F—noSM | _

% Variance

EEOF

FiG. 5. Comparison of the relative importance of the first 10
EEOFs for GPCP observations and all model configurations.
Method for calculating the percent of variance explained by each
EEOF discussed in text. The first EEOF value corresponds to the
percent variance represented by the MISO1 index. Shown are the
cases (Table 1): GPCP = observations, CTRL = both Langmuir
and submesoscale, noLT = submesoscale only, noLTSM = neither
parameterization, and noSM = Langmuir only. Error bars calcu-
lated using the method of North et al. (1982) as discussed in text.

The EEOFs for all of the datasets have very broad singular
value distributions, meaning the first few EEOFs account for
only a modest portion of the variance which captures many
other sources of precipitation variability. In GPCP, the first
two EEOFs explain 9.80% and 8.97% of the total variance,
respectively. For the CESM control run with both Langmuir
and submesoscale turbulence, the first two EEOFs explain
7.83% and 6.87% of the variance. Removing Langmuir turbu-
lence leaves 7.73% and 6.24%, while removing submesoscale
turbulence gives a greater spread of 7.86% and 6.03%. Remov-
ing both gives 8.01% and 6.89% (Fig. 5). Thus, the MISO is
stronger as a fraction of total precipitation variance in the real
world than in the simulations, which tend to spread precipita-
tion variance more evenly among modes. The sampling error
calculated using Eq. 8 shows that the EEOFs are distinct
through at least EEOF4 for all five datasets, with the exception
of EEOF2 and EEOF3 for the noL T model run, which appear
to be degenerate. This is consistent with the results of Suhas
et al. (2013), in which only EEOF1 and EEOF2 passed that
criteria. In other words, EEOF1 and EEOF2 of the CESM
versions represent a smaller fraction of the total variance when
compared to EEOF1 and EEOF2 of the observations, but
since the precipitation variance in CESM is higher in (mm
day™")?, the rainfall anomalies explained by EEOFs 1 and 2 of
CESM matches that of the observations.

Active, or positive, MISO period identified in observations
by the EEOF method have an average period of 31 days
(Fig. 6 top row), which is consistent with previous descriptions
of the MISO as approximately 30-60 days long (Goswami
et al. 2016). This recurrence time exceeds the lag interval used
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to formulate the EEOF. The control model version exhibits
the most similar behavior, with active periods on average 37
days long. The two model versions without Langmuir turbu-
lence show the greatest difference from the observations: the
noL.T version has active phases on average 52 days long, while
the noLTSM version has 123 days. This trend is similarly evi-
dent in the distribution of negative MISO phases (right col-
umn). Note the difference in sample size caused by the longer
time span of the model runs. Additionally, it is important to
note the limitations in looking at phase behavior introduced
by the low model resolution. For instance, a 2.5° grid resolu-
tion can lead to large rainfall anomalies very close together or
as far apart as 5 km being classified as in neighboring boxes in
two model versions, which could possibly create significant
artifacts of the grid itself.

Examining the model output data itself for ocean MLD
sheds some light on the process-scale effects of the turbulence
parameterizations. Figure 7 shows that while the CESM simu-
lations including parameterizations of mixed layer eddies and
Langmuir turbulence do have the most similar MISO statistics
to the GPCP, the MLD in the BOB, and the north-south gra-
dient of MLD differ significantly from an observations for this
simulation, here drawn from Montégut et al. (2004). The defi-
nition of mixed layer used in CESM and in the observations is
consistent, so the distinctions are not semantic. The observa-
tions exhibit a shallower average MLD than the CESM ver-
sions during almost the entire EEOF period, and much less
annual variability. Furthermore, the version that performs best
in reproducing the MISO (CTRL, solid line) does not have the
MLD closest to observations. This comparison of MLDs indi-
cates that 1) the CESM has room for improvement, and 2)
under the coarse vertical resolution and numerics of the
CESM a “good” MLD may not select for the best MISO vari-
ability, and 3) there are likely other model biases (e.g., clouds,
precipitation, or atmospheric boundary layer parameteriza-
tions) that are providing additional errors beyond those being
assessed here by altering the upper ocean parameterizations.

Alternatively, it is possible that it is changes to the mixed
layer outside of the BOB that are having a beneficial effect on
dynamics within the bay—an issue that cannot be addressed
with the global model design used here. Furthermore, it is
important to note that the model’s fidelity in representing the
MISO could be clouded by broader biases in reproducing the
Indian monsoon as a whole. In particular, a connection
involving the Bjerknes feedback has been shown to create a
bias in rainfall and temperature which resembles, but does
not actually constitute, a north-south dipole in the eastern
Indian Ocean (G. Li et al. 2015, 2016). This finding also
resembles our results in that it is associated with an unnatu-
rally shallow summer MLD, which all four model versions
show (Fig. 7). Thus, a variety of diagnostics, in addition to the
method of Suhas et al. (2013) chosen here, are needed to fully
assess the MISO and models’ ability to predict it.

4. Conclusions

The EEOF method of Suhas et al. (2013) captures local modes
of variability like the MISO. In this analysis, the MISO statistics



15 MARCH 2022

20 : : :
[]POS GPCP (N = 40)|
Z 10
0 L‘l_m T 11 L L
50 100 150
20 ‘ : :
[C1POS CTRL (N = 52)|
Z 10+
. llha |
50 100 150
20 : : :
[1POS noLT (N = 49)
Z 10
Th
0 I \H'I—‘_\ / . ./ L
50 100 150
20 : I :
[1POS no LTSM (N = 54)
Z 10
ol Bl b e
50 100 150
20 ‘ ‘ ‘
[1POS noSM (N = 59) |
Z 10
+_
0 t 1

50 100 150
Phase length

ORENSTEIN ET AL.

1881

20 ‘ ‘ ‘
. |[[CINEG GPCP (N = 37)]
Z 10
0 | L L
50 100 150
20 : , ‘
[CINEG CTRL (N = 56)]
Z 10
0 e |
50 100 150
20 ,. : :
[CINEG noLT (N = 53)|
Z 10
o UL
50 100 150
20 I ‘
[CINEG no LTSM (N = 59)|
Z 10
0 rﬂ‘ﬁ (o = S
50 100 150
20 ‘ ‘ ‘
[ INEG 1noSM (N = 56)|
Z 10
0 | |

50 100 150
Phase length

FIG. 6. Distribution of length in days of (left) positive and (right) negative phases of the MISO1 index for GPCP
observations and all model configurations. Shown are the cases (Table 1): GPCP = observations, CTRL = both Lang-
muir and submesoscale, noL'T = submesoscale only, noLTSM = neither parameterization, and noSM = Langmuir only.
The number in the top-right corner of each subplot indicates the total number of phases represented in each distribu-
tion—note that the sample size is smaller for the observations (GPCP) since the time span of the data is shorter. The
vertical line shows the mean value of each distribution. Horizontal whiskers show 95% confidence interval in the

mean of each bin.

are significantly sensitive to upper ocean parameterizations, here
Langmuir turbulence and mixed layer eddy parameterizations,
even when all other aspects of the model are unchanged. Thus,
upper ocean physics nontrivially impacts the MISO.

The upper ocean turbulence plays a large role in ocean—
atmosphere interactions and the MISO is an inherently marine
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weather phenomena. However, most numerical weather predic-
tion system analyses tend to focus on simulation of sea surface
temperature, not MLD. The models here differ in both SST
anomaly statistics and MLD, but these are not easily separated
as both effects stem from substituting among self-consistent
parameterizations. If solely the SST warming of submesoscale
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FIG. 7. Monthly climatology of spatially averaged MLD in the
EEOQOF region from observations and for each model configuration.
Observational dataset from Montégut et al. (2004). Shown are the
cases (Table 1): CTRL = both Langmuir and submesoscale,
noLT = submesoscale only, noLTSM = neither parameterization,
noSM = Langmuir only, and Obs. = observations.

restratification was included without altering the MLD, it would
not be physically meaningful.

The composite maps shown for CESM (Fig. 2) show that it is
not only persistence of the MISO phenomena that is affected by
upper ocean physics, but also the spatial patterns can be made
more or less realistic. The effects near the equator, where all of
the simulations have too little coherent precipitation with the
positive MISO phase, indicates that there are likely other biases
to address, e.g., the double ITCZ bias (Zhang et al. 2019).

Interestingly, the BOB MLDs of the model most successful in
simulating the MISO are not the most accurate in comparison to
observations. Thus, the mechanisms at play in the model to simu-
late the MISO are different than those in the real world—a fact
that is not surprising given the complexity of the cloud forma-
tions in a real MISO (Kumar et al. 2017) versus the simplified
MISO in the CESM. It is not at all clear if the model improve-
ments shown here are a vindication of the particular set of
parameterizations chosen, or just a coincidental set of factors
combining into an improved MISO.

Methods like EEOF analysis can help identify such phenom-
ena and define a rigorous way to extract targeted skill tests from
observations and climate models in such a way that they can be
directly compared. Measuring precipitation alone without the
added perspective of the EEOF framework obscures the con-
nection between upper ocean physics and the MISO, since
upper ocean physics also affects other aspects of the precipita-
tion patterns that conceal the MISO signature. On the other
hand, EEOFs have the potential to spuriously indicate modes of
oscillation where there may be none, so the spatial and temporal
patterns must be evaluated critically as done here.

EOFs (and EEOFs) can also provide the basis for an empir-
ical prediction system (Penland and Magorian 1993; Weiss
et al. 2019) which can offer comparable forecast skill to full
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process-based modeling systems (Newman and Sardeshmukh
2017). Thus, the result here that upper ocean processes affect
MISO EEOF statistics is likely to impart an impact on the
potential forecast skill of process-based models.

The independence of EEOF analysis from model physics is
both a strength and a weakness of the methodology. On the one
hand, by making no assumptions about the dynamics of MISO
events an EEOF can focus purely on their observed empirical
behavior. Additionally, here we compound this agnosticism by
using precipitation as our base variable, focusing on an effect of a
MISO rather than a theorized mechanism. However, a more
detailed look into the changing coupled air-sea mechanisms trig-
gered by the different upper ocean physics is an important next
step to better understand the nature of the sensitivity found here.

Comparing versions of a general circulation model (GCM)
with and without various forms of turbulence has significant
value from the perspective of climate mechanisms and model
physics. Since the precipitation patterns associated with
MISOs form in the Indian Ocean and move north through the
BOB, this model comparison provides an opportunity to test
how important ocean turbulence is to such synoptic scale phe-
nomena. However, as the perturbed physics in this CESM
ensemble was perturbed globally, it is not clear if the local
effects on the upper BOB was the key change, or if other
regions affected the initiation of the MISOs elsewhere, for
example. The mismatch between model MISO accuracy and
BOB MLDs would be natural if the improved skill descended
from changes elsewhere rather than local changes. Using per-
turbed BOB physics in a regional climate model forced with
identical remote forcing can distinguish between the impacts
of local and remote physics, as can better understanding of the
perturbed mechanisms underlying these changes to the MISO.

The importance of intraseasonal behavior to global climate
predictions has become clear over the last decade. The most
significant mode of East-West tropical intraseasonal variation,
the MJO, has been shown in GCMs to nearly double in simu-
lations with quadrupled atmospheric CO, levels. The precipi-
tation anomalies associated with the MJO are projected to
increase by 10% with every degree Celsius of surface temper-
ature warming, partly due to increases in surface heat flux,
but primarily due to a significant increase in vertical atmo-
spheric circulation (Arnold et al. 2015). Since MISOs exhibit
a similar mechanism, their response to climate change should
be studied once a climate model is vetted for adequacy.

Overall, it is clear that the simulated MISO in this model is
sensitive to upper ocean physics that contributes to mixed layer
balances, not just prescribed MLDs (Samanta et al. 2018). Fur-
thermore, in this particular model, the most realistic MISO did
not occur in the model with the most accurate MLD, revealing
that the whole of the model, including other inaccuracies, need
to be taken into account when assessing forecast skill potential.
By isolating propagating features in noisy data, the EEOF
method arrived at this result in a way that is empirical, compu-
tationally inexpensive, and easy to reproduce.
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