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Deep Active Learning via Open-Set
Recognition
Jaya Krishna Mandivarapu, Blake Camp and Rolando Estrada*

Department of Computer Science, Georgia State University, Atlanta, GA, United States

In many applications, data is easy to acquire but expensive and time-consuming to

label, prominent examples include medical imaging and NLP. This disparity has only

grown in recent years as our ability to collect data improves. Under these constraints,

it makes sense to select only the most informative instances from the unlabeled pool

and request an oracle (e.g., a human expert) to provide labels for those samples. The

goal of active learning is to infer the informativeness of unlabeled samples so as to

minimize the number of requests to the oracle. Here, we formulate active learning as

an open-set recognition problem. In this paradigm, only some of the inputs belong

to known classes; the classifier must identify the rest as unknown. More specifically,

we leverage variational neural networks (VNNs), which produce high-confidence (i.e.,

low-entropy) predictions only for inputs that closely resemble the training data. We use

the inverse of this confidence measure to select the samples that the oracle should

label. Intuitively, unlabeled samples that the VNN is uncertain about contain features

that the network has not been exposed to; thus they are more informative for future

training. We carried out an extensive evaluation of our novel, probabilistic formulation

of active learning, achieving state-of-the-art results on MNIST, CIFAR-10, CIFAR-100,

and FashionMNIST. Additionally, unlike current active learning methods, our algorithm

can learn even in the presence of out-of-distribution outliers. As our experiments show,

when the unlabeled pool consists of a mixture of samples from multiple datasets, our

approach can automatically distinguish between samples from seen vs. unseen datasets.

Overall, our results show that high-quality uncertainty measures are key for pool-based

active learning.

Keywords: deep learning, active learning, autoencoders, manifold learning, open set recognition

1. INTRODUCTION

Supervised deep learning has achieved remarkable results across a variety of domains by leveraging
large, labeled datasets (LeCun et al., 2015). However, our ability to collect data far outstrips
our ability to label it, and this difference only continues to grow. This problem is especially
stark in domains where acquiring the ground truth requires a highly trained specialist, e.g.,
medical imaging. Even in cases where labeled data is sufficient, there may be reasons to limit the
amount of data used to train a model, e.g., time, financial constraints, or to minimize the model’s
carbon footprint.

Fortunately, the relationship between a model’s performance and the amount of training data
is not linear. There often exists a small subset of highly informative samples that can provide most
of the information needed to learn to solve a task. In this case, we can achieve nearly the same
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FIGURE 1 | Framework overview: Our proposed active learning system uses open-set recognition to identify which samples from the unlabeled pool to label. Our

classifier is a variational neural network (VNN) (Mundt et al., 2019b), which simultaneously reconstructs an input using a probabilistic autoencoder (AE) and classifies it

by feeding the AE’s latent vector z to a linear classifier. We use the VNN’s loss function to determine which samples to select from the unlabeled pool (Sample

Selection). As in Mundt et al. (2019b), we tested two VNN variants: M1 is trained using only the loss on the latent vector q8(z|x) and the classifier p(y|z), while M2 also

includes the loss on the reconstructed input p8(x|z). Figure based on similar diagrams in Mundt et al. (2019a) and Sinha et al. (2019).

performance by labeling (and training on) only those informative
samples, rather than the entire dataset. The challenge, of course,
is that the true usefulness of a sample can only be established a
posteriori, after we have used it to train our model.

The growing field of active learning (AL) is concerned
with automatically predicting which samples from an unlabeled
dataset are most worth labeling1. In the standard AL framework,
a selector identifies an initial set of promising samples; these
are then labeled by an oracle (e.g., a human expert) and used
to train a task network (Gal et al., 2017). The selector then
progressively requests labels for additional batches of samples,
up to either a percentage threshold (e.g., 40% of the total
data) or until a performance target is met. In short, an active
learning system seeks to construct the smallest possible training
set which will produce the highest possible performance on the
underlying task/s.

In this paper, we formulate active learning as an open-set
recognition (OSR) problem, a generalization of the standard
classification paradigm. In OSR, only some of the test inputs
are from the trained-upon distribution; the classifier must label
the remaining inputs as out-of-distribution (OOD), meaning that
they do not match the types of inputs it was trained on. For
example, if a network was trained on digit recognition, e.g.,

1As noted in Sinha et al. (2019), active learning can also refer to approaches that

generate or synthesize novel samples. In this paper, however, we will only be

concerned with pool-based active learning.

using MNIST, then images of animals or vehicles, such as those
of CIFAR-10, would be OOD. Here, we view the labeled pool
as the training distribution. The unlabeled samples which are
similar to the labeled pool are deemed as in-distribution, while
the unlabeled samples that are very different from the labeled
pool are marked as OOD. Our hypothesis is that the samples
most worth labeling are those that are most different from the
currently labeled pool (i.e., those deemed OOD) because they
contain features which the network has not yet been exposed to.
Thus, training on these samples will allow the network to learn
these features that are underrepresented in the existing training
data. In short, our AL selection mechanism consists of picking
unlabeled samples that are OOD relative to the labeled pool.

Figure 1 illustrates our proposed approach. In more detail,
our classifier is a variational neural network (VNN) (Mundt
et al., 2019b), which produces high-confidence (i.e., low-
entropy) outputs only for inputs that are highly similar to
the training set. VNNs are explicitly trained to maximize
the entropy of their outputs for inputs that differ from the
training set; thus, entropy-based confidence measures are
more reliable for VNNs than for regular neural networks.
Specifically, we use the inverse of this entropy-based confidence
measure to select which unlabeled samples to query next.
In other words, our selector requests labels for the samples
that the classifier is least confident about because this implies
that the existing training set does not contain items with
similar features to them. As we detail in section 4, our
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OSR-based approach achieved state-of-the-art results in
a number of datasets and AL variations, far surpassing
existing methods.

The rest of this paper is organized as follows. In section 2,
we provide a brief overview of current active learning and open-
set recognition methods. In section 3, we present our proposed
approach, then detail our experiments in section 4. Finally, we
discuss avenues for future work in section 5.

2. PRIOR WORK

2.1. Pool-Based Active Learning
It has been shown that training samples do not contain equal
amounts of useful information (Settles, 2010). Thus, the goal of
sampling-based active learning is to learn an acquisition function
that chooses the best data points for which a label should be
requested from a large, unlabeled pool of data (Gal et al., 2017).
There have been numerous efforts to learn an optimal sampling
strategy, and they can be broadly grouped into three major
categories (Sinha et al., 2019).

2.1.1. Uncertainty-Based Techniques
Uncertainty-based techniques aim to select samples from the
unlabeled distribution about which the current classifier is highly
uncertain. Different metrics have been proposed for quantifying
how uncertain a model about a sample. Some methods such as
Settles (2012), Settles and Craven (2008), Luo et al. (2013), and
Joshi et al. (2009) used the entropy of the posterior probability of
the model, whereas methods such as Joshi et al. (2009) and Roth
and Small (2006) use difference margin between the first and
second predicted class to select the samples. Some approaches
(Lewis and Catlett, 1994; Lewis and Gale, 1994;Wang et al., 2016)
directly use the probability outputs to select the samples. Other
methods map the network’s outputs to a probability distribution
to achieve better sample selection from the unlabeled pool.
For example, Yoo and Kweon (2019) proposed a loss-learning
module along with regular classifier which can predict the loss
for given unlabeled pool image; images with high prediction
loss are selected to be labeled by the oracle. Similarly, Gal and
Ghahramani (2016) used a Monte Carlo dropout methods to
obtain an uncertainty estimate for each sample.

2.1.2. Diversity and Hybrid-Based Methods
Representations-based models aim to maximize the diversity in
training batches (Sener and Savarese, 2017). For example, Kirsch
et al. (2019) used a Bayesian formulation to determine sample
diversity, while used gradient embeddings for assessing the
similarity between samples. The approach in Shui et al. (2019),
on the other hand, formulate sample selection as distribution
matching. Hybrid approaches attempt to combine quantifiable
uncertainty and diversity in order to select training samples
(Li and Guo, 2013). VAAL (Sinha et al., 2019) proposed an
adversarial learning based method in which a discriminator is
trained along with the task network to discriminate whether
an example belongs to the labeled or unlabeled set. In Sener
and Savarese (2017), the authors considered active learning as
a set-cover problem, one in which a task network is trained

using a core-set loss, which is the difference between a task-
network’s classification error over the labeled set vs. the core-
set. DBAL (Gal et al., 2017) approached the active learning
problem using Bayesian convolutional neural networks, wherein
confidence is measured using variation ratios. In MC-Dropout
(Gal and Ghahramani, 2016), the authors proposed to model the
uncertainty present in deep networks by interpreting dropout as
a type of Bayesian inference in deep Gaussian processes.

2.2. Open-Set Recognition
Open-Set Recognition (OSR) refers to the ability of a system
to distinguish between types of data it has already seen (the
training distribution) from types to which it has not yet been
exposed (out-of-distribution (OOD) data). Standard deep neural
networks are not suitable for OSR because they often yield high
confidence values for inputs which are significantly different
from the training classes. This vulnerability has been exploited
for adversarial attacks on deep networks, specifically to change
a classifier’s labels based on imperceptible changes to the input
image (Goodfellow et al., 2014). VNNs, on the other hand, are
explicitly trained to maximize the entropy of their outputs for
samples that differ from those it was trained on, so they achieve
OSR results.

More generally, as noted by Geng et al. (2020), existing
OSR methods can be subdivided into discriminative-based and
generative-based approaches. Discriminative methods modify
traditional ML and deep neural networks to tackle the OSR
problem. For example, Scheirer et al. (2012) used traditional
SVMs with an additional open space risk term, while (Zhang and
Patel, 2016) extended sparse classifiers to OSR by modeling the
error distribution using Extreme Value Theory (EVT) (Vignotto
and Engelke, 2018). Some other discriminative methods use
nearest neighbors (Júnior et al., 2017), probability models (Jain
et al., 2014; Scheirer et al., 2014; Scherreik and Rigling, 2016), or
outlier detection (Bendale and Boult, 2015).

Generative methods primarily use generative adversarial
networks (GANs) (Goodfellow, 2016) for OSR. For example, Neal
et al. (2018) proposed G-OpenMax by adopting an encoder-
decoder GAN architecture for generating samples which are
highly similar to training samples yet do not belong to any of
the training classes. Following a similar approach, Yang et al.
(2019) investigated the open-set human activity recognition
problem based on micro-Doppler signatures by using a GAN to
generate samples which were highly similar to the target class and
forming a negative set out of it. Not all generative approaches use
GANs, though. For example, Geng and Chen (2018) proposed a
collective, decision-based OSR model by slightly modifying the
hierarchical Dirichlet process.

3. METHODOLOGY

As noted above, our active learning approach selects batches of
samples from an unlabeled pool based on the confidence level
of its OSR classifier. Below, we first formalize the active learning
paradigm we are tackling, then detail our proposed system. In
particular, we provide an overview of VNNs and explain how we
use their outputs to select new samples to label.
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3.1. Formal Problem Definition
Formally, a pool-based active learning problem is denoted as P =

(C,Dtrain,Dtest), where C indicates the number of classes, Dtrain

is the training set, and Dtest is the test set, s.t. Dtrain ∩ Dtest = ∅.

Let Dtrain =
{(

xi, yi
)}N

i=1
consist of N i.i.d. data points where

onlym of them are labeled (m<<N). Each sample xi ∈ R
d is a d-

dimensional feature vector, and yi ∈ {1, 2, . . . ,C} represents the
target label. At the start, Dtrain consists of two disjoint subsets:
a labeled pool L containing the m labeled data points, and an
unlabeled pool U which includes the remainingN−m data points
with unknown target labels. We will update both L and U after
each query to the oracle. We denote the state of a subset at a given
timestep asLt andU t , respectively, for t ∈ {0, 1, . . .}. At any given
iteration, the budget b is defined as total number of samples from
the unlabeled pool (U t) for which we can request labels from the
oracle. As with most active learning papers, in our experiments
we simulate the oracle by withholding some of the labels from a
standard dataset.

In active learning, we first train a classifier f , with parameters
θ , on L

0. Afterwards we select b data points from U
0 using

our OSR criterion (see section 3.2). These b data points are
then sent to the oracle for annotation. The annotated samples
are removed from the unlabeled pool and added to the labeled
pool, along with their newly acquired target labels. The updated
labeled and unlabeled data pools become L

1, of size m + b,
and U

1, respectively. Thus, the labeled pool grows in size as

training progresses. We continue this process until the size of
the labeled pool reaches a predefined limit (40% of Dtrain in our
experiments). Note that, while the above formulation is similar

to continual learning, in active learning we assume that samples
from all classes are present in both the labeled and unlabeled
pools during all iterations. We do not learn new classes in an
incremental fashion.

Importantly, unlike other formulations of AL, here we allow
for the unlabeled pool U to contain training data from multiple
datasets. As we show in our experiments, our OSR-based AL
method can automatically ignore samples that do not belong to
the target dataset.

Algorithm 1: Active Learning

Input: Unlabeled poolU0, labeled poolL0 for t ∈ {0, 1, . . .}where
size of L0 = m0.
Require: Active Learning Model, Optimizer, Sampling Strategy
Require: initialize b (budget), θ (Model parameters), Epochs
repeat

Train Active Learning Model on Labeled Pool (Lt) using
selected optimizer.
Give trainedmodel fθ on Labeled Pool (L

t), Sampling Strategy
(sections 3.3 or 3.4) selects the uncertain data points according
to budget size b.
Send the selected data points to Oracle for annotation.
Add the annotated data points to the Labeled Pool (Lt)

until stopping criterion (size of Labeled Pool (Lt) equals 40% of
Dtrain);

3.2. Active Learning System
Algorithm 1 summarizes our AL approach, which has two
main components: a variational neural network (VNN) (Mundt
et al., 2019b) that serves as our classifier and an OSR selection
mechanism based on the loss function of the VNN. We discuss
each component below.

3.2.1. Variational Neural Networks (VNNs)
Variational neural networks (VNNs) (Mundt et al., 2019b) are
a supervised variant of β-variational autoencoders (β-VAE)
(Higgins et al., 2017). The latter is itself a variant of VAEs
(Doersch, 2016) but with a regularized cost function. That
is, the cost function for a β-VAE consists of two terms: the
reconstruction error, as with a regular VAE, and an entanglement
penalty on the latent vector. This penalty forces the dimensions
of the latent space to be as uncorrelated as possible, making
them easier to interpret. A VNN combines the encoder-decoder
architecture of a β-VAE with a probabilistic linear classifier (see
Figure 1 for a visual representation). As such, its loss function
includes a classification error, i.e., a supervised signal, in addition
to the reconstruction and entanglement terms:

L(θ ,φ, ξ ) = Eqθ (z|x)

[

log pφ(x|z)+ log pξ (y|z)
]

− β KL
(

qθ (z|x)‖p(z)
) (1)

As detailed inMundt et al. (2019b), θ , φ, and ξ are the parameters
of the encoder, decoder, and classifier, resp., while pφ(x|z) and
pξ (y|z) are the reconstruction and classification terms. The last
term is the entanglement penalty, which is given by the Kullback-
Leibler divergence between the latent vector distribution and an
isotropic Gaussian distribution.

As in Mundt et al. (2019b), we evaluated both the full
framework discussed above (dubbed M2 in our experiments),
which uses the loss function in Equation (1), and a simplified
version (M1) without the reconstruction error:

L(θ , ξ ) = Eqθ (z|x)

[

log pξ (y|z)
]

− β KL
(

qθ (z|x)‖p(z)
)

(2)

As our experiments show, both versions outperform the state of
the art, butM2 achieves better results overall.

VNNs are especially suitable for OSR due to their information
bottleneck. These networks are based on a variational
approximation (Alemi et al., 2016) of the information bottleneck
defined in Tishby et al. (2000). As detailed in Alemi et al. (2016),
this variational approximation encourages a latent vector z
to be predictive of the target label y, while at the same time
encouraging z to “forget” the input X. Essentially it forces z
to act like a minimal sufficient statistic of X for predicting
y. In addition, in a VNN each input image gets mapped to a
distribution rather than a unique latent vector, so it is unlikely
that a small, idiosyncratic perturbations will pass through the
information bottleneck. It is only when the input is very different
from other inputs of same class that the latent vector will
change significantly; this behavior leads to better generalization
and robustness to noise. In Mundt et al. (2019b), it is shown
using open-set experiments that VNNs produce more reliable
confidence estimates compared to regular neural networks. This
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property plays a key role in our method for determining which
samples to select from the unlabeled pool.

3.2.2. Sample Selection
We wish to leverage the class disentanglement penalty defined
in Equation (1). Specifically, our aim is to select b data points
from the unlabeled pool U that the VNN is highly uncertain
about. Following (Mundt et al., 2019a), in our experiments
we investigated two sampling algorithms for OSR: uncertainty
sampling and Weibull distribution sampling. The former is
simpler, but the latter allows one to better reject outliers. We
briefly describe each sampling strategy below.

3.3. Uncertainty Sampling
Here, we select a data point xi based directly on how uncertain the
VNN is about it. Specifically, we rank all unlabeled samples by the
value of the most likely class label and select the b samples with
the lowest maximum values. Since the sum of class likelihoods
is normalized, the value of the maximum class probability will
approach one for highly certain samples and approach 1

|C| , where

|C| is the number of classes, for highly uncertain samples. In
other words, the class likelihoods of uncertain samples have
higher entropy than those for which the VNN is certain about.

3.4. Wiebull Distribution Sampling
As our experiments show, uncertainty sampling is suitable for
active learning problems in which all unlabeled samples belong
to known classes. However, for the case where the unlabeled
pool also contains samples from unknown classes, we need
a more robust way to exclude outliers. For this latter case,
we employed the sampling procedure defined in Mundt et al.
(2019a), which leverages a Wiebull distribution to estimate the
model’s uncertainty w.r.t a specific sample.

For completeness, here we will briefly outline the
methodology proposed in Mundt et al. (2019a). Intuitively,
it can be shown that it is useful to quantify the probability that
a given data sample is an outlier, herein defined as a sample
which is not sufficiently similar to those which have already been
correctly classified. (Mundt et al., 2019a) show that this can be
accomplished as follows. First, for each class, we compute the
mean of the latent vectors of all samples that have been correctly
predicted by the model. Second, we compute the distances from
each class mean for all latent vectors, which (Mundt et al., 2019a)
showed can be modeled with a Wiebull distribution. As such,
a sample’s likelihood under this distribution constitutes the
minimum probability that the sample does not belong to any
previously known class. In other words, the lower this value, the
more likely that the sample is an outlier.

4. EXPERIMENTAL RESULTS

We performed experiments on four image classification
datasets—MNIST (LeCun et al., 2015), CIFAR-10 and CIFAR-
100 (Krizhevsky, 2009), and FashionMNIST (Xiao et al.,
2017)—following the methodology defined in section 3. Below,
we first present our implementation details, then discuss
our results.

4.1. Implementation Details
4.1.1. Hardware
We carried out our experiments on a Dell Precision 7920R server
with two Intel Xeon Silver 4110 CPUs, two GeForce GTX 1080 Ti
graphics cards, and 128 GBs of RAM.

4.1.2. Dataset Sizes and Budgets
As noted above, budget refers to the number of samples labeled
by the oracle in each round of active learning. MNIST consists
of 10,000 images for testing and 50,000 images for training out
of which we used 100 for the initial labeled pool, 5,000 images
as a validation set, and the remaining 44,900 images as part of
the unlabeled pool. We used budgets of 100 and 1,000 samples
for experiments (Figures 2A,B), resp. We used a similar setup
for FashionMNIST. CIFAR-10 and CIFAR-100 also consist of
10,000 images for testing and 50,000 images for training. For
these two datasets, we used 5,000 images as a validation set
and the remaining 45,000 images were part of unlabeled and
labeled pools. For CIFAR-10 and CIFAR-100, we used a budget
of 2,500 images per round of active learning, up to 40% of the
training data.

4.1.3. Runs
For all datasets, we measured performance by computing the
average accuracy across 5 independent runs.

4.1.4. State of the Art Comparison
We compared our method against several recent AL approaches
including Variational Adversarial Active Learning (VAAL) (Sinha
et al., 2019), Core-Set (Sener and Savarese, 2017), Monte-
Carlo Dropout (Gal and Ghahramani, 2016), Ensembles using
Variation Ratios (Ensembles w. VarR) (Freeman, 1965; Beluch
et al., 2018), Deep Bayesian AL (DBAL) (Gal et al., 2017),
BatchBALD (Kirsch et al., 2019), and WAAL (Shui et al., 2020).
As a baseline, we also included uniform random sampling
(Random) since it remains a competitive strategy in the field of
active learning.

4.1.5. Architectures
For experiments on CIFAR-10 and CIFAR-100 we used a VGG16
network (Simonyan and Zisserman, 2014) as the encoder for both
models, M1 and M2, and a decoder based on 14-layer residual
networks (Zagoruyko and Komodakis, 2016; Higgins et al., 2017).
We used latent vectors of size 60. As noted in section 3, the
classifier consists of a single linear layer. For MNIST, we used
a LeNET network (Lecun et al., 1998) as our encoder and a
latent vector of size 60. Finally, for FashionMNIST we used
the same convolutional network used by BatchBALD in their
experiments (Kirsch et al., 2019).

4.1.6. Optimization
We optimized all models using a mini-batch size of 128,
a learning rate of 0.001, and a weight decay of 10−5.
We tested two different optimizer, SGD and ADAM
(Kingma and Ba, 2014), for both M1 and M2, for a total of
four combinations:
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FIGURE 2 | Performance on MNIST classification tasks using different query sizes for model M1. (A) Query batch size of 100; (B) Query batch size of 1,000

compared to Core-set (Sener and Savarese, 2017), DBAL (Gal et al., 2017), Random Sampling, and Uncertainty Sampling. M1 indicates our model with Encoder and

Classifier. Best visible in color. Prior results adapted from Sinha et al. (2019).

• M
sgd
1 - Model M1 as shown in Equation (2) with

SGD optimizer.
• Madam

1 - Model M1 as shown in Equation (2) with
Adam optimizer.

• M
sgd
2 - Model M2 as shown in Equation (1), with

SGD optimizer.
• Madam

2 - Model M2 as shown in Equation (1) with
Adam optimizer.

4.1.7. Oracle Queries
We defined a learning stage (i.e., a period of training between
queries to the oracle) as lasting 150 epochs on CIFAR-10 and
CIFAR-100 and 10 epochs onMNIST and FashionMNIST. At the
completion of a stage, we requested labels for b images from the
unlabeled pool. These were added to the labeled pool and used in
the subsequent learning stages.

4.2. Image Classification Results
4.2.1. MNIST
Our results were comparable with the state of the art on MNIST.
However, as Figures 2A,B show, random sampling is already
a highly successful strategy on MNIST, leaving little room for
improvement on this dataset. In particular, as illustrated in
Figure 2B, all methods obtained statistically similar results as the
batch size increased. However, as shown in Figure 2A methods
such as DBAL or Coreset have lower accuracies at the initial
stages when using smaller batch sizes.

4.2.2. FashionMNIST
For this dataset, we compared our approach against the existing
state of the art, including BatchBALD, WAAL, CoreSet, and
DBAL. As shown Figure 3, our method outperformed existing
methods in each and every iteration of the active learning process.
BatchBALD was the only method to achieve results similar to
ours on this dataset; however, the inference time of our method
is in the range of seconds, while for BatchBALD this inference

time can range between minutes to hours depending on the
budget size.

4.2.3. CIFAR-10 and CIFAR-100
As Figure 4 clearly shows, we achieved state-of-the-art
performance by a considerable margin on both CIFAR-
10 (left) and CIFAR-100 (right). On CIFAR-10, models

[M
sgd
1 ,Madam

1 ,M
sgd
2 ,Madam

2 ] achieved mean accuracies of [84.4,
89.24, 89.97, 91.4%], respectively. To put this in perspective,
the original accuracy for this VNN using the entire CIFAR-10
dataset was 92.63%. VAAL came in second, with an accuracy
of only 80.71%, followed by Core-Set with an accuracy of
80.37%, and then Ensemble w VarR at 79.465%. Random
sampling, DBAL and MC-Dropout all trailed significantly
behind other methods. Finally, we found that our models
trained with ADAM, on average, outperform those trained
with SGD.

In order to compare against BatchBALD, which has very
high memory requirements, we had to use a slightly different
experimental setup. Here, the size of labeled pool (L0) was 5,000
and the budget(b) was 1,000. Under this setting, we compared
our method against BatchBALD (Kirsch et al., 2019), DBAL (Gal
et al., 2017), CoreSet (Sener and Savarese, 2017), Uncertainity
sampling, and Random Sampling. These results are shown in
Figure 3B. As before, our method outperformed all the existing
method by a significant margin, similar to results obtained
in Figure 4A.

For CIFAR-100, as shown in Figure 4, our models

[M
sgd
1 ,Madam

1 ,M
sgd
2 ,Madam

2 ] achieved mean accuracies of
[54.47, 60.68, 61.25, 61.93%], resp. The original accuracy
with the entire CIFAR-100 dataset was 63.14%. VAAL
once again came in second, with an accuracy of 54.47
%, followed by Core-Set, and Ensemble w VarR. Here,
it is worth nothing that most of existing methods fall

Frontiers in Artificial Intelligence | www.frontiersin.org 6 February 2022 | Volume 5 | Article 737363

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Mandivarapu et al. Deep Active Learning

FIGURE 3 | (A, left) Performance on FashionMNIST classification tasks using budget(b) of 100 for model M1 to WAAL (Shui et al., 2020), Core-set (Sener and

Savarese, 2017), DBAL (Gal et al., 2017), BatchBALD (Kirsch et al., 2019), Random Sampling and Uncertainty Sampling. M1 indicates our model with Encoder and

Classifier. (B, left) Performance on CIFAR-10 classification tasks using budget(b) of 1,000 for model M1. Best viewed in color.

FIGURE 4 | Performance on classification tasks for CIFAR-10 (A) and CIFAR-100 (B) compared to VAAL (Sinha et al., 2019), Core-set (Sener and Savarese, 2017),

Ensembles w. VarR (Beluch et al., 2018), MC-Dropout (Gal and Ghahramani, 2016), DBAL (Gal et al., 2017), and Random Sampling. M1 indicates our model (2) and

M2 indicates our model (1). All the legend names are in descending order of final accuracies. Best visible in color. Prior results adapted from Sinha et al. (2019).

in the same range of accuracies after training on 40% of
the data.

4.3. Additional Experiments
In addition to our classification experiments, we replicated
and extended the experiments of the same name put forth in
Sinha et al. (2019) in order to investigate the robustness of our
approach. Unless otherwise stated, we used CIFAR-100 for these
experiments. Finally, we also tested our methods’ ability to learn
when the unlabeled pool contained out-of-distribution samples,
a case which, to the best of our knowledge, cannot be handled by
any existing methods.

4.3.1. Effect of Biased Initial Pool
We first investigated the effect of bias that may be present in
the initial labeled pool, L0. As stated in Sinha et al. (2019), bias
can negatively impact the training of an active learner because it
means that the initial labeled pool may not be representative of
the true underlying data distribution. Unless explicitly accounted
for, this will cause a system to learn an incomplete, or biased,
model of the latent space. Following the protocol defined in
Sinha et al. (2019), we removed all data points for c classes
from L0, thereby unbalancing the dataset and thus introducing
bias. As shown in Figure 5A, our method outperformed VAAL,
Core-set, and random sampling w.r.t selecting useful data points
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FIGURE 5 | Robustness of our approach on CIFAR-100 given (A) biased initial labeled pool or (B) different budget sizes compared to VAAL (Sinha et al., 2019),

Core-set (Sener and Savarese, 2017), Ensembles w. VarR (Beluch et al., 2018), MC-Dropout (Gal and Ghahramani, 2016), DBAL (Gal et al., 2017), and Random

Sampling. M1 indicates our model (2) and M2 indicates our model (1). Best visible in color. Prior results adapted from Sinha et al. (2019).

from classes that were underrepresented in the initial labeled

pool. Models [M
sgd
1 ,Madam

1 ,M
sgd
2 ,Madam

2 ] achieved accuracies of
[53.35, 60.54, 61.36, 61.55%], respectively, when c = 20 and
[54.72, 60.79, 61.53, 61.57%] when c = 10 (as noted above, c is
the number of classes from which to exclude data). VAAL, by
comparison, came in second, followed by Core-set, exhibiting
accuracies [46.91, 46.55%] for c=20 and [47.10, 47.63%] for c=20,
respectively. Random sampling achieved an accuracy of 45.33%
for c= 10 and 45.87% for c= 20.

4.3.2. Effect of Budget Size on Performance
In this section, we tested the effect of different budget sizes
b on performance. Specifically, we investigated the effect of
budgets of size b = 5% and b = 10%, referring to percentage
of samples taken from Dtrain at each stage of learning. As
shown in Figure 5B, our model outperformed VAAL, Core-Set,
Ensemble, and random sampling over both the budget sizes.
VAAL comes in second followed by Core-set and Ensemble.

Models [M
sgd
1 ,Madam

1 ,M
sgd
2 ,Madam

2 ] achieve accuracies of [61.52,
61.57, 61.07, 61.82%] for b = 10 and [54.32, 60.68, 61.29, 61.9%]
for b= 20.

4.3.3. Noisy Oracle
Next, we investigated the performance of our approach in the
presence of noisy data caused by an inaccurate, or noisy oracle.
As in Sinha et al. (2019), we assumed that incorrect labels can be
caused by the natural ambiguity which exists between examples
drawn from 2 separate classes, rather than adversarial attacks.
CIFAR-100 has both classes and super-classes, so, following
(Sinha et al., 2019), we randomly modified the labels of either 10,
20, or 30% of the samples by replacing them with a label from
another class within the same super-class. As shown in Figure 6,

our models consistently outperformed existing approaches across
all noise levels. In other words, ourM1 model with 30% noise was
more accurate than VAAL, etc. with 10% noise.

4.3.4. Sampling Time Analysis
We also replicated the sampling time analysis put forth in
Sinha et al. (2019). Specifically, we measured the clock time of
the “Sample Selection” box shown in Figure 1 for the various
selectionmethods discussed in our results. We used the hardware
listed in section 4.1 for all experiments. Table 1 shows that our
method is competitive with other state-of-the-art techniques
w.r.t. execution time, thereby offering strong empirical evidence
that our method offers large performance advantages with
minimal additional computation.

4.3.5. Out-of-Distribution Samples in Unlabeled Pool
Finally, we also tested an extreme case of active learning in which
data samples from other datasets are mixed into the current
unlabeled pool. We used CIFAR-10 for these experiments. Here,
we intentionally added 20% data (10,000 images) from other
datasets to the unlabeled pool; thus, the networkmust distinguish
not only between informative and non-informative samples
but also distinguish in-distribution data samples from out-of-
distribution samples. Whenever our model selected an OOD
sample, the oracle discarded the sample, thus reducing the overall
budget size. The discarded samples were placed back in the
unlabeled pool (so the total number of OOD samples remained
at 10,000).

Figure 7 shows our M2 method’s performance on CIFAR-
10 when the unlabeled pool contained images from either
SVHN, KMNIST, or FashionMNIST. Here, we used Weibull
sampling (section 3.4) due to its better outlier rejection compared
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FIGURE 6 | Robustness of our approach on CIFAR-100 given a noisy oracle. M1 indicates our model (2) and M2 indicates our model (1). All legend names are in

descending order of final accuracies.

TABLE 1 | Sampling time analysis: mean time to select a sample from the

unlabeled pool of CIFAR-100.

Method Time (s)

VAAL 10.69

Uncertainty sampling 10.89

DBAL 11.05

Weibull sampling 20.41

Ensembles w. VarR 20.48

Core-set 75.33

MC-dropout 83.65

The bold values refer to our methods. The other values are for existing approaches.

to uncertainty sampling. Specifically, we grouped the Weibull
probabilities of the samples in the unlabeled pool into three
categories: (1) high-confidence samples, which resemble the
labeled pool; (2) middle-confidence samples, which are mostly
samples from the target dataset that do not resemble the
labeled pool; and (3) low-confidence samples, which are mostly
samples from other datasets (OOD). Here, we want to sample
middle confidence samples and ignore the rest. We empirically
determined that samples with Weibull probabilities in the range
of 0.4 to 0.8 corresponded to this middle confidence range and
thus selecting only samples in this range yielded the best results.
For comparison, we also tested random sampling as a baseline.
Impressively, despite the presence of 20% OOD samples,
our method significantly outperformed existing state-of-the-art
methods trained on the regular unlabeled pool (Figure 4). And its

performance, regardless of the second dataset, was only slightly
below the standardM2 method.

4.4. Query Image Analysis
Our experiments show that our uncertainty-based approach
is highly successful at selecting informative samples across
multiple datasets. To better understand what types of
samples were deemed most informative under this scheme,
in Figure 8, we plotted the top 25 samples selected from the
unlabeled pool by our approach after the first round of active
learning. This figure shows results for MNIST, CIFAR-10,
and FashionMNIST. Overall, while there is some repetition
in the chosen images (e.g., the top samples for MNIST
included five fours), the full spectrum of samples is quite
varied for all the datasets, suggesting that using uncertainty
as a measure of informativeness may yield batch diversity as
a side effect. We plan to investigate this hypothesis further in
future work.

5. CONCLUSIONS AND FUTURE WORK

We have presented a novel approach for deep active learning
using open-set recognition. To the best of our knowledge, we
are the first to merge AL with OSR. Extensive experiments
conducted over several image classification datasets have
verified the effectiveness of our approach and established
new state-of-the-arts benchmarks. Specifically, we empirically
demonstrated that the samples most worth labeling are those
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FIGURE 7 | Robustness of our approach on CIFAR10 classification tasks when the unlabeled pool includes samples from either the SVHN, KMNIST, or

FashionMNIST datasets. The first three curves used the M2 classifier, while the ones with the “Random” subscript used random sampling. Our results confirm that our

approach significantly outperforms this baseline.

FIGURE 8 | (A, left) Top 25 query images for CIFAR-10 selected in the first round of active learning using a budget(b) of 1,000 and model M2. (B, middle) Query

images for MNIST and (C, right) FashionMNIST using a budget(b) of 100 and model M1.

which are most different from the current labeled pool.
Training on such samples allows the model to learn features
underrepresented in the existing training data. We extensively
tested the robustness of our approach using different budget sizes,
a noisy oracle, and an unlabeled pool comprised of multiple
datasets. In future work, we plan to test our approach on
continual learning problems, in which the system must learn
to solve different problems over time. We also plan to test our
method on other problems, including image segmentation and
document classification.
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