
CSTs for Terabyte-Sized Data

Marco Oliva∗, Davide Cenzato†, Massimiliano Rossi∗, Zsuzsanna Lipták†,

Travis Gagie§ and Christina Boucher∗

∗Dept of Comp and Info Sci and Eng, University of Florida, Gainesville, FL
† Dept of Comp Sci, University of Verona, Verona, Italy

§ Faculty of Comp Sci, Dalhousie University, Halifax, Canada

Abstract

Generating pangenomic datasets is becoming increasingly common but there are still few
tools able to handle them and even fewer accessible to non-specialists. Building compressed
suffix trees (CSTs) for pangenomic datasets is still a major challenge but could be enor-
mously beneficial to the community. In this paper, we present a method, which we refer
to as RePFP-CST, for building CSTs in a manner that is scalable. To accomplish this,
we show how to build a CST directly from VCF files without decompressing them, and to
prune from the prefix-free parse (PFP) phrase boundaries whose removal reduces the total
size of the dictionary and the parse. We show that these improvements reduce the time and
space required for the construction of the CST, and the memory footprint of the finished
CST, enabling us to build a CST for a terabyte of DNA for the first time in the literature.

1 Introduction

High-throughput sequencing technologies have allowed many fields—from plant bi-
ology [17] to human genetics [16]—to generate pangenomic datasets, which could
bring enormous benefits. However, researchers must be able to process terabytes of
DNA efficiently for those benefits to be realized, and there are few tools that work
well at that scale. Hence, computation is now the bottleneck in pangenomics and
we need powerful, general-purpose compressed data structures to catch up with se-
quencing. Compressed suffix trees (CSTs) could satisfy this need since they offer
the same functionality as conventional suffix trees—which have been a standard data
structure for nearly 50 years and are used in myriad algorithms and applications (see,
e.g., [9, 12, 13])—but have so far been unable to handle a terabyte of data. Nonethe-
less, a few CST implementations have recently been proposed for pangenomics—
notably Gagie et al.’s [7] based on the r-index and string attractors; Cáceres and
Navarro’s [4], based on block trees; and Boucher et al.’s [2] based on prefix-free pars-
ing (PFP), which we refer to as PFP-CST. PFP takes as input a string S and parses
S into substrings by sliding a window of length w over the dataset, and introducing
a phrase break whenever the hash of the contents of the window are congruent to

MO, MR, and CB are funded by the National Science Foundation NSF SCH: INT (Grant No.
2013998), NSF IIBR (Grant No. 2029552), and National Institutes of Health (NIH) NIAID (Grant
No. HG011392 and R01AI141810). TG is funded by NSF IIBR (Grant No. 2029552), NIH NIAID
(Grant No. HG011392), and NSERC Discovery Grant RGPIN-07185-2020.



0 modulo a parameter p. We refer to such substrings of length w as trigger strings

and include them both as a suffix of the preceding phrase and as a prefix of the next
phrase. This means that no phrase-suffix of length greater than w is a proper prefix of
any other phrase-suffix, giving the parsing its name and allowing us to build a BWT
directly from the dictionary of distinct phrases [3]. It was initially developed to build
the r -index [3, 10], it was later also used to build the XBWT [6] and the eBWT [1].

We present a scalable CST construction algorithm that also uses PFP but with two
innovations. First, we develop a method to build the PFP directly from Variant Call
Format (VCF) data, which is a compressed form of pangenomics data. A VCF file is
obtained by aligning the sequence reads or other genomes to the reference genome and
storing the deviations from the reference [5]. This allows for the distribution of the
data in a more space-efficient manner, i.e., the 1000 Genomes Project data requires
21GB of space using VCF but requires 6TB when stored uncompressed as FASTA
files [16]. Currently, PFP-CST—as well as other current CST implementations—
takes as input a set of sequences and, thus, requires decompressing the VCF data
before construction. Our first contribution eliminates this.

Next, we develop a method to optimize the dictionary and parse built by PFP. Our
algorithm is inspired by Larsson and Moffat’s RePair [11] which repeatedly finds the
most common pair of characters in a string and replaces all occurrences of that pair
by a new character. Here, we remove trigger strings rather than pairs of characters.
Removing a trigger string requires us to remove from the dictionary any phrases for
which it is a suffix or prefix, add to the dictionary the concatenation of any pair of
phrases such that the first phrase ends with the trigger string and the second starts
with it and which appear consecutively in the parse, and merge the phrases in the
parse that are separated by the trigger string. This can reduce the total size of the
dictionary and parse when the trigger string occurs often in the dataset but only
separating a few distinct pairs of phrases. For example, if a common trigger string
is the suffix of only one distinct phrase and the prefix of only one other distinct
phrase, then it serves no purpose and just makes the parse bigger. We keep a list of
trigger strings sorted by how much their removal would change the total size of the
dictionary and the parse, and auxiliary data structures that let us update efficiently
after removing a trigger string. Our experiments demonstrate that this removal of
trigger strings can reduce the combined size of the dictionary and parse substantially.

We refer to our resulting method as RePFP-CST, and demonstrate that it en-
ables us to build a CST for significantly larger datasets than we could before: the
largest dataset Boucher et al. considered consisted of 1000 haplotypes of chromosome
19 of the human genome, occupying 60GB in uncompressed FASTA format, for which
they built a 20GB PFP-CST in 1 hour using 51GB of peak memory. For comparison,
Gagie et al.’s CST based on the r-index and string attractors has never been im-
plemented; Cáceres and Navarro’s CST based on block trees was not able to handle
more than 8 haplotypes of chromosome 19; and the CST implementation available in
SDSL 2.0 required more than 16 hours and 1TB of memory for only 512 haplotypes
of chromosome 19.

In this paper we consider a dataset consisting of chromosomes 17, 18 and 19 from
5000 human haplotypes, for which the FASTA files occupy just over 1TB, and try to



build a PFP-CST for it using Boucher et al.’s construction and with RePFP-CST.
The files are available for download only in VCF and even just extracting the FASTA
files to run Boucher et al.’s construction takes over 3 weeks of CPU time; eventually
we gave up and built the PFP from the VCF to test the rest of Boucher et al.’s
construction, as well as RePFP-CST. Building the PFP-CST from the unoptimized
PFP took 14 hours of CPU time and 900GB of memory and the final CST was
439GB. Optimizing the PFP by removing trigger strings took 5.5 hours of CPU time
and 152GB of memory, but then building the RePFP-CST took 7.5 hours of CPU
time and 643GB of memory and the final size of the CST was 328GB. As far as we
know, no one has built a CST for a terabyte of data before. Our executable and
source code is publicly available at: https://github.com/marco-oliva/pfp.

2 Preliminaries

Basic definitions. A string S is a finite sequence of characters S = S[1..n] =
S[1] · · ·S[n] over an alphabet Σ = {c1, . . . , cσ}. We denote by ε the empty string,
and the length of S as |S|. We denote by S[i..j] the substring S[i] · · ·S[j] of S starting
in position i and ending in position j, with S[i..j] = ε if i > j. For a string S and
1 ≤ i ≤ n, S[1..i] is called the i-th prefix of S, and S[i..n] is called the i-th suffix of
S. We call a prefix S[1..i] of S a proper prefix if 1 ≤ i < n. Similarly, we call a suffix
S[i..n] of S a proper suffix if 1 < i ≤ n. Lastly, given two strings S = S[1] · · ·S[n]
and T = T [1] · · ·T [m] we define as S + T the string obtaining concatenating all the
characters from T to S, i.e the string S[1] · · ·S[n]T [1] · · ·T [m].

VCF. VCF is a widely used text-based file format for distributing and storing pange-
nomics data, e.g., 1000 Genome Project [16], and 1001 Arabidopsis Project [17]. A
VCF file is built by aligning all sequence reads from an individual to the standard
reference genome of the species of interest, and the genetic variants and locations
of the variants are stored. The FASTA file containing the genome corresponding to
the VCF can easily be created by copying the reference genome and replacing each
location where there is the variation with the one specified in the VCF.

Review of PFP. PFP takes as input a string S of length n, and two integers greater
than one, which we denote as w and p. It produces a parse of S into overlapping
phrases, where each unique phrase is stored in a dictionary. We denote the dictionary
as D and the parse as P . As the name suggests, the parse produced by PFP has
the property that no suffix of length greater than w of any string in D is a proper
prefix of any other suffix in D. The first step of PFP is to append w copies of # to
S, where # is a special symbols lexicographically smaller that any element in the Σ
and S does not contain w copies of #. For the sake of the explanation we consider
the string S ′ = #wS#w1.

Next, we characterize the set of trigger strings which define the parse of S. Given
a parameter p, we construct the set of trigger strings by computing the Karp-Rabin
hash, g(t), of substrings of length w, sliding a window of length w over S ′ = #wS#w,

1We note that this definition of PFP is equivalent to original definition that considers the string
S′′ = S#w to be circular.



and letting T be the set of substrings t = S ′[s..s + w − 1] where g(t) ≡ 0 (mod p)
or t = #w. This set T will be used to parse #wS#w. Next, we formally define the
dictionary D of PFP.

Given a string S and a set of trigger strings T , we define the dictionary D =
{D1, . . . , D|D|} to be the set of substrings of #wS#w such that the following holds for
each Di: exactly one proper prefix of Di is contained in T , exactly one proper suffix
of Di is contained in T , and no other substring of Di is in T . We can build D by
scanning #wS#w to find all occurrences of the trigger strings in T and adding to D

each substring of #wS#w that starts at the beginning of one occurrence and ends at
the end of the next one. Lastly, the dictionary is sorted lexicographically.

Given the dictionary D and input string S, we can easily parse S into phrases from
D, with consecutive phrases overlapping by w characters. This defines the parse P as a
sequence of indices of the phrases inD. We note that S can then be reconstructed from
D and P alone. We illustrate PFP using a small example: given w = 2 and #2S#2 =
##GATTACAT#GATACAT#GATTAGATA##, we suppose there exists a Karp-Rabin hash
that define the set of trigger strings T to be {AC, AG, T#,##}. It follows that the
dictionary D is equal to {##GATTAC, ACAT#, AGATA##, T#GATAC, T#GATTAG} and
the parse P to be 1, 2, 4, 2, 5, 3.

3 Methods

Here, we describe the algorithmic contributions behind RePFP-CST, namely per-
forming PFP directly from VCF files and filtering trigger strings to compress PFP.

3.1 VCF to PFP

Here we assume to be working on a string S that corresponds to a reference genome,
and on a VCF file containing the variations belonging to m sequences S1, · · · , Sm.
This can easily be generalized to the case where we have multiple references and
multiple VCF files. A more detailed explanation will be available in the full version
of the paper. The objective here is to obtain the PFP of S, S1, ..., Sm while avoiding
parsing phrases of Si aligned to equal phrases in S (that is, those which do not contain
a variation) and only parse those which are different (that is, those which do).

For each sequence Si, we store its variations in a list V ari = [vi1 , . . . , vij ], where
each vik is a string over the alphabet {A, C, G, T}. Similarly, we store the positions
on the reference of the first character of each variation in a list which we denote as
Posi = [ri1 , . . . , rij ], where each rik is an integer within [1, |S|] and ri1 < ri2 < . . . <

rij . Lastly we store the number of characters in the reference that the variation is
going to change, which we denote as Leni = [`i1 , . . . , `ij ], where each `ik is an integer.
These three lists allow us to represent most type of variation commonly stored in a
VCF file, i.e. SNPs, insertions, deletions, substitutions and structural variants.

Given w and p, we first parse S using PFP as defined in Section 2. We denote the
resulting dictionary, parse, and trigger strings as DS, PS, and TS, respectively. We
will now create a dictionary D, parse P , and trigger strings for S and V as follows.
First, we add all elements of DS, PS, and TS to D, P , and T , respectively. Next, we



generate a parse for Si using V ari, Posi, and Leni for each i = 1, . . . ,m as follows.
Starting with the first element of Posi (i.e., ri1), we add all elements of PS to the parse
of Si as long as their position in S is less than ri1 − w, i.e., we add PS[1], . . . , PS[j]
to the parse of Vi if |DPS [1]| + . . . + |DPS [j]| − jw < ri1 − w and |DPS [1]| + . . . +
|DPS [j+1]| − (j + 1)w > ri1 −w. Let r′ be the last position covered by this parse. We
create a temporary string, S[r′ + 1], . . . , S[ri1 − 1] + vi1 + S[ri1 + `i1 + 1], . . . , S[r′′],
where r′′−w is the first position where a new trigger string occurs, and parse it using
PFP and discard the temporary string. In general, the temporary string we create
may include more than one variation which depends on when the parse stops, e.g.,
S[r′+1], . . . , S[ri1−1]+vi1+S[ri1+`i1+1], . . . , S[rik−1]+vik+S[rik+`ik+1], . . . , S[r′′].
Next, we add PS[j

′], . . . , PS[j
′′] to the parse of Vi, where j

′ corresponds to the phrase
corresponding to S[r′′] in PS, and j′′ corresponds to the phrase whose position in S is
less than rik+1 −w. We parse the temporary string and update the parse, dictionary
and trigger strings of Vi as we would with PFP from Section 2. We continue on in
this process until all elements of V ari have been considered.

This approach lets us avoid re-parsing long substrings of Si that exactly match
the corresponding substrings of S. We store the phrases that occur in Si but not S in
a temporary dictionary, identified by their Karp-Rabin hashes, until we are finished
parsing V . At that point we merge the dictionaries and make a pass over the parse,
relabelling the phrases with their new lexicographic order. We note that, since it
is possible to work on each Si independently, this process can be easily parallelized
using a number of threads less than or equal to m (i.e. the number of sequences in
the VCF file).

3.2 Compress PFP via Filtering Trigger Strings

Our method for compressing the dictionary and the parse is inspired by Larsson and
Moffat’s RePair. We do not look for the most common pair of phrases to merge,
however — which would be the most direct analogue of RePair — and instead we
find the trigger string whose removal will decrease the total size of dictionary and
parse the most. Moreover, when removing a trigger string we need to merge all the
pairs that share said trigger string. To efficiently track the effect of removing a trigger
string we formalize the problem as follows and introduce a cost function. We also
note that the order of the removal of trigger strings matters.

To describe our algorithm, we begin by assuming that we parsed S into a dic-
tionary D = {D1, . . . , D|D|} and a parse P = [p1, . . . , p|P |]. We aim to derive from
D and P a new parse of S, D′ and P ′, such that ||D′|| + W |P ′| < ||D|| + W |P |,
where ||D|| is the sum of the lengths of the phrases in D and W is the size in bytes
of one element of the parse. To simplify the notation, given a phrase pi of the parse,
we define |pi| = |Dpi |. Following from the definition of PFP, we note that each pair
of consecutive phrases (pj, pj+1) in P overlaps by a trigger string of w characters.
Therefore we define a set Li as the set of pairs of phrases (pj, pj+1) for each trigger
string Ti, where pj ends with Ti and pj+1 starts with Ti. We also define two additional
sets L1i (resp. L2i) that contains the first (resp. second) element of the pairs in Li,
i.e., L1i = {p1 | (p1, p2) ∈ Li} and L2i = {p2 | (p1, p2) ∈ Li}. Furthermore we refer to



f(p, q) as the frequency of the pair of phrases (p, q) in P .
Based on the set Li, we can compute the effect that removing Ti has on the

total size of the dictionary and parse. In particular, for each merged pair the size
of the parse will reduce by W . The total parse size reduction will amount to W

times the number of occurrences of Ti. As for the dictionary, if a pair is merged
then its size will increase by the number of characters in the merged phrase, and will
decrease by the size of the elements of the pair taken singularly. We can formalize
this by defining the following cost functions. We define CD(Ti) to be the reduction
in size of the dictionary due to the removal of Ti, i.e., CD(Ti) =

∑
p∈L1i

∪L2i
|p| −

∑
(p1,p2)∈Li

(|p1|+ |p2| − w). Similarly, we define CP (Ti) as the reduction in the size

of the parse, i.e., CP (Ti) =
∑

(p1,p2)∈Li
f(p1, p2)×W . We define the total cost of a

trigger string Ti as C(Ti) = CD(Ti) + CP (Ti).
Hence, the algorithm to derive D′ and P ′ consists of finding the trigger string

with the highest cost, replacing each pair (p, q) of phrases overlapping in such trigger
string with a new symbol u obtained, concatenating to D[p] all the characters of D[q]
from position w + 1 on, and updating the frequencies and costs associated with the
removal of Ti. The process is repeated until there are no trigger strings with positive
cost left.

In order to perform these updates efficiently, we construct and use the following
auxiliary data structures. Given the dictionary D and parse P , we construct and
store an array AD for the elements of D, and a double-linked list LP . Note that,
even though AD start as a sorted array inheriting the ordering from D, during the
procedure it looses it’s ordering.

Next, given the set of trigger strings T , we construct an indexed priority queue
PQT to store the costs C(Ti) for each trigger string Ti in T . The indexed priority
queue is a priority queue which allows us to change the priority value of any of the
elements in the queue in logarithmic time with respect to the size of the queue [15,
Sec. 2.4]. Finally, we construct an array AT of lists such that for each trigger string
Ti in T we store a list of pointers to elements of LP that end with Ti.

To characterize the running time of the algorithm, we first give the running time
of a single iteration in the following lemma.

Lemma 3.1 Given a set of trigger strings T , dictionary D, parse P , data structures

PQT , LP , AT , and AD, we can remove the trigger string Ti ∈ T that occurs occ times

in P , in O(occ log |T | + occ log occ) time and O(occ) additional space, such that the

data structures PQT ′, LP ′, AT ′, and AD′ are updated, where T ′, D′, and P ′ are the

trigger string set, dictionary and parse obtained by the removal of Ti.

The following paragraphs give an idea of how to achieve the time and space com-
plexity presented in Lemma 3.1, a detailed proof will be included in the full version
of the paper. Let LTi

be the list of occ phrases in LP that end with Ti in LP order. We
construct two arrays AL and AR which store the triplets of phrases visited during the
process with a trigger string different from Ti on the left or on the right, respectively.
For all occurrences p ∈ LTi

, let q be the next element in LP , that can be obtained
in O(1) time. Let Tj and Tk be the trigger strings at the beginning and at the end



of p and q respectively, and let ` and r be the phrases preceding p and following q

in LP , respectively. Then we insert (p, `, q) in AL and (q, r, p) in AR. We will mark
the occurrences of deleted phrases from AD, and append the phrase u in AD that
represents the phrase in D obtained by the concatenation of p and q. Finally, we will
remove the occurrence of q and replace the occurrence of p with the concatenated
string in LP . We note that AT can be updated by ignoring the list of occurrences
relative to Ti. Hence, for each occurrence of the trigger string Ti we take O(1) time
to update the data structures.

After all the occurrences have been processed, we sort AL and AR in O(occ log occ)
time. This allows to compute for each trigger string Tj the set L′

j = {(p, `, q) ∈ AL |
` ends with Tj} ∪ {(q, r, p) ∈ AR | r starts with Tj} of new pairs, the set L12j =
{(p, q) | (p, u, q) ∈ L′

j} of new single phrases, the set Uj = {(p, u) | (p, u, q) ∈ L′
j}

of updated pairs, and the set U12j = {p | (p, u, q) ∈ L′
j} of updated single phrases

from which we can compute the updated costs of CD(Tj) = CD(Tj)−
∑

p∈U12j
(|p|) +

∑
(p,q)∈L12j

(|p|+|q|−w)+
∑

(p,u)∈Uj
(|p|+|u|−w)−

∑
(p,u,q)∈L′

j
(|p|+|u|+|q|−2w) where

the second and fourth terms are meant to remove the contribution of the phrases that
are going to be merged from the previous value of CD(Tj), and the third and fifth
terms add the contribution of the new phrases obtained by the removal of the trigger
string Ti. Furthermore, the scan of the occurrences of Ti in LP ensure that if a phrase
is repeatedly merged with consecutive phrases in LP then the subsequent operations
produces a telescopic sum leading to the correct final cost update. This can happen
when we have phrases that starts and ends with the same trigger string Ti. We note
that each of the four sets can be obtained by sorting the original arrays AL and AR in
O(occ log occ) time. Hence, the total time for this phase is O(occ log occ). We then
update PQT in O(occ log |T |) time. In total we will take O(occ log |T | + occ log occ)
time to remove all the occurrences of Ti.

It is also easy to see that by removing all the occurrences of Ti from the parse, and
merging all the corresponding phrases, we generate a dictionary D′ and a parse P ′

that are a valid prefix-free parsing of the original text S. Next, we present our main
theorem. Due to page length, we leave the proof of this theorem to the full version
of the paper.

Theorem 3.2 Given a set of trigger strings T , dictionary D, and parse P , we can

obtain a new set of trigger strings T ′, D′ and P ′ such that C(T ′
i ) ≤ 0 for all T ′

i in T ′,

in O(|P |+ |D|+ |D′| log |D′|+ |P | log |P |)) time and O(|P |+ |D|+ |T | log |T |) space.

4 Experiments and Discussion

Experimental Set-up. We implemented our method in ISO C++ 2020 and mea-
sured the performance using two datasets. Our first set of data was the repetitive
corpus from Pizza&Chili [14], which is a collection of repetitive texts characterized by
different lengths and alphabet sizes. The second dataset consists of 10 sets of variants
of human chromosome 17, 18, and 19 (chr17-19), containing 500, 1000, 1500, 2000,
2500, 3000, 3500, 4000, 4500, and 5000 distinct sequences where each collection is a
superset of the previous one. The smallest of these datasets (chr17-19.500) has size



Description PFP RePFP Compression Metrics

Name σ n Dict Parse Dict Parse Compression Space Savings

cere 5 461.28 90.34 16.99 91.33 15.26 1.01 1%

einstein.de.txt 117 92.21 1.31 3.49 1.70 0.82 1.90 47%

einstein.en.txt 139 465.24 3.25 17.83 4.91 4.22 2.31 57%

Escherichia Coli 15 112.68 52.57 4.48 52.63 4.10 1.01 1%

influenza 15 154.80 49.10 6.27 49.43 5.43 1.01 1%

kernel 160 249.51 14.78 9.95 15.03 4.59 1.26 21%

para 5 429.26 84.87 16.34 86.26 14.08 1.01 1%

world leaders 89 46.90 10.71 1.02 10.70 0.85 1.02 2%

chr19.1000 5 60,110.54 274.57 2219.08 541.09 951.65 1.67 40%

Table 1: Performance of RePFP for the Pizza&Chili repetitive corpus and 1000
variants of chromosome 19 in FASTA format. We report the alphabet size σ and
dataset size n in MB. The size of the dictionary and parse before and after RePFP

are given in MB. Lastly, we report the compression ratio and space saving provided
by RePFP, where the compression ratio is the ratio of the total size of PFP over
the total size of RePFP, while the space saving is 1 minus the reciprocal of the
compression ratio expressed in percentage.

101.90GB and the largest (chr17-19.5000) has size 1017.16GB with each data point
increasing in size by 100GB. The experiments on Pizza&Chili were performed on a
server with Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz with 40 cores and 756GB
of RAM, while the experiments on chr17-19 were performed on a server with two
AMD(R) EPYC(R) 7702 processors for a total of 128 cores and 1028GB of memory.
The running time was recorded with the Unix utility /usr/bin/time and the mem-
ory usage with malloc count2. We refer to disk space as the total number of bytes
written to disk, including intermediate data. We limited the resources for each run
to 2TB of disk space, 1TB of memory and 21 CPU days.

Results on Pizza&Chili. We first compared the performance using Pizza&Chili
and the chromosome 19s from 1000 human haplotypes (chr19.1000). In this experi-
ment, we only evaluated the filtering of the trigger strings, since Pizza&Chili includes
multiple collections but none are available in the form of a VCF file. Although the
chromosome 19 dataset is available for download only as a VCF, in this experiment
we constructed and used the FASTA files for this dataset to make it consistent with
Pizza&Chili. We first built the PFP on the input data and then we compressed with
the method in Section 3.2 (RePFP). In Table 1, we report the size of the dictionary
and parse produced by PFP, and the size of the dictionary and parse produced from
RePFP. The space savings on the size of the PFP ranged from 1% to 57%, with the
highest compression obtained on einstein.en.txt (57%) and the second and third
highest compression obtained on einstein.de.txt and chr19.1000, respectively.

Results on Chromosome 17, 18, 19. Here, we compare RePFP-CST to PFP-
CST [2]. PFP-CST is the most recent CST implementation and was shown to require

2https://github.com/bingmann/malloc_count





the maximum was 36.67% on chr17-19.1750. This led to an average reduction of
the CPU time required to build the CST of 37.17% with a maximum of 45.41%
and a minimum of 28.19%. Furthermore, it led to an average reduction of the peak
memory of 27.65% with a maximum of 46.56% and a minimum of 22.48%. Lastly, the
reduction on the size of the data structure averaged on 21.11% with a maximum of
25.22% and a minimum of 15.30%. Note that the percentage reduction of CPU time,
memory and disk space increased with the number of haplotypes in the collection
ranging from 30.65% CPU time, 23.57% memory and 15.30% disk on chr17-19.500

to 45.41% CPU time, 28.45% memory and 25.22% disk on chr17-19.5000.

References

[1] C. Boucher, D. Cenzato, Zs. Lipták, M. Rossi, and M. Sciortino. Computing the original
eBWT faster, simpler, and with less memory. In Proc. of SPIRE, pages 129–142, 2021.

[2] C. Boucher, O. Cvacho, T. Gagie, J. Holub, G. Manzini, G. Navarro, and M. Rossi.
PFP compressed suffix trees. In Proc. of ALENEX, pages 60–72, 2021.

[3] C. Boucher, T. Gagie, A. Kuhnle, and G. Manzini. Prefix-free parsing for building big
BWTs. In Proc. of WABI, pages 2:1–2:16, 2018.

[4] M. Cáceres and G. Navarro. Faster repetition-aware compressed suffix trees based on
block trees. Inform and Comput, page 104749, 2021.

[5] P. Danecek et al. The variant call format and VCFtools. Bioinformatics, 27(15):2156–
2158, 2011.

[6] T. Gagie, G. Gourdel, and G. Manzini. Compressing and indexing aligned readsets. In
Proc. of WABI, pages 13:1–13:21, 2021.

[7] T. Gagie, G. Navarro, and N. Prezza. Fully Functional Suffix Trees and Optimal Text
Searching in BWT-Runs Bounded Space. J. of the ACM, 67(1):1–54, 2020.

[8] S. Gog, T. Beller, A. Moffat, and M. Petri. From Theory to Practice: Plug and Play
with Succinct Data Structures. In Proc. of SEA, pages 326–337, 2014.

[9] D. Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press, 1997.

[10] A. Kuhnle, T. Mun, C. Boucher, T. Gagie, B. Langmead, and G. Manzini. Efficient
construction of a complete index for pan-genomics read alignment. J Comput Biol,
27(4):500–513, 2020.

[11] N. J. Larsson and A. Moffat. Off-line dictionary-based compression. Proc. of the IEEE,
88(11):1722–1732, 2000.

[12] V. Mäkinen, D. Belazzougui, F. Cunial, and A. I. Tomescu. Genome-Scale Algorithm
Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing. Cam-
bridge University Press, 2015.

[13] E. Ohlebusch. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrange-
ments, and Phylogenetic Reconstruction. Oldenbusch Verlag, 2013.

[14] Pizza & Chili repetitive corpus. Available at http://pizzachili.dcc.uchile.cl/
repcorpus.html. Accessed 16 April 2020.

[15] R. Sedgewick and K. Wayne. Algorithms. Addison-Wesley Professional, 2011.

[16] The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature, 526:68–74, 2015.

[17] D. Weigel and R. Mott. The 1001 Genomes Project for Arabidopsis thaliana. Genome
Biol, 10(5):107, 2009.


