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Abstract: We describe an approach to constructing an analytic Cartesian representation of the
molecular dipole polarizability tensor surface in terms of polynomials in interatomic distances with
a training set of ab initio data points obtained from a molecular dynamics (MD) simulation or by
any other available means. The proposed formulation is based on a perturbation treatment of the
unmodified point dipole polarizability model of Applequist [J. Am. Chem. Soc. 1972, 94, 2952]
and is shown here to be, by construction (i) free of short-range or other singularities or
discontinuities, (i) symmetric and translationally invariant, and (ii7) non-reliant on a body-fixed
coordinate system. Permutational invariance of like nuclei is demonstrated to be readily applicable,
making this approach useful for highly fluxional and reactive systems. Derivation of the method
is described in detail, adding brief didactic numerical examples of H> and H>O, and concluding
with an MD simulation of the Raman spectrum of HsO>" at 300K with the polarizability tensor
fitted to CCSD(T)/aug-cc-pVTZ data obtained using the HBB-4B potential [J. Chem. Phys. 2005,
122, 044308].
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1. INTRODUCTION

Highly accurate potential energy surface (PES) representations of small, moderate and,
recently, fairly large polyatomic molecules, by way of fitting an analytic parameterized polynomial
function to a set of ab initio data, have become routine in classical MD simulations of reaction
dynamics and quantum mechanical studies of vibrational structure, provided one has access to a
representative (training) set of high-level ab initio data."?* Similarly, in pursuing studies of
molecular vibrational spectroscopy, for example in the infrared regime, generation of high quality
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dipole moment surfaces (DMS) in terms of polynomials has also become equally routine,*' = given

the same training set prerequisite. It has been noted that the requirement for a dipole moment
training set may be at a lower level of ab initio theory than that of the PES.*2¢

Extending this principle of high precision PES/DMS polynomial fitting of ab initio data to
that of high precision polarizability tensor surface (PTS) polynomial fitting — dipole polarizability
in the present treatment — has proven to be quite more challenging, if judging by the lack of reports
of such in the literature. One reason for this could lie in the absence of a universal definition of
dipole polarizability as a function of atomic Cartesian positions, in clear contrast to the case of a
PES and a DMS, both well-defined scalar and vector quantities, respectively. Of course, it is
possible to bypass this issue by either doing direct electronic structure theory dynamics, where the
polarizability is well-defined, as has been done recently for Raman spectra in liquid phase using
plane wave DFT,?”?° or in special situations by treating the polarizability tensor components as
scalar quantities within a molecular frame of reference and applying to them the same fitting
methods as for a PES. For example, a well-utilized fit of a water molecule’s polarizability tensor,

with the components projected onto a body-fixed coordinate system, was done by Avila ata CCSD

level with a quadruple-C-polarized quality basis set using a polynomial power series



representation.® It is to be pointed out that even for a simple triatomic molecule such as H»O, as
is similarly the case for a generic polyatomic molecule, the latter technique may be problematic
due to ambiguities in defining a body-fixed coordinate system. This is true specifically when like
nuclei are present given that the directions of the molecule-defined space-fixed Cartesian axes
become arbitrary, i.e., defined up to a sign. Thus, the sign of the in-plane off-diagonal polarizability
element of H>O may happen to depend on the input order of the two Hydrogens, physically
indistinguishable, in an unphysical way. In other words, like-nuclei permutational invariance of
the tensor in such a representation is not strictly enforced. Nevertheless, despite a good deal of
numerical challenges, earlier and as well as more recent theoretical efforts*!-” have demonstrated
major advancement in polarizability representation at high-levels of ab initio theory and with
impressive large-scale numerical applications.¥-4

Another common approach to polarizability representation over the many years has been

to devise approximate models based on polarizable point dipole theories,*!#3

and to parameterize
them, i.e. the isotropic atomic polarizabilities, for the purpose of reproducing key molecular
properties. This is currently the state of the art approach in standard polarizable force fields, and
these approaches, which use classical molecular mechanics force field definitions, have gathered
strong attention from the computational and modeling community.** More advanced treatments
of analytic polarizability representation of complex systems beyond classical force field
definitions, particularly those involving liquid water, have been reported.’®3* Specifically, to
simulate Raman spectra of bulk water, Medders and Paesani*® used a high-level ‘local’
polarizability tensor function of H>O to build a global water polarizability tensor using a many-

body formulation with high level ab initio data. Further improvements of the point dipole model

have been suggested more recently by Harczuk et al. who considered higher-order polarization



effects to describe dipole polarizability and hyperpolarizability, with an application to large water
clusters, and provided evidence of a systematically improvable polarizability model based entirely
on electronic structure theory.*® The latter work has far reaching implications for prospective
development of molecular polarizability tensor representations of complex systems.

In the present work, detailed in the sections below, we present a strategy of combining the
two aforementioned approaches, namely, (i) the polynomial power series expansion (with
permutational symmetry of like nuclei) fitting to extensive high quality ab initio data, currently
being the state-of-the-art approach for PES/DMS representation, and (i7) the point dipole model,
in an effort to construct a continuous (differentiable everywhere), permutationally invariant
polarizability tensor surface (PTS) suitable for classical molecular dynamics and quantum

mechanical simulations.

2. COMPUTATIONAL METHODS

For the sake of perspective, we restate that representing a dipole, quadrupole or any higher-
order non-scalar multipoles using Cartesian coordinates of atoms is formally trivial as these
quantities have strict mathematical definitions.>® The challenge with the polarizability tensor is
exactly due to its definition as a linear response of the dipole to an applied electric field. This
response as a function of the nuclear coordinates and molecular spatial orientation is not known a
priori without first solving the electronic Schrodinger equation. Nevertheless, if one knows the
exact scalar atomic polarizabilities ¢, within the molecule, including their supposed dependence
on the geometry, a closed form expression for an approximate molecular tensor a may be obtained

by formally applying a uniform field F and summing over the resultant induced dipoles at all the



atomic sites. This is known as the polarizable point dipole model originally examined for

polyatomic molecules by Applequist ez al.*! In this model the induced dipole at atom p is given by

N
By = [F— z Tpqlq D,
a*p

where N is the number of atoms, F is the applied uniform electric field and T, is the dipole field

‘direction cosines’ tensor,*!"*3
3 x*>—1?/3 xy Xz
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with 7 being the p-¢q interatomic distance with the space-fixed Cartesian components x, y, z. In the
above, T,,=0. Recasting Eq. 1 as a matrix equation, a closed form expression for the polarizability
in a symmetric 3Nx3N representation may be obtained as
G=(A1+1T)? 3)
where A is a diagonal matrix of the atomic polarizabilities ¢, and T contains the T, pair blocks.
Reducing G to a 3x3 form only involves summing over the atoms for each Cartesian pair i,j = x, y,

Z,41-43
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At this stage one may take Eqs 3-4 as a functional form for the polarizability and parameterize the
diagonal of A using high-quality ab initio data, including a proper molecular geometry dependence
of some sort, as will be shown below. However, the problem from a computational standpoint is
that G has singularities, previously noted as originating from the model’s neglect of electron
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exchange, whenever an interatomic distance r,, approaches 4((xp For large systems

the matrix inversion procedure becomes unmanageable, and as a result several functional fixes



based on Thole’s ‘dipole smearing’ model,** which requires the atomic polarizabilities o, to be
constant, have been proposed for this issue over the years.*4!4%5! For the purposes of the present
study, we allow a,, to be functions of geometry and thus find it much more efficient to extend the
old prescription of Applequist ef al. and to approximate G using perturbation theory.>? In this way
the singularities are removed systematically and without loss of generality or computational
flexibility.

Consider the asymptotic behavior of G as the molecule tends to the limit of a collection of
non-interacting atoms, or {14} — oo for all p,¢g: T — 0 or TA « 1, and therefore G —» A . In this
limit, Eq. 3 can be expanded in the convergent series

G=A—-ATA + ATATA — - (5)
with T as an off-diagonal perturbation. Truncating Eq. 5 after the n-th term leaves an error of the
order (A™! + T)G,, — 1 = (TA)". A form of Eq. 5 was used by Applequist et al. in earlier
calculations of optical rotatory parameters of adamantanes,’? possibly as a way of making the
calculations more easily tractable. However, we will show that Eq. 5 has important merits beyond
purely numerical considerations.

Obviously, Eq. 5, and its contracted form in Eq. 4, is an excellent approximation to the
polarizability tensor in the weak interaction limit, provided one has properly parameterized the
scalar atomic polarizabilities o, to decay to their free atom values. But what happens to Eq. 5 when
chemical bonds start to form and therefore strong induction effects begin to take place? Even a
high-order expansion will inevitably fail when bonds become short enough and the TA <1
condition no longer holds. Yet, if we treat Eq. 5 as simply a well-behaved, if approximate,
functional form with which to represent the true ab initio polarizability, in the long and short

interatomic distance regimes and everywhere in between, we do not need to worry about the



mathematical validity of the expansion series, and only need to enforce its physical validity. To
proceed, we introduce the following ansatz for a polarizability tensor function at a molecular
configuration of N atoms in Cartesian coordinates r = (7,7, ..., Ty),
Gn (1) = 1, (NA[) — 2, (NAMTA() + A3 (DA TAM)TA() — - (6)

where A, (r) are the introduced geometry dependent correction factors. We require that A(r) —
A, and A, (r) — 1 in the limit of non-interacting atoms, which also guarantees G,,(r) - A,, where
A, contains the free atom polarizabilities on the diagonal. In other words, whatever errors have
been introduced by replacing the exact point dipole polarizability model by Eq. 5 are to be
corrected by properly parameterizing the isotropic atomic polarizabilities A(r) and the correction
factors A,,(r) so that ab initio data are reproduced with a tolerable level of accuracy. By way of
fitting Eq. 6 to ab initio data, these corrections factors must contain information of the quantum
electronic effects missing in the original point dipole model (Egs. 1-4). Presently, we truncate the
full expansion after the third term and let A, (r) = 1 producing a third order approximation to the
exact expansion.

We continue by ‘contracting’ Eq. 6 to its 3x3 form,

. k'
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p*q s(=p.q)  k=x)yz
with the superscript (3) indicating the three-body level of dipole-dipole inductions, and indices
p.q,s representing the atomic sites and 7,7,k their Cartesian components. Namely, the leading term
is the sum of configuration-dependent isotropic atomic polarizabilities (first order effects); the
second term is the sum over all direct 2-body dipole-dipole inductions (second order effects); and
the third term is the sum over the 2-body and 3-body induced dipole-dipole inductions (third order
effects). Note that contribution to polarizability’s anisotropy starts with the 2-body term. The

higher order terms, if included, would increase the flexibility of the model by contributing 4-,5-,...



body inductions and adding the extra parameters to the fit, but are likely to be progressively less

important than the three leading terms due to the inverse cubic distance scaling of T. Importantly,

3)

inspection of Eq. 7 reveals that y is symmetric and invariant under translation since the Tpié

matrices possess both these properties. Moreover, it has a physically correct long-range behavior
and is otherwise well-behaved everywhere in the interatomic configuration space.
All electronic structure calculations reported below were done with Gaussianl6> and

MOLPRO 2019.25% suites.
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Figure 1. A fit of Eq. 6 to CCSD/cc-pVTZ data (shown by dots) for the parallel and perpendicular
components of the Hz polarizability tensor using a polynomial of 7th power. The experimental
values for parallel and perpendicular components are 0.93 and 0.71 A®, respectively.’ The
isotropic polarizability an and the scaling factors A, are also shown. A set of 21 linear parameters
was used in the fit. The absolute and relative RMS of the fit are 0.015 A3 and 1.4%, respectively.

3. RESULTS



3.1. H: polarizability. A good illustration of Eq. 7 functional form is a special case of a
homonuclear diatomic, e.g. H2, with bond distance » and oriented along the z-axis for clarity of

presentation,

P (1) = o (1) = 204 (1) = () “( )+zzg() “()

(8a)

2 (r) = 2au(r) + 22,(r) H( )+8/13( ) H( )

(8b)

where oy (1) , 4,(r) and A;(r) are the distance dependent isotropic polarizability, the second-
order and the third-order scaling functions, respectively. Note that spatial orientation of Hy is
completely arbitrary since all six independent components of the polarizability tensor are fit in the
same manner to the corresponding ab initio data with the final result independent of the choice of
axes, as we describe below for a non-trivial example. Both the dipole-dipole and dipole-induced-
dipole contributions to the diagonal elements show up with the proper respective long-range
distance dependence, - and r°. Elsewhere, the expressions in Eq. 8 are continuous and well-
behaved, except at the united atom limit, which is naturally avoided due to the high potential
energy. If one takes a polynomial representation, aside from a constant, for instance oy (1) = af +
i1y + - @) =14y + -, A3(r) =1+ c3,y + -+, with y = e~ /™ | the transformed
internuclear distance used throughout this paper, and ro being the range parameter and a}} the free
Hydrogen polarizability, one only needs to fit the parameters to a set of ab initio data to have a
properly behaving polarizability function both near the equilibrium and at long range. Presently
we used 100 CCSD/cc-pVTZ points on a uniform grid with the H atom polarizability a$;=0.279
A3. The range parameter was o = 1.2 A. Convergence was achieved with 21 parameters and the
polynomial power of 7th order, as can be seen in Figure S1. The final results are shown in Figure

1. The H-H distance dependence of the two tensor components is simple. The long range tails



between 3 and 6 A are described with little variation in the o function and the X2, A3 scaling
factors, that is, the intrinsic form of Eq. 7 is a very good approximation to Hz polarizability in this
range (cf. Figure S2). At shorter range an tends to small values to offset the inverse distance spike,
while the scaling factors change rapidly, especially in the repulsive wall region r < 0.75 A, to
regulate the functional forms. Additional discussion of the performance of various orders of

approximation for H> can be found in the SI.
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Figure 2. A test of the water molecule’s polarizability tensor components (thick solid lines) as a
function of the symmetry displacement coordinates, AS1/AS3 symmetric/antisymmetric stretch and
AS; bend, from the equilibrium geometry of OH=0.9648 A, HOH=103.9 deg. Circles, squares and
triangles of corresponding color represent the testing set of ab initio points. The dashed line is the
coordinate distribution density of the training set. In this example, H2O lies in the YZ plane with
Z bisecting the HOH angle. The experimental values for oxx, oyy and ¢, are 1.415, 1.528 and
1.468 A3 respectively.®® The fit to ab initio data was generated using a Sth power
invariant/covariant polynomial function with 128 linear coefficients on a training set of 5000
structures generated by propagating a classical trajectory at the total energy of 4669 cm,
corresponding to the harmonic ZPVE. The level of theory for the training and testing sets is
B3LYP/6-31++G(d,p). The RMS error of the training fit is ~0.004 A3, or 0.3% in relative value.
The corresponding testing set RMS values are 0.078 A® and 11%.

3.2. Extension to high dimensions. In the general case of many dimensions, three atoms and

more, the choice of fitting functions for a, and A,, is arbitrary, but presently we find it instructive

that both the (i) like nuclei permutational symmetry and (if) asymptotic behavior of weakly

interacting atoms be enforced. Following the well-established Braams-Bowman formalism,?® we
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express the atomic polarizabilities and the correction factors using polynomials in internuclear

distances (see above), as

My
(
@@ = o + > P ugt (an) (99)
m=1
M
In@ =1+ ) clDul{ya} (9b)
m=1

where ug%, and uly are the covariant and invariant polynomial combinations, respectively, that

assure that the total polarizability does not change upon a permutation of any pair of like nuclei.
Presently, we use a straightforward symmetrization scheme of common power polynomial terms
25,26

although the more computationally advanced treatment using the invariant polynomial theory

(gp)

. are the

may also be applied. The linear expansion coefficients for the atomic polarizabilities ¢
same for atoms within same nuclear group g,. As a side note, we remind that in the like-atom
permutational space, all like-nucleus atomic isotropic polarizabilities must transform as effective
charges do in the commonly accepted dipole representation ansatz,>> thus, covariantly
symmetrized polynomials in Eq. 9a are employed. However, unlike in the dipole representations
that use effective charges and are constrained to have the correct behavior for the dipole moment
under translation, there are no additional constraints imposed on Eq. 9.

Despite the linear dependence of the isotropic atomic polarizabilities and scale factors on
the expansion coefficients, the molecular polarizability tensor depends on them in a non-linear
way, requiring use of function minimization methods while leading to possibilities of unstable
solutions or stable but multiple local solutions. This is the main bottleneck of the approach

compared to the trivially solvable linear least squares problem encountered in PES/DMS fitting.?

To mitigate these issues to some degree, the unknown coefficients {c,} are searched for by a large-

11



scale L-BFGS minimization engine®’ applied to a least-squares function, with the starting point of
a non-interacting system of atoms (¢ = 0). To further improve the performance of this approach,
i.e. to shorten computation time of iterations necessary for convergence, we evaluate the least-
squares function along with its gradient using shared-memory parallelization. (See SI for

additional details.)

3.3. Application to HO. A common, yet highly relevant polyatomic example to test the
performance of our approach on is a water molecule, for which many models and fits have been
published with various degrees of accuracy,’ as discussed in the Introduction. Notwithstanding
its simplicity, H2O has a like-nuclei permutational symmetry which has been explicitly considered
for the potential energy and dipole moment representations,* and here this property will be
incorporated in the polarizability representation. Strictly for demonstration purposes, we consider
making a fit to a training set of ab initio points obtained at a low-level of electronic structure
theory, and secondly the configurations are to be sampled directly from ‘laboratory frame’ 3N
Cartesian coordinates instead of internal coordinates. To this end we run a 20 ps long direct
trajectory with the total energy of 4669 cm’! (the harmonic ZPE at the B3LYP/6-31++G(d,p) level
of theory) and a time step of 1 fs to generate 5000 geometries, sampled every 4th step, at which
the full polarizability tensor is calculated. This training set should sample configurations
energetically accessible in MD simulations at most classical conditions. After several exploratory
calculations, a close fit to this training set was achieved with fifth order polynomials for Eqgs. 9a

and 9b, containing 32 terms for each of au, co, A1 and A resulting in a total of 128 independent
terms. For the free atom polarizabilities we found it more efficient to use a(()o) =3.04 A3 from O*

calculated at B3LYP/6-31++G(d,p), and ag)) = 0 from H", since the training set does not contain
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configurations with radical fragments. Similar treatment of atomic polarizabilities was done by
Stillinger and David for H>O.>® We note that inclusion of the diffuse functions into the basis set
has a profound effect on the O* ion polarizability, increasing it by a factor of ~10. The highest
polynomial power of Eq. 7 in this representation is therefore 20. With the range parameter o= 1.5
A, a value within the range suggested in previous studies,? the absolute and relative RMS errors
of the fit are 0.004 A3 and 0.3%, respectively. The SI contains additional details of the fitting.

In Figure 2 we examine fidelity of the fit by using a testing set of points that were not
included in the training set. The testing set is simply a scan along the symmetry coordinates about
the equilibrium configuration and sampling regions away from the training set. The latter is
demarcated with the coordinate distribution function in each of the cuts. One can see that the fit
goes through the points nearly exactly within the density boundaries, which is expected. Outside
the density boundaries, along the symmetric stretch (AS1) the fit stays very close to the data in both
directions of the stretch until some deviation begins near -0.25 A where the untrained OH repulsive
wall regions are being sampled. Understandably, there is almost no deviation in the AS; outer
direction since the model is designed to do better in the atomization limit. Along the antisymmetric
stretch (AS3) the deviations outside the training set are more pronounced for three of the four non-
Zero tensor components, Cixx , Clyy and ¢, in part because the trained region is narrower than in
AS1. The ay, component remains close to the data well outside the training set. Along the bending
coordinate (AS2) the fit performs very well beyond the trained region in the angle-opening
direction (AS> > 0), apparently due to weak dependence of the polarizability on H-H induction. In
the angle closing direction outside the trained region, the agreement is very good for the three non-
zero components until AS; = -20 degrees, or H-H distance of ~1.3 A. Overall, the above test of the

trained model for H>O appears to show very good results beyond the ZPE energies sampled by the
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trajectory used for training, as is clearly illustrated in Figure S5. This is an encouraging result
moving forward to more challenging applications. (See Section S-3 for definitions of H>O

coordinates.)
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Figure 3. A fit of the full 6-th order polarizability tensor of HsO,", plotted on a 2.5 A® range for
both the diagonal and off-diagonal components, with a total of 1120 variable coefficients, to the
CCSD(T)/aug-cc-pVTZ(O:spd,H:sp) training set data described in Section 3.4. The three diagonal
elements xX, yy, zz and the three unique off-diagonal elements xy, xz and yz are shown using
respective black, red and green color codes. The fit has a 0.037 A absolute RMS error (defined
by Eq. S1) and a 1.2% relative RMS error (defined by equation S2).

3.4. Application to HsO,*. To further demonstrate practical applicability of the proposed
approach on a large system, one without a currently published polarizability hypersurface, we have
intentionally taken a system with fluxional nuclei, HsO,*, and for which also a high-quality
analytic PES is available (HBB-4B).2° This system has a number of low isomerization barriers,
among which a shared proton exchange transition state has the energy
Eex~4000 cm™.2%5% Tt has been noted that incorporation of permutational symmetry into the fit is

critical for a proper description of the potential and the dipole functions in the vicinity of this

transition state.2¢
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Here, we shall limit the fit to be useful for classical MD simulations of Raman spectra for
temperatures up to 1000 K. (Higher temperatures, and especially quantum applications will require
additional extensive training of the fit that is out of the scope of the present work.) To this end, we
generate a training set by propagating three 100 ps trajectories with a 1 fs time step, using the
HBB-4B PES, with the total energies of 1000 cm™! (low E), 4000 cm™ (medium E) and 10000 cm
! (high E). These trajectories sample configurations near the global minimum, the low energy
isomerization transition states, the HH exchange barrier and higher energy stationary points, but
just below the H3O" + H,O dissociation limit of ~12000 cm™.2¢ For example, the high energy
trajectory was found to contain 6 events of shared proton exchange with the outer hydrogens of
both oxygens. We proceed to prune each set of the trajectories by taking every 80-th (low), 40-th
(medium) and 16-th (high) point, respectively. This creates a training set of 10000 configurations
{r,} at which we calculate the polarizability tensor c.;(r,) using central differences of the dipole
moment. The energy distribution of the pruned set is shown in Figure S6. We use the CCSD(T)
level of theory®® as implemented in MOLPRO, same as the one used for generating the HBB-4B
PES but in conjunction with a moderately reduced basis set, namely, aug-cc-pVTZ(O:spd,H:sp),
with the f and d functions removed from O and H, respectively. (We note that calculation of
polarizability by finite field dipole derivatives requires six calculations of the energy gradient at
the linear response CCSD(T) level, as described in the MOLPRO manual.) Basis set reduction
was found to produce negligible errors in the polarizability (0.014 A3 or 0.3% error calculated for
Hs0," at its global minimum configuration), relative to the full aug-cc-pVTZ basis, while
substantially reducing the computation time (see SI for details). The training set generation was

done in ‘parallel’ by splitting the 10000 points into several blocks.
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Table 1. Comparison of the non-zero polarizability tensor components, in A3, at several critical
structures on the HsO," HBB-4B surface for the fit (PTS6) against the ab initio values (CCSD)
calculated at the CCSD(T)/aug-cc-pVTZ(O:spd,H:sp) level of theory. The number of imaginary
frequencies Nimag and the energies E (cm™), reported previously by Huang et al.,? are shown for
convenience. In the present definition, the x-axis is aligned with the O-O axis.

Nimag E Clxx Clyy Clzz Clxy
C2-MIN-CCSD 0 0 2.978 2.058 2.089 -0.123
C2-MIN-PTS6 2.981 2.073 2.077 -0.111
Cs-INV-CCSD 1 164 2.972 2.066 2.063 0.055
Cs-INV-PTS6 2.975 2.061 2.061 0.057
C2h-Trans-CCSD 1 213 2.985 1.911 2.223 -0.117
C2h-Trans-PTS6 2.983 1.878 2.270 -0.084
C2v-Cis-CCSD 1 434 2.999 2.225 1.905 0
C2v-Cis-PTS6 3.009 2.235 1.896 0
D2d-CCSD 2 524 2.997 2.044 2.044 0
D2d-PTS6 2.999 2.035 2.035 0
D2h-CCSD 3 918 2.994 2212 1.859 0
D2h-PTS6 3.007 2.224 1.834 0
Cs-HH-CCSD 1 3944 2.750 2.158 2.136 -0.083
Cs-HH-PTS6 2.768 2.147 2.048 -0.069
C2v-CCSD 2 5042 2.781 2.142 2.099 0
C2v-PTS6 2.742 2.109 2.119 0
C2v-CCSD 3 6303 2.703 2.282 1.982 0
C2v-PTS6 2.752 2.209 2.005 0

For the fit we generated a full sixth order polynomial (PTS6) using 7o = 1.5 A with a total
of 1120 independent terms with the highest power of 24. In this representation, 280 terms were

used for each of the co, an, A2, and A3 functions, as shown by Eq. 9. The free atom polarizabilities

were defined by treating H as H" and O as a closed shell O* resulting in ocg)) = (0 and ag)) =55
A3, the latter calculated at the CCSD(T)/aug-cc-pVTZ(O:spd) level of theory. Minimization of the
least squares function yielded a fit with a 0.037 A3 RMS, which is a 1.2% relative error (see SI for

the details). We note that choosing the free atom polarizabilities corresponding to H(*S) and O(°Py)

0
f) ) were

produced a fit of a very similar quality. In fact, a few other limiting cases for ag) ) and «

considered with all of them leading to RMS of 1.2-1.3%, suggesting that the polynomial order, i.e.
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the number of variable coefficients, is more important than the choice of the isolated atom constant.
A visual representation of the quality of the fit is shown in Figure 3 and also given in Table 1,
where we show a comparison of the CCSD(T)/aug-cc-pVTZ(O:spd,H:sp) and the fitted
polarizabilities at several critical points on the HsO>"” HBB-4B surface, which incidentally are not
included in the training set. One may see a close agreement of the fit with the ab initio data even
for the structures that are seldom sampled in the training set, i.e., the high energy C2v stationary
points with 2 and 3 imaginary frequencies. For additional illustration of the PTS6 surface, we

show polarizability elements along various internal coordinate displacements in Figures S7-S9.

0 1000 2000 3000 4000

Frequency [cm']

Figure 5. Raman spectra of HsO>" at 300K, the polarized (Ipo1) and depolarized (Idepol) components,
calculated using HBB-4B PES and the present PTS6. The harmonic frequencies are given as red
sticks. The depolarization ratio is defined as the ratio of perpendicular to parallel scattered light
(see SI for details).
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3.5. Calculation of HsO," Raman spectra. To culminate the discussion, we probe the fitted
polarizability tensor hypersurface of HsO" by simulations of Raman spectra. Following the usual
prescription of decomposing the full tensor into a spherical part @ = (0t + 0y, + @,)/3 and a

traceless anisotropic part f;; = a;; — 6;;Q, for i,j=x,y,z, the respective polarized and depolarized

components of the Raman spectrum are given by>>

oo

1 )
(@) = [ dte @) (100)

0

(o]

1 .
laepet(@) = = [ dee™ )" (OBy(©),  ij=x,z  (10b)
ij

0

We run extensive MD simulations using the HBB-4B HsO;" PES. The polarizability data are
calculated using PTS6 and are post-processed by ensemble averaging of the bracketed correlation
functions in Eq. 10. Details of the MD simulations, as well as additional data from double harmonic
approximation, can be found in the SI. Figure 5 shows the Raman spectra computed at 300K. A
thorough discussion of HsO," vibrational spectra using the HBB-B4 PES is reported in an earlier
publication,’! thus here we limit ourselves to a qualitative discussion of the Raman activity. One
can identify three main regions of activity in both polarized and depolarized scattering regimes:
the OH stretch region on 3600-4000 ¢cm™!, the shared proton region near 1500-1800 ¢cm™!, and the
low frequency region 0-800 cm!. There is a consistent correspondence between the MD Raman
activity and the positions of the harmonic frequencies. However, one can see that the shared proton
features extend substantially to the higher frequency region (a broad structure on 2000-2200 cm
) in the MD spectrum, that is, well beyond the harmonic limit. Similarly, there is a well
pronounced activity at 1000 cm™ in the MD spectrum, previously assigned to a resonance between

the shared proton O-H-O stretch and a combination band involving one quantum of the O-O stretch
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and two quanta of the water wag,®' a strongly non-harmonic feature. Inspection of the
depolarization ratio sheds some light onto the symmetry properties. We note that the low frequency
modes, those below ~500 cm™!, i.e. the floppy torsional-motion-coupled local minima, display a
steady ratio of about p = 0.75, a strong indication of their non-totally-symmetric nature. As the
frequency increases beyond 500 cm™, the ratio drops to p = 0.4, an indication of more symmetric
motion, e.g. the O-O stretch vibration. One can identify, however, spikes in the depolarization
ratio, corresponding to the out-of-phase H,O bend near 1700 cm™ and the out-of-phase
components of the OH quartet at ~3800 cm™!. The symmetric component of the OH group, at 3700
cm’!, is identifiable by the sharp dip in the ratio. (The high value of the ratio in the 3000-3500 cm®
1

region is provisionally attributed to the spurious amplitudes in the Fourier transform of the

polarized signal.)

4. SUMMARY

We have described a novel method for fitting a molecular dipole polarizability tensor
surface to an extensive set of ab initio data. To represent the tensor in 3N Cartesians we expand
the well-known point dipole model of Applequist ef al. in a Taylor series and then express two
types of scalar quantities in terms of polynomials in internuclear distances, namely the isotropic
atomic polarizabilities o, and the scaling factors A, using conventional function fitting methods.
In this model, permutational invariance of like nuclei, Hermitian symmetry and translational
invariance of the polarizability tensor are all included by construction. An exploratory test fit (with
a ~0.004 A3 or 0.3% RMS error) produced for H>O using low level ab initio data and a 5th order
polynomial function exhibits a high degree of fidelity, suggesting the present model is both

mathematically flexible and physically meaningful for the description of molecular dipole
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polarizability. Further, we examined the utility of the present method on a more challenging HsO,"
system. Using a previously published HBB-4B analytical PES (CCSD(T)/aug-cc-pVTZ quality),
we generated an extensive training set at which we computed polarizability tensor also at the
CCSD(T)/aug-cc-pVTZ level of theory. A fit of the PTS using a 6th order polynomial (1120
independent terms) was achieved with a ~0.037 A or 1.2% RMS error. Extensive MD simulations
for HsO," Raman spectra at 300K are presented, which to the best of our knowledge is for the first
time in the literature at such a high level of electronic structure theory.

Extending the present approach of PTS representation to (i) describing dissociation limits,
(if) quantum vibrational applications and (iii) strong field driven MD and Stimulated Raman
Excitation simulations®? is straightforward and is only contingent on the quality of the training set
and the order of the fitting polynomial. Fortunately, fitting of PES is computationally a much easier
task, and for many relevant gas phase molecules high quality analytic potential surfaces are either
available or may be calculated as needed using new robust machine learning technology,!!!41%:20
which allows one to readily generate appropriate high quality training sets for PTS fitting. Further
improvements of the approach include examination of prospective usefulness of higher order

expansions in the Applequist model (Eq. 6) of G, (r) for n> 3, and incorporation of Harczuk’s et

al. method* to account for local (atomic) hyperpolarizability.
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S-1. Least-squares optimization
We define the least-squares function for polarizability fitting, taken from Eq. 7, in the

following way,

W@ =5z Y (aQ 0 —afTw) (5.1)

k=1ij=1

where k runs over the total of K configurations; i, j are the polarizability tensor’s Cartesian
components X, Y, Z. “DFT” refers to the data obtained in an electronic structure calculation, which
may be of any level of theory, via trajectory propagation or any other comparable sampling
methods. In this form the coefficients of all six independent tensor components are simultaneously
optimized. This formulation is advantageous. The absolute RMS error of the fit is VI, and the

relative RMS error is defined as

S1
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(5.2)

To carry out an actual optimization, we differentiate W with respect to ¢ analytically and pass both

the function and its gradient

K 3 (3)
W@ =23 (W i) - () LD (5.3)

dc
k=1i,j=1

to the BFGS optimizer. With VW being highly non-linear, in a difficult case a typical number of
iterations to reach a tight convergence, e.g. RMS(%) < 1, can be O(10°) with CPU times measured
in days on a single processor workstation. Obviously, this is a major bottleneck when the total
polynomial order and size of the training set need to be increased. However, noticing that both W
and VW can be calculated by partitioning the training set K into any number of independent blocks,
we apply the usual MPI ‘send-receive’ parallelization routine to Egs. S.1 and S.3 and nest it inside
the main BFGS driver. With the overhead of a BFGS step being small, the parallelization is highly
scalable, permitting us to run efficient optimizations on a 56-core CPU Intel Xeon “Gold 6132”

2.6GHz node.

S-2. Details of H; fitting
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Figure S1. Convergence of the relative fitting error for Hz polarizability tensor with the highest
order of the Morse-type polynomial in Eq. 6.
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Figure S2. Comparison of pure-form Eq. 6 with A>=A3=1 and o = 0.279 A3 (black line) with the
CCSD data (red lines) for Hz polarizability.
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S-3. Details of H>O fitting
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Figure S3. Correlation diagrams of the results of fitting HoO polarizability tensor a six
independent components (XX, yy, zz, Xy, Xz, yz) in the space-fixed frame to a training set of 5000
structures generated by propagating a classical trajectory at the total energy of ~4669 cm,
corresponding to the harmonic ZPVE. The level of theory for the training set is B3LYP/6-
31++G(d,p). The RMS of the fit is ~0.004 A3.
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Figure S4. Distribution of the H>O potential energies of the training set relative to the minimum.
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The following symmetry displacement coordinates were used for testing the fit (Figure 2),

A — ARi+ AR, (5. 4a)
1 =— .4a
V2
AS, = AByoy (S.4b)
3 =——— Ac
V2

with R, R> the two OH distances and & the HOH angle. The equilibrium values are R1=R>=0.9648
A, Ghon=103.9 deg.
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Figure S5. Comparison of the H>O potential energies above the minimum accessed in the 1D
symmetric cuts with the corresponding potential energy distribution in the training set. One unit
of displacement corresponds to 0.03 A for ASi, AS; and 4 degrees for AS,. As is evident, the
training set potential energies do not exceed 5000 cm™.
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S-4. Details of HsO," fitting

We first examined a 5th order polynomial, same order as was used for H>O with very good results.
A non-linear search in a 564 parameter space yielded a fit with absolute and relative RMS of 0.048
A® and 2.1%, respectively. Some of the polarizabilities at the geometries with higher energies were
not reproduced well enough, and thus we examined the effect of a complete 6th order
representation, with 1120 parameters. This brought the RMS down to 0.037 A? and 1.2% and

improved the previously problematic high energy structures rendering an overall satisfactory fit.
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Figure S6. Distribution of the HsO," potential energies of the training set relative to the minimum.
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Figure S7. An illustration of the PTS6 polarizability tensor elements of HsO.", as functions of the
central Hydrogen atom (H") displacement from its C, equilibrium position, as calculated with
HBB-PES, along the x-axis (O-O axis); z is defined as the C; axis.
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Figure S8. An illustration of the PTS6 non-zero polarizability tensor elements of HsO,", as
functions of the OO stretch deviation from its Cz equilibrium position, as calculated with HBB-
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PES, along the x-axis (O-O axis); z is defined as the C; axis.
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Figure S9. An illustration of the PTS6 non-zero polarizability tensor elements of HsO,", as
functions water monomer torsion displacement from its Cz equilibrium position, as calculated with
HBB2-PES, along the x-axis (O-O axis); z is defined as the C; axis.
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S-5. Details of Hs0:" electronic structure calculations and MD simulations

Table S1: Comparative analysis of the quantum mechanical methodologies in calculating the
polarizability tensor, c.. The root-mean-square errors, RMSE are given in A’ units, and the
corresponding root-mean-square percent errors are RMSPE values. The reference point is defined
at the CCSD(T)/aug-cc-pVTZ level of theory. MP2, CCSD, and CCSD(T) methods were tested
with the basis sets aug-cc-pVDZ (AVDZ), cc-pVTZ (VTZ), aug-cc-pVTZ excluding d functions
on hydrogen and f functions on oxygen atoms, respectively (AVTZ-tr), and
aug-cc-pVTZ (AVTZ). All polarizabilities were evaluated at the HsO>" the minimum geometry
optimized at the CCSD(T)/AVTZ level of theory. Computer times are reported for the single point
calculation on a single processor.

Method/Basis set Time RMSE RMSPE
(sec) (A%) (%)
MP2/AVDZ 15 0.006 0.40
MP2/VTZ 82 0.157 11.1
MP2/AVTZ-tr 50 0.010 0.71
MP2/AVTZ 326 0.008 0.56
CCSD/AVDZ 121 0.023 1.62
CCSD/VTZ 723 0.168 11.96
CCSD/AVTZ-tr 397 0.016 1.15
CCSD/AVTZ 2871 0.021 1.46
CCSD(T)/AVDZ 349 0.007 0.50
CCSD(T)/VTZ 2063 0.157 11.17
CCSD(T)/AVTZ-tr 1300 0.005 0.33
CCSD(T)/AVTZ 9847 0.000 0.00

Root-mean-square error, RMSE in A3:

RMSE = \/%Zﬁ‘;l(ai — a2 (S.5)

Corresponding root-mean-square percent error, RMSPE:

_ae\?
RMSPEz\[% i=1<“‘ . ) X 100%  (S.6)
a;
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Table S2: HsO," harmonic vibrational frequencies (cm™, global minimum, C, symmetry), IR
intensities (km/mol), Raman intensities (A*amu), and depolarization ratios, p calculated at the
MP2/aug-cc-pVTZ level of theory.

Labels Frequencies IR intensities ~ Raman intensities p

vi(A) 170.9 40.4 0.7 0.750
v2(B) 367.1 275.5 0.2 0.750
vi(A) 461.7 130.4 0.6 0.668
v4(B) 534.6 74.2 0.2 0.750
Vs (A) 535.6 60.3 0.2 0.743
V6 (A) 623.5 0.0 4.5 0.176
v7(B) 911.4 3025.5 0.4 0.750
vs (B) 1473.0 267.7 0.5 0.750
vo (A) 1550.0 98.2 2.3 0.468
vio(A) 1705.6 2.6 0.7 0.458
vii (B) 1761.2 963.0 0.6 0.750
vi2(B) 3733.5 241.0 9.8 0.750
Vi3 (A) 3741.3 8.9 134.8 0.010
vi4(B) 3837.3 240.7 15.9 0.750
vis (A) 3837.7 336.5 17.0 0.732
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MD trajectories for HsO»" were propagated at constant energy (NVE) corresponding to
temperature 300 K and zero total angular momentum. In total, 10 trajectories were generated
randomly and propagated up to 100 ps using the velocity-Verlet integrator with a time step of 0.2
fs. The Raman spectra were calculated by the Fourier transform of the polarizability correlation
functions (Eq. 10a and 106 main text) recorded along the trajectories and time-averaged (the signal
length was 6.5 ps) to yield a better converged spectrum. To better describe peak intensity in the
higher frequency regions, in which proton motion is also involved, the classically derived spectral
functions, / (Eq. 10a and 10 main text) were corrected by a quantum mechanical frequency-

dependent factor equal to w/[1-exp(-w/kT)], where w is the frequency.[Ref. 44 in main text]

We use McQuarrie’s derivation of the polarized and depolarized Raman intensity

components in terms of parallel and perpendicular scattered light, (Ref. 43 in main text)

4
Iyor = 1) — §IJ. (S.7a)
Idepol = 101J_ (S 7b)

Following Wilson’s definition of the depolarization ratio as the ratio of the perpendicular to the

parallel scattered light,! the expression used for constructing Figure 5 of main text is

I_J_ _ 3Idepol (S 8)
Il 4'Idepol + 30Ipol .

p

With this definition, the ratio is bound on the (0,0.75] range with the 0 corresponding to a totally

symmetric motion and 0.75 to motion having none of the totally symmetric component.
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