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Abstract: We describe an approach to constructing an analytic Cartesian representation of the 
molecular dipole polarizability tensor surface in terms of polynomials in interatomic distances with 
a training set of ab initio data points obtained from a molecular dynamics (MD) simulation or by 
any other available means. The proposed formulation is based on a perturbation treatment of the 
unmodified point dipole polarizability model of Applequist [J. Am. Chem. Soc. 1972, 94, 2952] 
and is shown here to be, by construction (i) free of short-range or other singularities or 
discontinuities, (ii) symmetric and translationally invariant, and (iii) non-reliant on a body-fixed 
coordinate system. Permutational invariance of like nuclei is demonstrated to be readily applicable, 
making this approach useful for highly fluxional and reactive systems. Derivation of the method 
is described in detail, adding brief didactic numerical examples of H2 and H2O, and concluding 
with an MD simulation of the Raman spectrum of H5O2+ at 300K with the polarizability tensor 
fitted to CCSD(T)/aug-cc-pVTZ data obtained using the HBB-4B potential [J. Chem. Phys. 2005, 
122, 044308]. 
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1. INTRODUCTION 

 Highly accurate potential energy surface (PES) representations of small, moderate and, 

recently, fairly large polyatomic molecules, by way of fitting an analytic parameterized polynomial 

function to a set of ab initio data, have become routine in classical MD simulations of reaction 

dynamics and quantum mechanical studies of vibrational structure, provided one has access to a 

representative (training) set of high-level ab initio data.1-20 Similarly, in pursuing studies of 

molecular vibrational spectroscopy, for example in the infrared regime, generation of high quality 

dipole moment surfaces (DMS) in terms of polynomials has also become equally routine,21-25 given 

the same training set prerequisite. It has been noted that the requirement for a dipole moment 

training set may be at a lower level of ab initio theory than that of the PES.4,26 

 Extending this principle of high precision PES/DMS polynomial fitting of ab initio data to 

that of high precision polarizability tensor surface (PTS) polynomial fitting - dipole polarizability 

in the present treatment - has proven to be quite more challenging, if judging by the lack of reports 

of such in the literature. One reason for this could lie in the absence of a universal definition of 

dipole polarizability as a function of atomic Cartesian positions, in clear contrast to the case of a 

PES and a DMS, both well-defined scalar and vector quantities, respectively. Of course, it is 

possible to bypass this issue by either doing direct electronic structure theory dynamics, where the 

polarizability is well-defined, as has been done recently for Raman spectra in liquid phase using 

plane wave DFT,27-29 or in special situations by treating the polarizability tensor components as 

scalar quantities within a molecular frame of reference and applying to them the same fitting 

methods as for a PES. For example, a well-utilized fit of a water molecule’s polarizability tensor, 

with the components projected onto a body-fixed coordinate system, was done by Avila at a CCSD 

level with a quadruple-z-polarized quality basis set using a polynomial power series 
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representation.30 It is to be pointed out that even for a simple triatomic molecule such as H2O, as 

is similarly the case for a generic polyatomic molecule, the latter technique may be problematic 

due to ambiguities in defining a body-fixed coordinate system. This is true specifically when like 

nuclei are present given that the directions of the molecule-defined space-fixed Cartesian axes 

become arbitrary, i.e., defined up to a sign. Thus, the sign of the in-plane off-diagonal polarizability 

element of H2O may happen to depend on the input order of the two Hydrogens, physically 

indistinguishable, in an unphysical way. In other words, like-nuclei permutational invariance of 

the tensor in such a representation is not strictly enforced. Nevertheless, despite a good deal of 

numerical challenges, earlier and as well as more recent theoretical efforts31-37 have demonstrated 

major advancement in polarizability representation at high-levels of ab initio theory and with 

impressive large-scale numerical  applications.38-40 

 Another common approach to polarizability representation over the many years has been 

to devise approximate models based on polarizable point dipole theories,41-43 and to parameterize 

them, i.e. the isotropic atomic polarizabilities, for the purpose of reproducing key molecular 

properties. This is currently the state of the art approach in standard polarizable force fields, and 

these approaches, which use classical molecular mechanics force field definitions, have gathered 

strong attention from the computational and modeling community.44-49 More advanced treatments 

of analytic polarizability representation of complex systems beyond classical force field 

definitions, particularly those involving liquid water, have been reported.38,39 Specifically, to 

simulate Raman spectra of bulk water, Medders and Paesani38 used a high-level ‘local’ 

polarizability tensor function of H2O to build a global water polarizability tensor using a many-

body formulation with high level ab initio data. Further improvements of the point dipole model 

have been suggested more recently by Harczuk et al. who considered higher-order polarization 
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effects to describe dipole polarizability and hyperpolarizability, with an application to large water 

clusters, and provided evidence of a systematically improvable polarizability model based entirely 

on electronic structure theory.40 The latter work has far reaching implications for prospective 

development of molecular polarizability tensor representations of complex systems. 

 In the present work, detailed in the sections below, we present a strategy of combining the 

two aforementioned approaches, namely, (i) the polynomial power series expansion (with 

permutational symmetry of like nuclei) fitting to extensive high quality ab initio data, currently 

being the state-of-the-art approach for PES/DMS representation, and (ii) the point dipole model, 

in an effort to construct a continuous (differentiable everywhere), permutationally invariant 

polarizability tensor surface (PTS) suitable for classical molecular dynamics and quantum 

mechanical simulations. 

 

2. COMPUTATIONAL METHODS 

 For the sake of perspective, we restate that representing a dipole, quadrupole or any higher-

order non-scalar multipoles using Cartesian coordinates of atoms is formally trivial as these 

quantities have strict mathematical definitions.50 The challenge with the polarizability tensor is 

exactly due to its definition as a linear response of the dipole to an applied electric field. This 

response as a function of the nuclear coordinates and molecular spatial orientation is not known a 

priori without first solving the electronic Schrodinger equation. Nevertheless, if one knows the 

exact scalar atomic polarizabilities ap within the molecule, including their supposed dependence 

on the geometry, a closed form expression for an approximate molecular tensor a may be obtained 

by formally applying a uniform field F and summing over the resultant induced dipoles at all the 
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atomic sites. This is known as the polarizable point dipole model originally examined for 

polyatomic molecules by Applequist et al.41 In this model the induced dipole at atom p is given by 

																									𝝁! = α! %𝑭 −(𝐓!"𝝁"

#

"$!

*																										(1)	,	

where N is the number of atoms, F is the applied uniform electric field and Tpq is the dipole field 

‘direction cosines’ tensor,41-43 
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with r being the p-q interatomic distance with the space-fixed Cartesian components x, y, z. In the 

above, Tpp=0. Recasting Eq. 1 as a matrix equation, a closed form expression for the polarizability 

in a symmetric 3Nx3N representation may be obtained as 

																																	𝐆 = (𝐀'( + 𝐓)'(																																				(3)	

where A is a diagonal matrix of the atomic polarizabilities ap, and T contains the Tpq pair blocks. 

Reducing 𝐆 to a 3x3 form only involves summing over the atoms for each Cartesian pair i,j = x, y, 

z,41-43 

																																			α)* =(9𝐆!":)*

#
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																																			(4)	

At this stage one may take Eqs 3-4 as a functional form for the polarizability and parameterize the 

diagonal of A using high-quality ab initio data, including a proper molecular geometry dependence 

of some sort, as will be shown below. However, the problem from a computational standpoint is 

that 𝐆 has singularities, previously noted as originating from the model’s neglect of electron 

exchange, whenever an interatomic distance 𝑟!" approaches 4<α!α"=
( ,⁄ .41-43 For large systems 

the matrix inversion procedure becomes unmanageable, and as a result several functional fixes 
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based on Thole’s ‘dipole smearing’ model,42 which requires the atomic polarizabilities α! to be 

constant, have been proposed for this issue over the years.40,41,49,51 For the purposes of the present 

study, we allow α! to be functions of geometry and thus find it much more efficient to extend the 

old prescription of Applequist et al. and to approximate 𝐆 using perturbation theory.52 In this way 

the singularities are removed systematically and without loss of generality or computational 

flexibility. 

 Consider the asymptotic behavior of 𝐆 as the molecule tends to the limit of a collection of 

non-interacting atoms, or {𝑟!"} → ∞ for all p,q: 𝐓 → 0 or 𝐓𝐀 ≪ 𝟏, and therefore 𝐆 → 𝐀 . In this 

limit, Eq. 3 can be expanded in the convergent series 

																																			𝐆 = 𝐀 − 𝐀𝐓𝐀 + 𝐀𝐓𝐀𝐓𝐀 −⋯																											(5) 

with T as an off-diagonal perturbation. Truncating Eq. 5 after the n-th term leaves an error of the 

order (𝐀'( + 𝐓)𝐆. − 𝟏 = (𝐓𝐀).. A form of Eq. 5 was used by Applequist et al. in earlier 

calculations of optical rotatory parameters of adamantanes,52 possibly as a way of making the 

calculations more easily tractable. However, we will show that Eq. 5 has important merits beyond 

purely numerical considerations. 

 Obviously, Eq. 5, and its contracted form in Eq. 4, is an excellent approximation to the 

polarizability tensor in the weak interaction limit, provided one has properly parameterized the 

scalar atomic polarizabilities ap to decay to their free atom values. But what happens to Eq. 5 when 

chemical bonds start to form and therefore strong induction effects begin to take place? Even a 

high-order expansion will inevitably fail when bonds become short enough and the 𝐓𝐀 < 𝟏 

condition no longer holds. Yet, if we treat Eq. 5 as simply a well-behaved, if approximate, 

functional form with which to represent the true ab initio polarizability, in the long and short 

interatomic distance regimes and everywhere in between, we do not need to worry about the 
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mathematical validity of the expansion series, and only need to enforce its physical validity. To 

proceed, we introduce the following ansatz for a polarizability tensor function at a molecular 

configuration of N atoms in Cartesian coordinates 𝐫 = (𝑟(, 𝑟&, … , 𝑟#), 

𝐆K.(𝐫) = 𝜆((𝐫)𝐀(𝐫) − 𝜆&(𝐫)𝐀(𝐫)𝐓𝐀(𝐫) + 𝜆/(𝐫)𝐀(𝐫)𝐓𝐀(𝐫)𝐓𝐀(𝐫) − ⋯														(6) 

where 𝜆.(𝐫) are the introduced geometry dependent correction factors. We require that 𝐀(𝐫) →

𝐀0 and 𝜆.(𝐫) → 1 in the limit of non-interacting atoms, which also guarantees 𝐆K.(𝐫) → 𝐀0, where 

𝐀0 contains the free atom polarizabilities on the diagonal. In other words, whatever errors have 

been introduced by replacing the exact point dipole polarizability model by Eq. 5 are to be 

corrected by properly parameterizing the isotropic atomic polarizabilities 𝐀(𝐫) and the correction 

factors 𝜆.(𝐫) so that ab initio data are reproduced with a tolerable level of accuracy. By way of 

fitting Eq. 6 to ab initio data, these corrections factors must contain information of the quantum 

electronic effects missing in the original point dipole model (Eqs. 1-4). Presently, we truncate the 

full expansion after the third term and let 𝜆((𝐫) = 1 producing a third order approximation to the 

exact expansion. 

 We continue by ‘contracting’ Eq. 6 to its 3x3 form, 

α)*
(/) = 𝛿)*(α!

!

− 𝜆&(α!α"𝑇!"
)*

!$"

+ 𝜆/(α!α"
!,"

( α3
3($!,")

( 𝑇!3)4𝑇3"
4*

456,7,8

													(7)	

with the superscript (3) indicating the three-body level of dipole-dipole inductions, and indices 

p,q,s representing the atomic sites and i,j,k their Cartesian components. Namely, the leading term 

is the sum of configuration-dependent isotropic atomic polarizabilities (first order effects); the 

second term is the sum over all direct 2-body dipole-dipole inductions (second order effects); and 

the third term is the sum over the 2-body and 3-body induced dipole-dipole inductions (third order 

effects). Note that contribution to polarizability’s anisotropy starts with the 2-body term. The 

higher order terms, if included, would increase the flexibility of the model by contributing 4-,5-,... 
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body inductions and adding the extra parameters to the fit, but are likely to be progressively less 

important than the three leading terms due to the inverse cubic distance scaling of T. Importantly, 

inspection of Eq. 7 reveals that α)*
(/) is symmetric and invariant under translation since the 𝑇!"

)*  

matrices possess both these properties. Moreover, it has a physically correct long-range behavior 

and is otherwise well-behaved everywhere in the interatomic configuration space. 

 All electronic structure calculations reported below were done with Gaussian1653 and 

MOLPRO 2019.254 suites. 

 

 

Figure 1. A fit of Eq. 6 to CCSD/cc-pVTZ data (shown by dots) for the parallel and perpendicular 
components of the H2 polarizability tensor using a polynomial of 7th power. The experimental 
values for parallel and perpendicular components are 0.93 and 0.71 Å3, respectively.55 The 
isotropic polarizability aH and the scaling factors ln are also shown. A set of 21 linear parameters 
was used in the fit. The absolute and relative RMS of the fit are 0.015 Å3 and 1.4%,  respectively. 
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3.1. H2 polarizability. A good illustration of Eq. 7 functional form is a special case of a 

homonuclear diatomic, e.g. H2, with bond distance r and oriented along the z-axis for clarity of 

presentation, 

																	α99
(/)(𝑟) = α::

(/)(𝑟) = 2α;(𝑟) − 𝜆&(𝑟)
α;& (𝑟)
𝑟/ + 2𝜆/(𝑟)

α;/ (𝑟)
𝑟, 																		(8𝑎) 

																	α<<
(/)(𝑟) = 2α;(𝑟) + 2𝜆&(𝑟)

α;& (𝑟)
𝑟/ + 8𝜆/(𝑟)

α;/ (𝑟)
𝑟, 																																			(8𝑏) 

where α;(𝑟) , 𝜆&(𝑟) and 𝜆/(𝑟) are the distance dependent isotropic polarizability, the second-

order and the third-order scaling functions, respectively. Note that spatial orientation of H2 is 

completely arbitrary since all six independent components of the polarizability tensor are fit in the 

same manner to the corresponding ab initio data with the final result independent of the choice of 

axes, as we describe below for a non-trivial example. Both the dipole-dipole and dipole-induced-

dipole contributions to the diagonal elements show up with the proper respective long-range 

distance dependence, r-3 and r-6. Elsewhere, the expressions in Eq. 8 are continuous and well-

behaved, except at the united atom limit, which is naturally avoided due to the high potential 

energy. If one takes a polynomial representation, aside from a constant, for instance α;(𝑟) = α;0 +

𝑐((𝑦 +⋯, λ&(𝑟) = 1 + 𝑐&(𝑦 +⋯, λ/(𝑟) = 1 + 𝑐/(𝑦 +⋯, with 𝑦 = 𝑒'=/=! , the transformed 

internuclear distance used throughout this paper, and r0 being the range parameter and 𝛼;0  the free 

Hydrogen polarizability, one only needs to fit the parameters to a set of ab initio data to have a 

properly behaving polarizability function both near the equilibrium and at long range. Presently 

we used 100 CCSD/cc-pVTZ points on a uniform grid with the H atom polarizability α;0 =0.279 

Å3. The range parameter was r0 = 1.2 Å. Convergence was achieved with 21 parameters and the 

polynomial power of 7th order, as can be seen in Figure S1. The final results are shown in Figure 

1. The H-H distance dependence of the two tensor components is simple. The long range tails 
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between 3 and 6 Å are described with little variation in the aH function and the l2,  l3 scaling 

factors, that is, the intrinsic form of Eq. 7 is a very good approximation to H2 polarizability in this 

range (cf. Figure S2). At shorter range aH tends to small values to offset the inverse distance spike, 

while the scaling factors change rapidly, especially in the repulsive wall region r < 0.75 Å, to 

regulate the functional forms. Additional discussion of the performance of various orders of 

approximation for H2 can be found in the SI. 

 

 

Figure 2. A test of the water molecule’s polarizability tensor components (thick solid lines) as a 
function of the symmetry displacement coordinates, DS1/DS3 symmetric/antisymmetric stretch and 
DS2 bend, from the equilibrium geometry of OH=0.9648 Å, HOH=103.9 deg. Circles, squares and 
triangles of corresponding color represent the testing set of ab initio points. The dashed line is the 
coordinate distribution density of the training set. In this example, H2O lies in the YZ plane with 
Z bisecting the HOH angle. The experimental values for axx, ayy and azz are 1.415, 1.528 and 
1.468 Å3, respectively.56 The fit to ab initio data was generated using a 5th power 
invariant/covariant polynomial function with 128 linear coefficients on a training set of 5000 
structures generated by propagating a classical trajectory at the total energy of 4669 cm-1, 
corresponding to the harmonic ZPVE. The level of theory for the training and testing sets is 
B3LYP/6-31++G(d,p). The RMS error of the training fit is ~0.004 Å3, or 0.3% in relative value. 
The corresponding testing set RMS values are 0.078 Å3 and 11%. 
 

3.2. Extension to high dimensions. In the general case of many dimensions, three atoms and 

more, the choice of fitting functions for α! and 𝜆. is arbitrary, but presently we find it instructive 
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express the atomic polarizabilities and the correction factors using polynomials in internuclear 

distances (see above), as 

α!(𝐫) = α!
(0) + ( 𝑐?

(@")𝑢!,?AB {𝑦CD}
E#

?5(

																												(9a)	

𝜆.(𝐫) = 1 + ( 𝑐.,?
(F) 𝑢?GB{𝑦CD}

E$

?5(

																																				(9b)	

where 𝑢!,?AB  and 𝑢?GB are the covariant and invariant polynomial combinations, respectively, that 

assure that the total polarizability does not change upon a permutation of any pair of like nuclei. 

Presently, we use a straightforward symmetrization scheme of common power polynomial terms 

although the more computationally advanced treatment using the invariant polynomial theory25,26 

may also be applied. The linear expansion coefficients for the atomic polarizabilities 𝑐?
(@") are the 

same for atoms within same nuclear group gp. As a side note, we remind that in the like-atom 

permutational space, all like-nucleus atomic isotropic polarizabilities must transform as effective 

charges do in the commonly accepted dipole representation ansatz,25 thus, covariantly 

symmetrized polynomials in Eq. 9a are employed. However, unlike in the dipole representations 

that use effective charges and are constrained to have the correct behavior for the dipole moment 

under translation, there are no additional constraints imposed on Eq. 9. 

 Despite the linear dependence of the isotropic atomic polarizabilities and scale factors on 

the expansion coefficients, the molecular polarizability tensor depends on them in a non-linear 

way, requiring use of function minimization methods while leading to possibilities of unstable 

solutions or stable but multiple local solutions. This is the main bottleneck of the approach 

compared to the trivially solvable linear least squares problem encountered in PES/DMS fitting.25 

To mitigate these issues to some degree, the unknown coefficients {cm} are searched for by a large-
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scale L-BFGS minimization engine57 applied to a least-squares function, with the starting point of 

a non-interacting system of atoms (c = 0). To further improve the performance of this approach, 

i.e. to shorten computation time of iterations necessary for convergence, we evaluate the least-

squares function along with its gradient using shared-memory parallelization. (See SI for 

additional details.) 

 

3.3. Application to H2O. A common, yet highly relevant polyatomic example to test the 

performance of our approach on is a water molecule, for which many models and fits have been 

published with various degrees of accuracy,39 as discussed in the Introduction. Notwithstanding 

its simplicity, H2O has a like-nuclei permutational symmetry which has been explicitly considered 

for the potential energy and dipole moment representations,4 and here this property will be 

incorporated in the polarizability representation. Strictly for demonstration purposes, we consider 

making a fit to a training set of ab initio points obtained at a low-level of electronic structure 

theory, and secondly the configurations are to be sampled directly from ‘laboratory frame’ 3N 

Cartesian coordinates instead of internal coordinates. To this end we run a 20 ps long direct 

trajectory with the total energy of 4669 cm-1 (the harmonic ZPE at the B3LYP/6-31++G(d,p) level 

of theory) and a time step of 1 fs to generate 5000 geometries, sampled every 4th step, at which 

the full polarizability tensor is calculated. This training set should sample configurations 

energetically accessible in MD simulations at most classical conditions. After several exploratory 

calculations, a close fit to this training set was achieved with fifth order polynomials for Eqs. 9a 

and 9b, containing 32 terms for each of aH, aO, l1 and l2 resulting in a total of 128 independent 

terms. For the free atom polarizabilities we found it more efficient to use αH
(0) = 3.04 Å3 from O2- 

calculated at B3LYP/6-31++G(d,p), and α;
(0) = 0 from H+, since the training set does not contain 
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configurations with radical fragments. Similar treatment of atomic polarizabilities was done by 

Stillinger and David for H2O.58 We note that inclusion of the diffuse functions into the basis set 

has a profound effect on the O2- ion polarizability, increasing it by a factor of ~10. The highest 

polynomial power of Eq. 7 in this representation is therefore 20. With the range parameter r0 = 1.5 

Å , a value within the range suggested in previous studies,25 the absolute and relative RMS errors 

of the fit are 0.004 Å3 and 0.3%, respectively. The SI contains additional details of the fitting. 

 In Figure 2 we examine fidelity of the fit by using a testing set of points that were not 

included in the training set. The testing set is simply a scan along the symmetry coordinates about 

the equilibrium configuration and sampling regions away from the training set. The latter is 

demarcated with the coordinate distribution function in each of the cuts. One can see that the fit 

goes through the points nearly exactly within the density boundaries, which is expected. Outside 

the density boundaries, along the symmetric stretch (DS1) the fit stays very close to the data in both 

directions of the stretch until some deviation begins near -0.25 Å where the untrained OH repulsive 

wall regions are being sampled. Understandably, there is almost no deviation in the DS1 outer 

direction since the model is designed to do better in the atomization limit. Along the antisymmetric 

stretch (DS3) the deviations outside the training set are more pronounced for three of the four non-

zero tensor components, axx , ayy and azz, in part because the trained region is narrower than in 

DS1. The ayz component remains close to the data well outside the training set. Along the bending 

coordinate (DS2) the fit performs very well beyond the trained region in the angle-opening 

direction (DS2 > 0), apparently due to weak dependence of the polarizability on H-H induction. In 

the angle closing direction outside the trained region, the agreement is very good for the three non-

zero components until DS2 = -20 degrees, or H-H distance of ~1.3 Å. Overall, the above test of the 

trained model for H2O appears to show very good results beyond the ZPE energies sampled by the 
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trajectory used for training, as is clearly illustrated in Figure S5. This is an encouraging result 

moving forward to more challenging applications. (See Section S-3 for definitions of H2O 

coordinates.) 

 

 
Figure 3. A fit of the full 6-th order polarizability tensor of H5O2+, plotted on a 2.5 Å3 range for 
both the diagonal and off-diagonal components, with a total of 1120 variable coefficients, to the 
CCSD(T)/aug-cc-pVTZ(O:spd,H:sp) training set data described in Section 3.4. The three diagonal 
elements xx, yy, zz and the three unique off-diagonal elements xy, xz and yz are shown using 
respective black, red and green color codes. The fit has a 0.037 Å3 absolute RMS error (defined 
by Eq. S1) and a 1.2% relative RMS error (defined by equation S2). 
 

3.4. Application to H5O2+. To further demonstrate practical applicability of the proposed 

approach on a large system, one without a currently published polarizability hypersurface, we have 

intentionally taken a system with fluxional nuclei, H5O2+, and for which also a high-quality 

analytic PES is available (HBB-4B).26 This system has a number of low isomerization barriers, 

among which a shared proton exchange transition state has the energy  

Eex~4000 cm-1.26,59 It has been noted that incorporation of permutational symmetry into the fit is 

critical for a proper description of the potential and the dipole functions in the vicinity of this 

transition state.26 
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 Here, we shall limit the fit to be useful for classical MD simulations of Raman spectra for 

temperatures up to 1000 K. (Higher temperatures, and especially quantum applications will require 

additional extensive training of the fit that is out of the scope of the present work.) To this end, we 

generate a training set by propagating three 100 ps trajectories with a 1 fs time step, using the 

HBB-4B PES, with the total energies of 1000 cm-1 (low E), 4000 cm-1 (medium E) and 10000 cm-

1 (high E). These trajectories sample configurations near the global minimum, the low energy 

isomerization transition states, the HH exchange barrier and higher energy stationary points, but 

just below the H3O+ + H2O dissociation limit of ~12000 cm-1.26 For example, the high energy 

trajectory was found to contain 6 events of shared proton exchange with the outer hydrogens of 

both oxygens. We proceed to prune each set of the trajectories by taking every 80-th (low), 40-th 

(medium) and 16-th (high) point, respectively. This creates a training set of 10000 configurations 

{rn} at which we calculate the polarizability tensor aij(rn) using central differences of the dipole 

moment. The energy distribution of the pruned set is shown in Figure S6. We use the CCSD(T) 

level of theory60 as implemented in MOLPRO, same as the one used for generating the HBB-4B 

PES but in conjunction with a moderately reduced basis set, namely, aug-cc-pVTZ(O:spd,H:sp), 

with the f and d functions removed from O and H, respectively. (We note that calculation of 

polarizability by finite field dipole derivatives requires six calculations of the energy gradient at 

the linear response CCSD(T) level, as described in the MOLPRO manual.)  Basis set reduction 

was found to produce negligible errors in the polarizability (0.014 Å3 or 0.3% error calculated for 

H5O2+ at its global minimum configuration), relative to the full aug-cc-pVTZ basis, while 

substantially reducing the computation time (see SI for details). The training set generation was 

done in ‘parallel’ by splitting the 10000 points into several blocks. 
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Table 1. Comparison of the non-zero polarizability tensor components, in Å3, at several critical 
structures on the H5O2+ HBB-4B surface for the fit (PTS6) against the ab initio values (CCSD) 
calculated at the CCSD(T)/aug-cc-pVTZ(O:spd,H:sp) level of theory. The number of imaginary 
frequencies Nimag and the energies E (cm-1), reported previously by Huang et al.,26 are shown for 
convenience. In the present definition, the x-axis is aligned with the O-O axis. 
 

 Nimag E axx ayy azz axy 
C2-MIN-CCSD 
C2-MIN-PTS6 

0 0 2.978 
2.981 

2.058 
2.073 

2.089 
2.077 

-0.123 
-0.111 

Cs-INV-CCSD 
Cs-INV-PTS6 

1 164 2.972 
2.975 

2.066 
2.061 

2.063 
2.061 

0.055 
0.057 

C2h-Trans-CCSD 
C2h-Trans-PTS6 

1 213 2.985 
2.983 

1.911 
1.878 

2.223 
2.270 

-0.117 
-0.084 

C2v-Cis-CCSD 
C2v-Cis-PTS6 

1 434 2.999 
3.009 

2.225 
2.235 

1.905 
1.896 

0 
0 

D2d-CCSD 
D2d-PTS6 

2 524 2.997 
2.999 

2.044 
2.035 

2.044 
2.035 

0 
0 

D2h-CCSD 
D2h-PTS6 

3 918 2.994 
3.007 

2.212 
2.224 

1.859 
1.834 

0 
0 

Cs-HH-CCSD 
Cs-HH-PTS6 

1 3944 2.750 
2.768 

2.158 
2.147 

2.136 
2.048 

-0.083 
-0.069 

C2v-CCSD 
C2v-PTS6 

2 5042 2.781 
2.742 

2.142 
2.109 

2.099 
2.119 

0 
0 

C2v-CCSD 
C2v-PTS6 

3 6303 2.703 
2.752 

2.282 
2.209 

1.982 
2.005 

0 
0 

 

 For the fit we generated a full sixth order polynomial (PTS6) using r0 = 1.5 Å with a total 

of 1120 independent terms with the highest power of 24. In this representation, 280 terms were 

used for each of the aO, aH, l2, and l3 functions, as shown by Eq. 9. The free atom polarizabilities 

were defined by treating H as H+ and O as a closed shell O2- resulting in α;
(0) = 0 and αH

(0) = 5.5 

Å3, the latter calculated at the CCSD(T)/aug-cc-pVTZ(O:spd) level of theory. Minimization of the 

least squares function yielded a fit with a 0.037 Å3 RMS, which is a 1.2% relative error (see SI for 

the details). We note that choosing the free atom polarizabilities corresponding to H(2S) and O(3Pg) 

produced a fit of a very similar quality. In fact, a few other limiting cases for α;
(0) and αH

(0) were 

considered with all of them leading to RMS of 1.2-1.3%, suggesting that the polynomial order, i.e. 
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the number of variable coefficients, is more important than the choice of the isolated atom constant. 

A visual representation of the quality of the fit is shown in Figure 3 and also given in Table 1, 

where we show a comparison of the CCSD(T)/aug-cc-pVTZ(O:spd,H:sp) and the fitted 

polarizabilities at several critical points on the H5O2+ HBB-4B surface, which incidentally are not 

included in the training set. One may see a close agreement of the fit with the ab initio data even 

for the structures that are seldom sampled in the training set, i.e., the high energy C2v stationary 

points with 2 and 3 imaginary frequencies. For additional illustration of the PTS6 surface, we 

show polarizability elements along various internal coordinate displacements in Figures S7-S9. 

 

 
Figure 5. Raman spectra of H5O2+ at 300K, the polarized (Ipol) and depolarized (Idepol) components, 
calculated using HBB-4B PES and the present PTS6. The harmonic frequencies are given as red 
sticks. The depolarization ratio is defined as the ratio of perpendicular to parallel scattered light 
(see SI for details). 
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3.5. Calculation of H5O2+ Raman spectra. To culminate the discussion, we probe the fitted 

polarizability tensor hypersurface of H5O2+ by simulations of Raman spectra. Following the usual 

prescription of decomposing the full tensor into a spherical part α] ≡ (α66 + α77 + α88) 3⁄  and a 

traceless anisotropic part 𝛽)* ≡ α)* − 𝛿)*α], for i,j=x,y,z, the respective polarized and depolarized 

components of the Raman spectrum are given by55 

																																						𝐼IJK(𝜔) =
1
𝜋c 𝑑𝑡

L

0

𝑒')MN〈α](0)α](𝑡)〉																																											(10𝑎) 

																												𝐼OPIJK(𝜔) =
1
𝜋c 𝑑𝑡

L

0

𝑒')MN 〈(𝛽)*(0)𝛽)*(𝑡)
)*

〉 ,						𝑖, 𝑗 = 𝑥, 𝑦, 𝑧							(10𝑏) 

We run extensive MD simulations using the HBB-4B H5O2+ PES. The polarizability data are 

calculated using PTS6 and are post-processed by ensemble averaging of the bracketed correlation 

functions in Eq. 10. Details of the MD simulations, as well as additional data from double harmonic 

approximation, can be found in the SI. Figure 5 shows the Raman spectra computed at 300K. A 

thorough discussion of H5O2+ vibrational spectra using the HBB-B4 PES is reported in an earlier 

publication,61 thus here we limit ourselves to a qualitative discussion of the Raman activity. One 

can identify three main regions of activity in both polarized and depolarized scattering regimes: 

the OH stretch region on 3600-4000 cm-1, the shared proton region near 1500-1800 cm-1, and the 

low frequency region 0-800 cm-1. There is a consistent correspondence between the MD Raman 

activity and the positions of the harmonic frequencies. However, one can see that the shared proton 

features extend substantially to the higher frequency region (a broad structure on 2000-2200 cm-

1) in the MD spectrum, that is, well beyond the harmonic limit. Similarly, there is a well 

pronounced activity at 1000 cm-1 in the MD spectrum, previously assigned to a resonance between 

the shared proton O-H-O stretch and a combination band involving one quantum of the O-O stretch 
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and two quanta of the water wag,61 a strongly non-harmonic feature. Inspection of the 

depolarization ratio sheds some light onto the symmetry properties. We note that the low frequency 

modes, those below ~500 cm-1, i.e. the floppy torsional-motion-coupled local minima, display a 

steady ratio of about 𝜌 ≃ 0.75, a strong indication of their non-totally-symmetric nature. As the 

frequency increases beyond 500 cm-1, the ratio drops to 𝜌 ≃ 0.4, an indication of more symmetric 

motion, e.g. the O-O stretch vibration. One can identify, however, spikes in the depolarization 

ratio, corresponding to the out-of-phase H2O bend near 1700 cm-1 and the out-of-phase 

components of the OH quartet at ~3800 cm-1. The symmetric component of the OH group, at 3700 

cm-1, is identifiable by the sharp dip in the ratio. (The high value of the ratio in the 3000-3500 cm-

1 region is provisionally attributed to the spurious amplitudes in the Fourier transform of the 

polarized signal.) 

 

4. SUMMARY 

 We have described a novel method for fitting a molecular dipole polarizability tensor 

surface to an extensive set of ab initio data. To represent the tensor in 3N Cartesians we expand 

the well-known point dipole model of Applequist et al. in a Taylor series and then express two 

types of scalar quantities in terms of polynomials in internuclear distances, namely the isotropic 

atomic polarizabilities ap and the scaling factors ln using conventional function fitting methods. 

In this model, permutational invariance of like nuclei, Hermitian symmetry and translational 

invariance of the polarizability tensor are all included by construction. An exploratory test fit (with 

a ~0.004 Å3 or 0.3% RMS error) produced for H2O using low level ab initio data and a 5th order 

polynomial function exhibits a high degree of fidelity, suggesting the present model is both 

mathematically flexible and physically meaningful for the description of molecular dipole 
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polarizability. Further, we examined the utility of the present method on a more challenging H5O2+ 

system. Using a previously published HBB-4B analytical PES (CCSD(T)/aug-cc-pVTZ quality), 

we generated an extensive training set at which we computed polarizability tensor also at the 

CCSD(T)/aug-cc-pVTZ level of theory. A fit of the PTS using a 6th order polynomial (1120 

independent terms) was achieved with a ~0.037 Å3 or 1.2% RMS error. Extensive MD simulations 

for H5O2+ Raman spectra at 300K are presented, which to the best of our knowledge is for the first 

time in the literature at such a high level of electronic structure theory. 

 Extending the present approach of PTS representation to (i) describing dissociation limits, 

(ii) quantum vibrational applications and (iii) strong field driven MD and Stimulated Raman 

Excitation simulations62 is straightforward and is only contingent on the quality of the training set 

and the order of the fitting polynomial. Fortunately, fitting of PES is computationally a much easier 

task, and for many relevant gas phase molecules high quality analytic potential surfaces are either 

available or may be calculated as needed using new robust machine learning technology,11,14,19,20 

which allows one to readily generate appropriate high quality training sets for PTS fitting. Further 

improvements of the approach include examination of prospective usefulness of higher order 

expansions in the Applequist model (Eq. 6) of 𝐆K.(𝐫) for n > 3, and incorporation of Harczuk’s et 

al. method40 to account for local (atomic) hyperpolarizability. 
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S-1. Least-squares optimization 

 We define the least-squares function for polarizability fitting, taken from Eq. 7, in the 

following way, 
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where k runs over the total of K configurations; i, j are the polarizability tensor’s Cartesian 

components X, Y, Z. “DFT” refers to the data obtained in an electronic structure calculation, which 

may be of any level of theory, via trajectory propagation or any other comparable sampling 

methods. In this form the coefficients of all six independent tensor components are simultaneously 

optimized. This formulation is advantageous. The absolute RMS error of the fit is √𝑊, and the 

relative RMS error is defined as 
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To carry out an actual optimization, we differentiate W with respect to c analytically and pass both 

the function and its gradient 
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to the BFGS optimizer. With ∇𝑊 being highly non-linear, in a difficult case a typical number of 

iterations to reach a tight convergence, e.g. RMS(%) < 1, can be O(105) with CPU times measured 

in days on a single processor workstation. Obviously, this is a major bottleneck when the total 

polynomial order and size of the training set need to be increased. However, noticing that both W 

and ∇𝑊 can be calculated by partitioning the training set K into any number of independent blocks, 

we apply the usual MPI ‘send-receive’ parallelization routine to Eqs. S.1 and S.3 and nest it inside 

the main BFGS driver. With the overhead of a BFGS step being small, the parallelization is highly 

scalable, permitting us to run efficient optimizations on a 56-core CPU Intel Xeon “Gold 6132” 

2.6GHz node. 

 

S-2. Details of H2 fitting 

 
Figure S1. Convergence of the relative fitting error for H2 polarizability tensor with the highest 
order of the Morse-type polynomial in Eq. 6. 
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Figure S2. Comparison of pure-form Eq. 6 with l2=l3=1 and aH = 0.279 Å3 (black line) with the 
CCSD data (red lines) for H2 polarizability. 
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S-3. Details of H2O fitting 

 

 
Figure S3. Correlation diagrams of the results of fitting H2O polarizability tensor a six 
independent components (xx, yy, zz, xy, xz, yz) in the space-fixed frame to a training set of 5000 
structures generated by propagating a classical trajectory at the total energy of ~4669 cm-1, 
corresponding to the harmonic ZPVE. The level of theory for the training set is B3LYP/6-
31++G(d,p). The RMS of the fit is ~0.004 Å3. 
 

 
Figure S4. Distribution of the H2O potential energies of the training set relative to the minimum. 
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The following symmetry displacement coordinates were used for testing the fit (Figure 2), 

 

∆𝑆- =
∆𝑅- + ∆𝑅*

√2
																						(𝑆. 4𝑎) 

∆𝑆* = ∆𝜃/0/																														(𝑆. 4𝑏) 

∆𝑆$ =
∆𝑅- − ∆𝑅*

√2
																					(𝑆. 4𝑐) 

 

with R1, R2 the two OH distances and q  the HOH angle. The equilibrium values are R1=R2=0.9648 

Å, qHOH=103.9 deg. 

 

 

 
Figure S5. Comparison of the H2O potential energies above the minimum accessed in the 1D 
symmetric cuts with the corresponding potential energy distribution in the training set. One unit 
of displacement corresponds to 0.03 Å for DS1, DS3 and 4 degrees for DS2. As is evident, the 
training set potential energies do not exceed 5000 cm-1.  
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S-4. Details of H5O2+ fitting 

We first examined a 5th order polynomial, same order as was used for H2O with very good results. 

A non-linear search in a 564 parameter space yielded a fit with absolute and relative RMS of 0.048 

Å3 and 2.1%, respectively. Some of the polarizabilities at the geometries with higher energies were 

not reproduced well enough, and thus we examined the effect of a complete 6th order 

representation, with 1120 parameters. This brought the RMS down to 0.037 Å3 and 1.2% and 

improved the previously problematic high energy structures rendering an overall satisfactory fit. 

 

 
Figure S6. Distribution of the H5O2+ potential energies of the training set relative to the minimum. 

 

 
Figure S7. An illustration of the PTS6 polarizability tensor elements of H5O2+, as functions of the 
central Hydrogen atom (H+) displacement from its C2 equilibrium position, as calculated with 
HBB-PES, along the x-axis (O-O axis); z is defined as the C2 axis. 
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Figure S8. An illustration of the PTS6 non-zero polarizability tensor elements of H5O2+, as 
functions of the OO stretch deviation from its C2 equilibrium position, as calculated with HBB-
PES, along the x-axis (O-O axis); z is defined as the C2 axis. 
 

 
Figure S9. An illustration of the PTS6 non-zero polarizability tensor elements of H5O2+, as 
functions water monomer torsion displacement from its C2 equilibrium position, as calculated with 
HBB2-PES, along the x-axis (O-O axis); z is defined as the C2 axis. 
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S-5. Details of H5O2+ electronic structure calculations and MD simulations 

 

Table S1: Comparative analysis of the quantum mechanical methodologies in calculating the 
polarizability tensor, a. The root-mean-square errors, RMSE are given in Å3 units, and the 
corresponding root-mean-square percent errors are RMSPE values. The reference point is defined 
at the CCSD(T)/aug-cc-pVTZ level of theory. MP2, CCSD, and CCSD(T) methods were tested 
with the basis sets aug-cc-pVDZ (AVDZ), cc-pVTZ (VTZ), aug-cc-pVTZ excluding d functions 
on hydrogen and f functions on oxygen atoms, respectively (AVTZ-tr), and  
aug-cc-pVTZ (AVTZ). All polarizabilities were evaluated at the H5O2+ the minimum geometry 
optimized at the CCSD(T)/AVTZ level of theory. Computer times are reported for the single point 
calculation on a single processor. 
 

Method/Basis set Time 
(sec) 

RMSE 
(Å3) 

RMSPE 
(%) 

MP2/AVDZ 
MP2/VTZ 
MP2/AVTZ-tr 
MP2/AVTZ 

15 
82 
50 
326 

0.006 
0.157 
0.010 
0.008 

0.40 
11.1 
0.71 
0.56 

CCSD/AVDZ 
CCSD/VTZ 
CCSD/AVTZ-tr 
CCSD/AVTZ 

121 
723 
397 
2871 

0.023 
0.168 
0.016 
0.021 

1.62 
11.96 
1.15 
1.46 

CCSD(T)/AVDZ 
CCSD(T)/VTZ 
CCSD(T)/AVTZ-tr 
CCSD(T)/AVTZ 

349 
2063 
1300 
9847 

0.007 
0.157 
0.005 
0.000 

0.50 
11.17 
0.33 
0.00 

 
Root-mean-square error, RMSE in Å3: 
 

RMSE = H-
1
∑ (𝛼! − 𝛼!

234)*1
!,-   (S.	5)	

 
Corresponding root-mean-square percent error, RMSPE: 

	

RMSPE = L-
1
∑ M

5!65!
"#$

5!
"#$ N

*
1
!,- × 	100	%	 (S.	6)	
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Table S2: H5O2+ harmonic vibrational frequencies (cm-1, global minimum, C2 symmetry), IR 
intensities (km/mol), Raman intensities (Å4/amu), and depolarization ratios, r calculated at the 
MP2/aug-cc-pVTZ level of theory. 
 

Labels Frequencies IR intensities Raman intensities r 

n1 (A) 170.9 40.4 0.7 0.750 

n2 (B) 367.1 275.5 0.2 0.750 

n3 (A) 461.7 130.4 0.6 0.668 

n4 (B) 534.6 74.2 0.2 0.750 

n5 (A) 535.6 60.3 0.2 0.743 

n6 (A) 623.5 0.0 4.5 0.176 

n7 (B) 911.4 3025.5 0.4 0.750 

n8 (B) 1473.0 267.7 0.5 0.750 

n9 (A) 1550.0 98.2 2.3 0.468 

n10 (A) 1705.6 2.6 0.7 0.458 

n11 (B) 1761.2 963.0 0.6 0.750 

n12 (B) 3733.5 241.0 9.8 0.750 

n13 (A) 3741.3 8.9 134.8 0.010 

n14 (B) 3837.3 240.7 15.9 0.750 

n15 (A) 3837.7 336.5 17.0 0.732 
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MD trajectories for H5O2+ were propagated at constant energy (NVE) corresponding to 

temperature 300 K and zero total angular momentum. In total, 10 trajectories were generated 

randomly and propagated up to 100 ps using the velocity-Verlet integrator with a time step of 0.2 

fs. The Raman spectra were calculated by the Fourier transform of the polarizability correlation 

functions (Eq. 10a and 10b main text) recorded along the trajectories and time-averaged (the signal 

length was 6.5 ps) to yield a better converged spectrum. To better describe peak intensity in the 

higher frequency regions, in which proton motion is also involved, the classically derived spectral 

functions, I (Eq. 10a and 10b main text) were corrected by a quantum mechanical frequency-

dependent factor equal to ω/[1-exp(-ω/kT)], where w is the frequency.[Ref. 44 in main text] 

 We use McQuarrie’s derivation of the polarized and depolarized Raman intensity 

components in terms of parallel and perpendicular scattered light, (Ref. 43 in main text) 

 

																																															𝐼789 = 𝐼∥ −
4
3 𝐼;																																																																									(𝑆. 7𝑎) 

 

																																																						𝐼<=789 = 10𝐼;																																																																													(𝑆. 7𝑏) 

 

Following Wilson’s definition of the depolarization ratio as the ratio of the perpendicular to the 

parallel scattered light,1 the expression used for constructing Figure 5 of main text is 

 

																																							𝜌 ≡
𝐼;
𝐼∥
=

3𝐼<=789
4𝐼<=789 + 30𝐼789

																																																									(𝑆. 8) 

 

With this definition, the ratio is bound on the (0,0.75] range with the 0 corresponding to a totally 

symmetric motion and 0.75 to motion having none of the totally symmetric component. 
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