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Odd dynamics of living chiral crystals

Tzer Han Tan1,2,3,5, Alexander Mietke4,5, Junang Li1, Yuchao Chen1, Hugh Higinbotham1, 
Peter J. Foster1, Shreyas Gokhale1, Jörn Dunkel4 & Nikta Fakhri1 ✉

Active crystals are highly ordered structures that emerge from the self-organization 
of motile objects, and have been widely studied in synthetic1,2 and bacterial3,4 active 
matter. Whether persistent  crystalline order can emerge  in groups of autonomously 
developing multicellular organisms is currently unknown. Here we show that 
swimming starfish embryos spontaneously assemble into chiral crystals that span 
thousands of spinning organisms and persist for tens of hours. Combining 
experiments, theory and simulations, we demonstrate that the formation, dynamics 
and dissolution of these living crystals are controlled by the hydrodynamic 
properties and the natural development of embryos. Remarkably, living chiral 
crystals exhibit self-sustained chiral oscillations as well as various unconventional 
deformation response behaviours recently predicted for odd elastic materials5,6. Our 
results provide direct experimental evidence for how non-reciprocal interactions 
between autonomous multicellular components may facilitate non-equilibrium 
phases of chiral active matter.

Symmetry breaking7,8 is a hallmark of living9 and synthetic1,10–12 active 
matter. From the asymmetric growth of multicellular organisms9,13,14 
to the coherent motions of swimming cells15,16 and self-propelled col-
loids1,10,17,18, active systems form self-organized structures19–21 with unu-
sual material properties22–24 that can only emerge far from thermal 
equilibrium. Despite major experimental1,3,10,16,18,23 and theoretical25–27 
progress over the past decade, we are only beginning to understand how 
complex collective behaviours of multicellular28–31 and multiorganis-
mal32,33 systems arise from the broken symmetries and non-equilibrium 
dynamics of their individual constituents.

A particularly interesting class of non-equilibrium symmetry-breaking 
phenomena comprises the active crystallization processes recently 
observed in colloidal1 and bacterial3 systems. Unlike conventional 
passive crystals, which form on lowering the temperature and often 
require attractive forces, active crystallization arises from the particles’ 
self-propulsion and can occur even in purely repulsive dilute systems1. 
A long-standing, related, unanswered question is whether groups of 
multicellular organisms can self-organize into states of crystalline 
order and, if so, what emergent material properties they might exhibit.

Here we report the observation of spontaneous crystallization in 
large assemblies of developing starfish Patiria miniata embryos (Fig. 1a 
and Supplementary Video 1). Our experimental observations show how, 
over the course of their natural development, thousands of swimming 
embryos come together to form living chiral crystal (LCC) structures 
that persist for many hours (Supplementary Video 1). In contrast to 
externally actuated colloidal systems, the self-assembly, dynamics 
and dissolution of these LCCs are controlled entirely by the embryos’ 
internal developmental programme (Fig. 1a,b). A quantitative theo-
retical analysis reveals that LCC formation arises from the complex 
hydrodynamic interactions34,35 between the starfish embryos. Once 
formed, these LCCs exhibit striking collective dynamics, consistent 
with predictions from a recently proposed theory of odd elasticity5.

 
Self-assembly and dissolution of LCCs
During early development, starfish embryos exhibit substantial 
morphological changes. From the onset of gastrulation (Fig. 1b, 0 h), 
embryos elongate along their anterior–posterior (AP) axis (0–44 h) 
while progressively developing folds that further break shape symme-
try. In parallel, the self-generated fluid flow near the embryo’s surface 
changes (Fig. 1b), reflecting spatial reconfigurations of cilia during 
growth36 similar to other ciliated organisms37. Similarly to hydrody-
namically bound 'dancing' Volvox algae 34, when starfish embryos 
come close to the fluid surface, they can attain a stable bound state 
in which their AP axes are oriented perpendicular to the fluid–air 
interface. Groups of surface-bound embryos can spontaneously 
self-organize into two-dimensional hexagonal clusters (Fig. 1a, 2–5 h, 
and Supplementary Video 1). Over time, these clusters grow into 
larger crystals, reaching sizes of hundreds to thousands of embryos  
(Fig. 1a, 26 h) and persisting for tens of hours. As embryos develop 
further (Fig. 1b, 38–44 h) crystals begin to disassemble (Fig. 1a, 35 h) 
and eventually dissolve completely (Fig. 1a, 38 h).

Viewed from above, both small and large crystals rotate clockwise 
(Fig. 1c and Supplementary Video 2), consistent with the chiral spinning 
motions of individual embryos about their AP axis (Fig. 2a). Large LCCs 
typically exhibit a high degree of hexagonal order, while also harbouring 
lattice defects (Fig. 1d). The assembly, rotational dynamics and dissolu-
tion of LCCs can be rationalized by a hydrodynamic analysis that accounts 
for the flow fields generated by individual embryos (Figs. 1e and 2a–c).

Hydrodynamic theory of LCCs
To understand the hydrodynamic interactions underlying the cluster 
dynamics, we first analysed the fluid flow around individual embryos 
bound below the air–water interface (Fig. 2a,b). Observed along the 
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AP axis, fluid moves radially inwards towards the embryo, reaches a 
maximum speed of 0.1–0.2 mm s−1 lateral to the embryo surface (Fig. 2b), 
and eventually moves towards the bottom of the well (Fig. 1e). The radial 
in-flow generated by isolated embryos can be described as a Stokes-
let flow34 (Fig. 2b, blue curve), a solution of the Stokes equation that 
describes the generic fluid flow around an external force (Supplementary 
Section 3.2.2). This force is related to the negative buoyancy of embryos. 
Indeed, the buoyant weight force Fg = 1.7 ± 0.4 nN estimated from sedi-
mentation speeds of immobilized embryos34 (Supplementary Section 1.4)  
is close to the Stokeslet strength Fst = 2.6 ± 0.3 nN obtained from fitting 
radial in-plane flow fields (Fig. 1b and Supplementary Section 2.1.6).

The self-generated Stokeslet flow stabilizes the upright AP-axis orien-
tation of embryos below the fluid surface (Supplementary Section 2.1.6).  
In addition, it induces an effective long-ranged hydrodynamic 

attraction between embryos, facilitating the assembly of clusters. 
Similar effects have been observed previously for bacterial and 
algal microswimmers near rigid surfaces3,34. Once two embryos 
are close together, their intrinsic spinning motions lead to an addi-
tional exchange of hydrodynamic forces and torques (Fig. 2d). 
Similar to pairs of Volvox colonies near a rigid surface34,38, nearby 
starfish embryos orbit each other, and their spinning frequency 
decreases compared with that of a freely spinning embryo. The excess 
cilia-generated torque from slower-rotating embryos34 manifests 
itself in systematic azimuthal flow contributions (Fig. 2c). To con-
firm our understanding of these hydrodynamic interactions, we 
complemented the Stokeslet flow of each embryo with additional 
contributions that reflect the effects of hydrodynamic interactions 
(Supplementary Section 3.2.2 and Supplementary Fig. 5). Flow fields 
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Fig. 1 | Developing starfish embryos self-organize into living chiral crystals. 
a, Time sequence of still images showing crystal assembly and dissolution 
(Supplementary Video 1). t = 0 h corresponds to the onset of clustering. Scale 
bar, 1 mm. b, Embryo morphology (left) and flow fields (right) change with 
developmental time. Shape scale bar, 100 μm. Flow-field scale bar, 200 μm. See 
Supplementary Information for uncropped morphology images. c, Embryos 
assembled in a crystal perform a global collective rotation (Supplementary 

Video 2). Scale bar, 2 mm. d, Spinning embryos (yellow arrows) in the crystal 
form a hexagonal lattice, containing fivefold (purple) and sevenfold (orange) 
defects. Scale bar, 0.5 mm. e, Schematic of embryo dynamics and fluid 
flows from side view (left) and top view (right). Crystals of spinning embryos 
form near the air–water interface. Self-generated hydrodynamic flows lead to 
an effective attraction between surface-bound embryos. Blue arrows depict 
fluid flows, dark red arrows indicate rotations of groups of embryos.
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fitted via this approach show good quantitative agreement with 
experimental measurements (Fig. 2c and Supplementary Fig. 6).

On the basis of these insights, we experimentally constrained a minimal 
model in which upright spinning embryos are represented by rigid disks 
interacting through hydrodynamic Stokeslet-mediated pairwise attrac-
tion, and through pairwise transverse force and torque exchanges (Supple-
mentary Section 2.2). Using the Stokeslet strength determined from fits as 
in Fig. 2b, and a parameterization of transverse interactions based on rota-
tion frequency measurements of bound pairs and triplets (Supplementary 
Section 2.2.2), this minimal model predicts the self-organized formation 
of rotating clusters similar to those seen in the experiments (Fig. 2e and 

Supplementary Video 4). Assuming a cluster-size dependent reduction of 
the individual embryo’s spinning activity to match whole-cluster rotation 
rates (Supplementary Section 2.2.2), the model quantitatively captures 
the experimentally observed reduction of individual embryo rotation 
frequencies in both small and large clusters (Fig. 2f), as well as their col-
lective translation into global cluster rotation rates (Fig. 2g).

To investigate how developmental changes of embryos contribute 
to the dissolution of a cluster, we followed the time-dependent mor-
phology and hydrodynamics of embryos. Body-shape anisotropies 
perpendicular to the AP axis increase almost fivefold over the course of 
experiments (Fig. 2h). Such anisotropies cause neighbouring embryos 
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Fig. 2 | Single-embryo properties facilitate formation, rotations and 
dissolution of clusters. a, Top view of a single embryo. The arrows indicate the 
spinning direction and the dotted lines visualize the streamlines 
(Supplementary Section 1.2). b, Measured radial in-flow velocities (grey dots) 
are well described by Stokeslet flow below a free surface (blue line) 
(Supplementary Section 2.1.6). c, In-plane flows vxy surrounding bound pairs 
(experiment; Supplementary Video 3 and Supplementary Section 3.2.1) fitted 
by a solution of the Stokes equation (theory; Supplementary Section 3.2.2) 
taking into account hydrodynamic interactions (d). er and eϕ denote radial and 
azimuthal basis vectors, respectively. d, Hydrodynamic interactions cause 
nearby embryos to orbit each other and reduce individual spinning 
frequencies. Yellow arrows indicate embryo rotations. Brown and red arrows 
depict effective forces and torques due to hydrodynamic interactions.  
e, Stokeslet-mediated attraction (a,b) and hydrodynamic near-field interactions 
of spinning particles (d) in an experimentally constrained minimal model 
(Supplementary Section 2.2) reproduce crystal formation as seen in 
experiments (Supplementary Video 4). f, Single-embryo spinning frequencies in 

small (≤4 embryos) and large (about 100 embryos) clusters. The error bars 
denote standard deviations of measurements (experiment) and simulations 
(model) (Supplementary Section 2.2.3). g, Cluster-size dependent reduction of 
individual embryo’s spinning activity (Supplementary Section 2.2.2) leads to 
good agreement with measured whole-cluster rotation frequencies.  
h, Ellipticity of embryo shapes (right: top-view outlines in red; Supplementary 
Section 3.5) increases during development, leading to increasingly noisy steric 
interactions among spinning embryos in clusters. The grey band depicts 
standard deviation. i, Embryos at cluster boundaries exhibit progressively 
increasing AP-axis tilt angles (right: projection outlines in yellow; 
Supplementary Section 3.5). The dashed line indicates the critical angle at 
which bound states of late embryos become unstable. j, Stationary orientations 
and stability of microswimmers with hydrodynamic properties akin to 
developing embryos (Supplementary Sections 2.1.1–2.1.5). A decreasing critical 
angle (grey line) and the increase in effective noise (h,i) increase the rate of 
embryos leaving cluster boundary and fluid surface, ultimately driving clusters 
dissolution. Scale bars, 200 μm (a,c), 100 μm (d), 1 mm (e) and 500 μm (h,i).
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to ‘bump’ into each other when closely packed and spinning within  
a cluster, introducing an effective source of noise in the LCC lattice.  
The increased interaction noise is particularly visible at cluster bounda-
ries, where embryos become increasingly tilted as their morphological 
development progresses (Fig. 2i), increasing their tendency to leave or 
to be scattered off a cluster. Using additional flow-field measurements 
of single embryos at different time points (Supplementary Section 3.3),  
we parameterized an orientational stability diagram that reveals a 
bistable nature of bound-state orientations (Fig. 2j and Supplemen-
tary Section 2.1). In addition to a stable upright orientation (θ = 0°, 
where θ is defined in the Fig. 2j inset), downwards-oriented stable ori-
entations (θ > 90°) exist for which embryos are expected to swim away 
from the surface. These two orientations are separated by an unstable 
critical angle (Fig. 2j, grey). The increase of effective noise as character-
ized in Fig. 2j,h contributes to an increased rate at which embryos tilt 
beyond this critical angle and therefore represents a key factor in the 
eventual dissolution of clusters.

Temporal evolution of crystalline order
A striking feature of the LCCs is that they nucleate, grow and dissolve 
naturally as embryos progressively develop (Fig. 1a and Supplementary 

Video 1). To quantify the evolution of crystalline order, we calculated 
the local order parameter rψ ψ( ) = ei i

iϕ
6 6

i where i is the imaginary num-
ber and ri denotes embryo positions in the co-rotating frame of the 
cluster (Supplementary Sections 3.1 and 3.6). Measurements of ψ6(ri) 
determine the local phase ϕi representing the crystal orientation, as 
well as the magnitude of hexagonal order ψ| |i6  (ref. 39). Initially, small 
clusters merge together along different crystal axes, resulting in grain 
boundaries and broad distributions of ψ| |i6  and ϕi (Fig. 3a–d(i) and Sup-
plementary Video 5). Within 5 h of crystal formation, LCCs undergo 
rapid internal restructuring, during which subdomains align. This 
results in large, nearly defect-free crystals with a high degree of hex-
agonal order ( ∣ ∣ψ⟨ ⟩ ≈ 0.9i6 ) and a narrow distribution of local bond 
orientation (Fig. 3a–d(ii),(iii)). This highly ordered state persists for 
several hours.

As development progresses, changes in morphology and surround-
ing flow fields (Figs. 1b and 2h) lead to a decreased crystalline order. 
Specifically, the probability density of ψ| |i6  spreads to smaller values 
(Fig. 3b,e, t > 20 h), quantitatively indicating a loss of orientational 
order. A similar spread is observed in the average phase angle ϕi, indi-
cating the loss of a well defined, global crystal orientation (Fig. 3c, 
t > 20 h). After about 30 h, disorder dominates and the crystal dissolves 
over a period of 10 h (Fig. 3a–d(iv),(v)).
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Fig. 3 | Crystalline order first increases and then decreases as embryos 
develop. a, Embryo centroids at different time points colour-coded by the 
magnitude of the orientational order parameter ψ6  (Supplementary Section 3.6  
and Supplementary Video 5). Scale bar, 2 mm. b,c, The measured probability 
distribution of ψ6  spreads to smaller values after about 20 h, indicating a loss 
of bond-orientational order (b). The ensuing drift of the mean phase angle  
(c) signals dynamical restructuring of the crystal. d, Embryo centroids at 
different times colour-coded by the phase of ψ6. Scale bar, 2 mm. Time slices 
corresponding to snapshots (i)–(v) in a and d are indicated by white dotted 
lines. e, Average magnitude of ψ6 decays after about 10 h, confirming a 

decrease in orientational order. The error bars indicate the standard deviation. 
f, The widening of the first peak of the radial pair distribution function g(r) 
indicates increased variation in the distance between nearest neighbours.  
The error bars indicate the 95% confidence interval from a Gaussian fit. Inset: 
example pair distribution function, g(r), and Gaussian fit to the first peak 
(Supplementary Section 3.7). g, The increase of the dynamic Lindemann 
parameter with developmental time signals a progressive destabilization of 
the crystal lattice. The error bars indicate the standard deviation of 20 
consecutive time points (Supplementary Section 3.8).
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Furthermore, we identified a progressive loss of translational order 
before dissolution as quantified by the radial pair distribution function 
g(r) (inset in Fig. 3f and Supplementary Section 3.7). Specifically, the first 
peak width of g(r)—representing the variability of nearest-neighbour dis-
tances—was found to increase with development (Fig. 3f). Consequently, 
deviations from an ideal hexagonal lattice become more frequent and 
translational order is reduced as embryos develop.

To examine whether the evolution of orientational and translational 
order is also reflected in dynamic crystal properties, we determined 
the dynamic Lindemann parameter (Supplementary Section 3.8), 
which characterizes the strength of fluctuations in the crystal lattice40.  
In the crystalline phase (5–25 h), the dynamic Lindemann parameter 
increases with time (Fig. 3g) and indicates a progressive destabiliza-
tion of the crystal lattice, consistent with the observed loss of orienta-
tional (Fig. 3e) and translational order (Fig. 3f), and with the increased 

interaction noise due to changes in the embryo morphology (Fig. 2h,i). 
Large fluctuations of the dynamic Lindemann parameter at early and 
late times are due to the small crystal sizes and the highly dynamic 
nature of growing and dissolving clusters.

Taken together, the systematic decay of orientational, translational 
and dynamic order with developmental time shows how morphological 
changes at the single-embryo level (Figs. 1b and 2h) can autonomously 
drive LCCs through a dissolution transition reminiscent of solid–gas 
phase transitions.

Odd elasticity and emergent chiral waves
Starfish embryos are inherently chiral and spin about their AP axis in a 
left-handed manner (Figs. 1d and 2a). This chiral spinning motion leads to 
distance-dependent, transverse lubrication interactions between pairs of 
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the data in a (grey dots) and averages at lattice sites (black symbols; the error 
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displacements during cluster oscillations (Supplementary Section 3.9). Inset: 
x- and y-displacement components of a representative embryo indicate robust 
oscillations with a frequency of about 0.26 min−1 (Supplementary Video 7). 
Scale bar, 1 mm. e, Space–time kymographs of the strain components 
divergence and curl along the boundary (Supplementary Section 3.9). 
Oscillations with similar amplitude are also present in the bulk (Supplementary 
Fig. 10). f, Spatial map of the partial entropy production rate computed in the 
strain component space of curl and divergence. kB denotes the Boltzmann 
constant. (Supplementary Section 3.12.1 and Supplementary Video 10). Scale 
bar, 1 mm. Inset: probability density current in the curl–divergence strain 
component space computed at the location of the black box shows a 
representative anticlockwise strain cycle (Supplementary Section 3.12.2).  
g,h, An analogous analysis in the shear-strain component space yields similar 
results to e and f, respectively.
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embryos (Fig. 2d). A coarse-graining of our minimal model (Supplementary 
Section 2.3) suggests that these interactions could lead to effective mate-
rial properties of LCCs that emulate an odd elastic material5,6. Odd elasticity 
theory complements the conventional elastic response of passive isotropic 
solids to compression and shear—a bulk modulus B and a shear modulus 
μ—by odd bulk and shear moduli A and K o, respectively. Odd elasticity can 
emerge in active isotropic solids that are chiral5.

To identify signatures of odd elasticity in our experimental data, we 
use the fact that LCCs typically harbour lattice defects (Figs. 1d and 4a, 
and Supplementary Video 6). The defects locally deform LCCs, with the 
deformation field encoding information about the effective material 
properties. We quantify deformations in the frame co-rotating with the 
cluster by measuring the displacement u(ri, t) = (ux, uy)T of embryos at 
position ri and time t from a regular lattice (Supplementary Section 3.9).  
By computing the displacement gradient tensor uij = ∂iuj (i j x y, ∈ { , })
(Supplementary Sections 3.9 and 3.11), relative deformations can be 
expressed in terms of four strain components5: divergence 
(u0 = uxx + uyy), curl/rotations (u1 = uyx − uxy) and shear-strain components 
‘shear 1’ (u2 = uxx − uyy) and ‘shear 2’ (u3 = uyx + uxy). We first analysed pro-
files of the local shear-elongation angle αs(ϕ) = arg(u2 + iu3)/2 (Fig. 4a, 
inset) measured at different lattice sites (Fig. 4a) surrounding a defect 
pair. In a general isotropic linearly elastic solid, α(ϕ) is independent of 
the distance from the defect6 and in a conventional passive solid, where 
all moduli except B and μ vanish, αs is parameter free6 (dashed line, 
Fig. 4b). In contrast, our measured values of αs (Fig. 4b, grey dots) aver-
aged at lattice sites (black symbols) show a more complex pattern that 
can only be explained by allowing for a more exotic material response 
that may include non-vanishing odd moduli6 (solid line in Fig. 4b and 
Supplementary Section 3.11.4). We then fit in a second step the full 
spatial profiles of the shear-strain components u2 and u3 (Supplemen-
tary Section 3.11.5), which yields results consistent with the shear-angle 
analysis (Fig. 4b), and in addition provides the relative odd moduli 
estimates A/μ ≈ 8 and K o/μ ≈ 7. Finally, we validate these fit results by 
predicting the remaining strain components u0 and u1 (Fig. 4c, top) 
that had not been used so far and find very good quantitative agree-
ment with experiments (Fig. 4c, bottom).

The presence of odd moduli raises the possibility that LCCs can 
support self-sustained chiral waves and strain cycles, similar to those 
recently predicted in odd elastic materials5. In the displacement fields 
u(ri, t) introduced above, we indeed observe the propagation of chiral 
displacement waves (Fig. 4d and Supplementary Sections 3.9 and 3.10)  
that persist for more than an hour (Supplementary Videos 6–8).  
The existence of such waves in an overdamped LCC is a direct manifes-
tation of its non-equilibrium nature. The frequency of the dominant, 
chiral modes (Supplementary Fig. 10), 0.28 min−1, is close to the spin-
ning frequency of individual embryos within the cluster, 0.33 min−1 
(Supplementary Section 3.4), suggesting that these modes are directly 
linked to the spinning motion of embryos.

A generic feature of systems with non-reciprocal interactions is that 
mechanical work can be extracted from quasistatic cyclic processes. 
Specifically, in materials with an odd elastic response, work can be 
extracted from cyclic deformations (strain cycles)5 (Supplementary  
Section 2.3.1). To investigate whether strain cycles exist in an LCC, we 
determined the displacement gradient tensor, uij = ∂iuj with i j x y, ∈ { , }. 
As evident from kymographs measured along the boundary (Fig. 4e,g) 
and in the bulk (Supplementary Section 3.9) of the LCC, all strain com-
ponents exhibit long-lived oscillations that span the whole cluster (Sup-
plementary Video  9). Moreover, in the space of suitable strain 
component pairs (insets in Fig. 4f,h), strain cycles are found that have 
the same handedness almost everywhere in the cluster (Supplementary 
Section 3.12.2). Such strain cycles are theoretically predicted as part of 
the chiral waves that odd elastic solids can support5. Together with the 
signs of the measured odd moduli, A and K o > 0, we conclude that oscil-
lating LCCs are effectively doing work on the surrounding fluid (Sup-
plementary Section 2.3.1).

Strain waves in materials with finite odd elastic moduli can give 
rise to work and dissipation cycles5. To quantify the lower bounds of 
the associated entropy production rates, we estimated the statistical 
irreversibility of strain cycles using recently developed frameworks of 
stochastic thermodynamics41,42. By calculating the local phase-space 
currents in strain space (Supplementary Section 3.12), we constructed 
spatial maps of the local entropy production rates arising in the relevant 
strain component spaces (Fig. 4f,h and Supplementary Video 10). These 
maps reveal spatio-temporal variations of the entropy production rates, 
with higher rates appearing mostly in the vicinity of vacancy defects 
and boundary regions. Spatially integrated entropy production rates 
exhibit in both spaces temporal maxima during the period of most 
active wave propagation (Supplementary Fig. 15).

Discussion
Our combined experimental and theoretical results demonstrate how 
morphological changes in developing multicellular organisms can lead 
to the self-assembly and dissolution of living crystals with broken chiral 
symmetry. By observing starfish embryos over two days post gastrula-
tion, we have identified hydrodynamic and morphological single-embryo 
properties that facilitate these self-organized processes. Over the course 
of several hours, thousands of embryos can come together to form a 
macroscopic non-equilibrium material that carries signatures of odd 
elasticity. Driven by the embryos’ inherent activity, these living crystal 
structures support self-sustained chiral waves that exemplify upwards 
energy transport from the individual microscopic constituents to the 
macroscale. More broadly, such living chiral crystals can serve as a para-
digmatic active-matter system to elucidate the principles of collective 
self-organization, non-equilibrium thermodynamics and exotic material 
properties that emerge from non-reciprocal interactions.
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