
1.  Introduction
Accurately recovering the strength of the Earth's ancient magnetic field (paleointensity) is a critical part 
of understanding our planet's history. For example, such observations inform us about how the solid inner 
core evolved through time, and of particular current interest, when it formed. The rate at which a sample 
cooled in the presence of an ancient field is an important factor in accurately determining paleointensity. 
This is especially the case when attempting to reconstruct historical field intensities from samples that have 
cooled over long periods of time. For example, Selkin et al. (2000) established that the field was present by 
2.7 Ga, and some have argued for an even earlier onset (Tarduno et al., 2010). At the time, this was taken 
to mean that the inner core was present since inner core nucleation is a powerful source of energy for the 
geodynamo. However, the work of Pozzo et al. (2012) called into question the energy source and the hunt 
began for the timing of inner core formation (Driscoll, 2016). Recent efforts have pointed to the Ediacaran 
(Bono et al., 2019) and the estimate of a much younger inner core forming just ∼0.57 Ga ago, prior to which 
a much weaker paleomagnetic field might be expected. All but the most rapidly cooled paleointensities 
(which approach the laboratory cooling rate) require estimates of the behavior of magnetic remanence as 
a function of cooling rate which can lead to overestimates of field strength by up to 50% or underestimates 
by >10%, depending on domain state (see recent review by Santos & Tauxe, 2019, and references therein).

Currently there is no complete theory of the precise mechanism for thermally activated recording in nons-
ingle-domain (SD) grains. There is, however, a firm theoretical foundation for the simpler case of ensembles 
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of SD grains. Using Néel's theory (Néel, 1949), Dodson and McClelland-Brown (1980) examined the effect 
of slow cooling on the blocking temperature of ensembles of SD particles. A concurrent effort was under-
taken by Halgedahl et al. (1980), who modeled the effect of cooling rate on the acquisition of paleointensity 
in several different cooling scenarios (regimes). Unfortunately, there is a mismatch in predicted thermal 
remanent magnetization (TRM) between these twin efforts (Santos & Tauxe, 2019).

In this study, we revisit the single-domain model of remanence acquisition from Néel's theory of elongate 
single-domain grains, referred to as Stoner-Wohlfarth grains after Stoner and Wohlfarth (1948). We take 
advantage of advances in numerical computation capability since the early 1980s and provide a fast and 
publicly available code, written in C++, that calculates TRM gained as a function of cooling in an external 
field. This code uses the Boost multiprecision library (Boost, 2021) to avoid possible numerical issues that 
arise when calculating the fractional alignments of noninteracting grains that make up our model. We then 
examine a number of cooling and field regimes and produce a new set of cooling rate correction curves 
and find that our results agree well with the cooling rate curves provided by Halgedahl et al. (1980) for the 
majority of the size elongation and field scenarios in this study.

2.  Methods
2.1.  The Stoner-Wohlfarth Model

The Stoner-Wohlfarth model (Stoner & Wohlfarth, 1948) describes the energy barriers that a simple uni-
formly magnetized uniaxial ferromagnetic grain, with ellipsoidal geometry, must overcome to change its 
magnetic state in the presence of an externally applied field �⃗ . The external field makes an angle ϕ with the 
grain's axis of elongation �̂  as shown in Figure 1. The magnetic state is the angle θ between the unit mag-
netization vector �̂ and the grain axis �̂  . An expression for the magnetic energy of the system envisioned 
originally by Néel (1949) is given by Dunlop and Özdemir (2001, p. 207) and can be written as

� (�, � ) = �1(� )sin2� − �2(� )cos� − �3(� )sin�,� (1)

with the temperature dependent constants C1(T), C2(T), and C3(T) given by

𝐶𝐶1(𝑇𝑇 ) =
1
2
(𝑁𝑁𝑏𝑏 −𝑁𝑁𝑎𝑎) 𝑣𝑣𝑣𝑣0𝑀𝑀s(𝑇𝑇 )2,� (2)

Figure 1.  The Stoner-Wohlfarth model of magnetization assumes an ellipsoidal grain oriented along the vector �̂  . The 
applied field �⃗ (of strength H) and the magnetization �̂ makes angles ϕ and θ (respectively) with �̂  . The model assumes 
that the magnetization will rotate within the �̂ − �⃗ plane, and so for an arbitrary angle θ we can always recover a three-
dimensional magnetization vector.
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𝐶𝐶2(𝑇𝑇 ) = 𝐻𝐻𝐻𝐻𝐻𝐻0cos𝜙𝜙𝜙𝜙s (𝑇𝑇 ) ,� (3)

𝐶𝐶3(𝑇𝑇 ) = 𝐻𝐻𝐻𝐻𝐻𝐻0sin𝜙𝜙𝜙𝜙s (𝑇𝑇 ) .� (4)

Ms(T) is the saturation magnetization at temperature T, μ0 is the permeability of free space and the particle 
volume is v. The strength of an externally applied field is H and its direction is given by ϕ, as described pre-
viously, with θ the direction of magnetization.

The demagnetizing factors of a prolate ellipsoid, with aspect ratio m, are defined in Cullity and Gra-
ham (2011, p. 54), with Na and Nb corresponding to the demagnetizing factors along the long and short axes, 
respectively, as shown in Equations 5 and 6

𝑁𝑁𝑎𝑎 =
1

𝑚𝑚2 − 1

(

𝑚𝑚
√

𝑚𝑚2 − 1
log

(

𝑚𝑚 +
√

𝑚𝑚2 − 1
)

− 1

)

,� (5)

𝑁𝑁𝑏𝑏 =
1 −𝑁𝑁𝑎𝑎

2
.� (6)

It should be noted that in this study we quote elongation as a percentage as opposed to aspect ratio where 
elongation is defined by m = (elongation + 100)/100. This means that an aspect ratio of 1.3 corresponds to 
an elongation of 30%.

In order to find the critical points for the energy of a Stoner-Wohlfarth particle, we look for the values of θ 
where the first derivative of Equation 1 with respect to θ is zero, doing this gives

�� (�, � )
��

= 2�1(� )cos�sin� + �2(� )sin� − �3(� )cos� = 0.� (7)

There is no general analytical solution for Equation 7 except for the special cases when ϕ = 0 and ϕ = π. 
However, we can numerically find the zeros by making the substitution θ = i log(x) where 𝐴𝐴 𝐴𝐴 =

√

−1 . This 
then transforms Equation 7 from a trigonometric one into the polynomial

−1 −
(

𝐶𝐶2(𝑇𝑇 ) − 𝑖𝑖𝑖𝑖3(𝑇𝑇 )
𝐶𝐶1(𝑇𝑇 )

)

𝑥𝑥 +
(

𝐶𝐶2(𝑇𝑇 ) + 𝑖𝑖𝑖𝑖3(𝑇𝑇 )
𝐶𝐶1(𝑇𝑇 )

)

𝑥𝑥3 + 𝑥𝑥4 = 0� (8)

from which we can form the upper Hessenberg matrix (Press et al., 2007, p. 469)

 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−
(

�2(� ) + ��3(� )
�1(� )

)

0
(

�2(� ) − ��3(� )
�1(� )

)

1

1 0 0 0

0 1 0 0

0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.� (9)

The eigenvalues of 𝐴𝐴  are the zeros of the polynomial version (Equation 8), and are found using the Eigen 
linear algebra library (Guennebaud & Jacob, 2010). Then we calculate the critical θ-values, denoted θk, by 
using our original transform 𝐴𝐴 𝐴𝐴 = 𝑖𝑖log (𝑥𝑥) . This results in θk ∈ [ −π, π], with each θk solving Equation 7. Any 
θk values that have nonzero imaginary parts are discarded as these do not represent real magnetization 
directions.

2.2.  Thermal Theory of Remanence

We briefly review the thermal theory of single-domain remanence with particular reference to the im-
plementation details in our C++ code. We are interested in both a “cooled remanence” which solves the 
thermal equations with the assumption that grain assemblages spend only a finite amount of time at a given 
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temperature and the “equilibrium remanence” which is the theoretical limit for which a grain has spent an 
infinite amount of time at each temperature step.

2.2.1.  Cooled Remanence

Once the critical values of Equation 1 are found, we can evaluate whether they correspond to energy mini-
mum/maximum states by taking the second derivative of Equation 7, which results in

𝑑𝑑2𝐸𝐸 (𝜃𝜃)
𝑑𝑑𝑑𝑑2

= 2𝐶𝐶1cos(2𝜃𝜃) + 𝐶𝐶2cos(𝜃𝜃 − 𝜙𝜙).� (10)

When Equation 10 is positive for any critical value θk, then we have found a local energy minimum (LEM) 
state and the critical value is denoted θk,min. Likewise θk values that make Equation 10 negative correspond 
to local energy maxima and are denoted θk,max. The energy barrier for a two-state system is then given by

Δ𝐸𝐸𝑘𝑘𝑘𝑘𝑘 = min (𝐸𝐸(𝜃𝜃𝑘𝑘𝑘max) − 𝐸𝐸(𝜃𝜃𝑗𝑗𝑗min)) .� (11)

We take the energy barrier as the transition energy between any two LEM states, θk,min and θj,min, as this 
represents the physical path that the magnetization would take when transitioning between any two LEM 
states. The isothermal transition rate matrix (Fabian & Shcherbakov, 2018), denoted P, may now be formed 
from the above energy barrier calculations by assuming that a grain population (given by the vector 𝐴𝐴 ⃖⃗𝜌𝜌𝑡𝑡 de-
scribed below), has experienced the same field and temperature conditions for a given time Δt

𝑃𝑃 (Δ𝑡𝑡) = exp

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
𝜏𝜏0
𝑒𝑒
Δ𝐸𝐸1,1

𝑇𝑇𝑇𝑇B − 1
𝜏𝜏0
𝑒𝑒
Δ𝐸𝐸1,2

𝑇𝑇𝑇𝑇B

− 1
𝜏𝜏0
𝑒𝑒
Δ𝐸𝐸2,1

𝑇𝑇𝑇𝑇B
1
𝜏𝜏0
𝑒𝑒
Δ𝐸𝐸2,2

𝑇𝑇𝑇𝑇B

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Δ𝑡𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,� (12)

where T is the temperature of the grain in Kelvin, 1/τ0  =  1010  Hz is the attempt frequency (Dunlop & 
Özdemir, 2001), kB is Boltzmann's constant and “exp” is the matrix exponential function (see Appendix A1). 
Equation 12 may then be used to calculate an updated grain population 𝐴𝐴 ⃖⃗𝜌𝜌𝑡𝑡+Δ𝑡𝑡 according to

⃖⃗𝜌𝜌𝑡𝑡+Δ𝑡𝑡 = 𝑃𝑃 (Δ𝑡𝑡) ⃖⃗𝜌𝜌𝑡𝑡.� (13)

For a monodispersion of grains, which is a population of grains with a single size and shape shape, we define 
a “population vector.” Each element of the population vector represents the fraction of grains that occupy 
a particular magnetization state. This means that ρk,t+Δt must sum to unity and that each element indexed 
by a specific LEM state k must be consistent with its predecessor ρk,t−Δt. The normalized magnetization is 
then given by

⃖⃖⃗𝑚𝑚𝑘𝑘𝑘𝑘𝑘 = 𝜌𝜌𝑘𝑘𝑘𝑘𝑘 ⋅ ⃖⃖⃗𝑚𝑚(𝜃𝜃𝑘𝑘𝑘min),� (14)

where 𝐴𝐴 ⃖⃖⃗𝑚𝑚(𝜃𝜃𝑘𝑘𝑘min) represents the conversion of the magnetization LEM angle, that solves the Stoner-Wohlfarth 
equations described above, back to a three-dimensional vector (see Appendix A2).

2.2.2.  Equilibrium Remanence

To estimate the effect of cooling rate, we need to also estimate the equilibrium TRM, which is defined as 
the magnetization reached when an ensemble (population) of particles have experienced a given field and 
temperature for an infinite amount of time. The equilibrium population vector 𝐴𝐴 ⃖⃗𝜌𝜌eq components are given by 
Dunlop and Özdemir (2001, pp. 213) as

�⃗eq,� =

∑

� �⃗ (��,min) exp
(

−�(��,min)

��B

)

∑

� exp
(

−�(��,min)

��B

) .� (15)
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2.3.  Cooling Models

The effect of cooling was calculated for a number of different cooling regimes with temperatures given by 
classical Newtonian cooling

𝑇𝑇 (𝑡𝑡) = (𝑇𝑇0 − 𝑇𝑇amb) exp
(

𝑡𝑡0 − 𝑡𝑡
𝑡𝑡0 − 𝑡𝑡1

log
(

𝑇𝑇1 − 𝑇𝑇amb

𝑇𝑇0 − 𝑇𝑇amb

))

.� (16)

Here, 𝐴𝐴 (𝑡𝑡0, 𝑇𝑇0) is an initial time-temperature pair which we take to be t0 = 0 s and T0 is the Curie tempera-
ture of magnetite in degrees centigrade. The other known time-temperature point along the cooling curve, 

𝐴𝐴 (𝑡𝑡1, 𝑇𝑇1) , is taken to be T1 = 15.15 °C (since in the Newtonian cooling model the ambient temperature is an 
asymptote) and for t1—the time taken to reach T1—we use t1 = 6 × 10e s (with e ∈ 1, 2, …, 15) to give a range 
of “rapid” to “slow” cooling rates. Finally, the ambient temperature, Tamb, is 15 °C.

3.  Results and Discussion
The results in Figures 2 and 3 show that the magnitude of the TRM as a function of applied field in “rap-
id” and “slow” cooling regimes. The main difference between Figures 2 and 3 is that the applied field for 
Figure 2 is directed along the grain axis �̂ = ⟨1, 0, 0⟩ whereas the field in Figure 3 is directed along 𝐴𝐴 ⟨1, 1, 1⟩ , 
forming an angle of 54.7° with respect to the grain axis.

In both figures, it can be observed that TRM increases as a function of grain size, expressed as equivalent 
spherical volume diameter (ESVD), and remains approximately linear as a function of applied field. In all 
cases, the TRM acquired increases from rapid to slow cooling times as is evident from the way the solid lines 
fan out from left to right as the cooling times become longer. We expect this is because for slow cooling, the 
grain has more opportunity to equilibrate with the external field, allowing a stronger magnetization to be 
acquired. It may also be observed that TRM drops (the solid lines fan out less) as the particles become more 
elongate. In order to explain this effect, it should be noted that, upon cooling, the earlier a TRM acquisition 
curve departs from its equilibrium behavior, that is, its blocking temperature, the smaller its room tempera-
ture remanent magnetization will be. For highly elongate grains, the rapid increase of energy barriers upon 
cooling results in a higher blocking temperature and so lower TRM as can be observed in Figures 2 and 3.

Energy barriers to domain switching in Stoner-Wohlfarth particles for fields parallel to the grain axis are in 
general higher than at other angles. For small fields similar to the Earth's field, the grain's magnetization 
will always lie along its elongation axis and so the difference between the two possible states is higher in 
the field-parallel case as opposed to some other angle. This means that TRM acquisition is more efficient 
when the field is applied parallel to the elongation axis, as in Figure 2 when compared to the case when the 
field is applied at an angle (Figure 3). In addition to TRM efficiency being a function of cooling rate, the 
curvature of equilibrium (dashed) lines is also greater for grains with the field directed parallel to the grain 
axis (Figure 2) as opposed to grains with the external field directed at an angle to the grain axis (Figure 3). 
For example, the 80 nm dashed line in Figure 2 reaches its saturation value at ∼100 μT, whereas the same 
line in Figure 3 reaches the saturation value at the much higher field of ∼175 μT.

Figure 4 shows the results of our modeling along with the predictions of Halgedahl et al. (1980) (dashed 
black line) and Dodson and McClelland-Brown (1980) (dotted black line) along with experimental data 
from Santos and Tauxe (2019) and other authors (detailed in the caption of Figure 4). Our numerical cal-
culations are for a collection of grains with no fabric, which is a monodispersion of grains over a random 
distribution of directions (with respect to applied field). The majority of the grain size and elongations cor-
respond well with the predictions of Halgedahl et al. (1980). The most noticeable exception being the 30 nm 
30% elongate grain (light blue line) which is border-line superparamagnetic since its volume and elongation 
are relatively small.

Figure 5 shows TRM acquisition curves for the complete time range for a study that goes well beyond that 
seen in Figure 4 with an assumed laboratory cooling time of 1,000 s to a maximum cooling time of 190 Ma. 
A population of grains with a strong fabric (a monodispersion of grains that are all aligned with the applied 
field) are shown along with a set of predictions for high field strength of 210 μT. We see in Figures 5a and 5b 
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that the spread of TRM acquisition for slow cooling is relatively small in weak fields. This is not the case 
for stronger fields shown in Figures 5c and 5d where there is a much greater spread. This illustrates that, in 
weak fields at least, elongation and grain size have little effect on TRM acquisition. It should also be noted 
that the highly elongate grains (red) show only relatively minor variations in all field regimes. TRM acquisi-
tion is affected by grain size, though much less so in elongate grains. This is most clearly seen in the strong 
field regimes in Figures 5c and 5d with both the parallel field and intermediate field showing that for slow 
cooling, the TRM recorded decreases as a function of grain size (we see the darker lines taking on shallower 
gradients). It may also be observed that in the larger grains under strong field conditions, there is a slight 
curvature. This is again most apparent in the 30% elongate grains, indeed the 30 nm 30% elongate grain 
(lightest blue) plateaus for slow cooling. As observed previously, this grain size is just on the cusp of being 
superparamagnetic and at a particular cooling rate the “cooled” TRM acquisition curve achieves equilibri-
um. The threshold for superparamagnetic behavior is when the magnetization reaches equilibrium with the 
external field over the time span of observation. In the case of the 30 nm 30% elongate grain, the relaxation 
time is short enough when cooled slowly, for its thermal-magnetic behavior to achieve equilibrium, meeting 
the definition of superparamagnetism. In principle all cooling rate curves should eventually plateau, if the 
cooling rate is slow enough (see Figures 1 and 2 in Dodson & McClelland-Brown, 1980). A final observation 
is that grains with strong fabric and no fabric show small differences. These differences are a drop in the 
ratio of TRM gained since the gradient of each line becomes very slightly shallower from strong fabric to no 

Figure 2.  Thermal remanent magnetization (TRM) acquisition versus applied field for cooling from the Curie temperature (580 °C) to 15.15 °C as a function 
of grain size (equivalent spherical volume diameter (ESVD)) and elongation for “rapid” (t1 = 6 × 103 s) and “slow” (t1 = 6 × 1015 s) cooling regimes. TRM has a 
value of 1.0 when all particles are aligned with the field direction. Field strengths range from 30 to 210 μT and are aligned parallel to the grain elongation axis 𝐴𝐴 𝐴𝐴𝐴 . 
Solid lines show TRM acquired through cooling, whereas the dashed lines show equilibrium TRM (infinite cooling time).
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fabric; and an increase in the TRM ratio gained when the grain hits its equilibrium behavior (lightest blue 
line). The shallower gradient is due to the fact that in simulated monodispersions with no fabric, there are 
many grains that have smaller energy barriers since the field is at an angle to the axis of elongation. The 
light blue line plateaus later (with higher ratio of TRM) for the same reason and so the cooling effect is re-
duced. This effect can also be seen by comparing the plateau between the weak field and the strong field in 
samples between the same fabric (i.e., between Figures 5a and 5b and Figures 5c and 5d) since in stronger 
fields grains hit their equilibrium behavior sooner.

4.  Conclusions
In this study, we have presented a model for calculating the TRM acquisition as a function of field and cool-
ing rate and have found good correspondence with experimental data for single-domain grains. Of the pre-
vious published models we find that our results are very close to the predictions of Halgedahl et al. (1980). 
Our model also demonstrates subtle variations in recording as a function of grain size and shape; however, 
we also show that there is relatively little variation in remanence acquisition as a function of field strength 
and direction (at least for weak fields like the Earth's).

The source code for the model that we have presented is freely available at https://github.com/Lesleis-Nagy/
sd-cooling (version 1.0.1 was used in this study). Currently, it based on simple Stoner-Wohlfarth modeling 
described; however, the thermal theory of remanence described in this study is also applicable to grains 
with much more complicated magnetizations and switching mechanisms. For more realistic grains, we 

Figure 3.  Same as Figure 2, but fields applied at an angle of 54.7° to the grain elongation axis 𝐴𝐴 𝐴𝐴𝐴 .

https://github.com/Lesleis-Nagy/sd-cooling
https://github.com/Lesleis-Nagy/sd-cooling
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require micromagnetic modeling such as MERRILL (Ó Conbhuí et al., 2018) to compute the energy barriers 
involved in switching from one magnetization state to another. We view this as the way forward to build 
accurate and realistic models of paleomagnetic samples.

Appendix A:  Additional Details
Appendix A1.  Exponential of a Matrix

Computing the exponential of an arbitrary matrix is nontrivial and several approaches are possible. One 
numerically stable and general technique involves the use of Padé approximations (Press et al., 2007) and 
this is the solution taken in Eigen (Guennebaud & Jacob,  2010) but is currently incompatible with the 
Boost multiprecision library (Boost, 2021). In this study, we use eigenvalue decomposition to calculate the 
matrix exponential. Let A = RDR−1, where R is the matrix of eigenvectors and D is the diagonal matrix of 
eigenvalues, then

exp(𝐴𝐴) = 𝑅𝑅exp(𝐷𝐷)𝑅𝑅−1,� (A1)

and exp(D) is just the simple exponential of all the entries of D on the diagonal and zero everywhere else.

Appendix A2.  Conversion of a Magnetization Angle to a Vector

In order to convert LEM state solutions, θk,min, of the Stoner-Wohlfarth equations to three-dimensional vec-
tors, we assume that the applied field 𝐴𝐴 ⃖⃖⃖⃗𝐻𝐻  and the grain axis 𝐴𝐴 𝐴𝐴𝐴 in Figure 1 form a plane in which 𝐴𝐴 𝐴𝐴𝐴 will rotate 
by θk,min to give the magnetization. The vector

�̂ = �⃗ × �̂
|

|

|

�⃗ × �̂||
|

� (A2)

Figure 4.  Acquired thermal remanent magnetization (TRM) versus cooling rate, plotted against theoretical models of Halgedahl et al. (1980) (dashed black 
line) and Dodson and McClelland-Brown (1980) (dotted black line). Experimental data from Santos and Tauxe (2019) (asterisks). Additional data are from Fox 
and Aitken (1980), McClelland-Brown (1984), Leonhardt et al. (2006), Ferk et al. (2010), Yu (2011), and Biggin et al. (2013). Theoretical predictions are for 
30 μT applied fields for an assemblage that that has no fabric. The two-color schemes used represent grains with 30% elongation in shades of blue and 700% 
elongation in shades of red; with the lighter shades correspond to smaller grains by volume (equivalent spherical volume diameter [ESVD]).
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then forms the axis of rotation and

�⃗(��,min) = 
(

�̂, ��,min
)

�̂,� (A3)

with 𝐴𝐴  (𝑟̂𝑟𝑟 𝑟𝑟𝑖𝑖𝑖min) the the 3 × 3 rotation matrix given by

 (𝑟̂𝑟𝑟 𝑟𝑟)𝑗𝑗𝑗𝑗𝑗 = cos𝜃𝜃 + 𝑟𝑟2𝑗𝑗 (1 − cos𝜃𝜃)� (A4)

on the diagonal and


(

�̂, �
)

�,� = ���� (1 − cos�) − ��sin�,� (A5)


(

�̂, �
)

�,� = ���� (1 − cos�) + ��sin�,� (A6)


(

�̂, �
)

�,� = ���� (1 − cos�) + ��sin�,� (A7)


(

�̂, �
)

�,� = ���� (1 − cos�) − ��sin�,� (A8)


(

�̂, �
)

�,� = ���� (1 − cos�) − ��sin�,� (A9)

Figure 5.  Acquired thermal remanent magnetization (TRM) versus cooling rate plotted against theoretical models of Halgedahl et al. (1980) (dashed black 
line) and Dodson and McClelland-Brown (1980) (dotted black line) for the complete time range in this study with (a) an assemblage in weak field with strong 
fabric, (b) an assemblage in a strong field with strong fabric, (c) an assemblage in weak field with no fabric, and (d) an assemblage in strong field with no 
fabric. The color scheme is the same as in Figure 4. Cooling rates are calculated with respect to a laboratory reference cooling time of 1,000 s. In order to apply 
a cooling rate correction, simply divide the sample age (in seconds) by the laboratory reference time and take the base 10 logarithm, after that the ratio of 
remaining TRM can be read off from the graph (depending on the grain characterization of the sample).
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
(

�̂, �
)

�,� = ���� (1 − cos�) + ��sin�� (A10)

for the off-diagonal components. For the special case where 𝐴𝐴 ⃖⃖⃖⃗𝐻𝐻  and 𝐴𝐴 𝐴𝐴𝐴 are parallel, we assume that the mag-
netization is also parallel with �̂  .

Data Availability Statement
Raw data used in this study are archived with https://doi.org/10.5281/zenodo.5086636. The specific version 
of the code used to produce the data in this study is archived with https://doi.org/10.5281/zenodo.5085691 
and updated at https://www.github.com/Lesleis-Nagy/sd-cooling.
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