1.2

}

S,

: JA%%% Particle Swarm Optimization for
" AR

Calibrating Agent-Based Models: A
Case Study on a Spatially-Explicit
Model of Influenza Transmission

~\\

4

)

AL SIM

Alexander C. Michels', Jeon-Young Kang?, Shaowen
Wang'

CyberGlS Center for Advanced Digital and Spatial Studies, Department of Geography and
Geographic Information Science, University of lllinois at Urbana-Champaign, 2046 Natural
History Building, MC-150, 1301 W. Green St., Urbana, IL 61801

2Department of Geography Education, Kongju National University, 56 Gongjudaehak-ro,
Gongju-si, Chungcheongnam-do, South Korea (32588)

Correspondence should be addressed to shaowen@illinois.edu

Journal of Artificial Societies and Social Simulation 25(2) 8,2022
Doi: 10.18564/jasss.4796 Url: http://jasss.soc.surrey.ac.uk/25/2/8.html

Received: 14-05-2021 Accepted: 14-03-2022 Published: 31-03-2022

Abstract: A challenge in computational Agent-Based Models (ABMs) is the amount of time and resources re-
quired to tune a set of parameters for reproducing the observed patterns of phenomena being modeled. Well-
tuned parameters are necessary for models to reproduce real-world multi-scale space-time patterns, but cali-
bration is often computationally intensive and time consuming. Particle Swarm Optimization (PSO) is a swarm
intelligence optimization algorithm that has found wide use for complex optimization including non-convex
and noisy problems. In this study, we propose to use PSO for calibrating parameters in ABMs. We use a spatially
explicit ABM of influenza transmission based in Miami, Florida, USA as a case study. Furthermore, we demon-
strate that a standard implementation of PSO can be used out-of-the-box to successfully calibrate models and
out-performs Monte Carlo in terms of optimization and efficiency.

Keywords: Agent-Based Modeling, Particle Swarm Optimization, Calibration, CyberGIS, Influenza

Introduction

Agent-based models (ABMs) are used for simulating, exploring, and understanding complex epidemiological
(Kang et al. 2020), economic (Filatova et al. 2009), and social (Wise & Cheng 2016) phenomena. To accurately
capture the complex systems they are modeling, ABMs often utilize the paradigm of Pattern-Oriented Model-
ing (POM; Grimm et al. 2005). Using POM, modelers aim to ensure that model outputs resemble the complex
spatio-temporal patterns observed in real-world systems (Kang & Aldstadt 2019b), which can increase a model’s
performance and utility (Ligmann-Zielinska et al. 2014). Faithfully reproducing these patterns requires that
ABMs use carefully calibrated and well-tuned parameters that minimize the difference between model outputs
and observed patterns, generally using a performance metric like root mean squared error (RMSE; Kang & Ald-
stadt 2019b). This process of calibration is only one part of the verification and validation process that ABMs go
through (Ngo & See 2012), but represents a computationally intensive step.

Calibration has been identified as a key challenge in ABMs (Crooks et al. 2008). One challenge in calibrating
ABM parameters is the compute time and computational resources required (Clarke 2018; Crooks et al. 2008).
In spatially explicit ABMs, the challenges posed by calibration are often exacerbated by spatial and temporal
dependencies in models (Raimbault et al. 2019; Manson et al. 2020). While advances in cyberinfrastructure (Cl)
have great potential to alleviate the problem, due to the computational complexity that arises from optimizing
noisy non-convex performance surfaces, calibration has remained costly (Kang et al. 2022). The complications

JASSS, 25(2) 8, 2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

1.3

2.1

2.2

2.3

presented by calibrating ABMs have led researchers to rely on heuristic and probabilistic approaches to opti-
mization (Mao & Bian 2011; Clarke 2018).

In this paper we demonstrate the effectiveness and efficiency of parallelized Particle Swarm Optimization (PSO)
as atool for calibrating ABMs. A key benefit of PSO is that it has been shown to be effective in noisy (Parsopoulos
& Vrahatis 2001) and dynamic environments (Carlisle & Dozier 2000), important attributes for optimizing ABMs.
There is limited work demonstrating PSO as a tool for calibrating ABMs (Acedo et al. 2018; Alaliyat et al. 2019; He
etal. 2022). Therefore, we compare PSO to the commonly-used Monte Carlo method to examine how well each
method can minimize the difference between model outputs and reference patterns as a function of the number
of parameter sets each method needs to evaluate. This comparison allows us to compare the accuracy and
computational efficiency of PSO against a common benchmark. Our study shows that PSO is able to reproduce
reference patterns, while evaluating fewer sets of parameters in a computationally efficient manner.

Model Calibration

Parameter choices in ABMs are often guided by knowledge on the phenomena they are simulating (Mao & Bian
2011), but in many cases there is uncertainty or disagreement in the estimates leading to a range rather than
a single value (Mao & Bian 2011; Ligmann-Zielinska et al. 2014). In these cases and cases where literature does
not exist for a specific parameter, modelers are forced to rely on calibration to fine-tune parameter choices and
determine which parameters best match real-world patterns (Crooks et al. 2008; Grimm et al. 2005; Kang &
Aldstadt 2019b). This process is sometimes complicated by data scarcity (Crooks et al. 2008; Liu et al. 2017) and
could require multi-objective optimization (Oremland & Laubenbacher 2014).

We formalize parameter calibration using the standard form of a constrained optimization problem with noise,
that is:

min f(z)+n)

st.xeC

where f : RP — Rin Equation 1is the function to minimize, called the objective function, n is a noise term, and
C C RPis the constraint set or feasible region of the solution space (Jain & Kar 2017). In other words, our goal
is to find a point Z in the feasible region such that our objective function f evaluated at % is less than or equal
to the objective function evaluated at another point in the feasible region (Jain & Kar 2017). The noise term n
in Equation 1is a random variable with mean zero that represents the stochasticity of ABMs.

Finding the global minimum of a simple non-convex function such as the one shown in Figure 1 can be achieved
relatively easily because of how computationally inexpensive the function is to evaluate, the low dimension,
and the low number of local minima. However, ABM-based spatial simulations are often computationally inten-
sive and thus expensive to evaluate, have many parameters resulting in a high-dimensional parameter space,
and are vastly complex with a plethora of local minima. More generally, non-convex optimization problems
are known to be N"P-hard while some such problems have even been shown to be N"P-hard to solve approxi-
mately (Jain & Kar 2017). The randomness of ABMs even makes this already difficult optimization even harder as
advances in cyberGIS (Wang 2010) and cyberinfrastructure have enabled modelers to create finer-grain, larger-
scale, and more complex models.

Figure 1: A convex function (left) vs. a non-convex function (right). The line between any two points on a convex
surface does not intersect the surface. Note that the non-convex function has multiple local-minima, compli-
cating optimization.

JASSS, 25(2) 8, 2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

2.4

2.5

2.6

3.1

3.2

3.3

The difficulty of calibration has led modelers to heavily rely on discretization of their parameter spaces, model
reduction, and heuristics. Discretization refers to turning a continuous space with infinitely small granularity
into a finite space with coarse granularity. As an example, a parameter o € [0, 100] might be discretized to
a € {0,10,20,---,100}, yielding a much easier space to search. While discretization can be useful and all
computational models must tolerate some level of discretization error, discretization at this level assumes that
models are continuous meaning that small changes in each parameter yield only small changes in the model’s
outputs. Using a large-grain search of a parameter space also means that the search may missimportant optima
and equilibria that lie between chosen samples.

Model reduction refers to calibrating a model using a subset of the parameters that best represent the overall
performance of the model (Oremland & Laubenbacher 2014). This can be achieved in a variety of ways includ-
ing global sensitivity analysis (Kang & Aldstadt 2019a; Ligmann-Zielinska et al. 2014) and Cohen’s weighted x
(Oremland & Laubenbacher 2014). While sensitivity analysis is useful for verification of a model (Ngo & See
2012; Crooks et al. 2008), model reduction results in a loss of information and can have unforeseen conse-
quences for ABMs. ABMs often have complex, non-linear relationships between input parameters suggesting
that time-saving approaches to optimization such as model reduction and one-at-a-time' optimization may
not be well-suited for ABM calibration.

Using heuristics to solve problems in model calibration requires that we accept solutions that may not be op-
timal, whether we rely on discretization, model reduction, both, or neither, but it is a sacrifice we are forced
to accept because of the complexity of non-convex optimization. In the agent-based modeling context, Monte
Carlo (Mao & Bian 2011) and genetic algorithms (Oremland & Laubenbacher 2014) are often used to find approx-
imately optimal parameter sets. However, little work has been done to test the effectiveness of swarm intelli-
gence approaches (Acedo et al. 2018; Alaliyat et al. 2019; He et al. 2022). Particle Swarm Optimization (PSO) is
particularly well suited for calibrating spatially-explicity ABMs efficiently because it has been successfully ap-
plied to many non-convex problems such parameter-tuning in machine learning, its performance is efficient,
and it performs well in noisy (Parsopoulos & Vrahatis 2001) and continuously changing environments (Carlisle
& Dozier 2000).

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an evolutionary algorithm for optimizing non-differentiable, non-linear
functions introduced in 1995 for use in neural networks by Kennedy and Eberhart (Kennedy & Eberhart 1995;
Eberhart & Kennedy 1995). The method was developed by modeling the social behavior of animals like bird
flocks and fish schools (Kennedy & Eberhart 1995; Eberhart & Kennedy 1995). PSO and Genetic Algorithms (GA)
are similar in that they are population-based search routines. However, while agents in GA evolve based on
Darwinian principles of “survival of the fittest,” PSO is based on communication among a population rather
than fittest agents reproducing which has been found to be more efficient in some studies (Panda & Padhy
2008).

The PSO method implemented for this research is based on a standardized PSO algorithm. Bratton & Kennedy
(2007) provides the necessary parameters and choices for a general-purpose optimizer, allowing users to pro-
vide a search space and a desired number of evaluations (number of particles x number of generations), both
of which are required for Monte Carlo as well. This standard algorithm allows particles to leave the feasible re-
gion, referred to as “letting the particles fly”, but not evaluating them outside of the feasible region to reduce a
bias towards the center of the parameter space (Bratton & Kennedy 2007). It also includes a constriction factor
k, seen in the Update Step of Figure 2 and Equation 4, which reduces time spent outside of the feasible region
and aids in convergence (Eberhart & Shi 2000; Bratton & Kennedy 2007).

The standard algorithm developed by Bratton & Kennedy (2007) recommends methods for initialization that
shift the starting positions of the particles away from the global optimum, but notes that for practical opti-
mization applications this strategic initialization is unnecessary. Thus, our PSO algorithm initializes particles
uniformly throughout the feasible region and gives particles a random velocity. Once initialized, the algorithm
enters an optimization loop as shown in Figure 2. During each iteration of the optimization loop, if particles
are within the feasible region, they evaluate their fitness against the cost function using their positions in the
parameter space. If the position results in the minimum error achieved by that particle, it is recorded as its
individual best or ;. Particles then communicate with their neighbors to determine the minimum position
experienced among them which is recorded. When all particles are connected, this is the global best or T
strategy.

JASSS, 25(2) 8, 2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

3.4

3.5

Initialization

)
H

!

i

!

:

! Terminate: Return best
: solution found across all
!

i

!

i

!

i

!

!

i

Assign each Particle Position and Velocity
! —
model, and a feasible | —»| ?0 =random x € [—1, 1]“ particles
. ~ mpd
region F € B“. F“ = random ? ceF .

i
|

|

!

|

|

i

| - -

: Given n particles, a
|

|

!

|

|

|

|

|

|

!

i Termination Yes
o Criteria Met? |
. Optimization Loop
Evaluation Step: For each particle i € [1,...,n]: Communicate
Is the Evaluate Fitness . . i
particle in | Yes » Each Particle talks to its neighbors
the Feasible > Calculate model's error using to determine the lowest error/best
Region JF? particle’s position vector as inputs. position.
No
i
Update Step: For each particlei € [1,...,n]:
Update Velocities Update Positions
— — - = — =y :
P =k(v;+cf — + sf — — — — 1
i =k(ve et — 0 +sb(gy— P4)) Pt =P+ Ven :

Figure 2: Flowchart for the PSO algorithm used.

After the evaluation and communication steps of the optimization loop are complete, PSO updates the veloc-
ities and positions of the particles as shown in the Update Step of Figure 2. Equation 2 sets the particle’s new
velocity (7t+1) as a combination of its current velocity (V,), the direction of the particle’s individual best po-
sition (?b), and the direction of the best position reported by all neighbors (?b). The particle velocity update
also includes a constriction factor k determined by Equation 4 and multiplies the individual best position and
global best position by cognitive and social constants respectively ¢ and s, and two uniformly distributed ran-
dom variables 31, B2. With velocity calculated, each particle’s position is set to its position plus its velocity.

Vi1 = k(T + cBi(Po — Do) + sBo(To — Tt)) (2)
?t-ﬁ-l = ?t + 7t+1 (3)

2
L b=ctsd>4 @)
2—o— Vo g " Ct?

The network structure between the particles allows for information about fitness to propagate through the
particles. Choosing a network structure presents a trade-off between convergence and exploration with highly
connected networks converging quickly while lowly connected particles are able to explore more (Kennedy &
Mendes 2002). While the ring topology is suggested as the standard for PSO by Bratton & Kennedy (2007), they
note “that it should not always be considered the optimal choice in all situations”. Thus we have choosen to test
three of the most common topologies: fully connected, ring, and a von Neumann network structure. The fully
connected version of PSO (Figure 3a) is often referred to as gbest because particles focus on moving towards a
global best and is the original version of PSO. The ring topology (Figure 3b) is often referred to as [best because
rather than relying on a global best fitness the particles respond to the best fitness in between itself and its
neighbors. Lastly, we chose to test a von Neumann structure (Figuren 3c) because it has been found to be an
efficient choice for general-purpose optimization for deterministic functions (Kennedy & Mendes 2002).

where k =

JASSS, 25(2) 8,2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

3.6

3.7

4.1

4.2

4.3

4.4

Figure 3: Commonly used PSO topologies: (a) fully connected or global best, (b) ring or local best, and (c) von
Neumann.

The PSO algorithm iterates until it is terminated, which can happen in a variety of ways. The simplest termina-
tion criterion is to end the algorithm after a given number of iterations or total evaluations, with the number of
iterations being chosen based on the number of parameters and complexity of the space. This is the approach
followed by Bratton & Kennedy (2007), Alaliyat et al. (2019) and He et al. (2022). Kwok et al. (2007) and Zielinski
& Laur (2007) have discussed a variety of termination criteria including waiting for the particles to be between
a short distance of each other, the best fitness to reach a certain point, and the improvement over generations
to fall below a threshold. Our implementation has chosen to rely on number of iterations to create a general-
purpose solution and reduce the amount of hyper-parameters that have to be tuned.

The PSO algorithm has no dependencies between particles when evaluating fitness at each step, allowing us to
evaluate the model concurrently. Ourimplementation takes advantage of this aspect of the algorithm to exploit
parallelism. To speed up our implementation of PSO and better utilize cyberinfrastructure at our disposal, we
used the multiprocessing? package for Python 3.x. In particular, we utilized the Pool class which allows us
to create a pool of workers that process particle fitness evaluations. Our code was then run on a multi-node
SLURM cluster to ensure it functions well on advanced cyberinfrastructure.

Case Study: ABM of Influenza Transmission

A spatially explicit ABM of influenza transmission in Miami, Florida was used as the case study (Kang et al. 2019).
An expanded version of the model has been reported by Kang et al. (2022). It models the spread of influenza
throughout a simulated population using a Susceptible-Exposed-Infectious-Recovered (SEIR) model for disease
progression. The model was chosen because it is a spatially explicit ABM and the model’s code and associated
data have been made available through the CyberGISX platform?® and GitHub* for computational reproducibil-
ity.

The model instantiates heterogeneous human agents based on distributions of age and household size per U.S.
Census data. The model utilizes real-world locations of 300 schools, 1,600 workplaces, and 18,000 homes ob-
tained from the Regulatory and Economic Resources Departments Planning Division from Miami-Dade County
Open Data Hub ®. Household size and the age of agents are initialized using data from the American Community
Survey (ACS). After initialization, we use a distance-based model to assign agents to schools and workplaces:
agents between 6 and 19 are assigned to their closest school and agents between 20 to 65 are assigned to their
nearest workplace. Agents in the model simulate a typical day: Commuting from school or work and interacting
with other agents when they are co-located in households, workplaces, and schools.

To represent the disease spread process in agents, a SEIR (Susceptible-Exposed-Infectious-Recovered) model
was used. The SEIR model is a compartmental model of epidemiology in which agents start off as suscepti-
ble to the disease and if they are exposed to the virus they become infectious after an incubation period. A
weighted contact network is created from co-location data with weights proportional to the amount of time
spent co-located, with school/worked assumed to be 8 hours per day and home assumed to be the rest of the
day. Infectious agents can spread influenza to agents they come into contact with until the infectious period
ends at which point they become recovered and are assumed to be immune to the virus for the rest of the flu
season. Atypical result from the model can be seen in Figure 4 which shows the spatial distribution of influenza
cases over a flu season.

The ABM contains three parameters: introRate which describes the rate with which human agents are randomly
infected with influenza, reproduction which is the expected number of secondary infection cases occurred per

JASSS, 25(2) 8, 2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

5.1

5.2

Spatial Distributions of Influenza Cases

2860000

2858000

2856000

2854000

2852000

2850000

UTM Y-Coordinates

2848000

2846000

2844000

567500 570000 572500 575000 577500 580000 582500 585000
UTM X-Coordinates

Figure 4: Map showing the spatial distribution of influenza cases simulated using the ABM (Kang et al. 2019).

an infection case, and infRate which describes the probability that a susceptible person could become exposed
through contact with an infectious person. Approximate ranges for these parameters and the number of days
for each step of the SEIR model were informed by the literature on influenza (Heymann 2008; Yang et al. 2009;
Ferguson et al. 2006). To measure how well each set of parameters represents real-world influenza transmission
trends, we compared the modeling outputs to weekly influenza data obtained from the Florida Department
of Health® as in Mao (2011) and Kang & Aldstadt (2019a). The model’s number of infectious agents per week
and Florida Health Department influenza cases per week are both normalized. We calculate the absolute error
between the two time series to measure the goodness-of-fit of the model (Kang et al. 2019).

Experiments

Ourcomputational experiments are designed to answer two key questions: (1) to what extent can PSO be used to
calibrate spatially-explicit ABMs “out-of-the-box” (i.e., without hyperparameter optimization) and (2) how does
PSO compare to Monte Carlo in terms of computational efficiency, as measured by the number of evaluations
of the model? We used number of evaluations of the model as a metric because neither Monte Carlo or PSO
introduces significant overhead. This metric is capable of capturing compute time, memory usage, and I/O and
avoids creating a disincentive for exploring parameter sets that may result in longer or more computationally
intensive simulation runs. For example, with the model we have chosen, setting introRate to zero will result
in no one ever getting infected which results in the model completing much more quickly at the expense of
accurately describing the phenomena of interest. We have made the code for both the SEIR model used and
the PSO implementation are available on COMSES: https://www.comses.net/codebase-release/834bd6
1¢c-7507-49d3-91d3-85c41564e8f2/.

For all of our experiments, PSO was run with 20 particles with parallel evaluation at each step (as described in
Section 3) on the agent-based model of influenza described in Section 4. Bratton & Kennedy (2007) notes that
a swarm between 20 and 100 particles gives comparable results and because our search space is only three
dimensional we have chosen to use the low end of the range. To test the degree to which PSO’s usefulness relies
on hyperparameter settings, we varied the topology and the number of generations, running PSO on the ABM

JASSS, 25(2) 8, 2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

https://www.comses.net/codebase-release/834bd61c-7507-49d3-91d3-85c41564e8f2/
https://www.comses.net/codebase-release/834bd61c-7507-49d3-91d3-85c41564e8f2/

5.3

5.4

6.1

35 times for each choice of hyperparemter setting. The topologies tested were the fully-connected, ring, and
von Neumann (Figure 3). Bratton & Kennedy (2007) do not offer recommendations on the number of iterations,
so we turned to the work of Alaliyat et al. (2019) which similarly tuned 3 parameters on a spatially-explicit ABM
and chose 50 generations. Thus, for each choice of topology, we ran PSO using 48, 60, and 72 generations to
understand how the choice of number of generations affects the performance on PSO’s ability to calibrate the
spatially-explicit ABM.

Similarly, we ran Monte Carlo against the model. Rather than generations, Monte Carlo allows us to specify
the number of evaluations we would like to take of the model and we chose 500, 750, and 1,000 so that Monte
Carlo and PSO would make approximately the same number of evaluations of the model. Just as with the PSO
experiments, Monte Carlo was run 35 times on the agent-based model for each choice of 500, 750, and 1,000
evaluations.

For both Monte Carlo and PSO, we measure the goodness-of-fit of the position in the parameter space by run-
ning the model with the parameters given by the particle’s position and compute the absolute error between
the model’s output and actual case data from the Florida Department of Health. Both the case data and model
outputs are normalized before absolute error is calculated so that we can compare infection rates and mitigate
errors that may arise from using actual case numbers. The model operates at the granularity of a week to match
the granularity of the data from the Florida Department of Health, so absolute error between the model and the
case data is calculated at each time step and summed to determine an relative metric for goodness-of-fit. We
are interested in the “best” set of parameters each optimization method can find as measured by lowest error
and the error of those parameters.

Results

PSO performance

First, we compare how PSO varied across parameter settings. The summary statistics for PSO applied to the
spatially-explicit ABM can be seen in Table 1. In Table 1, “Gen” gives the number of generations that PSO was
run, “u N Evals”, “o N Evals” and “CV N Evals” give the mean, standard deviation, and coefficient of variation
(o/u) respectively for the number of times the model was evaluated. “Median Err”, “u Err”, “o Err”, and “CV
Err” give the median, mean, standard deviation and coefficient of variation of error achieved across all 35 runs.
These measures allow us to quantify the computational cost and performance of each method. The distribution
of the lowest error for each run of the PSO experiments is visualized using boxplots in Figure 5.

Gen yNEvals oNEvals CVNEvals MedianErr yErr o Err CVErr

Fully Connected 48 440.51 51.90 11.78% 32.19 3214 0.94 2.92%
60 660.83 57.04 8.63% 377 3229 5.00 15.48%

72 872.34 116.36 13.34% 31.06 31,75 438 13.80%

Ring 48 418.63 30.58 7.30% 32.73 32.64 158 4.84%

60 608.00 36.95 6.08% 31.85 31.64 1.07 3.38%

2 821.20 46.96 5.72% 31.23 31.31 1.16 3.70%

von Neumann 48 411.51 36.87 8.96% 32.41 3239 080 2.47%
60 608.31 55.13 11.03% 31.58 31.46 119 3.78%

2 833.26 54.69 6.56% 31.21 31.08 112 3.60%

Table 1: Summary Statistics from PSO Experiments

JASSS, 25(2) 8, 2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

6.2

6.3

6.4

6.5

65
—— Fully Connected

60 Ring *
55 — Von Neumann ®
S 50
L
% 45
[«B]
=
340
35
;I;;'} - e e Py
== =L T T .
0 L . # ¥ T = —— =
* ° ° ® ° *
= PSO-48 PSO-60 PSO-72

Figure 5: Boxplots of PSO’s performance on the model.

Comparing performance across topologies, the plots in Figure 5 indicate that all of the topologies have compa-
rable performances, however the fully-connected topology appears to be more prone to outliers. The outliers
experienced by the fully-connected topology for 60 and 72 generations are also reflected in much larger stan-
dard deviations of errorin Table 1. These outliersin performance are likely a result of the high connectivity in the
topology. Because each particle is connected to every other, the topology sometimes results in the swarm con-
verging on local optima early without adequately exploring the parameter space (Kennedy & Mendes 2002).
Despite these occasional outliers for the fully-connected topology, the results show that all three topologies
have mean performances that are within a standard deviation of each other for each chosen number of genera-
tions. Thisis an unexpected result given the literature that suggests the Ring (Bratton & Kennedy 2007) and von
Neumann (Kennedy & Mendes 2002) tend to outperform the Fully Connected topology but it may be that the
stochastic nature of the ABM helped PSO to avoid converging on local minima (Parsopoulos & Vrahatis 2001).

We turn next to examine how the number of generations chosen for PSO affects the performance of the method.
Table 1shows some differences in the performance of PSO as a function of the number of generations, but these
differences are not statistically significant, suggesting that “good” results can be obtained regardless of the
choice of number of generations. Interestingly, the median error falls as the number of generations increases for
each topology suggesting that the algorithm is slightly improving as it goes on. Similarly, we see that the mean
error falls slightly as the number of generations rise for the ring and von Neumann topologies, but the outliers
cause fully-connected’s mean error to rise between 48 and 60 generations before falling again between 60 and
72 generations. Interestingly, the von Neumann topology is the only one where the standard deviation and
coefficient of variance (CV) of error (“o Err” and “CV Err” in Table 1) fell consistently as the number of generations
rose and it would be interesting to see if this pattern would be consistent on more models and across more
choices of number of generations.

Turning to the computational efficiency of choices for the number of generations, it is important to note that
the number of evaluations does not equal the number of generations times the number of particles because
particles are not evaluated during a generation if they lie outside of the bounds. As noted in Section 3, we do
not require particles to stay within the bounds of the parameter space because that leads to a bias towards
the center of the parameter space (Bratton & Kennedy 2007). To illustrate this, we can see in Table 1 that the
increase from 48 to 60 generations is a 25% increase, but for fully-connected this resulted in an approximately
50% increase in the number of evaluations, while the increase from 60 to 72 generations represents a 20%
increase, but a 32% increase of evaluations for fully-connected. For a large number of generations, we would
expect the increase in generations to match the increase in model evaluations because the particles should
converge on a solution and therefore spend more time within the bounds of the parameters.

By analyzing how the number of model evaluations changes as a function of the number of generations, we see
that the number of evaluations is roughly the same for each choice of topology. The fully-connected topology
uses more evaluations on average for each chosen number of generations, but the differences are not statisti-
cally significant. For the ring and von Neumann topologies we see that the standard deviation as a percentage
of mean (coefficient of variation) of the number of evaluations (“CV N Evals” in Table 1) declines consistently
as the number of generations rises. In contrast, the coefficient of variation increases from 48 generations to 72
generations for the fully-connected topology. Taken together, it appears that the computational efficiency of

JASSS, 25(2) 8, 2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

6.6

6.7

6.8

6.9

the ring and von Neumann topologies is more consistent than the fully-connected topology, while differences
in the computational efficiency of the topologies are not statistically significant.

From these experiments we are able to observe that PSO’s performance is not greatly affected by the choice
of topology and the number of generations. While the performance of fully connected was comparable to that
of ring and von Neumann, the latter topologies produce more consistent results. This finding is mirrored in
analyzing the computational efficiency of the topologies. Our analysis also shows that while allowing PSO to
run over a large number of generations seems to have a positive effect, the results do not change significantly
forthe number of generations tested. Overall, the findings suggest that our PSO implementation can be applied
with confidence “out-of-the-box” to spatially-explicit ABMs without much need for fine-tuning hyperparameter
choices like topology and number of generations, although the ring and von Neumann topologies tend to have
greater consistency meaning they should be favored by practitioners.

Efficiency compared to Monte Carlo

Although we have demonstrated that PSO’s effectivness is relatively stable across hyperparameter choices and
can therefore be used “out-of-the-box”, our fitness metric is a relative one. To contextualize this performance,
we used Monte Carlo to evaluate the same ABM with the same parameter ranges. We tested Monte Carlo using
500, 750, and 1000 evaluations respectively so that the number of evaluations is comparable to those used
by PSO and ran the algorithm 35 times for each chosen number of evaluations. This helps us to answer the
question of how efficient PSO is compared to the commonly-used Monte Carlo method.

” «

Table 2 gives the summary statistics for the Monte Carlo experiments. Just as in Table 1, “Median Fit”, “u Fit”, “o
Fit”, and “CV Fit” describe the median, mean, standard deviation, and coefficient of variation for the best error
found by each run of Monte Carlo. Note that unlike in Table 1, there are no statistics for the number of evalua-
tions because Monte Carlo allows us to specify that explicitly while the PSO method has us specify a number of
generations instead. This data is also visualized in Figures 6 and 7 which give boxplots of the performance of
the methods and a scatterplot illustrating the performance versus computational efficiency respectively.

Evals MedianErr pErr o Err CVErr

500 36.88 3746 3.93 10.49%
750 35.63 36.07 3.09 8.57%
1,000 35.81 3572 1.81 5.07%

Table 2: Summary Stats from Monte Carlo Experiments

65

—— MC 500 —— Fully Connected o
60 MC 750 —— Ring
—— MC 1000 —— von Neumann M

al
o

Lowest Error
B D
o (&3]

w
ol

w
o

% = %%% TITE FEE

N
a1

Monte Carlo PSO-48 PS0-60 PSO-72

Figure 6: Boxplots of error produced by best parameters found from each method.

From Tables 1 and 2, we see that PSO’s mean and median minimum errors are below that of Monte Carlo for
all PSO and Monte Carlo parameter choices including those where Monte Carlo uses more than twice as many
evaluations. The plots in Figure 6 illustrate the drastic difference in the distributions of error with PSO consis-
tently much lower than Monte Carlo. Additionally, while the median error fell as the number of generations
grows for each PSO topology, we observe that the median error actually increases for Monte Carlo from 750 to
1,000 evaluations. Interestingly, the mean error fell as the number of evaluations rises for Monte Carlo as well

JASSS, 25(2) 8, 2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

6.10

6.1

6.12

71

as the ring and von Neumann topologies, but not for the fully-connected topology as a result of the outliers it
encountered.

60 = PS0 48 Gen = MC 500 - von Neumann
+ = PSO60Gen MC 750 + Fully Connected
55 = PSOT72Gen = MC 1000 4+ Ring
« Monte Carlo
50 *
5
0 45 x
7 X
3 40
-
35 : !
R ry %’H‘ ‘ ‘# xﬂkj*e blf:.1! H—i_w %D o ¢+ _l-j_-l_ +
%0 1 il Wi ol S W |
A A . + ° A
25300 400 500 600 700 800 900 1000

Evaluations of Model

Figure 7: Scatterplot showing the trade-off between number of evaluations of the model vs. least error achieved
for all methods.

Comparing the consistency of the performance between the two methods, the ring topology’s performance has
lower coefficient of variance for every choice of PSO parameters and number of Monte Carlo evaluations. Von
Neumann also beats Monte Carlo in consistency except when comparing 48 generations to 1,000 Monte Carlo
evaluations where von Neumann still has a lower standard deviation in absolute terms. The fully-connected
topology’s outliers mean that despite having better median and mean performance than Monte Carlo, the per-
formance has a higher coefficient of variance, meaning its results are less consistent than Monte Carlo.

Comparing the computational efficiency, Figure 7 gives a plot of the error versus number of evaluations of the
model for each experiment. This allows us to visualize the trade-off between performance and computational
efficiency. As we would expect, both methods tend to slightly improve as the number of evaluations of the
model increase. However, we can see that choosing PSO over Monte Carlo increases our computational effi-
ciency while increasing the quality of our parameters, giving us the best of both worlds.

Overall, itis clear that PSO produces much better parameter sets and is able to do so with lower computational
cost than Monte Carlo. PSO was able to achieve a 9.4-20.5% decrease in mean error and an 8.9-18.7% decrease
in median error even when PSO used less than half the number of evaluations as Monte Carlo. From these
findings, we conclude that PSO not only out-performs Monte Carlo in terms of optimization of spatially-explicit
agent-based models, but also does so in a more computationally efficient manner.

Discussion

With the benefit of hindsight, we can visualize the parameter space to understand why optimization may be
difficult and why PSO was able to outperform Monte Carlo. The left plot in Figure 8 gives us a 3-D visualization
of the parameter space with the colorbar indicating the error between the model outputs and observed case
data. The visualization was created using the 78,750 points in the parameter space evaluated by Monte Carlo.
The Monte Carlo results seem to uniformly cover the 3-D parameter space which is expected as each point is
chosen randomly from the parameter space. The specs of darker colors surrounded by yellow represent local
minima in the parameter space that could trick traditional optimization methods like gradient descent.

JASSS, 25(2) 8,2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

7.2

7.3

7.4

-
[

8.1

200

180

160

140

0.4
0.2 100 |
0.2 100
0.0
b 80 0.0
. 40 A 80
<
. O3.5Q~ ¥ 60 SSQ. fzr'@ .
B 3.0
0.00 0.02 _ 25 ,'QO(\ 40 000 - s \\oﬁ\ 20
PO .20 6\§J 0‘02. 004 - _ 20 ®§J
Nty 0.06 » 15 O ing 0.06 - 15 O
OQ N fOR + \
Q, 0.08 Q a 0.08 Q
() 010 10Q2 te 108

Figure 8: 3-D visualization of the ABM parameter space with each point representing an evaluation of the ABM
and color representing absolute error between model output and case data. The plot on the left shows the
results for all 78,750 Monte Carlo simulations and the plot on the right gives the results for all 199,812 PSO sim-
ulations.

Over the 78,750 evaluations taken by Monte Carlo, only 288 (0.37%) yielded an error below 40. Taking the con-
vex hull of these points, we get an area that represents only about 2.83% of the volume of the parameter space.
Narrowing our search to points which yielded an absolute error below 35, we get only 40 (0.05%) points which
give us a convex hull that represents 1.17% of the volume of the parameter space. Despite how small these
volumes may seem, the stochasticity in the ABM and non-convexity of the error function means that even if a
point is within these convex hulls, it may not produce a result that is below the thresholds we used to construct
the hulls. In fact these convex hulls contain a total of 2299 (2.92%) and 908 (1.15%) evaluated points respec-
tively despite only 288 and 40 points producing an error below 40 and 35. Therefore only 12.53% and 4.41% of
points within the convex hulls respectively fell below the thresholds of 40 and 35 absolute error. Of the 78,750
evaluations, only 2 (0.0025%) yielded a result with error below 30.

Theright plotin Figure 8 was created with the 199,812 evaluations taken using PSO including all hyperparameter
choices (topology and number of generations). When comparing the plots in Figure 8, the value of PSO becomes
obvious-the region in the upper-right ([0.04, 0.1] x [1,4] x [0.2, 1]) is much less densely populated compared to
the left plot in Figure 8 despite the figure representing over two and half times more evaluations. This demon-
strates the power of PSO’s communication strategy in allowing particles to explore the entire parameter space
while focusing more attention on areas that tend to yield better results.

In contrast to Monte Carlo, PSO found 43,915 (22.1%) points that yielded an absolute error below 40 and 7,204
(3.6%) points that yielded an absolute error below 35 representing 60 and 71 times as many points respectively
even after adjusting for differences in the total number of evaluations. This significant improvement in per-
formance is explained by the relative amount of evaluations within optimal regions of the parameter space.
Compared to Monte Carlo’s 2.92% and 1.15% of evaluations lying within the convex hulls of the points yielding
an error of 40 and 35, PSO had 112,779 (56.8%) and 100,608 (50.7%) points within them. So despite only 38.9%
and 7.2% of points falling within the convex hulls producing an absolute error below the threshold respectively,
theincreased time spentin these regions yielded much better parameter sets overall. PSO also found 25 (0.01%)
points that produced an error below 30, while Monte Carlo only found 2 (0.0025%). While Monte Carlo’s 2 points
do not form a convex hull with volume, the 25 points found by PSO form a convex hull with volume that rep-
resents 0.30% of the parameter space. It is worth noting that 40,896 (20.59%) of evaluations were within that
region with only 0.06% (25) of them resulted in an error below 30. Full plots of the convex hulls discussed can
be viewed in the Appendix.

Conclusions and Future Work

This study demonstrates that PSO can be an efficient method for calibrating ABMs. Specifically, a standard im-
plementation of PSO based on the work by Bratton & Kennedy (2007) can be successfully used out-of-the-box
and with a variety of hyperparameter choices, meaning that modelers who choose to adopt PSO will not be held
back by a steep learning curve. Our results show comparable performance for all three choices of topology and
number of generations, with all hyperparameter choices outperforming Monte Carlo. Furthermore, our PSO

JASSS, 25(2) 8,2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

8.2

8.3

approach is able to produce better parameter sets than Monte Carlo while achieving higher computational effi-
ciency. Our computational experiments suggest that the ring and von Neumann topologies should be favored
over the fully-connected topology for greater consistency.

There are a number of potential improvements that could be made to the PSO algorithm described in this pa-
per. Our implementation initialized particle position using uniformly random distribution in the bounds of the
parameter space to match Monte Carlo’s selection process, but work has shown that using low-discrepancy
quasi-random sequences can improve performance (Pant et al. 2008). Although we have tested the network
structures the literature recommends, there are network communication structures beyond the three explored
including random networks (Kennedy 1999), “pyramid”, and “star” (Kennedy & Mendes 2002) which may lend
themselves better to optimizing ABMs. While we have chosen a standardized implementation for this study,
there are many variations on the algorithm which may be even better suited for calibrating ABMs (Banks et al.
2007; Carlisle & Dozier 2000). As discussed in Section 3, there are also a variety of metrics to determine when
the PSO algorithm should terminate, which can be further explored on a wider set of ABMs. Poli et al. (2007)
gives an overview of the variations and open questions surrounding PSO which will be helpful for future work
in this direction.

Further experimentation is needed to determine if PSO is effective and efficient on a wider variety of ABMs. In
particular, it is important to understand how PSO compares to other optimization methods as the number of
model parameters and complexity increase. Further work is also needed to compare how PSQ’s performance
and efficiency compare to other heuristic optimization methods and techniques that rely on model reduction.
While Parsopoulos & Vrahatis (2001) suggests that PSO performs well under noisy and continuously changing
environments, it would be informative to explore how this standardized PSO performs for dynamic calibration
of a model as new interventions occur. The PySwarm Python package by Miranda (2018) and the approach
described in this paper offer great potential for further exploration. Beyond Particle Swarm Optimization, there
are other interesting swarm intelligence algorithms which could be explored such as Artificial Bee Colony (ABC)
optimization (Karaboga & Basturk 2007).

Acknowledgements

This material is based upon work supported by the Institute for Geospatial Understanding through an Integra-
tive Discovery Environment (I-GUIDE) that is supported by the National Science Foundation (NSF) under award
No. 2118329. The material is also based in part upon work supported by NSF under grant No. 1824961. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of NSF. Our computational work used Virtual ROGER, which is a cyberGIS
supercomputer supported by the CyberGIS center for Advanced Digital and Spatial Studies and the School of
Earth, Society and Environment at the University of lllinois at Urbana-Champaign.

JASSS, 25(2) 8, 2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

@® Appendix: Convex Hull Plots

200
180
% ~1.0
160
0.8
L >
06 © o
x 3
04 E B0 Z
@
70.2 100 M
=
0.0 o
£ 80 —
_ 40
; L35 X 60
_ 30 Q&
002 - b 2'55;\\0 40
I.o.04 - 220\
ny, 0.06 ” 15 O
"Rt o008 \10Q_®K
010 L

Figure 9: Evaluations using Monte Carlo of ABM parameter space with color representing error and blue lines
representing Convex Hull of points that produced error<35.

200
180
¥ ~1.0
160
0.8
L >
06 © o
o)
= o
04 E P10 5
- —
5]
0.2 100 M
=
~0.0 o
v 80 =
_ 40
L35 x@ 60
(R _ 30 QL
25 .
SUR S 40
2.0 s
< O
_ 15 Q\O
1.0 Q_®

Figure 10: Evaluations using Monte Carlo of ABM parameter space with color representing error and blue lines
representing Convex Hull of points that produced error<40.
Doi: 10.18564/jasss.4796

JASSS, 25(2) 8,2022 http://jasss.soc.surrey.ac.uk/25/2/8.html

200

\ 180
vt > 1.0
e 160
< 0.8
| : L >
06 © =)
& S
04 E 120 2
—+
2 0]
0.2 100 M
=
0.0 3
y, 80 —
_ 40
L35 X 60
i _ 30 &
2.0 W&
< S
1.5 O

afe 008 -
le 010 10Q%

Figure 11: Evaluations using PSO of ABM parameter space with color representing error and blue lines repre-
senting Convex Hull of points that produced error<30.

200
\ 180
ot 1.0
f 160
g 058
. o
140 >
$F
& S
S 102
—
o
100 M
m
o
g0 —
60
40

Figure 12: Evaluations using PSO of ABM parameter space with color representing error and blue lines repre-
senting Convex Hull of points that produced error<35.

JASSS, 25(2) 8, 2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

200

180
~1.0
160
0.8
% L >
06 © =
x O
04 E B0z
=
5]
0.2 100 M
=
0.0 o
< 80
40
_ 35 @ 60
_ 30 L
000 -)
002 - - 2'56\\0 40
. 0.04 . .20 b‘\’“
ng, 0.06 ’ 15 O
"ORaty 008 1o Sy
010 U

Figure 13: Evaluations using PSO of ABM parameter space with color representing error and blue lines repre-
senting Convex Hull of points that produced error<40.

Notes

'where one parameter is varied while the others remain the same
Zhttps://docs.python.org/3.7/1library/multiprocessing.html

3The model can be accessed and executed on the CyberGISX environment: https://cybergisxhub.cig
i.illinois.edu/notebook/a-reproducible-and-replicable-spatially-explicit-agent-based
-model-using-cybergis-jupyter-a-case-study-in-queen-anne-neighborhood-seattle-wa/

4The Github repository for the ABM can be found athttps://github.com/cybergis/QueenAnneFlu
>Miami-Dade County Open Data Hub: http://gis-mdc.opendata.arcgis.com/

bFlorida Department of Health Influenza Data: http://www.floridahealth.gov/diseases-and-condi
tions/influenza/florida-influenza-surveillance-report-archive

References

Acedo, L., Burgos, C., Hidalgo, J.-I., Sdnchez-Alonso, V., Villanueva, R. J. & Villanueva-Oller, J. (2018). Calibrating
a large network model describing the transmission dynamics of the human papillomavirus using a particle
swarm optimization algorithm in a distributed computing environment. The International Journal of High

Performance Computing Applications, 32(5), 721-728

Alaliyat, S., Yndestad, H. & Davidsen, P. I. (2019). Optimal fish densities and farm locations in Norwegian fjords:
A framework to use a PSO algorithm to optimize an agent-based model to simulate fish disease dynamics.
Aquaculture International, 27(3), 747-770

Banks, A., Vincent, J. & Anyakoha, C. (2007). A review of particle swarm optimization. Part I: Background and
development. Natural Computing, 6(4), 467-484

JASSS, 25(2) 8,2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

https://docs.python.org/3.7/library/multiprocessing.html
https://cybergisxhub.cigi.illinois.edu/notebook/a-reproducible-and-replicable-spatially-explicit-agent-based-model-using-cybergis-jupyter-a-case-study-in-queen-anne-neighborhood-seattle-wa/
https://cybergisxhub.cigi.illinois.edu/notebook/a-reproducible-and-replicable-spatially-explicit-agent-based-model-using-cybergis-jupyter-a-case-study-in-queen-anne-neighborhood-seattle-wa/
https://cybergisxhub.cigi.illinois.edu/notebook/a-reproducible-and-replicable-spatially-explicit-agent-based-model-using-cybergis-jupyter-a-case-study-in-queen-anne-neighborhood-seattle-wa/
https://github.com/cybergis/QueenAnneFlu
http://gis-mdc.opendata.arcgis.com/
http://www.floridahealth.gov/diseases-and-conditions/influenza/florida-influenza-surveillance-report-archive
http://www.floridahealth.gov/diseases-and-conditions/influenza/florida-influenza-surveillance-report-archive

Bratton, D. & Kennedy, J. (2007). Defining a standard for particle swarm optimization. 2007 IEEE Swarm Intelli-
gence Symposium. Available at: https://ieeexplore.ieee.org/document/4223164

Carlisle, A. & Dozier, G. (2000). Adapting particle swarm optimization to dynamic environments. Proceedings,
2000 ICAI, Las Vegas, NV. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.589.895&rep=repl&type=pdf

Clarke, K. (2018). Land use change modeling with sleuth: Improving calibration with a genetic algorithm. In
M. T. Camacho Olmedo, M. Paegelow, J. F. Mas & F. Escobar (Eds.), Geomatic Approaches for Modeling Land
Change Scenarios, (pp. 139-161). Berlin Heidelberg: Springer

Crooks, A., Castle, C. & Batty, M. (2008). Key challenges in agent-based modelling for geo-spatial simulation.
Computers, Environment and Urban Systems, 32(6), 417-430

Eberhart, R. & Kennedy, J. (1995). A new optimizer using particle swarm theory. MHS’95. Proceedings of the
Sixth International Symposium on Micro Machine and Human Science

Eberhart, R. & Shi, Y. (2000). Comparing inertia weights and constriction factors in particle swarm optimization.
Proceedings of the 2000 Congress on Evolutionary Computation. Available at: https://ieeexplore.iee
e.org/document /870279

Ferguson, N. M., Cummings, D. A. T., Fraser, C., Cajka, J. C., Cooley, P. C. & Burke, D. S. (2006). Strategies for
mitigating an influenza pandemic. Nature, 442(7101), 448-452

Filatova, T., Parker, D. & van der Veen, A. (2009). Agent-based urban land markets: Agent’s pricing behavior, land
prices and urban land use change. Journal of Artificial Societies and Social Simulation, 12(1), 3

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H.-H., Weiner, J., Wiegand, T. &
DeAngelis, D. L. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology.
Science, 310(5750), 987-991

He, H., Buchholtz, E., Chen, F., Vogel, S. & Yu, C. A. A. (2022). An agent-based model of elephant crop consump-
tion walks using combinatorial optimization. Ecological Modelling, 464,109852

Heymann, D. L. (2008). Control of Communicable Diseases Manual. Oxford: Oxford University Press

Jain, P. & Kar, P. (2017). Non-Convex Optimization for Machine Learning. Boston, MA: Now Foundations and
Trends

Kang, J. Y. & Aldstadt, J. (2019a). Using multiple scale space-time patterns in variance-based global sensitivity
analysis for spatially explicit agent-based models. Computers, Environment and Urban Systems, 75,170-183

Kang, J. Y. & Aldstadt, J. (2019b). Using multiple scale spatio-temporal patterns for validating spatially explicit
agent-based models. International Journal of Geographical Information Science, 33(1),193-213

Kang, J.-Y., Aldstadt, J., Michels, A., Vandewalle, R. & Wang, S. (2019). CyberGIS-Jupyter for spatially explicit
agent-based modeling: A case study on influenza transmission. Proceedings of the 2nd ACM SIGSPATIAL
International Workshop on GeoSpatial Simulation, Chicago, Illinois. Available at: https://dl.acm.org/d
01/10.1145/3356470.3365531

Kang, J. Y., Aldstadt, J., Vandewalle, R., Yin, D. & Wang, S. (2020). A CyberGIS approach to spatiotemporally
explicit uncertainty and global sensitivity analysis for agent-based modeling of vector-borne disease trans-
mission. Annals of the American Association of Geographers, 110(6), 1855-1873

Kang, J. Y., Michels, A., Crooks, A., Aldstadt, J. & Wang, S. (2022). An integrated framework of global sensitivity
analysis and calibration for spatially explicit agent-based models. Transactions in GIS, 26(1),100-128

Karaboga, D. & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Arti-
ficial Bee Colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-4T1

Kennedy, J. (1999). Small worlds and mega-minds: Effects of neighborhood topology on particle swarm per-
formance. Proceedings of the 1999 Congress on Evolutionary Computation-CEC99. Available at: https:
//ieeexplore.ieee.org/document/785509

JASSS, 25(2) 8, 2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

https://ieeexplore.ieee.org/document/4223164
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.589.895&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.589.895&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/870279
https://ieeexplore.ieee.org/document/870279
https://dl.acm.org/doi/10.1145/3356470.3365531
https://dl.acm.org/doi/10.1145/3356470.3365531
https://ieeexplore.ieee.org/document/785509
https://ieeexplore.ieee.org/document/785509

Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 - International Confer-
ence on Neural Networks. Available at: https://ieeexplore.ieee.org/document /488968

Kennedy, J. & Mendes, R. (2002). Population structure and particle swarm performance. Proceedings of the
2002 Congress on Evolutionary Computation. Available at: https://ieeexplore.ieee.org/document/1
004493

Kwok, N. M., Ha, Q. P,, Liu, D. K., Fang, G. & Tan, K. C. (2007). Efficient particle swarm optimization: A termina-
tion condition based on the decision-making approach. 2007 IEEE Congress on Evolutionary Computation.
Available at: https://ieeexplore.ieee.org/document /4424905

Ligmann-Zielinska, A., Kramer, D. B., Spence Cheruvelil, K. & Soranno, P. A. (2014). Using uncertainty and sen-
sitivity analyses in socioecological agent-based models to improve their analytical performance and policy
relevance. PLoS ONE, 9(10), 1-13

Liu, Z., Rexachs, D., Epelde, F. & Luque, E. (2017). A simulation and optimization based method for calibrating
agent-based emergency department models under data scarcity. Computers & Industrial Engineering, 103,
300-309

Manson, S., An, L., Clarke, K. C., Heppenstall, A., Koch, J., Krzyzanowski, B., Morgan, F., O’Sullivan, D., Runck,
B. C., Shook, E. & Tesfatsion, L. (2020). Methodological issues of spatial agent-based models. Journal of
Artificial Societies and Social Simulation, 23(1), 3

Mao, L. (2011). Agent-based simulation for weekend-extension strategies to mitigate influenza outbreaks. BMC
Public Health, 11(1), 522. doi:10.1186/1471-2458-11-522

Mao, L. &Bian, L. (2011). Agent-based simulation for a dual-diffusion process of influenza and human preventive
behavior. International Journal of Geographical Information Science, 25(9), 1371-1388

Miranda, L. J. (2018). PySwarms: A research toolkit for particle swarm optimization in Python. Journal of Open
Source Software, 3(21), 433

Ngo, T. A. & See, L. (2012). Calibration and validation of agent-based models of land cover change. In A. J.
Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.), Agent-Based Models of Geographical Systems, (pp. 181-
197). Dordrecht: Springer Netherlands

Oremland, M. & Laubenbacher, R. (2014). Optimization of agent-based models: Scaling methods and heuristic
algorithms. Journal of Artificial Societies and Social Simulation, 17(2), 6

Panda, S. & Padhy, N. P. (2008). Comparison of particle swarm optimization and genetic algorithm for FACTS-
based controller design. Applied Soft Computing, 8(4), 1418-1427. doi:https://doi.org/10.1016/j.as0c.2007.
10.009

Pant, M., Thangaraj, R., Grosan, C. & Abraham, A. (2008). Improved particle swarm optimization with low-
discrepancy sequences. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Com-
putational Intelligence), (pp. 3011-3018)

Parsopoulos, K. & Vrahatis, M. (2001). Particle swarm optimizer in noisy and continuously changing envi-
ronments. In M. H. Hamza (Ed.), Artificial Intelligence and Soft Computing, (pp. 289-294). Anaheim, CA:
IASTED/ACTA Press

Poli, R., Kennedy, J. & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33-57

Raimbault, J., Cottineau, C., Le Texier, M., Le Nechet, F. & Reuillon, R. (2019). Space matters: Extending sensi-
tivity analysis to initial spatial conditions in geosimulation models. Journal of Artificial Societies and Social
Simulation, 22(4),10

Wang, S. (2010). A cyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis. Annals
of the Association of American Geographers, 100(3), 535-557

Wise, S. C. & Cheng, T. (2016). How officers create guardianship: An agent-based model of policing. Transactions
in GIS, 20(5), 790-806

Yang, Y., Sugimoto, J. D., Halloran, M. E., Basta, N. E., Chao, D. L., Matrajt, L., Potter, G., Kenah, E. & Ira M. Longini,
J. (2009). The transmissibility and control of pandemic Influenza A (HIN1) virus. Science, 326(5953), 729-733

Zielinski, K. & Laur, R. (2007). Stopping criteria for a constrained single-objective particle swarm optimization
algorithm. Informatica, 31(1), 51-59

JASSS, 25(2) 8, 2022 http://jasss.soc.surrey.ac.uk/25/2/8.html Doi: 10.18564/jasss.4796

https://ieeexplore.ieee.org/document/488968
https://ieeexplore.ieee.org/document/1004493
https://ieeexplore.ieee.org/document/1004493
https://ieeexplore.ieee.org/document/4424905

	Introduction
	Model Calibration
	Particle Swarm Optimization
	Case Study: ABM of Influenza Transmission
	Experiments
	Results
	PSO performance
	Efficiency compared to Monte Carlo

	Discussion
	Conclusions and Future Work
	Acknowledgements
	Appendix: Convex Hull Plots

