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ABSTRACT
Interest in cloud-based cyberinfrastructure continues to growwithin
the geospatial community to tackle contemporary big data chal-
lenges. Distributed computing frameworks, deployed over the cloud,
provide scalable and low-maintenance solutions to accelerate geospa-
tial research and education. However, for scientists and researchers,
the usage of such resources is highly constrained by the steep
curve for learning diverse sets of platform-specific tools and APIs.
This paper presents CyberGIS-Cloud as a unified middleware to
streamline the execution of distributed geospatial workflows over
multiple cloud backends with easy-to-use interfaces. CyberGIS-
Cloud employs bringing computation-to-data model by abstracting
and automating job execution over distributed resources hosted in
the cloud environment where the data resides. We present details
of CyberGIS-Cloud with support for popular distributed comput-
ing frameworks backed by research-oriented JetStream Cloud and
commercial Google Cloud Platform.

CCS CONCEPTS
• Computer systems organization → Cloud computing; • In-
formation systems → Geographic information systems.
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1 INTRODUCTION
The use of computational and storage resources in cloud is becom-
ing increasingly popular in academia and industry alike. This shift
from on-premises resource usage is due to a number of factors,
including but not limited to, low setup and maintenance cost, pay-
per-use model, high accessibility, better collaboration, and built-in
security & privacy guarantees. While the trend is more notice-
able in the private sector due to competition and monetary stakes,
academia is actively catching up. Initiatives such as NSF Cloud-
Bank, European Open Science Cloud, and National Research Cloud
are paving the way to providing cutting-edge computing power to
academic researchers.

Following the trend, the geospatial community has also started
to adopt cloud resources from two major perspectives; storage and
computation. Recent advancements in mobile phones, Internet of
Things (IoT), and sensor network technologies have contributed to
generating multi-dimensional geospatial data at an unprecedented
rate and scale. To collaboratively work with and store such data,
cloud is an optimal option to offload setup, maintenance, and tech-
nical expertise for nominal costs. Similarly, for geospatial problem-
solving at scale cyberGIS (i.e. geographic information science and
systems based on advanced cyberinfrastructure (CI)) has become a
key tool. However, despite increasing availability, effective usage of
cloud resources is constrained by required technical expertise and
a diverse set of platform-specific tools and APIs. Domain experts,
including geospatial researchers and scientists, are among the most
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disadvantageous community since they have to spend extra time
learning and familiarizing themselves with different technologies
in order to perform identical tasks in different cloud environments.
While there exist studies [13, 14] exploring the potential of geospa-
tial cloud computing and bringing HPC workloads to cloud [9, 10],
limited works have focused on ease of access and availability of
cloud resources to accelerate distributed workloads for geospatial
domain experts.

In this study, we present CyberGIS-Cloud: a user-centered easy-
to-use middleware for executing distributed geospatial big data
analysis at scale. CyberGIS-Cloud abstracts away the details of ac-
cessing and utilizing multiple cloud backends and presents a unified
interface to the end-users. Themiddleware supports popular geospa-
tial libraries and employs a multi-tiered architecture to streamline
different stages of distributed workflows on the user-selected cloud
backend. As a proof of concept, we’ve automated executions of
geospatial workflows utilizing Apache Hadoop, Apache Spark, and
Dask frameworks deployed on distributed on-demand clusters in
XSEDE JetStream Cloud and Google Cloud Platform environments.

2 ARCHITECTURE
CyberGIS-Cloud is part of an ecosystem [9, 15] mainly designed for
enabling cutting-edge data- and compute-intensive geospatial ana-
lytics at scale. CyberGIS-Jupyter [15] provides easy-to-use Jupyter
Notebook interfaces to perform geospatial analytics. CyberGIS-
Compute [9] augments the capabilities of CyberGIS-Jupyter to
take advantage of high-performance computing systems. CyberGIS-
Cloud further extends the capabilities of CyberGIS-Compute and
allows data scientists, researchers, and domain experts to scale
geospatial workflows over cloud computing resources with the
least amount of effort.

Figure 1 illustrates the architectural components of CyberGIS-
Cloud. These components can broadly be categorized into three
logical layers: the interface, middleware, and cloud resources. The
interface layer provides a unified front end for users to access back-
end cloud resources. This can be achieved either through python
SDK or Jupyter notebook via a web browser.

The middleware comprises intermediary services between the
user front end and backend resources. Authentication service gen-
erates, validates, and authenticates users’ credentials for interaction
with cloud resources. In addition, the middleware hosts RESTful
services to interactively register, submit and monitor distributed
jobs on cloud backends. Instead of reinventing the wheel, we make
use of open source services such as Apache Livy, sparkmagic, and
DataprocSpawner. Data movement costs can quickly overwhelm
any system, especially in the context of big data. To minimize data
movement, for CyberGIS-Cloud, we assume data is already accessi-
ble in the cloud environment where the user specifies to execute the
workflow. However, for all practical purposes, the middleware op-
tionally provides a data management service to move data to/from
cloud storage.

The middleware behaves as an abstraction layer to multiple back-
end cloud environments. Different cloud providers have different
(and sometimes competing) capabilities and APIs. For instance,
Google Cloud, Amazon AWS, and Microsoft Azure, well-known

Figure 1: CyberGIS-Cloud Architecture with unified abstrac-
tion layer for multiple cloud backends

cloud providers, have their own set of tools i.e. Cloud SDK, Ama-
zon CLI, and Azure CLI respectively, for interacting with their
services. Similarly, google file system, S3, and Azure Storage are
storage mechanisms to manage data on the cloud having their
own strengths and features. Learning to utilize multiple platform-
specific utilities to perform the same set of tasks in different cloud
environments can prove to be costly, especially for domain experts
who want to focus on their areas of expertise. CyberGIS-Cloud de-
fines two sets of abstract interfaces; data and cluster management,
that needs to be implemented for integrating every cloud provider
with the system. The implementation details of these interfaces are
hidden from users. At the same time, this layer separation makes
the CyberGIS-Cloud easily extensible to other cloud platforms in
the future.

3 IMPLEMENTATION
We implemented CyberGIS-Cloud to accelerate geospatial big data
analysis using distributed computing. Programming models such as
Map-Reduce [4] and software packages built on top of such models
(e.g. Hadoop, Spark, etc.) have become readily available to facili-
tate distributed computing. In the geospatial domain, extensions
of these software packages [2, 3, 5, 8, 12] have been proposed and
implemented both in academia as well as industry. Despite the
ease of using programming interfaces provided by these packages,
deploying, executing, and managing them on actual infrastructure
is non-trivial and can prove to be a major barrier for developers
and researchers alike. We aim to bridge this gap by implement-
ing CyberGIS-Cloud for Google Cloud Platform (GCP) and XSEDE
JetStream. While GCP provides publicly available commercial ser-
vices, JetStream is more research-oriented and popular in scientific
communities.

3.1 Distributed Cluster Management
Automating software and package deployment is an essential part of
CyberGIS-Cloud. Distributed workflows are generally accelerated
on a cluster of workers. These workers can be individual physical
nodes, independent virtual machines, or containers deployed and
managed over orchestration frameworks. Recent developments in
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this domain have produced systems and software suitable for a
number of use cases.

3.1.1 Google Cloud. GCP provides multiple managed services to
set up and manage cluster resources in the cloud environment. Dat-
aproc is primarily designed for big data stack and has out-of-the-box
support for Apache Hadoop and Spark. In addition, Dataproc pro-
vides a mature API for cluster creation, management, and deletion.
Google Kubernetes Engine (GKE), on the other hand, is relatively
new and provides native support for auto-scaling. It is more suit-
able for long-running jobs. For CyberGIS-Cloud, we implemented
cluster management using Dataproc API due to its maturity, ease
of use, and cost-efficiency.

3.1.2 JetStream. Since JetStream provides access to more bare-
bones virtual machines, we decided to use Kubernetes to set up
and manage the distributed cluster. Kubernetes [1] is a container
orchestration framework for deploying and managing resources,
especially in cloud environments. It follows a master-slave archi-
tecture building on the concept of pods. Masters are generally
user-accessible, whereas slave workers are managed by the master.
Unlike traditional resource managers like YARN, Mesos, etc. Kuber-
netes provide native container orchestration support. In addition to
providing the capability to execute multiple distributed frameworks
on the same cluster, this also allows easy scaling mechanisms which
are essential to CyberGIS-Cloud.

3.2 Framework Support & Dependency
Management

During the past decade, Map-Reduce-based frameworks have be-
come a popular choice for scalable and cost-effective big data pro-
cessing over a cluster of commodity machines. Iterative in-memory
frameworks take distributed processing a step further and promise
10x-100x performance boosts. To cover the maximum range of
applications over this paradigm, we provide support for Apache
Hadoop [7], Apache Spark [16], and Dask [11] based geospatial
workflows in CyberGIS-Cloud.

3.2.1 Google Cloud. As mentioned earlier, GCP Dataproc by de-
fault provides support for many popular big data frameworks in-
cluding Hadoop and Spark. For Dask workflows, we used cluster
initialization actions to set up Dask over the Dataproc cluster. Simi-
larly, we used Dataproc initialization actions to install user-specified
dependencies on distributed cluster nodes.

3.2.2 JetStream. Latest versions of Apache Spark provide support
for Kubernetes operators. We use helm charts to deploy Hadoop and
Dask workloads over Kubernetes cluster in the cloud. CyberGIS-
Cloud launches each distributed workflow using a default docker
container deployed over each Kubernetes pod. This default docker
container comes pre-configured with a set of popular geospatial
libraries and packages. However, to avoid unnecessarily bloating
the default image, we provide options for users to specify their ad-
ditional required dependencies. This can easily be done by simply
including Dockerfile commands for general packages or providing
a requirements.txt for python dependencies. In either case, the ad-
ditional packages are installed on the Docker containers deployed
over Kubernetes pods in the cluster.

3.3 Data Management
Most of the contemporary solutions aiming at bridging the gap
between users and sophisticated technical infrastructure tend to
consider data as second-class citizens. The focus generally is on
providing access to computational frameworks and data is either
copied to accessible storage systems or shared using unified systems
such as globus [6]. Despite its applicability, this approach is not
scalable and comes with inherent costs. Especially, in the context
of big data, data copying or accessing it over the Internet can prove
to be prohibitive in terms of performance.

CyberGIS-Cloud proposes to bring computation to data instead
of the usual other way around. If a user’s data resides in a com-
mercial cloud e.g. google cloud storage buckets, (s)he can grant
appropriate permissions to access and process it in CyberGIS-Cloud.
Similarly, for research-oriented cloud systems (e.g. JetStream), users
can execute their distributed workflows by simply selecting Jet-
Stream as their execution environment.

3.4 Pricing
Research-oriented clouds such as XSEDE JetSteam generally do
not have direct financial implications. On the other hand, cost and
pricing are critical factors while working with commercial clouds.
The decision about the entity responsible for the cost can make or
break the system access. CyberGIS-Cloud takes a hybrid approach.
Resource utilization caps and fairness guarantees are enforced by
the middleware. We believe that available cluster options are gen-
eralized enough to handle typical big data workflows.

Despite its free-of-cost availability, CyberGIS-Cloud has limits
in terms of resources and funding. However, we envision CyberGIS-
Cloud to operate beyond such limits. To this end, we plan to provide
options to integrate user-provided cloud resources with CyberGIS-
Cloud. While specifying a job in CyberGIS-Cloud, users have an
option to provide details about their own cloud resources. The
functionality of CyberGIS-Cloud will remain unchanged except
for the fact that in such a case, the actual cluster resources will be
provisioned on the users’ cloud and the workflow will be executed
on it. This particular feature is currently under development and
will be one of the major features of our future work.

4 HUMAN MOBILITY ANALYSIS - A TYPICAL
CYBERGIS-CLOUDWORKFLOW EXAMPLE

We studied the effectiveness of CyberGIS-Cloud by taking social
media-based human mobility analysis as a representative use case.
Past geospatial research has shown that coordinates of Twitter
users’ locations can be used to examine different trajectories of some
users and their travel patterns within and between cities. These
geotagged tweets can reveal spatiotemporal patterns of human
movements that can especially be useful for studying evacuees’
travel patterns during disasters and disease spread in pandemic
situations such as covid-19.

To perform the analysis, we pulled 500,000 tweets from Twitter
Streaming API on distributed HDFS (Hadoop File System) setup on a
preconfigured cluster on JetStream Cloud and more than 10 million
tweets on the google cloud storage bucket. We wrote pyspark code1

1https://github.com/cybergis/CyberGIS-BigData/blob/main/twitter_mobility/code/
tweet_processing.py
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for the distributed mobility analysis pipeline. Executing the pipeline
on a local setup with 4 CPU cores and 8 GB of memory was able
to process up to several thousands of tweets only. However, this
was only sufficient for initial testing and debugging and could not
handle actual larger datasets.

Using CyberGIS-Cloud, we were able to connect to a 3 node
cluster deployed on JetStream cloud to perform the analysis on
100,000 geotagged tweets. Using the same code and CyberGIS-
Cloud environment, we were able to further scale our analysis
over a much larger dataset in the Google Cloud environment. The
major advantage of CyberGIS-Cloud is the ability to use the same
distributed processing code, with minimal changes, and execute it
on on-demand clusters deployed over multiple cloud backends via
a unified user interface.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented the design and implementation details
of CyberGIS-Cloud: a middleware framework that provides easy-
to-use interfaces to accelerate distributed geospatial workloads
over cloud-based cyberinfrastructure resources. CyberGIS-Cloud
allows users to execute Hadoop, Spark, and Dask based analytics
on geospatial data stored in cloud storage. Depending on the cloud
storage provider, CyberGIS-Cloud enables users to perform dis-
tributed computation on a cluster deployed over an appropriate
cloud backend (e.g. JetStream Cloud or Google Cloud). To address
data privacy, cost, and pricing concerns, in the future, we plan to
explore options to integrate CyberGIS-Cloud with user-provided
cloud resources to deploy and execute distributed workflows. An-
other important future aspect for CyberGIS-Cloud is to provide the
ability for automated resource estimation and job scaling based on
geospatial characteristics.
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