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Abstract—Unsourced random access (URA) is a recently pro-
posed multiple access paradigm tailored to the uplink channel of
machine-type communication networks. By exploiting a strong
connection between URA and compressed sensing, the massive
multiple access problem may be cast as a compressed sensing (CS)
problem, albeit one in exceedingly large dimensions. To efficiently
handle the dimensionality of the problem, coded compressed sens-
ing (CCS) has emerged as a pragmatic signal processing tool that,
when applied to URA, offers good performance at low complexity.
While CCS is effective at recovering a signal that is sparse with
respect to a single basis, it is unable to jointly recover signals
that are sparse with respect to separate bases. In this article, the
CCS framework is extended to the demixing setting, yielding a
novel technique called coded demixing. A generalized framework
for coded demixing is presented and a low-complexity recovery
algorithm based on approximate message passing (AMP) is
developed. Coded demixing is applied to heterogeneous multi-
class URA networks and traditional single-class networks. Its
performance is analyzed and numerical simulations are presented
to highlight the benefits of coded demixing.

Index Terms—Wireless communication; unsourced random
access; coded compressed sensing; convex demixing; approximate
message passing.

I. INTRODUCTION

The number of unattended devices communicating over
wireless networks is expected to increase drastically over
the next decades. These machine-type devices, unlike their
human counterparts, tend to infrequently transmit very short
payloads over the network medium. The handling of such
sporadic transmissions is highly inefficient under traditional
uplink multiuser coordination processes and thus necessitates
the design of novel data-link layer protocols.

An increasingly popular paradigm for such machine-type
communication is that of unsourced random access (URA),
described by Polyanskiy [1]. In the URA formulation, only a
small percentage of the total device population is envisioned
to be actively communicating with the base station at a time
and their messages are envisioned to be small, i.e., on the
order of one hundred bits. Each active user simultaneously
transmits its message over regularly scheduled time slots
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using a common codebook, thus eliminating the overhead and
latency associated with multiuser coordination. The receiver
is then tasked with producing an unordered list of transmitted
messages. We note that, under this framework, the receiver
does not know the origin of a message unless a unique
identifier is embedded within the message itself.

The predominant performance criterion for URA schemes
is the per-user probability of error (PUPE), or the proba-
bility that a transmitted message is not recovered by the
receiver. The number of active devices is typically assumed
to be known at the access point, and the output list size
is correspondingly constrained. Since URA devices operate
with short payloads, finite block length bounds provide better
insight than asymptotic information-theoretic results in this
context. Polyanskiy [1] offers finite block length achievability
bounds based on random Gaussian coding and maximum like-
lihood (ML) decoding. While these benchmarks show enviable
performance, the ensuing schemes are not computationally
tractable in scenarios of practical interest. Over the past few
years, significant research effort has gone into developing
pragmatic algorithms that approach Polyanskiy’s benchmarks
with manageable complexity [2]-[12]. We expound on several
of these schemes below.

A. Existing URA Schemes

Ordentlich and Polyanskiy authored the first low-complexity
scheme for URA in [2]. Therein, they propose dividing the
transmission period of n channel uses into slots. Each active
user then randomly selects a slot to transmit its message
over. A concatenated coding structure is employed wherein the
inner linear code recovers the modulo-2 sum of transmitted
codewords within a slot, and the outer BCH code recovers
the constituent codewords. As long as fewer than 7' users
select a slot, decoding is feasible. In [3], Vem et al. retain the
slotted structure proposed in [2], but transmit each message
over multiple slots. Furthermore, a preamble section is carved
off from every message; this initial portion is transmitted
via compressed sensing (CS) and its content determines the
repetition pattern for the corresponding payload. The second
part is then encoded using an LDPC code and decoded using a
message-passing decoder within a slot. Successive interference
cancellation (SIC) is leveraged to remove the contribution of
decoded messages across slots. This latter scheme provides a
sizeable performance improvement over [2]. The authors in [4]
introduce sparse interleave division multiple access (IDMA),
which employs a signal sparse graph across all transmissions
and results in a further performance improvement for systems
with a large number of active devices.



In [5], Marshakov et al. show that replacing LDPC codes
with polar codes in T-fold irregular repetition slotted ALOHA
(IRSA) can result in substantial performance benefits. Their
scheme outperforms sparse IDMA when the number of active
users is low, i.e., less than 125 or so. Instead of using time-
division for separating codewords, Pradhan et al. propose using
random spreading in [6]. There, the message is again broken
into two parts where the first part is used to select a spreading
sequence and the second part is encoded using a polar code.
The polar-encoded codeword is spread using the selected
spreading sequence. At the receiver, an energy detector is
employed to identify active sequences and the codewords are
recovered using a list decoder. In [7], the polar coding scheme
is improved significantly when the number of active users is
large by allowing the set of active users to use different power
levels. In [11], Han et al. present a sparse Kronecker product
(SKP) based scheme wherein a user’s message is encoded
as the Kronecker product of a sparse vector and an FEC-
encoded vector. The sparse component enables the receiver to
use CS techniques to perform multiuser detection and the FEC
portion provides significant performance benefits. An iterative
algorithm is employed at the receiver. This latter scheme
uniformly outperforms [6] and nearly achieves Polyanskiy’s
finite block length achievability bound when the number of
active users is low.

While significant progress was being made with traditional
channel coding schemes for URA, the connection between
URA and compressed sensing was being explored further. This
connection is made by considering a simple bijection on each
user’s B-bit message. Specifically, each user’s B-bit message
u € FZ may be transformed into a 1-sparse vector x € F2 ,
where the single unity entry in x is at index [u],, which repre-
sents an integer under radix-2. After converting its payload to a
sparse vector X, each user compresses its %parsiﬁed payload x
using a known sensing matrix A € R"*2" into vector y and
then transmits y over the Gaussian multiple access channel
(GMAC). At the receiver, standard CS support recovery is
performed to recover the index vector corresponding to the
sent payload. This scheme easily extends to the multiple access
case: if K users are active during a given time slot, the receiver
simply performs K -sparse recovery and is able to recover all
sent messages, provided that no two users select the same
message to transmit.

A challenging aspect of the compressed sensing view for
URA lies in the sheer dimensionality of the problem, often
exceeding 2% in practice. At such dimensions, it becomes
impractical to utilize standard CS solvers. To circumvent this
complexity issue, Amalladinne et al. propose a divide-and-
conquer approach wherein each information message is broken
up into fragments which are linked together via a tree-based
outer code [8]. The coded message components are then con-
verted into a sparse index representation, compressed using the
common codebook A, transmitted over the AWGN channel,
and individually recovered using standard CS techniques such
as non-negative least-squares (NNLS) or LASSO. After each
section has been processed, a graph-based decoder connects
recovered message fragments back together in a process called
stitching [8]. This scheme was enhanced by Fengler, Jung,

and Caire in [9] through the joint encoding of codeword
sections at the transmitter and the application of approximate
message passing (AMP) as a CS decoder at the receiver.
The AMP framework was modified in [10] by allowing
for soft information to be dynamically shared between the
inner CS decoder and the outer LDPC decoder, resulting
in 1 dB gain when K = 100. In [13], Ebert et al. show
that the weak form of spatial coupling induced by the AMP
denoiser in [10] is sufficiently strong to harness the benefits
of spatial coupling within the system, thus allowing for the
independent encoding of codeword sections. This results in
a roughly 1/2 reduction in computational complexity while
maintaining nearly the same level of performance. The scheme
presented in [10] represents the state of the art in compressed
sensing-based schemes for URA. While this latter scheme
does not outperform certain channel coding based approaches
such as [6], it offers much lower computational complexity.
An even lower-complexity CS-based scheme is described by
Calderbank and Thompson in [12]; however, the complexity
reduction comes at the expense of PUPE performance and it
requires additional channel uses. It should be noted that other
URA schemes have been presented, e.g., [14]-[17], yet they
are only peripherally connected to our contributions. Indeed,
the ideas presented in this work extend some of the notions
introduced by Amalladinne et al. [10] and strengthen the
connection between URA and the field of sparse recovery.

B. Main Contributions

From a signal processing perspective, one reason for the
recent interest in CCS is that it is a computationally efficient
tool for recovering signals of exceedingly high dimensions (on
the order of 2190) that are sparse in a given domain. Given the
connection between URA and compressed sensing, CCS is a
natural solution to the massive random access problem.

Independent of CCS, demixing (or convex demixing) has
emerged as a tool for recovering constituent signals s; and s
from their sum s; + s, given that s; and s, are sufficiently
sparse in incoherent bases [18]. In this paper, we draw con-
nections between CCS and demixing to allow for the efficient
recovery of very high dimensional signals that are sparse in
different bases, where the separate bases exhibit low cross-
coherence. Due to the extreme dimensions of the problem,
the divide and conquer approach of CCS is extended to the
demixing problem, thus yielding a novel framework that we
call coded demixing.

When applied to URA, coded demixing provides the best
known performance to multiple heterogeneous classes of users
that simultaneously utilize limited channel resources. Further-
more, coded demixing provides significant gains over CCS
in the single-class network by reducing the number of users
present on a single outer factor graph. We summarize our main
contributions as follows.

1) In Section II, a framework for coded demixing is care-
fully developed that allows for the compression and
simultaneous transmission of multiple sparse signals
from incoherent bases over fixed channel resources.
At the receiver, a low-complexity AMP-based recovery
algorithm performs demixing at scale.



2) In Section III, the developed coded demixing framework
is applied to a network containing several classes of
devices, where a class of devices is a collection of
devices with a fixed message length, power budget, and
set of coding requirements. Numerical simulations are
presented to show that, in the multi-class context, coded
demixing outperforms treating interference as noise
(TIN) and successive interference cancellation (SIC)
schemes with comparable computational complexity.

3) In Section IV, the developed coding demixing frame-
work is applied to a network consisting of a single class
of users. There, the set of active users is randomly par-
titioned into distinct, yet homogeneous, groups during
message transmission. Indeed, this reduces the expected
number of users present on a single factor graph and
therefore improves the performance of the belief prop-
agation (BP) decoder. It is shown that coded demixing
with stochastic binning provides nearly state-of-the-art
performance when the number of users is large in the
single-antenna URA network at reduced complexity.

C. Notation

Unless specifically noted, all variables are real-valued. Ma-
trices are denoted by bold capital letters such as A, and
column vectors are denoted by bold lower case letters such as
x. The transpose of x is denoted by xT and the £,-norm of x is
denoted ||x||,. Furthermore, the concatenation of two vectors
is written as uv, where uv £ [u™vT|T. An n x n diagonal
matrix with entries dy,ds,...d, along its main diagonal is
denoted as diag (dy,ds,...d,). In general, sets are denoted
by calligraphic letters such as G; two exceptions to this rule
are R, which denotes the set of real numbers; and [N], which
denotes the set of integers {1,2,..., N}. The cardinality of
a set is denoted by |G|. Finally, we denote the probability of
event X by P (X).

II. SYSTEM MODEL AND CODED DEMIXING

In this section, we present the system under consideration
and introduce coded demixing both as a conceptual framework
and as a solution to various URA scenarios. From an abstract
point of view, coded demixing extends the CCS family of
algorithms [8]-[10] to situations where the received signal is
the superposition of multiple components that are known to
be sparse in distinct domains. The presence of multiple sparse
domains introduces new challenges including the eventual
need to estimate the number of messages in each domain
and the construction of an efficient recovery scheme tailored
to this more general framework. In doing so, we leverage
several notions from CCS and, whenever appropriate, we draw
distinctions about the unique character of coded demixing
compared to prior art. Initially, we consider a case where side
information is available in terms of number of active devices
per sparse domain; this assumption will be relaxed in Sec. IV.

A. System Model

Consider a URA system in which K active devices out
of K, total devices wish to communicate with a base

station over a single-input single-output (SISO) uncoordinated
GMAC. Each of the K active devices belongs to one of G
groups; the manner in which these groups are created will
be described later in this article. Devices within a group are
homogeneous, but differences in power, data, and/or coding
requirements may exist across groups. For convenience, we
assign a unique label j € [K] to every currently active
device. Although these labels appear in some equations, they
are immaterial to exchanges between devices and the access
point. Furthermore, we emphasize that these generic labels are
employed solely for the purpose of exposition; they do not
reveal anything about the true identities of the active users.
The notation G, refers to the set of active users that belong to
group g € [G] and K, = |G,| denotes the number of active
users in that group. User j encodes its message w; into the
signal x; € R™ and then transmits x; over n channel uses.
The signal received at the access point is given by

y = Z ngxj+z, (D)

g€[G] j€G,

where d, represents the amplitude scaling within group ¢ and
z € R" is additive white Gaussian noise with i.i.d. standard
normal components. The signal sent by user j € G4, denoted
x;, is produced via a codebook C, common to all users in G,.
We emphasize that the transmitted signal is only a function
of the user’s data and group, and not its identity. It is also
noted that the signal x; € C; C R”™ satisfies the URA power
constraint E [||x;[3] < nP,.

The receiver is then tasked with recovering an unordered
list of transmitted messages W(y), where \W(y)| < K.
The performance of the scheme is evaluated via the per user
probability of error P,

P, = % > B (wi g W) 2
JElK]
As is customary in existing URA literature, the total number
of active users K is given as side information at the receiver.
In contrast, the number of active users contained within each
group is unknown and therefore must be estimated.

Aside from the presence of multiple groups, this system
model is equivalent to the model adopted in other URA articles
when the access point features a single receive antenna. This
enables the fair comparison of our proposed scheme with prior
art, using a de facto common task framework.

B. From CCS to Coded Demixing

The theory of coded demixing introduced in this article
is closely connected to CCS, and especially the variant of
CCS found in [10]. Still, the presence of multiple sparse
domains prevents the direct application of CCS to the URA
formulation in (1). Below, we discuss the innovations needed
to enable coded demixing, focusing primarily on the message
encoding and the decoding processes. For the time being, we
assume that the values of { K} are known; we will eventually
circle back and relax this requirement. We delay applications
and performance characterization to subsequent sections (see
Sec. III and Sec. IV).



1) Encoding Process: Without loss of generality, we
present the encoding process for user j in group g. We
note that the structure of the encoding process is the same
across groups, but specific parameters may vary from group to
group. The message encoding process utilizes the concatenated
coding structure established in [8]. This features a SPARC-like
CS inner code similar to the approach proposed in [9], and an
LDPC outer code akin to those in found [10].

The first step in the encoding process is to add redundancy
to user j’s wgy-bit message w; via a rate iy, LDPC code.
Explicitly, the message w; € {0,1}"s is broken into s
segments each of length v, such that

w; = w;(1)w;(2) - w;(3).

Each section w;(¢) may be viewed as an element of GF(2"9)
and thus the entire message w; may be encoded using a non-
binary LDPC code, yielding a codeword v;. The codeword v
can likewise be broken into L, segments, each of length v,:

v =vi(1)v;(2) - v;(Lg). 3)

At this point, each section of the codeword is converted into a
1-sparse message vector via the bijection m; (i) = f4(v;(1)),
where f,(v(i)) : R — R%’. The single unitary entry of
m; (i) is at location [v;(i)]2, which is interpreted as an integer
expressed under radix-2. Once every section is encoded, the
resulting Lg-sparse vector m; = m;(1)---m;(L,) becomes
similar to a SPARC codeword; although it features fewer
sections, each is of much greater length [9]. Attached to
group g is a Gaussian sensing matrix A, € R7*Lg2"9
with independent entries distributed as N'(0,1/n), so that
the expected ¢>-norm of each column is one. Message m;
is converted into a signal x; = A,m; and transmitted over
the channel. Fig. 1 graphically summarizes this part of the
encoding process. From the perspective of a device, these steps
are equivalent to the encoding process within CCS.

The distinction between CCS and coded demixing becomes
more apparent when the distributed encoding of all active
devices is considered together. We let vector sy, g € [G],
be the sum of all the signals sent by active devices within

group g. That is,
Sy = Z m;.

j€G,
We allow devices across groups to use different power levels,
which leads to the scaling of signal amplitudes, with &, =
dyA,4. Under these aggregates, the signal received at the base
station can be expressed as

y = P51 + Posgp + - + Pgsg + 1z, (€]

where s, is LyK,-sparse. The random nature of each A,
ensures that the set of sensing matrices {A, : ¢ € [G]}
exhibits low cross-coherence with high probability; this is key
for the successful application of demixing techniques [19].
With the conditions of sparsity and low coherence met, (4)
assumes a canonical form for demixing problems.

Remark 1. The sparse domains in coded demixing are defined
by the column spans of {A, : g € [G]}. Each group
typically uses a separate LDPC outer code, and the number
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Fig. 1. This figure illustrates the encoding process for user j in group g.
For simplicity of notation, the group subscript g has been dropped in this
figure. User j’s message w is first broken into s, fragments; then, these
fragments are encoded using an LDPC code over GF (2V9). Each of the
LDPC-encoded fragments are subsequently converted into 1-sparse vectors
through the bijection fg (-) and the resulting sparse vectors are compressed
through multiplication with A 4. This results in signal x;, which is combined
with signals from other users (possibly from other groups) and AWGN to
form the received signal y.

of sections and their lengths may vary from group to group.
The introduction of multiple groups creates the need to track
{K, : g € |G]}; these quantities may not be available as
side information. This, in turn, may require the modification
of the transmitted signals, with possibly the addition of group
specific pilots, to facilitate this task.

Remark 2. The presence of multiple sparse domains invites
the rethinking of the decoder because the naive application
of parallel CCS decoders (one for each sparse domain) to
the received vector y will not work. Intuition can be drawn
from the many algorithms designed for convex demixing [18]-
[23], yet a suitable demixing solver must have manageable
complexity for the problem dimensions relevant to modern
communication scenarios and should take advantage of the
signal structure described above. These requirements pre-
clude the use of classical regularized convex optimization
approaches; consequently, we resort to a first-order iterative
solution.

2) Decoding Process: The decoder is tasked with recover-
ing the set {s, : g € [G]} and subsequently, disambiguating
the messages contained within each s,. This two-step process
is inspired by CCS decoding as presented in [10], albeit
with key modifications to support multiple groups of users.
A diagram of the iterative decoding procedure, with its main
components, appears in Fig. 2.

Equation (4) admits an alternate representation that gives
insight into how to develop an iterative procedure for support
recovery. If the matrices {®, : g € [G]} are concatenated to
form & = [®y, Py,..., Dg| € R™*7, where v = Zq L,2vs,
and the vectors {s, : g € [G]} are similarly stacked into
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Fig. 2. This notional diagram depicts the operation of the coded demixing recovery algorithm. The input comes in the form of observation y at the top left.
The contributions of the state estimate (minus the Onsager term) are subtracted from y, leading to the residual z. This residual is then processed through
demixing and turned into an effective observation for each group. Denoising is performed as a means to update the state estimates. The computation of the
Onsager contribution, which is intrinsic to AMP, is highlighted using dashed lines. This iterative process continues until convergence is reached. At that point,

the state estimates {sy : g € [G]} are taken as the output of the algorithm.

S = 8189 ...8¢ € R7, then (4) can be rewritten as

S1
y=®s+z=AD + z, )
sG
where D = diag(d;,ds,...,dg) and A = [Aq, Ag, ..., Ag].

We note that (5) is in standard CS form, and possibly amenable
to decoding via approximate message passing (AMP). Of
course, the rewriting of this equation does not simplify the
intricate sparse structure of vectors {s, : g € [G]}. However,
it offers a conceptual bridge that has been leveraged in the
past to relate demixing to CS. At this point, we turn to the
AMP composite iterative structure and to the design of suitable
denoiser for coded demixing. The specific AMP algorithm we
have in mind takes the form

S

(t-1)
2) =y — AD + 2 qiwDpytY (r(t_l)) ©6)
)
G
t t
a0 (<)
= ()= | o
t+1
e 0 (<)

where the superscript ¢ denotes the iteration number, s(¥) = 0,
and z(°) = y. Although more involved, this is the natural
multi-group extension of the AMP algorithm applied to CCS

in [10]. In the present context, we define the effective obser-
vation by
S0

r = ATz + D (8)

s

Equation (6) can be interpreted as the residual enhanced with
an Onsager correction term [24], [25]. The AMP state is
updated in (7) using denoiser nét)(), which seeks to take
advantage of the block structure of the problem. Essentially,
the denoiser should promote structured sparsity while also
accounting for the presence of the outer code and, as such, it
must be designed carefully. The two iterative steps are linked
through the computation of the effective observation in (8).
A crucial fact about AMP is that under suitable conditions,
such as A having i.i.d. Gaussian entries and the denoiser
being Lipschitz-continuous [24], [26], r(*) is asymptotically
distributed as
S0
D

+ TtCtv (9)

s

where ¢, ~ N(0,I) and 7; is a deterministic scalar quantity.
It is also noted that, though 7, may be computed through joint
state evolution, it is often approximated by 72 ~ ||z(!)||2/n.
Naturally, it may be tempting to apply a minimum mean square
error (MMSE) estimator to each section ¢

E[Sgw”dgsg + 1€y = rg]
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Fig. 3. This figure illustrates the denoiser employed for group g within the
AMP iterate for coded demixing. The PME of (10) is applied to the effective
observation r using uninformative priors to obtain local observations {Ag :
¢ € [L]}, which initialize the outer LDPC factor graph. After running belief
propagation, messages pt,, are sent from the variable nodes in the factor graph
to the PME for each section; these messages are used to generate informative
priors. Equipped with more accurate priors, the PME is run on the effective
observation r once more, yielding 7 (r).

as the denoiser. However, because each s, (0) is K g-Sparse,
the MMSE estimator would have to consider (i;j) different
possibilities for every section. Clearly, this becomes combina-
torically intractable for section sizes of practical interest. We
therefore adopt the strategy proposed by Fengler et al. [9], and
we approximate the MMSE denoiser using the posterior mean

estimator (PME),

‘§9 (q7 T, Tt) =
(Tﬁd_q)z
q eXp (— T)
. 2
vor () + - (57

where 7 is an entry in the effective observation r, ¢ denotes the
prior probability of an entry of s, being equal to one, and 7; is
the scaling factor discussed above. In [9], the authors focus on
the single-group scenario and they employ an uninformative
prior, which would be equivalent to g, = 1 — (1 — 27vs)&s
for group g.

In [10], Amalladinne et al. show that, when there is only one
group, the structure of the outer LDPC code can be exploited
to improve the PME denoiser. Specifically, one round of BP
may be run on a suitably designed outer factor graph to
generate more accurate priors. This helps AMP converge to
a parity-consistent solution, and it has been shown to improve
the performance of CCS by 1 dB when K = 100. We wish to
extend these developments to coded demixing by generating
priors for each group through message-passing on each group’s
outer LDPC factor graph.

We only briefly summarize the message passing rules as-
sociated with the LDPC outer codes because the details of
message passing on factor graphs are well established (e.g.,

(10)

)

[27]). We also omit the group subscript g for this part to lighten
notation. While every group has its own LDPC outer code,
belief propagation acts in a similar fashion within each group,
with no explicit interactions between groups. The fact that the
LDPC factor graphs are disjoint across groups should prevent
any confusion about group indexing. Variable nodes are ini-
tialized with local estimates Ay (k) = 54(qg,r4(¢, k), 7). One
round of belief propagation is then performed with check to
variable messages given by

D> Wa(ka)

ka:ko=k

H /’l’sj—m(kj)?

s;EN(a)\s

Pams, (B) = (11)

where W, is an indicator function that enforces parity consis-
tency, k is an index within a section, and k, is a collection
of section indices for the neighbors N(a) of check node a.
Messages from variable nodes to check nodes are given by

Hosa(B) o Ae(k) T

ap€N(s¢)\a

Pa,—s,(K), (12)

where the ‘o<’ indicates a normalization of the message. After
running one round of BP, the belief associated with section ¢
may be obtained as follows

o, (F) = JI #ass, ().

a€EN(sy)

13)

Once normalized, (13) may be used as a more informative
prior ¢ in the PME of (10). Explicitly,

et ()

Note that log-domain Fourier transform decoding [28], [29] is
employed for efficient computation of BP. Accordingly FFT-
based factors are employed in the bipartite graph representing
the LDPC code. An illustration of message passing on a
generic bipartite graph is provided in Fig. 3.

Combining the PME of (10) with the priors computed
dynamically using BP results in the smooth denoiser found in
[10, Definition 6]. Accounting for the various sparsity domains
in coded demixing and their distinct outer LDPC codes, we
get group-specific non-separable denoisers of the form

(14)

N (rg) = 84(1,xg,7) - 8¢(Lg,Tg, 7)., (I5)

where individual components are based on (10) with
8g(l,rg, ) = (Sg(ag(l, k), ve(l, k), 7¢)  k € [2°])

and priors are obtained from (14) with one round of message
passing on the LDPC factor graph. This same approach is
used for all groups {g € [G]}, though each group runs BP
on its own factor graph and power levels may vary across
groups. This explains why the subscript g must be included in
the definition of ngt)(r). It has been shown that this denoiser
is Lipschitz continuous; thus, it is well-suited for AMP. In
computing the AMP residual in (6), the Onsager correction
term requires the divergence of the denoiser, which is provided
below,

. 1
divDn® = = (D0 () = [DnO@)[3) . (16)
t



Note that the form of the Onsager term remains remarkably
simple despite the presence of several groups. This stems from

the additive structure of both || - ||; and | - ||2, which yields
3 div (dgng)) — divDn®.
9€(G]

In this sense, the compact notation of (16) is due, not only
to the demixing formulation, but also to the specifics of our
denoiser. It is noted that (16) holds only when the number of
BP iterations per AMP step is strictly less than the length of
the shortest cycle on the outer graph. The derivation of (16)
is provided in Appendix A.

After running several iterations of the AMP algorithm via
(6) and (7), the decoder produces estimates for {s, : g € [G]}.
To get the transmitted messages, the receiver must then extract
valid codewords by finding parity-consistent indices across
the L, recovered sections of s,. The indices associated with
the K, + & largest values in the first section of s, are
identified and the following actions are repeated for each of
the selected indices. The root section of the LDPC factor
graph is initialized with the standard basis vector e; where
i is the selected index and the other L, — 1 sections are
initialized with the output of AMP. Several BP iterations on
the graph of the outer code are then performed, which yields
candidate sections. If a parity-consistent codeword is obtained,
that codeword is added to the list of recovered codewords
along with its associated likelihood. Once this process has
been performed for all G bins, the recovered codewords from
all bins are collected and ordered in terms of decreasing
likelihood. Finally, the top K codewords are retained as W (y).

Remark 3. While the theory of AMP and state evolution
applies to random Gaussian matrices, it is common in practice
to generate each Ay by randomly sampling the rows of a
2V x 2Ys Hadamard matrix (excluding the row of all ones),
instead of generating the sensing matrices {A, : g € [G]}
with random Gaussian entries. This enables the use of Fast
Walsh-Hadamard Transform techniques within the AMP iter-
ations (6) and (7), which decreases both the computational
complexity and the required memory. The fact that AMP works
well for certain random matrices with non-Gaussian entries
was shown empirically in [30].

Having established a framework for coded demixing, we
proceed with the description of two application scenarios:
accommodating multiple classes of users within a network, and
improving the PUPE performance of a single-class network via
stochastic binning of users. We begin with an examination of
the multi-class URA network.

III. MULTI-CLASS NETWORKS VIA CODED DEMIXING

In its original definition, the URA model is composed of
Kot homogeneous users. That is, all K. users have the exact
same power budget, message length, and code requirements.
An interesting and highly applicable twist to the original URA
setting is that of a heterogeneous URA model (HetURA), as
described in [31], where devices are partitioned into classes
with varying power, data, and code requirements.

These classes may either be completely independent or
connected together in some fashion. As an example of inde-
pendent classes, consider an industrial setup where a central
base station receives sensor data from various sections of a
warehouse, and each section is located at a different distance
from the base station. To offset the free space path loss
incurred by the additional distance, sensors in further away
sections employ a lower code rate when communicating with
the base station. In this example, each class consists of the
group of sensors that employ a specific code rate.

As an example of connected classes, consider the task of
sending a long URA message over the channel, say on the
order of 256 bits. Unfortunately, off-the-shelf CS is not able
to handle the dimensionality of this problem. One option
to circumvent this issue is to apply the technique presented
in [13]; another option is to employ multiple, concatenated
classes. Specifically, let the transmitter divide its message into
sections and link each section together with an additional
outer code. Then, let the transmitter send the first part of its
message as part of class one, the second as part of class two,
and so on until the final portion of its message is sent via
the class po. After recovering all the received messages, the
decoder may use side information about classes 1, ..., 0 and
the outermost linking parities to properly stitch the very large
message together.

For ease of exposition, we study only the case of indepen-
dent classes in our simulations, but the results presented in
this article may be extended to the connected class case with
minimal modifications.

A. Prior Work

After introducing the HetURA model in [31], Hao et al.
propose a scheme for the case when two classes of users exist
with different power levels. Therein, the high-energy users
employ a two-layer superposition modulation and the low-
energy users employ the same base constellation as the high-
energy users. The top level of the superposition constellation
is decoded, followed by the lower level with the help of SIC.
Finally, a CCS-style tree code is employed as an outer code
to disambiguate messages. A version of this problem is also
studied by Huang et al. in [32], wherein each user transmits
its message L times in random slots. At the receiver, power-
domain NOMA techniques are leveraged to handle collisions
within a single slot and inter-slot SIC is applied to improve
performance. In [33], this problem is considered from a coded
demixing perspective. It is upon the work of Amalladinne et
al. [33] that we wish to expound in this article.

B. Proposed Approach

The coded demixing model presented in Section II-A may
be applied to the HetURA channel in the following manner.
Let the K, total users be clustered into G groups, where
each group consists of devices from the same class. We note
that a class of users can be broken up into multiple groups,
but a single group cannot have devices from multiple classes.
Thus, each group g € [G] has an associated amplitude level
dg4, message length wg, coding rate Ry, codeword length v,
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Fig. 4. This plot compares the PUPE of various multi-class URA schemes.
Two classes are considered, each with 25 active devices. In group 1, w1 =
128 bits and R; = 1/2. In group 2, wa = 96 bits and Ry = 3/8. Coded
demixing outperforms other known communication schemes.

and sensing matrix A,. Furthermore, to conform to a widely

adopted convention, it is assumed that the number of active
users per group is known to the receiver.

C. Two-Class System Model

For illustrative purposes, we consider a scheme with two
groups, each containing 25 active users. Group 1 features
a message length of 128 bits and a coding rate of 1/2,
and group 2 features a message length of 96 bits with a
coding rate of 3/8. The total number of sections (parity
+ information) within each graph is 16, and the length of
each section is 2'6. The power budget P is obtained via the
relationship J% = Q’ﬁf . The transmitter outer/inner encoding
operations proceed exactly as outlined in Section II-A. At the
receiver, AMP decoding and message disambiguation proceed
as outlined above, with the exception that codewords recovered
from group 1 are kept separate from codewords recovered from
group 2. The PUPE is computed as in (2) for each of the two
groups individually.

D. Two-Class Simulation Results

We compare the performance of multi-class CCS via coded
demixing to other existing communication schemes, including
treating interference as noise (TIN) and single-class decoders
with SIC. In TIN, the decoder for group 1 operates on
received vector y, and views the contribution of group 2 as
additional noise. Similarly, the decoder for group 2 operates
on y and treats interference from group 1 as noise. In SIC,
the decoder first produces an estimate §; of the signal sent
by group 1 based on observation y. It then subtracts the
estimated contribution of group 1 from y, yielding the residual
Yy =y — ®15;. The decoder then produces an estimate So of
the signal transmitted by group 2 from residual y.

Fig. 4 shows that coded demixing outperforms both SIC and
TIN in both groups by up to 0.6 dB. In addition to providing
a striking PUPE improvement, the complexity of the coded

demixing solution is very comparable to the complexity of SIC
or TIN. Altogether, a judicious use of coded demixing forms
a promising paradigm for multi-class URA, and it currently
offers state-of-the-art performance.

IV. ENHANCED SINGLE-CLASS CCS viA CODED
DEMIXING AND STOCHASTIC BINNING

In Section III, the coded demixing framework was con-
sidered as a means to enable multiple classes of devices to
simultaneously use the same network resources. In this section,
we demonstrate how the coded demixing framework may be
used to enhance the PUPE performance of a network with a
single class of users by randomly partitioning active devices
into groups.

Within CCS, K codewords are present on the outer LDPC
factor graph at once during message passing [10]. This re-
sults in a form of mixing that makes it difficult for belief
propagation to distinguish between codewords and degrades
performance. Though the belief propagation algorithm may be
modified slightly to facilitate multi-user decoding, reducing
the number of simultaneous codewords on the factor graph
seems to constitute a better way to improve the performance
of the outer decoder. As a means to accomplish this goal,
the collection of active devices may stochastically partition
themselves into groups, and subsequently adopt the coded
demixing framework introduced above (see also [34]). We
elaborate on this option below.

A. Stochastic Binning

We propose a scheme in which there are G homogenous
groups with separate sensing matrices and outer factor graphs.
We stress that these groups share the same transmit power,
message length, number of sections, and coding rate; that is,
dg =dp, Wg = Wh, Vg = Up, Lg = Ly, Rg = Ry, for all g, h e
[G]. To emphasize the fact that the groups are homogeneous,
we employ the term bin instead of group.

After the K active users have generated their messages,
every user selects a bin based on the first wg = log,(G) bits
of its information message. We restrict our treatment of this
approach to values of G that are powers of two; other values
of G are possible, but would require slight adjustments to
the proposed algorithm. The distribution of users across bins
{Ky : g € [G]} assumes a multinomial distribution with K
trials and probabilities p, = 1/G for all g € [G]. Fig. 5 depicts
the bin selection and encoding processes.

We stress that the process of assigning active users to bins
must be performed stochastically since there is no a-priori
knowledge on what users are currently active.

Although within the URA common task framework the
total number of active users K is known to the receiver,
the number of users per bin {K, : g € [G]} is unknown.
Rather, this information must be inferred at the destination.
To enable accurate bin occupancy estimation, every active user
simultaneously transmits a length-G standard basis vector e,
where the index of the single unitary entry in e, corresponds to
the bin that the user has selected. Within the URA framework,
the expected total power used per device is upper-bounded
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Fig. 5. This figure illustrates the encoding process for coded demixing with
stochastic binning. Each user’s message is separated into two parts: the first
wo bits are used to select a bin and the remaining (w — wq) bits are encoded
as described in Fig. 1. We note that the choice of bin determines the outer
LDPC code employed as well as the sensing matrix A 4 used for CS encoding.
Because the receiver does not know how many users have selected each bin a
priori, a bin identification sequence must be sent so the distribution of active
users across bins can be estimated.

by nP. Consequently, the power devoted to transmitting the
bin identification sequence must be subtracted from the power
allocated to sending the information message. Numerical sim-
ulations indicate that allocating 0.2 % of the total power to
the bin occupancy estimation task allows for good estimates
{K, : g € [G]} without significantly degrading the PUPE
performance. At the receiver, a standard linear minimum mean
square error (LMMSE) estimator is used to jointly estimate the
number of users per bin {K ¢ © g € [G]}. These estimates are
used throughout the AMP decoding algorithm, as presented in
Section II-A.

After transmitting their bin identification sequences, the
set of active users transmit their encoded messages over
the GMAC. After estimating the number of users per bin,
the AMP-based coded demixing algorithm of Section. II is
employed and Kg + J potential messages are retained within
bin g. At this stage, we point out that wq bits of information are
conveyed per message via the choice of a bin; simply stated,
every user within bin g must have the same first wq bits, which
must equal the binary representation of g. The bin identity can
therefore be leveraged as an additional error-detecting code
and the list of candidate messages within each bin may be
pruned by removing all messages whose first wg bits do not
correspond to g. After removing parity-inconsistent messages
within each bin, the G lists of candidate messages, one for
each bin, are merged into a single list of recovered messages.
The aggregate list is sorted in terms of decreasing likelihood,
and the top K messages from this sorted list are taken as the
K reported messages by the base station. To further improve
performance, one outer loop of SIC may be employed, wherein
approximately 70 % of the recovered messages are retained
during the first round of SIC. After decoding these messages,
their contributions are subtracted from the received vector y,
and the decoding algorithm is run one more time to recover
the remaining 30 % of the messages.

TABLE I
SUMMARY OF SIMULATION PARAMETERS USED TO GENERATE FIG. 6
[ Scheme [G] K JL]w ] n ]
CCS-AMP 1 25-175 16 | 128 | 38400
CCS-AMP 1 | 200-275 | 18 | 128 | 38400
Coded Demixing | 2 25-275 16 | 128 | 38400
Coded Demixing | 8 25-275 16 | 128 | 38400

Remark 4. As will be shown shortly, in some regimes,
increasing the number of bins tends to improve performance.
However, one must tread carefully because AMP is known to
only converge within certain regions in terms of undersam-
pling and sparsity ratios [30]. This depends on the problem
formulation and the denoiser, yet traditional settings offer a
cautionary tale as to what can be accomplished. For our
scheme, the sparsity is equal to EQE[G] KyL/n= KL/n and
the undersampling ratio is given by n/GL2". As the number
bins G is increased, the sparsity level remains constant but the
undersampling ratio goes to zero. This can affect the ability of
AMP to handle noise and, at worst, can cause the operating
point of the system to fall out of the convergence region.

Furthermore, low cross-coherence among {A : g € |G|} is
a critical underlying assumption of the theory of demixing and,
as G increases, the cross-coherence among {A, : g € [G]}
is bound to increase. Thus, there exists an upper bound on G
for which decoding succeeds with high probability. An exact
characterization of such a bound remains an open research
question. Still, these notions provide guiding principles on the
selection of G.

Remark 5. When G = 1, every active user belongs to the
same bin. Thus, under the URA common task framework, K is
known and there is no need to perform occupancy estimation.
In this situation, active users would refrain from sending a
bin identification sequence and would instead employ 100 %
of their power for transmitting their payloads. Under these
modifications, the G = 1 coded demixing scheme reduces to
the CCS-AMP scheme of Amalladinne et al. in [10].

B. Single-Class Simulation Results

We now characterize the performance of a single-class URA
system that employs coded demixing and stochastic binning.
We consider competing implementations with the parameters
summarized in Table I. The power budget P is obtained via
the relationship E,‘* = % and, as discussed in Remark 3, the
sensing matrices {A, : g € [G]} are generated by randomly
sampling the rows of a 2V x 2 Hadamard matrix, excluding
the row of all ones.

Fig. 6 compares the required Ey, /Ny to obtain a PUPE of
0.05 as a function of K for G = 1,2,8. The curve for G = 1
corresponds to the original CCS-AMP scheme presented in
[10]. Fig. 6 empirically reveals that the G = 2 curve uniformly
outperforms CCS-AMP for all K, and that the G = 8 curve
outperforms both CCS-AMP and G = 2 for moderate K (i.e.,
75 < K < 200). However, when G = 8 and K is large, the
performance of the G = 8 curve decays sharply.

There are some nuances to Fig. 6 that need to be considered
when interpreting the results. Recall that, as part of the
decoding process, BP is run on the outer factor graph to
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Fig. 6. Required F},/No for PUPE = 0.05 vs number of active users K for
G = 1,2,8. Under coded demixing, adding bins improves the performance
of the URA system, up to a point (see Remark 4).

disentangle the K users present on that graph. Empirical
results evidence an upper limit on K for which the decoding
process performs arbitrarily well as E, /Ny — o0; in our
case, this upper limit is around 200. Thus, when generating
the CCS-AMP curve, the outer graph has to be extended
to 18 sections for K > 200 in order to obtain a PUPE of
0.05. Furthermore, the extended graph is characterized by a
crossover SNR when compared to the original graph. For the
region of K and Ey /Ny considered in Fig. 6, the extended
graph did not improve the performance of the G = 2 or G = 8
bin curves and, therefore, it was not used for K > 200. The
CCS-AMP curve is displayed, partially, as a dotted line on
this figure to highlight the region where the extended outer
graph is being used. Altogether, the parameter space is vast
and the performance of coded demixing appears to be sensitive
to the choice of parameters. The optimal choice of parameters,
including the optimal design of the outer graph, remains an
open research problem.

Fig. 7 compares the required Ey/Ny to obtain a PUPE
of 0.05 as a function of K for coded demixing to Polyan-
skiy’s random coding benchmark [1], CCS-AMP [10], Sparse
Kronecker-Product coding [11], Sparse IDMA [4], and polar
coding with spreading [6]. When G = 2 and K > 225,
coded demixing outperforms all referenced schemes in terms
of required F},/Np.

C. Performance with K Unknown at Receiver

Throughout this article, we have assumed that the total
number of active devices K is known at the receiver. This
assumption is in line with existing URA literature and allows
for a fair comparison with existing schemes. However, in
many scenarios of practical interest, this assumption is not
properly justified; therefore, we briefly consider the case when
K is unknown a priori and must be estimated. Interestingly,
under minor modifications, coded demixing still performs well
in this alternate scenario. This should not be too surprising
in view of recently published results on URA without side
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—e— SKP Coding [11]
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Fig. 7. This plot shows required E}, /Ng for PUPE = 0.05 vs number of active
users K. The performance of coded demixing with G = 2 is compared to
other URA schemes.

information [35], a study which concludes that the lack of
knowledge in the number of active devices should entail only
a small penalty in power efficiency.

When K is not known at the receiver, the total number
of active devices can be inferred from the bin identification
sequences. Because our proposed LMMSE estimator relies
on K as known parameter, a different estimator should be
employed. To obtain {K ¢ g € [G]}, the receiver may simply
divide the received bin identification sequence by the users’
transmit power and then round the result to the nearest integer.
The estimated total number of active users K is then given by
K = > 9€lC] Kg. The rest of the coded demixing algorithm
proceeds exactly as has been described in this article, albeit
using K instead of K.

When K is unknown, we consider both the probability of
missed detection Pr(MD), defined as the probability of a
user’s message not appearing in W (y), and the probability of
false alarm Pr (FA), defined as the probability of a codeword
appearing in W (y) that does not correspond to a transmitted
message. In contrast, when K is known and used as a
constraint on the size of the output list, Pr(MD) = P,
and Pr(FA) < P.. Fig. 8 shows the performance of coded
demixing when K is unknown at the receiver for G = 2 at the
E}, /Ny values identified in Fig. 6. From this figure, it is clear
that not knowing K incurs only a small performance penalty
in terms of Pr (MD) and Pr (FA). We point out that, despite
the fact that the receiver does not have exact knowledge of K,
the devices themselves implicitly assume that K < 275. If K
were to grow much larger, the code rate would eventually have
to decrease as it did for the CCS-AMP curve in Fig. 6. This
broad assumption about user density is akin to those employed
in cellular systems.

V. CONCLUSION

In this article, a novel signal processing tool called coded
demixing is presented that extends existing notions of convex
demixing and coded compressed sensing (CCS) to enable the
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Fig. 8. This figure showcases the Pr (MD) and Pr (FA) of coded demixing
when G = 2 for the case when K is unknown at the receiver. Transmit
powers are selected to achieve Pr (MD) = 0.05 when K is known, serving
as a performance benchmark. Clearly, not knowing K at the receiver incurs
only a small performance penalty.

joint recovery of very high dimensional signals that are sparse
with respect to separate bases. A pragmatic framework fea-
turing an approximate message passing (AMP) based decoder
is developed that enables all sent signals to be disentangled
and for individual sparsity patterns to be recovered accurately
with low-complexity.

This novel framework may be utilized in a heterogeneous
multi-class URA setting where each class features distinct
power, coding, and data requirements. In such a network,
coded demixing is shown to significantly outperform tradi-
tional techniques such as treating interference as noise and
successive interference cancellation. Somewhat surprisingly,
coded demixing with stochastic binning may also be used to
enhance single-class URA networks. This approach signifi-
cantly improves PUPE performance because the number of
users present on a single bipartite factor graph is dramatically
reduced, which in turns boosts the performance of the BP
decoder. It is shown that increasing the number of bins of users
improves performance, up to a point. When the number of bins
is too large, the operating point of the system may fall out of
AMP’s convergence region and/or the cross-coherence of the
sensing matrices may grow too large for reliable demixing.

Coded demixing has a promising future within URA. Open
research challenges include precisely characterizing the upper
bound on the number of bins that may be employed within
a single-class system and finding an optimal scheme for the
heterogenous multi-class URA setting. Furthermore, incorpo-
rating fading into the proposed framework as well as extending
the framework to accommodate multiple input multiple output
(MIMO) scenarios remain open research directions.

APPENDIX A
DERIVATION OF ONSAGER TERM

In this section, we derive the form of the Onsager term for
the coded demixing algorithm of Section II. Recall that the

dynamic denoiser used within AMP is defined as

nt” (r{")

T’(t) r®Y) — : , (17)

i ()

where the group denoisers are of the form
"I;t)(rg) =8y(1,rg,7t) -+ 8g(Lg,Tg, Tt). (18)

Elements within the denoiser for group g are given by
Sq(l,rg(0),7e) = (S9(qg(l, k), xg(L k), 7)) + k € [27]) (19)
and 3, (¢, 7, 7¢) is the posterior mean estimate (PME) equal to

‘§g (Q7r7 Tt) =

. 2

_ 2 P
o () + (-0 (55)

We emphasize that this denoiser is utilized twice within
the AMP iterate: once during the state update to promote
sparsity, and once during the residual computation as part of
the Onsager correction term. Below, we formally derive the
needed expression for the Onsager term,

z . VA
LD = 5 (D% )l — [Dn ) ) - 21

(20)

)

Before doing so, we first consider the partial derivative of (20),
which is required in the computation of the Onsager term.

Lemma 6 (Adapted from [10], Lemma 7). If the number of
BP iterations on the outer factor graph is strictly less than
the length of its shortest cycle, then the partial derivative of
S4(a(l, k), r(¢, k), 1) with respect to r({, k) is equal to

=8

%ég (Q(& k)’ I‘(f, k)? Tt) (1 - ‘§g (q(év k)a I‘(f, k)7 Tt)) - (22)

=

Proof: For simplicity of notation, we use ¢ = q(¢, k),
r=r(¢,k), and T = 7. Then, we can write

g T) gexp (—%)
Sg\q, 71, T) = P
r—d r
gexp (—%) +(1—q)exp (—5=)
q

- d2—2rdy\
q+(1 —Q)eXP( o g)
Because the number of BP iterations is less than the length of
the shortest cycle, dq/dr = 0. Thus, using the chain rule of
differentiation, we obtain

d?—2rd,
q(1 —q)exp ( e )
2 az—2rd, \\ 2
(q+ (1—g)exp ( s g))
d

= ?gég((b TaT)(l - ég(Qa TaT))-

054(¢q,m,7) d
or T

In this context, g acts as a prior or belief inherited from
neighboring sections. When the number of BP iterations on
the LDPC factor graph is strictly less than the length of its
shortest cycle, the computation of q(¢, k) does not depend on



the value of r(¢, k). This assumption is crucial in obtaining
the expression above, else the partial derivative of q(¢, k) with
respect to r(¢, k) would have to be considered as well. ]

Having established Lemma 6, we are ready to compute the
divergence of the denoiser.

Proposition 7. The divergence of Dy (r) with respect to r

is given by

. 1
divDn®(r) = = (DO (x) | - DO (1)3), 23)

provided that the number of BP iterations on the outer factor
graph is strictly less than the length of the shortest cycle.

Proof: The divergence of D7) (r) may be expressed as

divDn® (r) = Z dgdiv nét)(rg)

Under the assumption that the number of BP iterations on the
outer factor graph is strictly less than the length of the shortest
cycle and using the result of Lemma 6, we get

divDn® (r)
7) (1 = Sgk (rg(£), 7)) -

The above expression may be represented as the sum of GG
inner products,

G
1
leDn(t = Z ﬁ g"lgt)(rg)v dgl — dg’?_g;t)(rg»
g=1"t
‘1
= > 5 (Id2nf) (eo)lls = ldgm) (x0)113)
g=1Tt

Leveraging the short-hand forms

G
> i
ZH%"“) ).

HDWr>!L -
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the divergence of Dn(*)(r) simplifies to

. 1
aivDn ) (r) = = (D7 @) — D (x)3)
i
This completes the proof. [ |
The full Onsager term in (21) follows directly from the
results of Proposition 7.
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