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Abstract

Locusts are significant agricultural pests. Under favorable environmental conditions flight-

less juveniles may aggregate into coherent, aligned swarms referred to as hopper bands.

These bands are often observed as a propagating wave having a dense front with rapidly

decreasing density in the wake. A tantalizing and common observation is that these fronts

slow and steepen in the presence of green vegetation. This suggests the collective motion

of the band is mediated by resource consumption. Our goal is to model and quantify this

effect. We focus on the Australian plague locust, for which excellent field and experimental

data is available. Exploiting the alignment of locusts in hopper bands, we concentrate solely

on the density variation perpendicular to the front. We develop two models in tandem; an

agent-based model that tracks the position of individuals and a partial differential equation

model that describes locust density. In both these models, locust are either stationary (and

feeding) or moving. Resources decrease with feeding. The rate at which locusts transition

between moving and stationary (and vice versa) is enhanced (diminished) by resource

abundance. This effect proves essential to the formation, shape, and speed of locust hopper

bands in our models. From the biological literature we estimate ranges for the ten input

parameters of our models. Sobol sensitivity analysis yields insight into how the band’s col-

lective characteristics vary with changes in the input parameters. By examining 4.4 million

parameter combinations, we identify biologically consistent parameters that reproduce field

observations. We thus demonstrate that resource-dependent behavior can explain the den-

sity distribution observed in locust hopper bands. This work suggests that feeding behaviors

should be an intrinsic part of future modeling efforts.
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Author summary

Locusts aggregate in swarms that threaten agriculture worldwide. Initially these aggrega-

tions form as aligned groups, known as hopper bands, whose individuals alternate

between marching and paused (associated with feeding) states. The Australian plague

locust (for which there are excellent field studies) forms wide crescent-shaped bands with

a high density at the front where locusts slow in uneaten vegetation. The density of locusts

rapidly decreases behind the front where the majority of food has been consumed. Most

models of collective behavior focus on social interactions as the key organizing principle.

We demonstrate that the formation of locust bands may be driven by resource consump-

tion. Our first model treats each locust as an individual agent with probabilistic rules gov-

erning motion and feeding. Our second model describes locust density with deterministic

differential equations. We use biological observations of individual behavior and collective

band shape to identify numerical values for the model parameters and conduct a sensitiv-

ity analysis of outcomes to parameter changes. Our models are capable of reproducing the

characteristics observed in the field. Moreover, they provide insight into how resource

availability influences collective locust behavior that may eventually aid in disrupting the

formation of locust bands, mitigating agricultural losses.

Introduction

Locusts are a significant agricultural pest in parts of Africa, Asia, Central and South America,

and Australia. They aggregate in large groups with as many as billions of individuals that move

collectively, consuming large quantities of vegetation [1, 2]. Collective movement occurs in

both nymphal and adult stages of development and is associated with an epigenetic phase

change from a solitary to a gregarious social state which is mediated by conspecific density and

abiotic factors [1, 3–6]. Flightless nymphs march along the ground in aligned groups, often

through agricultural systems where they cause significant crop damage as they feed and

advance [4, 7, 8]. Some species, such as the brown locust Locustana pardalina, form intertwin-

ing streams of relatively homogeneous density [1, 2, 8]. By contrast the Australian plague

locusts Chortoicetes terminifera form wide, crescent-shaped bands that contain a high density

in front and a rapidly decreasing density behind [4, 9, 10]. Clark [4] notes:

The structure of bands varies according to the type of pasture through which they are passing.
In areas of low cover containing plenty of green feed, bands develop well-marked fronts in
which the majority of hoppers may be concentrated. In areas lacking green feed, bands lose
their dense fronts and extend to form long streams, frequently exhibiting marked differences
in density throughout.

As bands of C. terminifera move through a field of low pasture, they create a sharp transition

from undamaged vegetation in front of the band to significant defoliation immediately behind

the band, see a schematic in Fig 1 or aerial photographs such as Figure 2 in [10], Figure 1 in

[11], Figure 9 in [12], and multiple images in [13]. In natural systems, C. terminifera tend to

consume one of several species of grasses; in agricultural systems, they tend to eat primarily

pasture and sometimes early stage winter cereals [14].

The Australian plague locust C. terminifera is the most common locust species on the Aus-

tralian continent. For ease, we henceforth refer to C. terminifera simply as “locust”. Outbreaks

of locust nymphs emerge as the result of a pattern of rainfall, vegetation growth, and drought
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[11, 15] which promotes breeding, hatching, crowding, and gregarization [3]. Gregarious

nymphs form hopper bands of aligned individuals, which march distances from tens to hun-

dreds of meters in a single day [4]. Locusts proceed through five nymphal stages, called instars,
with marching behavior beginning during the second instar [4]. Throughout these phases of

life, hoppers consume large quantities of green biomass with an individual eating one third to

one half of its body weight per day [14]. Approximately four weeks after eggs hatch, locusts

reach adulthood and are then capable of forming even more destructive and highly mobile fly-

ing swarms [16].

This study focuses on collective marching in hopper bands, which dominates the behavior

of gregarious locust nymphs in the third and fourth instars. Temperature and sunlight dictate

a daily cycle of behavior with basking in the morning, roosting at midday, and active periods

of collective marching and feeding for up to nine hours when temperatures are in an optimal

range (* 25˚C) [10]. During these periods of collective marching, individuals crawl and hop

across the ground in nearly the same direction as their neighbors, due to social interactions

[17, 18]. When individuals at the front of a band encounter available food resources, they stop

and feed (see [4, 10] for qualitative observations and [19] for quantitative experimental

results). Immediately after feeding, locusts exhibit a post-prandial quiescent period whose

duration increases with the amount consumed [19–21]. Locusts farther back in the band may

continue to move forward, eventually passing those that stopped. This creates a “leap-frog-

ging” type motion with a cycling of individuals in the dense front of the band. Clark [4]

describes this behavior:

Those hoppers behind the front were in places which had been partly or wholly eaten out, and
thus lacked the same stimulus of food to stop them. As their average rate of progress was

Fig 1. Schematic of a traveling pulse of locusts. The Australian plague locust forms broad hopper bands that propagate through

vegetation in the direction perpendicular to the aggregate structure [4, 9, 10]. The cross-sectional density profile is a traveling pulse, with

a steep leading edge (right) and shallower decay behind (left) that is roughly exponentially decreasing in density [9]. Aerial photographs,

for instance Figure 2 in [10], show a notable contrast between the verdant green of the unperturbed crops in front of the band and the

lifeless brown in the pulse’s wake. The one meter wide strip above represents the dimensions we use to model locust movement in a

single dimension, as described below.

https://doi.org/10.1371/journal.pcbi.1007820.g001
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greater than that of the hoppers in the front, they tended to overtake them, becoming in turn
slowed down in their progress by the presence of food.

Thus, individual motion during marching depends on individuals stopping to feed and conse-

quently on local resource density. We hypothesize that this effect mediates the coherence and

persistence of hopper bands with a dense front [4, 10] as well as the characteristic cross-sec-

tional density distribution documented in [9].

To test our hypothesis we conduct an in-depth modeling study concentrating on the inter-

action of pause-and-go motion with food resources. We assume that hoppers march in an

aligned band through a field of finite resources, which is depleted as the locusts stop to feed.

We develop a model for the probability of movement or stopping as a function of resource

availability. We construct and analyze in tandem an agent-based model (ABM), which tracks

individual locusts, and a partial differential equation (PDE) model, which considers mean-

field densities. Both models produce traveling pulse type solutions that are consistent with the

detailed field observations of Buhl et al [9]. The ABM is easily simulated, allows us to track

individuals within the swarm, and captures the natural stochasticity of a biological process. In

contrast, the PDE produces smooth solutions and lends itself to analysis and a detailed charac-

terization of how observable outcomes, such as mean band speed, cross-sectional density pro-

file, and density of resources left unconsumed in the wake, are related to the model’s

parameters.

Previous modeling efforts have considered both agent-based and continuous models, see

[1] for an excellent overview of locust models. The majority of these have focused on social

behavior—notably alignment, attraction, and repulsion with respect to conspecifics [18, 22–

27]. Many of the agent-based models consider the pause-and-go behavior of locusts [18, 26,

27], and other insects [28]. Continuous models have been used to study transitions between

stationary and moving states [29, 30] and gregarization [31]. Foraging has been modeled in an

agent-based framework [32] and resource distribution effects on peak density has been posed

as an energy minimization problem [33]. Other continuous models explicitly include food

resources having animal movement depend on a combination of aggregation and gradient

sensing (chemotaxis in many, starting with [34], or “herbivory-taxis” in [35, 36], for instance).

These studies find that traveling animal bands are the result of a balance between attraction to

food and inter-animal dispersal, bearing some qualitative resemblance to the results presented

here. However, locusts in the present model do not sense resource gradients (instead, direction

is prescribed implicitly by social alignment) and the corresponding mathematical equations

are distinct from the well-studied equations of chemotaxis.

We are aware of no models of locust band movement that incorporate foraging behavior or

food resources. Previous studies such as [23, 27] suggest that the formation of sharp asymmet-

ric fronts may be explained solely by social forces. By contrast, our main conclusion is that for-

aging and resource-mediated stationary/moving transitions produce pulse-shaped density

profiles, supporting the observations of hopper bands with dense fronts and the inferences on

foraging of Clark [4] and Hunter et al. [10]. A further strength of our model is that it quantita-

tively reproduces the observed density profiles of [9] from biologically realistic parameters.

In Models and methods we construct our two models beginning with biological and simpli-

fying assumptions, and ending with parameter identification from empirical field data in

Table 2. Our Results describe how both models produce a traveling pulse in locust density pre-

cisely when the locusts’ stationary/moving transitions are dependent upon the amount of

nearby resources. Evidence consists of numerical simulations for the ABM, mathematical trav-

eling wave analysis for the PDE, and a robust sensitivity analysis of the models to changes in

the input parameters. In our Discussion we revisit our main findings and outline extensions of
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this work incorporating more biological complexity. S1, S2 and S3 Appendices each contain

mathematical analysis and proofs substantiating results for the PDE. Finally, S1 Video shows a

typical simulation of our agent-based model.

Models and methods

Basic assumptions

We outline our assumptions for the modeling framework. Our models are minimal in the sense

that we include only the effects necessary to investigate the main question: Can resource-depen-
dent locust behavior drive the formation of a dense front and the propagation of hopper bands?

• We assume that resources (food) can only decrease, since locusts feed much more quickly

than vegetation grows. Moreover, resources are identical so that they can be characterized by

a single variable. Prior to locust arrival, we assume available resources have a spatially uni-

form density.

• We model only the part of the daily cycle dominated by collective movement. During a typical

day, a hopper band has one or two periods of collective movement (marching) totaling up to

nine hours. The remainder of the day is spent resting (basking and roosting) [1, 4, 8–10].

• We assume hopper bands consist of flightless nymphs that are behaviorally identical in all

regards. Bands often include a mix of two instars (e.g. II and III instars or III and IV instars)

which behave qualitatively similarly with later instars being larger, eating more, and moving

more quickly.

• We assume individuals move parallel to one another, creating a constant direction of move-

ment for the entire band. Locusts are known to align their direction of movement with their

nearest neighbors and may align with environmental cues such as wind or the location of the

sun [2, 4, 8].

• We model behavior in a narrow strip aligned to the direction of movement, as shown in Fig 1.

For dimensional consistency of the model, we assume the transverse width to be 1 meter.

• We assume that each individual is either stationary or moving. Further, only stationary

locusts feed while moving locusts propagate forward with a constant speed that represents

an average of crawling and hopping.

• We assume that locusts feed continuously when they are stationary. In fact, locusts eat a

meal and then remain sedentary during a post-prandial period [19–21]. While biologically

different, these processes are mathematically analogous and we believe including such a

delay in the model is unlikely to significantly alter our results.

Furthermore, we make additional assumptions on the rate of transitions between moving

and stationary that are supported by empirical observation, although they combine and sim-

plify multiple locust behaviors.

• We assume that locusts transition back and forth between stationary and moving states at a

rate depending solely on the resources nearby.

Notably, we have not included any explicit social interaction between locusts; interaction is

mediated solely through the consumption of resources. Social interaction plays a well-docu-

ment role in the aggregation, alignment, and marching of hopper bands, see [1] for instance.

By modeling one spatial dimension only, we implicitly include the social tendency of locusts to

PLOS COMPUTATIONAL BIOLOGY Foraging mediates formation and geometry of locust hopper bands

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007820 May 4, 2020 5 / 29

https://doi.org/10.1371/journal.pcbi.1007820


align their direction of motion with neighbors as demonstrated in [17]. We do not focus on

social interactions simply because our primary goal is to investigate the effect of linking

resource consumption with pause-and-go motion on hopper band morphologies.

• We assume the transition rate from moving to stationary is positive and increases as the

resource density increases.

Field observations [4, 10] and laboratory experiments [19] have shown that individuals stop

marching to eat when they encounter resources in their path. While we assume resources have

a uniform local density, the reality on the ground is that a locust is more likely to encounter an

edible plant, and thus stop to feed, when the resource density is high.

• We assume the transition rate from stationary to moving is positive and decreasing with

resource density.

This behavior is consistent with foraging theories, such as the simple mechanisms illus-

trated in [37] where insects are likely to leave a patch of resources before the point of diminish-

ing returns. The Marginal Value Theorem [38] quantifies this behavior: if an energy cost

assigned to foraging is proportional to resource density, then when local resource densities

drop below a critical level it costs less energy per unit resource to move on in search of higher

density resources. Additionally, there is a second, more subtle behavior behind this assump-

tion. Locusts that become stationary are assumed to have consumed resources. After feeding,

locusts exhibit a post-prandial period of inactivity which extends in proportion with the

amount consumed [19–21]. Our assumption about this transition rate reflects a longer period

of inactivity when resources are plentiful and larger amounts are therefore consumed.

Foreshadowing our results, only one of these two transition rates must depend strictly on

local resource availability for our model to produce coherent traveling pulse-type density pro-

files akin to observed hopper bands with dense fronts.

• These transition processes are completely memoryless, which implies that locusts experience

neither hunger nor satiation.

The biological reality is that feeding behavior is complex, see [39] for a review. Locust hun-

ger has been well documented in other species [19, 40]. Since, in our model, locusts are travel-

ing through a field of relatively plentiful resources we suggest that most locusts do not

experience starvation (i.e. no sustenance for 24 hours as in some experiments).

We remind the reader that our goal in this study is to demonstrate that resource-dependent

behavior is sufficient for the formation and propagation of hopper bands with a coherent

dense front. We acknowledge that the efficacy of this model may be improved by adding social

interactions—such as alignment, attraction, and repulsion. Additionally, we believe these addi-

tions, particularly that of alignment, would play a pivotal role when modeling locust behavior

in two-dimensions, as in [23, 27].

General model formulation

Within the framework described above, we build two models: an agent-based model (ABM)

which tracks individual locusts and a partial differential equation model (PDE) that deter-

mines locust density. These models share much in their basic structure. Table 1 compares their

independent and state variables and Table 2 lists their common model parameters.
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In the ABM, space and time lie on a discrete, evenly spaced lattice (xn, tm) while in the PDE

space and time (x, t) are continuous. In both models, S and M denote the number or density of

stationary and moving locusts respectively. For the ABM, the number of stationary (moving)

locusts at xn,tm is denoted Sn,m (Mn,m). For the PDE, the analogous continuous quantities for

the density of locusts are S(x, t) and M(x, t).
Resources edible by locusts are measured by the non-negative scalar density variable R; spe-

cifically, the resource density in the agent-based model is Rn,m, and the resource density in the

continuous model is R(x, t).
We assume that the group rate of feeding is proportional to the product of the stationary

locust density and the resource density; that is,

ðrate of change of resources at a given locationÞ ¼ � lSR ð1Þ

where λ is a positive rate constant that describes how quickly individual locusts consume

resources. This implies that an individual locust’s foraging efficiency decreases as resources

become scarcer at their location. This is not an explicit implementation of the Marginal Value

Theorem but fits the general concept of foraging efficiency within a patch decreasing due to

searching time, not satiation by the forager [38]: as the resources at a location are eaten, locusts

have difficulty locating the next unit to consume, reducing the overall rate of resource con-

sumption at that location. We will refer to λ as the foraging rate, as it reflects both feeding and

foraging efficiency.

We model the stationary-moving transitions as a Markov (memoryless) process. For the

PDE model, this yields a rate at which the population of stationary locusts transitions to mov-

ing, and vice versa. This assumption ignores the transition history and hunger (as discussed

above) of any individual locust, which is justifiable on the timescale of the collective motion

Table 1. Independent and dependent variables appearing in the agent-based and partial differential equation models. Units are L = length [meters], T = time [sec-

onds], C = number of locusts, P = locust density [number/(meter)2], and Q = resource density [grams/(meter)2].

Agent-Based

Model

Units Continuous

Model

Units Description

xn L x L position (along direction of motion)

tm T t T time

Sn,m C S(x, t) P number/density of stationary locusts

Mn,m C M(x, t) P number/density of moving locusts

Rn,m Q R(x, t) Q edible resource density

https://doi.org/10.1371/journal.pcbi.1007820.t001

Table 2. Estimates of biological parameters for both models. Parameters above the horizontal line are estimated from empirical observations, with explanations in text.

Parameters below the horizontal are estimated from collective information and model behavior. Units are L = length [meters], T = time [seconds], C = number of locusts,

P = locust density [number/(meter)2], and Q = resource density [grams/(meter)2].

Description Units Min Max Example Source

N total number locusts in strip C/L 5000 30000 7000 [9]

R+ resource density in front of band Q 120 250 200 [44]

v individual marching speed L/T 0.003 0.1 0.04 [27, 45]

α S ! M transition rate for R = 0 1/T η 1 0.0045 [27]

β M ! S transition rate for R = 0 1/T 0.01 θ 0.02 [26]

η S ! M transition rate, large R 1/T 0 α 0.0036

θ M ! S transition rate, large R 1/T β 12.5 0.14

γ exponent of S ! M transition 1/Q 0.0004 0.08 0.03

δ exponent of M ! S transition 1/Q 0.0004 0.08 0.005

λ individual foraging rate 1/TP 10−10 10−4 10−5 [46]

https://doi.org/10.1371/journal.pcbi.1007820.t002
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(hours). We use exponentially saturating functions of resources as illustrated in Fig 2. The sta-

tionary to moving rate is denoted ksm while the moving to stationary rate is called kms. Specifi-

cally,

ksmðRÞ ¼ Z � ðZ � aÞe� gR; kmsðRÞ ¼ y � ðy � bÞe� dR; ð2Þ

where γ, δ> 0, 0 � β� θ, and 0< η� α. The conditions on the parameters guarantee that

ksm(R) is a decreasing function and kms(R) is an increasing function of R. (Most of the analyti-

cal results concerning the PDE model hold for any choice of monotone switching rates—see

S2 Appendix for details).

This functional form derives from the assumption that the transition rate’s sensitivity to

changes in resources is proportional to the resource availability [38]. Biologically, this implies

that when encountering excess resources, there will be a high proportion of stationary locusts,

and doubling the excess resources will do little to change the proportion of stationary locusts.

Similarly, when resources are scarce, locusts are most likely to transition from stationary to

moving and least likely to stop. Mathematically, this functional form preserves the positivity of

the transition rates and means that the transition rates are constant in the limit of abundant

resources.

In the PDE model, the transition rates ksm, kms appear as coefficients in growth and decay

terms in the differential equations. In the ABM we use a stochastic version of these transitions.

At each time step, locusts switch from stationary to moving via a transition probability psm and

from moving to stationary via pms, both of which are functions of Rn,m. The smooth transition

rates kms and ksm can be understood to be derived from these probabilities as the time step Δt
approaches zero. Assuming Δt is small yields the following approximations,

psmðRn;mÞ � ksmðRn;mÞDt; pmsðRn;mÞ � kmsðRn;mÞDt: ð3Þ

Fig 2. Transition rates for stationary to moving ksm (gold) and moving to stationary kms (purple) with α = 0.12, β
= 0.02, γ = 0.03, δ = 0.015, η = 0.005, and θ = 0.14.

https://doi.org/10.1371/journal.pcbi.1007820.g002
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This is equivalent to assuming that each locust undergoes only a single transition in any given

time step. Biologically, these transition probabilities can be estimated from intermittent

motion observed in the laboratory [26, 41] or the field [18, 27]. These observations suggest that

transitions occur on a timescale of a few second. Additionally locusts also exhibit a post-pran-

dial quiescence which may last several minutes, particularly after a large meal [19–21]. These

timescales are much shorter than the period of collective marching (hours) which justifies our

original approximation that the process is Markovian (memoryless).

Agent-Based Model (ABM): Pause-and-go motion on a space-time grid

We now describe the details and implementation of our agent-based model (ABM) which

encodes the behavior of each individual locust. The temporal evolution of the ABM may be

thought of as a probabilistic cellular automaton. The model is one dimensional in space, repre-

senting a 1-meter-wide cross section of the locust hopper band.

Our ABM tracks the position of each locust, their states (stationary or moving), and the spa-

tial availability of resources (food). Locust position and the spatial distribution of resources are

confined to a discrete lattice of points given by xn = nΔx and time tm = mΔt, for n;m 2 N. We

fix Δx = vΔt so that a moving locust moves forward one step on the lattice per each time step.

Let Xi(tm) be the position of the ith locust at time tm. Let σi(tm) be a binary state variable

where σi = 1 when the locust is moving and 0 otherwise. The motion of the locusts can now be

expressed succinctly as

Xiðtmþ1Þ ¼ XiðtmÞ þ siðtmÞvDt ¼ XiðtmÞ þ siðtmÞDx; ð4Þ

where we have applied the value of the state variable at tm throughout the interval of length Δt.
Note this artifice ensures that the values Xi remain on the lattice for all time tm.

We model transitions between stationary and moving states with a discrete-time Markov

process given via the probabilities in Eq (3). Thus, at time tm, each locust at position xn has a

probability psm(Rn,m) to switch from stationary σi = 0 to moving σi = 1 or a probability pms(Rn,

m) to switch from moving to stationary.

We define the histogram variables mentioned above by simply counting the number of

locusts in each state at each space-time grid point:

Mn;m ¼
X

XnðtmÞsnðtmÞ ¼ # of moving ðsi ¼ 1Þ locusts at ðxn; tmÞ ð5Þ

Sn;m ¼
X

XnðtmÞð1 � snðtmÞÞ ¼ # of stationary ðsi ¼ 0Þ locusts at ðxn; tmÞ: ð6Þ

We model the resources with a scalar variable Rn,m which is defined as available food, mea-

sured in grams, at time tm in the interval of width Δx centered at xn. Following Eq (1) and con-

verting Sn,m to a density, we have

dRn;m

dt
¼ � l

Sn;m
Dx

Rn;m: ð7Þ

Solving Eq (7) (assuming Sn,m is constant between tm and tm+1) yields

Rn;mþ1 ¼ Rn;me
� lSn;mDt

Dx: ð8Þ

Biologically, this evolution implies that the resources in a patch of vegetation infested by a

group of stationary, feeding locusts will decrease by approximately half in an amount of time

inversely proportional to λ times the number of locusts in the patch. That is, the half-life of
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resources in the patch is ln(2)Δx/(λ � # locusts). We initialize each simulation with Rn,1 = R+,

indicating an initially constant field of resources.

Together with initial conditions, Eqs (3), (4) and (8) specify the evolution completely. Our

agent-based model then takes the form of three sequential, repeating steps for each locust

agent:

1. Update state S or M according to the Markov process.

2. If in state M, move to the right Δx.

3. If in state S, decrease resources in current location.

Each locust performs each of these steps simultaneously with all other locusts, and resources

in each location are also updated simultaneously according to Eq (8).

PDE model: A conservation law for locusts

We construct a continuous-time, mean-field model for the density of locusts. As outlined in

General model formulation, we write a continuous function of space and time R(x, t) for the

density of available resources. Similarly, we write S(x, t) and M(x, t) for the density of station-

ary and moving locusts, respectively. See Table 1 for comparison with the variables of the

agent-based model.

These densities are governed by the partial differential equations

Rt ¼ � lSR

St ¼ � ksmS þ kmsM x 2 R; t 2 ½0;1Þ;

Mt ¼ ksmS � kmsM � vMx

ð9Þ

which describe the feeding, switching, and movement behaviors on the scale of the aggregate

band. The rate of decrease of R is proportional to the density of stationary locusts and available

resources as established in General model formulation. The constant of proportionality is

given by the foraging rate λ. As in the ABM, locust foraging efficiency decreases as resources

decrease. Note that the food R is decreasing in time at each spatial point x. The rate of change

of S is determined wholly by the switching behavior. Here, the decrease of S represents the

switching of locusts from stationary to moving with a rate dependent on R through ksm(R).

Similarly, S increases as locusts switch from moving to stationary with rate kms(R). See Eq (2)

for the functional forms of ksm, kms. The same terms with opposite signs contribute to changes

in M. The term vMx in the equation for M represents the marching of moving locusts to the

right with the individual speed v. This spatial derivative makes the third equation into a stan-

dard transport equation. A full list of all parameters appears in Table 2.

We consider initial conditions with resources that are a positive constant R+ for large x; that

is, R(x, 0) has limx!1 R(x, 0) = R+. We assume initial locust densities S(x, 0), M(x, 0) are non-

negative and smooth (continuous with continuous derivative). For biologically reasonable

choices of such initial conditions, all solutions are guaranteed to remain non-negative, contin-

uous, and finite by standard quasilinear hyperbolic PDE [42].

Finally, since the switching terms are of opposite signs in the S and M equations, we have

mathematically guaranteed a conservation law. In particular, the total number of locusts in our

1-meter cross section N ¼
R1

� 1
ðS þ MÞ dx is conserved.

Numerical simulations. For direct numerical simulations of the PDE, we use a 4th-order

Runge-Kutta method for the temporal derivative with step dt. By choosing dx = v�dt we

approximate the spatial derivative by a simple shift of the discretized M on the spatial grid.
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This is equivalent to a first-order upwind scheme because

Mðxn; tmþ1Þ � Mðxn; tmÞ
dt ¼ � vMðxn; tmÞ � Mðxn� 1; tmÞ

dx ) Mðxn; tmþ1Þ ¼ Mðxn� 1; tmÞ:

For additional accuracy, we implement these schemes using a split-step method, as in [43] for

instance. All simulations of the PDE used Matlab.

Parameter identification

We identify a range of values for biological parameters from a variety of sources including

research papers, Australian government guides and reports (particularly the Australian Plague

Locust Commission), and agricultural organizations. A list of input parameters and ranges can

be found in Table 2. A list of observable outcomes can be found in Table 3.

Input parameters.

Empirical estimates. We estimate five parameters directly from empirical observations: the

total number of locusts N in the cross section, the initial resource density R+, the speed v of an

individual locust, and the two switching rates when no resources are present ksm(R = 0),

kms(0). We provide ranges for these parameters in the first five rows of Table 2.

The total number of locusts N in our model is the number of locusts in a 1-meter cross sec-

tion as shown in Fig 1. We rely on Buhl et al [9] to estimate N. In Figure 1 of [9], the authors

present three profiles of locust density computed by counting locusts in frames of video of a

marching locust band taken during field experiments. The authors fit exponential curves to

these data, see Figure 2 in [9], which yield exponential rates of decay of density in time. We use

these rates to estimate the area under the density profiles by integrating a corresponding expo-

nential function. This provides three estimates for the total number of locusts who passed

under the camera, which range from 9300 to 15000. Rather than a precise measurement, we

consider this an estimate and acknowledge that it may be improved by more direct analysis of

the underlying data in [9]. We believe it does capture the correct order of magnitude and so

include only a modestly larger range in our table.

Typical resource densities R+ come from Meat and Livestock Australia [44]. This resource

indicates that pasture with vegetation between 4 − 10cm high is desirable for livestock grazing.

It also converts this range to a vegetation density measured in units of kilograms green Dry

Matter per hectare. (Note that this measure discounts the mass of water in the vegetation,

sometime up to 80%. While locusts typically feed on live non-dry vegetation, its water content

does not provide energy or nutrients. As a result our variable R reflects not the harvestable

greenery but instead represents the locust-edible resources.) We convert units and arrive at the

range given in our table.

We obtained the speed v of an individual marching locust from experimental measure-

ments in [45] and field data reported in [27]. The experiments were conducted with the desert

Table 3. Collective observables with ranges based on field research. Units are L = length [meters], T = time [seconds], C = number of locusts, P = locust density [num-

ber/(meter)2], and Q = resource density [grams/(meter)2]. Note that skewness (S) is nondimensional.

Symbol Description Units Min Max Example Output Citation

c speed of collective band L/T 0.0005 0.009 0.0053 [4, 10]

R− remaining resource density Q 0 100 0.002 [44]

P maximum locust density P 950 4280 1296 [9, 10, 47]

W threshold width of profile L 30 500 18.6 [9, 10, 47]

S skewness of locust profile 1 1 2 1.78 [9]

https://doi.org/10.1371/journal.pcbi.1007820.t003

PLOS COMPUTATIONAL BIOLOGY Foraging mediates formation and geometry of locust hopper bands

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007820 May 4, 2020 11 / 29

https://doi.org/10.1371/journal.pcbi.1007820.t003
https://doi.org/10.1371/journal.pcbi.1007820


locust, Schistocerca gregaria, and results in a range of 0.0339 − 0.0532 m/sec. This range con-

tains the estimate from field data for the Australian plague locust collected by Buhl and and

reported by Bach [27]. The latter source also provides a second (higher) estimate that accounts

for hopping, a common behavior of the Australian plague locust. Buhl’s observations also

show an increase in an individual’s speed (averaged over crawling and hopping) with increas-

ing temperature. Our range in Table 2 spans all of these estimates. Most other recorded obser-

vations of speed represent collective information—the speed of the aggregate band—which we

discuss in the subsection Collective observables—model outcomes. below.

Constants α and β represent the proportion of locusts that switch from stationary to moving

(and vice versa) on bare ground, R � 0. One laboratory study [26] with S. gregaria provides

data from which we draw out a single estimate for β as follows. The authors record the proba-

bility of these transitions in a laboratory area with no food present. They construct probability

distributions (depending on time) for these transitions and fit curves to these distributions, see

Figure 1 in [26]. They find an exponential best fit for the probability that a locust transitions

from moving to stationary. The exponential rate represents a reasonable value for β, so we

gather that β� 0.368 sec-1. We use this estimate to set a minimum value of 0.01< β and pro-

vide an upper limit below. The same source does not provide an estimate for α because the

authors find that the probability distribution for stationary to moving transitions is best

described by a power law.

Instead, for α we rely on the field data of Buhl appearing in [27] for C. terminifera. A similar

procedure as above yields an estimate of α� 0.56 sec-1. We use this to set a maximal value of 1

> α and provide a lower limit below. In using ranges for α and β, we aim to allow for natural

variation between the two species for which there is data.

Additional parameters. The parameters below the horizontal line in Table 2 do not all have

readily available estimates in the literature; likely because the individual information encoded

in these parameters is difficult to measure empirically amid the chaos of the swarm. We discuss

the effects each in our Parameter sensitivity analysis.

Constants η and θ represent the proportion of locusts that begin/restart or stop marching

in a resource-rich environment, R � R+. To empirically measure these would require a detailed

examination of locusts marching in natural plant cover. We are not aware of a situation where

such a study of marching has been conducted in a setting with abundant food.

To choose a range for η we rely on our biological assumption that a locust is more likely to

begin moving when there are fewer resources nearby; that is, η< α. (In our Parameter sensitiv-

ity analysis, this results in the bound η/α< 1.) This assumption provides a lower bound for α
and an upper bound for η. We choose 0 as a lower bound for η, since it seems conceivable that

a hungry locust might be satisfied to remain near food indefinitely. The converse biological

assumption, that a locust is less likely to stop moving when there are fewer resources nearby,

leads us to conclude that β< θ. (In our sensitivity analysis of, this results in the bound 1< θ/

β.) This provides our upper limit for β and our lower bound for θ. We choose our upper limit

for θ to be significantly larger than η, the comparable transition rate with nearby food. This

encodes an assumption that the attraction of nearby food is stronger than its absence. Note

that these bounds are contained in the conditions we listed after introducing ksm, kms in Eq (2).

Namely, these choices force the transition rates to be decreasing and increasing respectively.

The parameters γ and δ determine how sharply the transition rates ksm(R) and kms(R)

depend on resources R. Specifically, they are the rate of exponential decrease and increase,

respectively. One of our primary claims is that γ and δmust be positive, otherwise the transi-

tion rates ksm and kms would be constant. More specifically, one may deduce that γ, δ should be

of the same magnitude as 1/R+, since the functions ksm(R) and kms(R) are defined on the
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interval [0, R+]. Using our range of R+ values above, we obtain the ranges appearing in the

table for γ and δ.

The individual foraging rate λ is difficult to estimate for two reasons. First, it represents an

instantaneous rate of change while most data on locust consumption is averaged over days or

weeks, as in [47]. We found finer measurements of feeding in [46], where rates are averaged

over ten-minute intervals. After unit conversions, we estimated a range of consumption rates

on the order of 10−8 − 10−6 grams/(locust�sec). However, these rates are measured in a labora-

tory setting where locusts are provided with abundant resources to feed. This highlights a sec-

ond difficulty in estimating λ; the lab data does not account for search times and so may

represents a “consumption rate” rather than a foraging rate. To explain, recall that our ABM

places a locust at a grid point which represents a rectangle of physical space with dimensions

Δx × 1 m2. A locust may need to move within this small rectangle to find an individual plant

suitable for feeding. Since we track only the resource density in that local rectangle, this search

time is simply accounted for in the foraging rate. Other factors such as digestion times and the

post-prandial rest period complicate the matter further. With such persistent uncertainty, we

allow a large range for λ and explore it thoroughly in our Parameter sensitivity analysis.

Example values. Throughout the remainder of the text we illustrate our results using the set

of example parameter values appearing in the second column from the right in Table 2. These

values produce in both models a density profile consistent with observed locust bands. We

selected these values using insight gleaned from our parameter sensitivity analysis, for details

see the end of our Parameter sensitivity analysis.

Collective observables—Model outcomes. We consider five measures of collective

behavior. Table 3 provides an empirical range for each, estimated in the following paragraphs

from data in the literature.

We approximated the collective speed c of the band from observations in [4, 10]. Authors

of [10] observed that bands moved between 36 − 92 meters per day (in “green grass”). Table 4

in [10] estimates the times of day during which marching was observed, with a range of 3 to 7

total hours per day. We computed averages over these time intervals and converted units to

obtain a range. In Clark [4], bands of locusts were observed for periods of an hour during daily

marching and reports a range of average band speeds overlapping with the range computed

above. Our Table 2 shows the union of all three ranges with rounding. Measuring this observ-

able in our models is straightforward. In simulations of either the ABM or PDE we compute

the mean position (or center of mass) of the locust band. Tracking the speed of the center of

mass gives us the mean speed of the band. Additionally, analysis of the PDE model yields an

explicit formula of for c with no need for simulations, details in Theoretical results for the

PDE: Hopper bands as traveling waves.

The density of locust-edible food resources left behind by a band R− does not appear to be

well studied. Wright [47] makes a careful study of leftover grain fit for human consumption;

however, data are reported after threshing and processing and does not describe the amount of

remaining green matter edible by locusts. An alternative approach to understanding R− could

be to use [44] which suggests that a low range of green dry matter in pastures is 40 − 100

grams per square meter. This low range of green dry matter inhibits vegetation regrowth,

increases erosion hazards, and is insufficient for grazing livestock. We emphasize that there is

no data suggesting that a marching locust band leaves a field with leftover vegetation in this

range. In particular, this provides us with an upper range only since some of the vegetation left

behind may be inedible, even for voracious locusts. Thus we arrive at a lower bound of zero for

R−. To measure the resources left behind in our models, we take a spatial average over the part

of our domain to the left of the band of locusts.
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The maximum locust density P = max(S+ M) in a band is taken from Table 1 in [10]. We

used the range of estimates observed for III and IV instars. This range is in line with the data

of [47] who estimated a maximum density of 4000 locusts per square meter. In [9], the authors

observed maximum densities ranging from 600 − 1200 locusts per square meter. We expect

that these densities lie in (and just out of) the lower end of our range because the studies of [9]

were conducted on bare ground with no vegetation while, typically, locusts aggregate into

denser bands in lush vegetation, as observed in [4] for instance. The maximum density of a

band in our models is measured simply by adding the components S and M and taking the

maximal value.

The width W of the band, measured parallel to the direction of motion, is taken primarily

from Hunter et al [10]. Hunter et al measured the widths of bands by walking from the front

into the band until “marching was no longer seen”. Estimates from other sources fall in line

with part of the range found in Hunter. For instance, 30 − 140 meters in [47] or 50 − 200

meters in [9]. We attribute the large range of band widths in [10] to the fact that these observa-

tions come from bands with a variety of sizes, as can also be seen by the large range for maxi-

mum densities in the same data set.

Measuring band width W in our model is not entirely straightforward as we cannot simply

observe where “marching [is] no longer seen”, as in [10]. Marching refers to a consistent

movement of locusts with a preferred direction determined by alignment with their nearby

neighbors. Since our models assume that locusts are always highly aligned, we rely on the

locust density to determine where marching occurs. Experimental data and modeling work in

[17] suggest that locusts in a group with a density greater than 20 locusts per square meter are

likely to be highly aligned. We thus take W to be the length of the spatial interval where our

density profile measures above the threshold of 20 locusts/m2.

This threshold definition of width W is biological and observable but it is not a good quan-

titative measure of the shape of a density distribution. For instance, consider a distribution

with a maximum density less than the threshold density. This distribution will always measure

W = 0 regardless of if it is very wide with a large total mass or if it is narrow with a much

smaller mass. In other words, W does not scale with the total number of locusts in our band.

We therefore introduce a second notion of width for use in comparing the shapes of bands

with different total masses. A natural choice is the standard deviation of locust positions. We

denote our standard deviation width by Wσ and use it particularly in our Parameter sensitivity

analysis. Unfortunately, there is no general correspondence between our two notions of width

W and Wσ. Even for a fixed mass, one can construct distributions with different shapes and

broad ranges of Wσ while keeping W constant. For a given parameter set and varying mass we

do compute W and make some a posteriori comparisons below.

The skewness S of a distribution is the third central moment (nondimensionalized by W3
s
)

and measures the distribution’s symmetry about its mean. When S = 0 the distribution is sym-

metric while S> 0 suggests the distribution is leaning to the right with a longer tail on the left.

(We acknowledge that this is the opposite of the standard convention.) Any exponential distri-

bution e−Ax has skewness S = 2. Since [9] has demonstrated that an exponential fits well the

locust density behind the peak, we consider 2 as a physically realistic upper bound. Including

the sharp increase and maximum density at the front of the band will decrease skewness sug-

gesting that we might expect values in the range 1< S< 2.

Collective observables for example values. The example parameter values produce rather

realistic collective outcomes; each of them is very nearly in the range obtained from the litera-

ture, see Table 3. A small exception is the threshold width W, which is less than twelve units

outside a large range of several hundred units. Secondarily, we remind the reader of our
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difficulty in estimating the remaining resources. We interpret the small value R− = 0.002 g/m2

to mean that in our models bands of locusts eat essentially all of the edible vegetable matter.

We do not claim that they leave behind no vegetation at all.

Results

Numerical results for the ABM

Typical behavior for the agent-based model is a transient period followed by a traveling pulse

shape, see S1 Video for a typical simulation. During the transient period, the locust histogram

variables Sn,m and Mn,m evolve to an equilibrium profile that moves with constant speed, each

with stochastic variation at each time step. The duration of the transient period and shape of

the equilibrium profile vary depending on biological input parameters, while the level of sto-

chastic noise depends primarily on the size of Δt. We explored a refinement of Δt from 1 sec to

0.1 sec and observed similar behavior with decreasing levels of noise. In all results presented in

this section we use Δt = 1 sec and our example values from Table 2 for all biological

parameters.

Fig 3A shows the instantaneous speed of the mean position of all locusts over the course of

10000 sec. After an initial increase, the speed stabilizes around an average c = 5.3 × 10−3 m/sec

with a standard deviation of 0.16 × 10−3 m/sec. Individual locusts move according to a biased

Fig 3. (A) Speed of the mean position of all locusts (center of mass of the swarm). Note the initial increase followed by a sustained

period of variation around the average c = 5.3 × 10−3 m/sec. The standard deviation around c is 0.16 × 10−3 m/sec after transients. (B)

Paths of five sample locusts, each shown in a different color. Note the initial transients appearing as curves near t = 0, after which all each

path appears piece-wise linear with either positive or negative slope corresponding to when the given locust was in a moving or

stationary state. Each locust spends some time ahead of the mean and some time behind it, reminiscent of the “leap-frogging” behavior

noted in [4].

https://doi.org/10.1371/journal.pcbi.1007820.g003
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random walk around the mean position, as illustrated by the paths of five sample locusts in

Fig 3B. Note the brief period of transients visible as arcing curves near t = 0, after which the

distance to the mean is given by a piece-wise linear function for each locust. Intervals with pos-

itive slope v − c correspond to periods where the individual was moving, while negative slope

−c indicates periods where the individual was stationary and the mean position marched on

ahead.

The shape of the traveling pulse may be seen in Fig 4. The final histogram of locusts per spa-

tial grid point at time t = 15000 appears in Fig 4A. A time-averaged pulse shape appears in

Fig 4B. We construct this smooth density profile by averaging histograms for all time steps

after the end of transients, in this case approximately t = 7500. Both plots show corresponding

resource levels. The resources left behind R− after the pulse has completely passed depends pri-

marily on the foraging rate constant λ. Shape of the traveling pulse profile also depends on λ
but also on a complex combination of parameters in the stationary-moving transition

Fig 4. Output of the agent-based model with N = 7000 locust agents at time t = 15000 sec, re-centered so that the

mean position of all locusts occurs at zero. (A) Shows the final state of the model including the number of locusts at

each spatial grid point (orange) and the remaining resource density at each spatial grid point (dotted, green). Compares

well with previously published data, see Figure 1 in [9]. (B) Displays a time-average of model outputs taken after an

amount of time to account for transients (in this case, approximately t = 7500). Gray shading indicates ± one standard

deviation from the average locust density (blue) and resources (green). The tail of the pulse agrees well with an

exponential least squares fit (gold). S1 Video shows a full, time-dependent simulation of the ABM.

https://doi.org/10.1371/journal.pcbi.1007820.g004
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probabilities psm, pms. For more detail on how the model depends upon parameters, see Param-

eter sensitivity analysis.

Qualitative and quantitative observations suggest that the tail of the density distribution of

a hopper band is roughly exponential in shape [4, 9, 10]. Results from our agent-based model

agree. We fit an exponential curve ea+bx to the tail of our average traveling pulse and obtained

a = 4.11, b = 0.2831 and a root-mean squared error of 15.94, see the gold curve in Fig 4B.

These data are within an order of magnitude of those observed in the field from Figures 1 and

2 in [9]. (To make this comparison, one must convert the independent variable in the expo-

nential from space in our numerical data to time in the empirical data. Since the pulse travels

with with constant speed c, we have x = ct and our converted exponential is ea+bct with

bc = 1.50 × 10−3, compared with exponential rates on the order of 10−2 in [9]).

Theoretical results for the PDE: Hopper bands as traveling waves

Hopper bands require R-dependent switching. To demonstrate the importance of the R-

dependence in the switching rates ksm, kms, we first consider a simplification of our model.

Suppose that these switching rates are constant (ksm � α, kms � β). We mathematically deter-

mine the long-time behavior of solutions to this simplified problem in S1 Appendix. For any

locust density solution ρ = S + M, the center of mass moves to the right with a speed that

approaches v a

aþb
as t ! 1. This is consistent with our search for traveling-wave solutions.

However, we also find that the asymptotic standard deviation Ws �
ffiffi
t

p
so that solutions

spread diffusively for all time. In other words, no coherent hopper bands form in the long-

time limit. Gray dashed lines in Fig 5A depict this behavior, illustrating the decay of a locust

density profile with resource-independent switching rates.

Fig 5. Locust density profiles with R-dependent (solid blue line) and R-independent (dashed gray line) switching rates. Each profile

evolves from the same initial condition. (A) Shows snapshots of the density profiles over distance and time for both types of switching

rates. (B) Illustrates the width of the bands where color represents a locust density greater than 20. (C) Displays the peak density of each

pulse over time.

https://doi.org/10.1371/journal.pcbi.1007820.g005
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Existence of traveling wave solutions. Returning to the main case with R-dependent

switching, we show existence and development of hopper bands as traveling wave solutions to

the PDE (9). A traveling wave is a solution with a fixed profile that propagates right or left with

a constant speed c. Since locusts move only to the right in our model, we expect right-moving

traveling waves and S2 Appendix includes a mathematical analysis of these solutions. Numeri-

cal simulations suggest that these traveling waves organize all long-time dynamics of the

model. That is, all solutions with our initial condition appear to converge to a traveling wave.

Biologically, we conclude that a typical initial distribution of locusts aggregates into a coherent

hopper band. The solid blue curves in Fig 5A show snapshots of the asymmetrical traveling

wave created by R-dependent switching rates.

Fig 5B and 5C compare the width and maximum density of the profiles for switching rates

with and without resource dependence. In Fig 5B, colored regions correspond to a locust den-

sity greater than 20 locusts/m with gray and blue corresponding to R-independent and R-

dependent switching rates, respectively. As the locust band without R-dependent switching

progresses, the width of the gray region increases in time, showing diffusive spreading. On the

other hand, the width of the locust band with R-dependent switching (blue) remains constant

over time. Additionally, the locust band with R-dependent switching reaches a constant height

as seen in Fig 5C (blue). In contrast, the maximum locust density with R-independent switch-

ing rates decreases over time as locusts spread out (dashed gray).

Traveling waves dynamically select collective observables. By viewing hopper bands as

traveling waves, our existence proof also determines a relationship between the total number

(or total mass) N of locusts in our 1-meter cross section, the average band speed c, and the ini-

tial and remaining resources R+ and R−. In S3 Appendix we show that these four variables

must satisfy an explicit equation for any traveling wave. One consequence is that our model

exhibits a selection mechanism whereby the average band velocity and the remaining

resources are determined by the number of locusts in the band and the initial resource level.

These explicit equations are illustrated in Fig 6. Each subfigure shows curves on which R+ is

constant (level curves). Plotting these in the N, c-plane (mass vs. speed), we obtain Fig 6A.

(Here each curve is parameterized by R−.) Note that the curves appear monotone: speed c
increases as a function of mass N. Biologically, this is what one expects; a larger swarm

Fig 6. Level curves on which initial resources R+ are constant (black curves) computed explicitly from the analytic formulas of the

PDE model, and numerical data points (orange circle) generated by direct simulation of the ABM. (A) Illustrates that the average

swarm speed c monotonically increases with the mass N and shows agreement with numerical data obtained for N = 5000, 7500, 10000,

12500, 15000. (B) Illustrates the inverse relationship between c and R− and shows agreement with numerical data for N = 5000, 5250,

5500, 6000, 7500.

https://doi.org/10.1371/journal.pcbi.1007820.g006
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consumes food more quickly and moves on at a faster average pace. In Fig 6B, we plot the

same level curves in the R−, c-plane (remaining resources vs. speed). (Now each curve is

parameterized by N.) Again the curves are monotone but we now see that speed c decreases as

a function of remaining resources R−. Here we also observe that the speed is much more sensi-

tive when the remaining resources are very small. In S3 Appendix, we use the explicit formulas

to prove the monotonicity of speed as a function of input parameters.

Agreement between ABM and PDE

We evaluate agreement between our two models by comparing the collective observables of

Table 3. We divide these into two groups: the shape of the band as characterized by maximum

density P, width W, and skewness S; and the mean speed c and remaining resources R−, which

we consider to be more agriculturally relevant.

ABM simulations and PDE analysis. The quantities c and R− can be determined for the

PDE model via the traveling wave analysis of the last section. This analysis results in explicit

formulas in S3 Appendix. Substituting input parameters total mass N and initial resources R+,

one can calculate exact results for c and R−. These relationships are represented by level curves

in Fig 6, for details see Theoretical results for the PDE: Hopper bands as traveling waves.

We ran direct numerical simulations of the ABM for selected values of the total mass

N = 5000, 5250, 5500, 6000, 7500, 10000, 12500, 15000. In each simulation we used our exam-

ple values for all other biological parameters. We ran each simulation for 2.5 × 104 time steps

with Δt = 1 for a final end time of 25000 sec and confirmed that the simulation reached the

end of transients. We measured the collective speed c and remaining resources behind the

band R− for each simulation. The resulting values agree with the explicit formulas to within 1%

and are shown in Fig 6 (orange circle).

Direct simulation of both models. We used direct numerical simulation of both models

to evaluate their agreement on the basis of the shape characteristics maximum density P, stan-

dard deviation width Wσ, and skewness S.

We ran both models for nt = 2 × 105 time steps using our example parameters and a range

for the foraging rate λ so that −8< log(λ) < −4. For each value of λ, we plot the shape charac-

teristics in Fig 7. For the PDE, we measure the shape characteristics of the final output density

profile. For the ABM, we measure the shape characteristics of a time-averaged density profile

(as constructed in Fig 4B). The plots in Fig 7 are the result of continuation in the parameter

log(λ). We begin with log(λ) = −4 and chose initial conditions computed from independent

simulations of each model. For each value of log(λ) the algorithm proceeds as follows: We run

both models for nt time steps; measure P, Wσ, and S; choose new spatial grids for each model

based on the value of Wσ; increase log(λ) by 0.1; and use the current output as the next initial

condition. Practically speaking, the interval −8< log(λ)< −4 is in fact covered by three such

continuations originating at −4 and −7. Note that our numerical scheme begins to reach its

limits as log(λ) approaches −8 because there the evolution of the profile shape is so slow that it

requires very long computation times to reach equilibrium. This is also why we do not cover

the full range of log(λ) explored in the next section.

To visually compare the profiles, see Fig 8. These six profiles are the result of running each

model for nt = 106 time steps with our example parameter values and selected log(λ) = −7.4,

−6.3, −4.2. First, note the strong agreement along each row. Second, a data point (gold dot and

x) from each of these log(λ) values is included in the plots of Fig 7. Since there is little differ-

ence between these data points and the rest in the figure, which are the result of only 2 × 105

time steps, we can conclude that the shape characteristics have reached near-equilibrium val-

ues. The gold x at log(λ) = −6.3 demonstrates the stochasticity of the ABM—the maximum of a
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single distribution is larger than the maximum of the time-averaged profile, see Fig 8 (right,

center).

Finally, these profiles also provide insight into the possible shapes of density profiles far

from our example value of log(λ) = −5. Immediately, we notice that the remaining resources

R− behind the pulse decrease quickly as foraging rate λ grows, confirming intuition. Next, the

shape also varies dramatically as can be seen by noting that the horizontal axes in each row

have vastly different scales. In particular, the profiles in the top row are short and wide while

the middle row is narrow and tall, all having the same total number of locusts. The bottom row

reveals a transition where the resources are nearly all depleted behind the pulse, leading to

wide asymmetrical profile as observed in the field [10].

We carry out a more rigorous study of how the model responds to changes in the input

parameters in the next section.

Parameter sensitivity analysis

The sensitivity of the model to its parameters was examined by computing Sobol indices [48]

for several biologically observable quantities (see Table 3) with samples from the parameter

Fig 7. Comparison of the peak, width, and skewness of profiles from the PDE (blue line) and the ABM (orange circle),

both obtained through direct numerical simulation for 2 × 105 time steps. Each shape observable is measured from the final

numerical output for the PDE and from a time-averaged output the ABM. Longer simulations with 106 time steps, for ABM

(gold x) and PDE (gold dot) show little evolution in the profile for longer times. Note that the maximum density is higher for

long simulations of the ABM (gold x) because these represent a single instance, rather than an average.

https://doi.org/10.1371/journal.pcbi.1007820.g007
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space chosen via Saltelli’s extension of the Sobol sequence [49, 50]. Sobol indices represent a

global, variance-based sensitivity analysis for nonlinear models that has become extremely

popular in recent years for examining the performance of mathematical models in the context

of data (e.g., [51, 52]). One of its strengths is the ability to calculate not just first-order (one-at-

a-time) parameter sensitivity, but also second-order (two-at-a-time) and total-order (all possi-

ble combinations of parameters that include the given parameter) indices [50]. All indices are

Fig 8. Model outputs from direct numerical simulation for 106 time steps. Density profiles from the PDE (blue, left) and

histograms from the ABM (orange, right) for selected foraging rates log(λ) = −7.4, −6.3, −4.2. For quick visual shape comparison, all

outputs shifted so that center of mass is x = 0. Each plot corresponds to a data point in Fig 7 (gold x for ABM, gold dot for PDE). Note

the differences in scale on the horizontal axes in each plot.

https://doi.org/10.1371/journal.pcbi.1007820.g008
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normalized by the variance of the output variable. Here, we will focus on the first-order and

total-order indices, and note that the presence of higher-order interactions between the

parameters can be inferred by comparing differences between these two.

Scalar output quantities for our model (our collective observables) were all chosen with

respect to the asymptotic traveling wave solution of the PDE model and are calculated by solv-

ing analytically for this solution. The observables chosen are the speed of the traveling wave c,
the density of remaining resources R−, the peak (maximum) density of the wave profile, the

width of the profile measured by its standard deviation Wσ, and the skewness S of the profile.

Table 3 provides physically relevant ranges for these observables from empirical studies.

In the case of switching parameters α, β, θ, and η, sensitivity to the ratios θ/β and η/α and

the ratio difference Δ = α/β−η/θ were used rather than the parameters themselves. One reason

for this choice is to guarantee existence of a traveling wave solution; existence is guaranteed

whenever Δ> 0. Note that we also would like η/α< 1 and θ/β> 1 so that ksm is a decreasing

function of resources R and kms is an increasing function of resources. Additionally, these two

conditions imply that Δ> 0 so there is consistency between these constraints. Another reason

for using these ratios lies in mathematical interpretation: Δ is a measure of the difference in

asymptotic switching rates behind the pulse (small R, α/β) and ahead of the pulse (large R, η/

θ), and the two other ratios η/α (θ/β) describe how much the stationary to moving (moving to

stationary) switching rates depend on R. More specifically, as these ratios approach 1 the

switching rate changes little as R increases, while η/α close to zero or θ/β large implies a rela-

tively large change in the switching rate. With these ratios and a value for β (chosen because

we have some biological data for β), all four parameters in the ratios are uniquely determined.

Results are shown in Fig 9. All bars are stacked with each color corresponding to a different

observable; reading across the parameters, the length of like colors can be compared. Critically,

the parameter sensitivity is with respect to the range of parameter values given in the table

included with Fig 9. These ranges were chosen to represent both biologically expected values

(when information about these values could be obtained) and the necessary conditions for a

traveling wave solution.

One immediate observation concerning the Sobol sensitivity analysis in Fig 9 is that

log10(λ) and log10(Δ) have a large effect on the collective observables of the pulse. Recall that λ
is the parameter encoding the foraging rate; Δ is discussed in detail earlier in this section. The

bottom row of Fig 9 shows the impact of these parameters on the density of resources asymp-

totically left behind the locust band as a fraction of the starting density (R−/R+) and the ratio of

the traveling wave velocity to the marching speed of a locust (c/v) respectively. Max density,

pulse width as measured by standard deviation, and skewness also depend heavily on these

two parameters as seen in the top row of Fig 9. This is in fact unsurprising since λ and Δ have

by far the largest sample space range in terms of order of magnitude, and for this reason are

the only ones examined on a log scale while all other parameters are on a linear scale. To

explain this discrepancy, we remind the reader that our chosen sampling ranges represent our

uncertainty about the value that the parameters should take on in nature given all the informa-

tion we were able to find in the biological literature. Our conclusion with this analysis then is

that the model is in fact sensitive to this level of uncertainty in log10(λ) and log10(Δ), and we

should seek to narrow down the possibilities given what we know about observable, biological

characteristics of the traveling locust band generated by our parameter choices (Table 3).

Through the following numerical analysis of our sample data, we do just that.

To begin, we further illustrate the effect of varying log10(λ) and log10(Δ) on the fraction of

resources remaining R−/R+ (in Fig 10A) and on the ratio of the average pulse speed compared

to the speed of a moving locust c/v (in Fig 10B). In each figure, we plot a uniform random sub-

set of the sample points used in the Sobol sensitivity analysis for the purpose of down-sampling
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the image and better visualizing sparse regions in the parameter space—it is qualitatively the

same when using all sample points from the Sobol analysis.

Inspecting Fig 10A we note that, generally, at small λ a majority of resources persist after

the locust front has passed while at large λ, the majority of resources are consumed. The red

dot on the λ axis represents the example parameter set described in Table 2 which we believe

to be a relatively feasible choice of parameter values in the context of the biological data about

the observables in Table 3. We acknowledge that this appears to suggest the locusts leave

behind no vegetation at all, but remember that our variable R represents locust-edible

resources—there may be dry plant matter left behind that even locusts would not consume.

Locust swarms observed in the field have a characteristic sharp rise at the beginning of the

front and an exponential decay in the tail, see [9] for a quantitative analysis. This observation

suggests that the skewness S is positive and less than or approximately equal to 2 (see Table 3).

Fig 11 investigates the relationship between skewness S, foraging rate λ, and the difference of

ratios Δ. For λ< 10−7, most values of S are negative, indicating an unrealistic density profile

leaning to the left. As λ increases from 10−7 to 10−4, S increases and clusters around 2. A smat-

tering of points appear with S> 2 but these all correspond to profiles with unbiologically large

Fig 9. Sensitivity of various traveling wave observables to model parameters (bars are stacked). See Table 2 for parameter definition

and ranges; this analysis was run using 4,400,000 samples from the given ranges. All log functions are base-10. First-order indices neglect

all interactions with other parameters while total-order indices measure sensitivity through all higher-order interactions. Max 95%

confidence intervals for the response variables was 0.01 for the first-order indices, 0.049 for total-order.

https://doi.org/10.1371/journal.pcbi.1007820.g009
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maximum locust densities, as demonstrated by Fig 11B which only shows profiles with maxi-

mum locust density <10,000.

To identify a set of parameter inputs that would produce a density profile with observable

quantities matching those found in the literature (see Collective observables—model out-

comes), we finally sorted the data underlying these figures and conditioned on desirable

observable properties as specified in Table 3. This resulted in the example parameters specified

in Table 2, with context provided by Figs 10 and 11. The results of the model run with these

parameters can be seen in the figures included within the previous results sections.

Fig 10. Scatter plot of (A) remaining resource fraction R−/R+ and (B) fraction of the traveling wave speed c over individual locust

speed v as a function of the foraging rate λ and colored by Δ, the difference in asymptotic switching rates behind and ahead of the

pulse. Points are taken from the parameter ranges in Table 2 and represent 5% of all the points sampled for the Sobol analysis, chosen

randomly. The red dots represent the example parameter set described in Table 2.

https://doi.org/10.1371/journal.pcbi.1007820.g010

Fig 11. Skewness as a function of foraging rate (λ) and colored by Δ. Fig 11A is representative of the entire sampled parameter space

while Fig 11B shows only the points with peak wave amplitudes less than 10,000 locusts per square meter. Points are taken from the

parameter ranges in Table 2 and represent 5% (in the case of Fig 11A) and 50% (in the case of Fig 11B) of all the points sampled for the

Sobol analysis, chosen randomly. The red dot represents the example parameter set described in Table 2.

https://doi.org/10.1371/journal.pcbi.1007820.g011
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Discussion

We present two minimal models for hopper bands of the Australian plague locust and demon-

strate that resource consumption can mediate pulse formation. In these models all locusts are

aligned and are either stationary (and feeding) or moving. Our agent-based model (ABM)

tracks the locations, state, and resource consumption of individuals. In tandem, our partial dif-

ferential equation (PDE) model represents the mean-field of the ABM. Both models generi-

cally form pulses as long as the transition rate from stationary to moving states is diminished

by the presence of resources and/or the transition from moving to stationary states is enhanced

by the presence of resources.

The ABM and the PDE each allow us to examine different facets of the problem. The ABM

is easy to simulate and directly relates to observations at the scale of individual locusts. It cap-

tures pulse formation and propagation, reproduces the stochastic variation seen in the field,

and lets us track individual locusts which perform random walks within the band. The PDE

model provides a theoretical framework for proving the existence of traveling pulses. This

framework facilitates analysis of the collective behavior of the band including mean speed,

total resource consumption, maximum locust density, pulse width, and pulse skewness. In

turn, this theory enables us to conduct an in-depth sensitivity analysis of the pulse’s character-

istics with respect to the input parameters. The two models are consistent in the following

sense: the characteristics of pulses in the ABM, when averaged over many realizations, corre-

late precisely with the densities in the PDE model.

We are fortunate that there is a healthy literature addressing the behavior of the Australian

plague locust, notably the shape and speed of observed bands [4, 9, 10, 16, 46]. We have used

these studies to estimate ranges for the organism-level parameters in our models. Some of

these parameters (such as individual marching speed) have been carefully measured yielding

narrow ranges. Others (notably the individual foraging rate) can only be deduced to lie within

a range of several orders of magnitude. Using these biologically plausible ranges, we analyze

the sensitivity of a pulse’s characteristics to changes in the input parameters. Sampling parame-

ter values from within these ranges, we examine the resulting speed, remaining resources, and

pulse peak, width, and skewness of over 4.4 × 106 traveling pulse profiles. Sobol sensitivity

analysis quantifies the change in these characteristics as a function of the change in each input

parameter. Guided by this analysis, we are able to identify a set of parameters that produces

pulses concordant with those observed in the field. We conclude that resource-dependent

transitions are a consistent explanation for the formation and geometry of traveling pulses in

locust hopper bands.

A reasonable question is whether a different mechanism can drive pulse formation or if the

formation of pulses is enhanced by a combination of behaviors. Prior works, both for the Aus-

tralian plague locust and for other locust species, investigate a variety of social mechanisms for

collective movement in hopper bands. In two agent-based modeling studies [23, 27], pulses are

among a handful of aggregate band structures obtained by varying the parameters that model

individual locust behavior. A continuum approach in [30] finds traveling pulses in a PDE simi-

lar to our Eq (9) but without accounting for resources. Instead, social behavior is encoded via

dependence on locust density of both the transition rates and the speed. This is coarsely akin

to our model where resource-dependent transitions between moving and stationary states is

necessary for pulse formation, see S1 Appendix. However, a model with social behavior as the

only driving factor does not account for the observations of Clark [4] and Hunter [10] that C.
terminifera manifests pulse-shaped bands with varying shapes based on the surrounding vege-

tation. We believe that incorporating both social and resource-dependent behaviors will better

reproduce field observations.
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Further experiments and field observations could help to elucidate the combined roles of

resources and social behavior in the formation of hopper bands. While there is a considerable

literature on the social [3, 9] and feeding [15, 46] behavior of C. terminifera, less progress has

been made in quantifying the effect of food on individuals in dense bands exhibiting collective

motion. One notable exception is the recent study of Dkhili et al. [19]. Looking ahead, field

data could be collected as video while a hopper band moved through lush vegetation, see the

methods in [9]. With continuing advances in motion tracking, for instance as employed in

[28], one could collect time-series data on each individual moving through the frame. From

such data one could draw out the effects of nearby vegetation, satiation or hunger, and local

locust density on pause-and-go motion. In turn these processes could be modeled more

thoroughly.

We see our present models as a testbed upon which one may develop extensions that cap-

ture more of the complexity in locust hopper behavior. The most natural of these extensions is

to consider locusts’ social behavior, as discussed above. A second is to include stochastic, indi-

vidual, and environmental variation. This could be incorporated into the agent-based model

in order to examine the robustness of pulse characteristics with respect to a distribution of

individual marching speeds, or even large hops, as in [27]. For the PDE model, random varia-

tions in locust movement could naturally be represented by a linear diffusion term. Thirdly,

we could incorporate motion of locusts transverse to the primary direction of propagation.

This two-dimensional model might aim to capture the curving of the front of hopper bands

often seen in the field. Lastly, large changes in resource density could be included to represent

the band entering or exiting a lush field or pasture, with a view towards informing barrier con-

trol strategies as discussed in [11, 19]. These extensions could help explain the variety of mor-

phologies and density profiles—including curving dense fronts, complex fingering, and lower-

density columns—observed in hopper bands of the Australian plague locust and other species.

Supporting information

S1 Appendix. Resource-independence: The Telegrapher’s Equation. Supposing that the sta-

tionary-moving transition rates ksm, kms are independent of R, we construct an argument using

moments of the resulting density distributions to show that solutions spread indefinitely with

a gaussian shape. In particular, there are no coherent pulse solutions with a steep front.

(PDF)

S2 Appendix. Traveling wave analysis. We prove the existence of traveling wave solutions to

the PDE (9) using an invariant region argument. The existence result also provides a selection

mechanism; that is, for a given set of parameter inputs there is only one traveling wave.

(PDF)

S3 Appendix. Formulas for N, c, R+, R−. In S2 Appendix we show existence of a traveling

wave solution. We now characterize this solution with explicit formulas that relate N, c, R+,

and R−. Given any two of these variables and the remaining model parameter inputs, these for-

mulas determine the other two exactly.

(PDF)

S1 Video. Visualizations of the Agent-Based Model. Video showing timesteps from a simula-

tion of our Agent-Based Model (ABM): Pause-and-go motion on a space-time grid with exam-

ple parameter values from Table 2. The top panel shows a schematic of the 1-meter cross

section represented by our one-dimensional model. Each locust (maroon and blue dots) has a

unique horizontal lane in this schematic; there is no vertical motion. The bottom panel shows
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a line plot (orange) reporting the number of locusts, both stationary and moving, at each spa-

tial gridpoint and the resource density (green); compare to Fig 4B.

(M4V)
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