UP- AND DOWN-OPERATORS ON YOUNG’S LATTICE
RICKY INI LIU AND CHRISTIAN SMITH

ABSTRACT. The up-operators u; and down-operators d; (introduced as Schur operators by
Fomin) act on partitions by adding/removing a box to/from the ith column if possible.
It is well known that the u; alone satisfy the relations of the (local) plactic monoid, and
the present authors recently showed that relations of degree at most 4 suffice to describe
all relations between the up-operators. Here we characterize the algebra generated by the
up- and down-operators together, showing that it can be presented using only quadratic
relations.

1. INTRODUCTION

The up-operators u; for i € N act on a partition A by adding a box to the ith column of
A if the result is a partition and by sending A to 0 otherwise. Similarly, the down-operators
d; act on A by subtracting a box from the 7th column if the result is a partition and by
sending it to 0 otherwise. These operators were introduced as Schur operators by Fomin [1]
and further discussed by Fomin and Greene [2]| in the context of noncommutative Schur
functions. They can also be seen as refinements of the raising and lowering operators U and
D acting on Young’s lattice as defined by Stanley [7] in his study of differential posets.

It was noted in [2] that the u; give a representation for the local plactic monoid as they
satisfy the relations:

Uiy = U;U; for |i — j| > 2,
Ui Ui 1 Uy = U1 U Uy,
Uj41 Ui U1 = U1 U1 Uy
(In particular, the wu; satisfy the classical Knuth relations of the plactic monoid—see for
instance [4].) The current authors proved in [5] (see also Meinel [6]) that the u; also satisfy
the additional degree 4 relation
Uit 1 U2 U1 U = Ui 1 Ui 2U U411

and that this relation along with the local plactic relations characterize the algebra generated
by the w;, therein called the algebra of Schur operators.

It was also noted in [1] (using the fact that the down-operators can be thought of as
transposes of the up-operators) that the d; satisfy:

djdi = dld] for ’Z - ]| > 2,
didiy1d; = did;d;y 1,
dit1didiy1 = didiy1diya,
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and that together the u; and d; satisfy:
diuj = u;d; for i # 7,
diuy = 1d,
dip1Uiv1 = wid;.

In this paper we give a complete description of the algebra generated by the u; and d;,
which we call the algebra of up- and down-operators for Young’s lattice. Surprisingly, the
following theorem shows that quadratic relations suffice to give a presentation of this algebra.

Theorem 1.1. The algebra of up- and down-operators for Young’s lattice is defined by the
relations:

Wiy = UjU; for|i —j| > 2,
d;d; = d;d; for|i —j| > 2,
diuj = u;d; fori # 3,

diuy = id,

dip1Uip1 = uid;.

In particular, it follows that the local plactic relations are implied by the quadratic relations
in Theorem 1.1.

In contrast, we also give a complete description of the subalgebra generated by u,; and d;
for a fixed ¢t > 1 and show that it cannot be presented using relations of bounded degree.

We provide necessary background information about partitions and the up- and down-
operators in Section 2. The characterization of the algebra of up- and down- operators is
given in Section 3, and a discussion of subalgebras can be found in Section 4.

2. PRELIMINARIES

In this section, we discuss some background on partitions and up- and down-operators.

2.1. Partitions. A partition A = (A, Ag,...) of [A| = >._, A is a sequence of nonincreasing
nonnegative integers. We associate to each partition a collection of left-aligned boxes with
A; boxes in the ith row called the Young diagram of . We define the conjugate partition N
to be the partition whose Young diagram is obtained by reflecting the Young diagram of A
across the main diagonal.

We consider the partial order on partitions A and g such that g < A if and only if the
Young diagram of p fits inside the Young diagram of A, that is, u; < \; for all i. Note that
this means that if g < A, then A covers p (denoted p < A) if and only if A\/u is a single box,
where A/ is the skew Young diagram consisting of all boxes in A that are not in u. We take
Young’s lattice (Y, <) to be the partially ordered set of partitions with the above partial
order.

2.2. Words in the alphabet. Let N = {1,2,...}, N ={1,2,...}, and ' = NUN. We
refer to elements 1,2, ... of N as unbarred letters and elements 1, 2, . .. of N as barred letters.

Let x = x1--- 2, be a word of length ¢ in the alphabet I'. The weight of x is the vector
w(z) = (wy(z), wy(x),...) where

w;(x) = (the number of times i appears in x) — (the number of times ¢ appears in z).
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We also define the a-vector of x to be a(z) = (aq(x), az(x),...) where
a;(x) = max{w;11(Z) — w;(Z) | T is a suffix subword of x}.
Here a suffix subword z is a word of the form Z = z;x;41---x, for some 1 < j < £+ 1.

When j = ¢+ 1, & is the empty word, in which case w;11(Z) = w;(Z) = 0, so it follows that
a;(x) > 0 for all 7.

Example 2.1. Let = 1133232121. Then w(z) = (2,1, —1,0,...) and a(z) = (2,0, 1,0,...).
For instance, for a;(z) = 2, the maximum value of wy(Z) —w; (%) first occurs when 7 = 2121.

2.3. Up-operators and down-operators. Let U be the free associative algebra over the
complex field C generated by elements u; for ¢ € I'. We will write d; = wu; for all barred
letters . For any word 2 = 2125 ...z, in the alphabet T, we define u, = gy, ug, - - “Ug,. We
also use the alternate notation i = u; for ¢ € I'. To avoid potential confusion in the future,
we note now that (i 4 j) denotes w;1; and not the sum u; + u;.

Let C[Y] be the complex vector space with basis Y. We define an action of & on C[Y]
in the following way. For A € Y and ¢+ € N, we let

o) wif p €Y and pu/) is a single box in column 7,
U; =
0 otherwise,

and

4\ =" if €Y and A\/p is a single box in column 1,
710 otherwise.

Example 2.2. Let A = (3,1). Then us(\) = (3,2), dsua(A) = (2,2), but didzus(A) =0
since subtracting a box from the first column does not yield a partition.

d d
[1 2 | = 0

Note that u;(A) is either 0 or a partition that covers A in Y, so we refer to u; as an
up-operator, and similarly we call d; a down-operator. These operators were introduced by
Fomin [1] under the name Schur operators.

The action of u, on partitions is determined by the weight and a-vector of x as follows.

Proposition 2.3. Let x be a word and A € Y. Then
ua(A) = {()\’1 +wi(z), Ny +wa(x),...)  if Nj = XN > ag(x) for all i,
‘ 0

otherwise.

Proof. We have u,(\) # 0 if and only if uz()A) is a partition for each suffix subword & of
x. Fix some Z and suppose p = uz(A) # 0. We then have p, = A, + w;(Z) for all i. The
condition for 4 to be a partition is that u; > i, for all i, or equivalently

Ap+wi(@) 2 My + win ().
Rearranging this gives

Ap = i1 = Wit (T) — wi ().
By the definition of «;(x), these inequalities hold for all suffix subwords z if and only if
N — Ny > (). O

The following corollary then follows from Proposition 2.3.
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Corollary 2.4. Let x and y be words. Then u, and u, act identically on Y if and only if
a(z) = aly) and w(z) = w(y).

Proof. The backwards implication is immediate from Proposition 2.3. For the forward
direction, suppose a(z) # «(y). Then we may assume without loss of generality that
aj(x) < a;(y) for some j. Taking A such that A} — \; | = a;(x), we have ug(\) # 0 = u, (),
so u, and u, do not act identically. If instead a(z) = a(y) but w(x) # w(y), then for this
same choice of A, u, () # u,(X\) by Proposition 2.3. O

It was noted in [1] that u; and d; are transposes with respect to the basis Y, which we
may write as u] = d;. Also in [1], various relations among the u; and d; were described,
including the local plactic relations and various quadratic relations (as described in Section
3). Our main result will be to show that in fact these quadratic relations generate all relations
between these operators.

3. THE ALGEBRA OF UP- AND DOWN-OPERATORS

Let I be the two-sided ideal consisting of all elements of ¢ that annihilate C[Y]. We call
the algebra U/I the algebra of up- and down-operators for Young’s lattice. Let J be the
two-sided ideal generated by the following relations.

(1) Ui = U, for |1 — j| > 2,
(2) d;d; = d;d; for |i — 7] > 2,
(3) diuj = u;d; for i # j,

(4) dyuy = id,

(5) dis1uiy1 = ugd;.

Our main result (Theorem 1.1) will be to show that I = J. We first verify that J C I.
Proposition 3.1. The inclusion of ideals J C I holds.

Proof. 1t suffices to show that for each of (1)—(5), the two terms in the relation are in
fact equivalent modulo I. We show this for relation (5); the other relations are similar.
By Corollary 2.4 we need only show a(z) = a(y) and w(z) = w(y) where * = i and

y=(i+1)(i+1). Indeed, w(z) = (0,0,...) = w(y), while a(z) = (0,...,0,1,0,...) = a(y),
where the 1 occurs in the ith position. O

It therefore remains only to show that I C J. The next proposition proves that I is
a binomial ideal, that is, I is generated by elements of the form u, — u,. The proof of
this proposition is very similar to that of Proposition 3.3 in [5], but we include it here for
completeness.

Proposition 3.2. The ideal I is a binomial ideal.

Proof. Let I' be the two-sided ideal generated by all binomials u, — u, such that u, = u,
(mod I), and suppose R € I. Since U is graded by weight and I is homogeneous with
respect to weight, we may assume that all terms appearing in R have weight w for some
w = (wy,wy, ...). We can then find R' = R (mod I’) for some

n

/

R = E Cr(i) Uy (i)
i=1



UP- AND DOWN-OPERATORS ON YOUNG’S LATTICE 5

where 2() is a word in I of weight w, ) % u,) (mod I) whenever i # j, and 0 # ¢, € C
for all 4 € [n]. In particular, by Corollary 2.4, the a(z() are distinct, so suppose without
loss of generality that they occur in lexicographic order.

If n > 1, let A € Y be such that X, — X,,; = ax(z(V)) for all k. By Proposition 2.3,
u,1(A) # 0. For each i > 1, by the lexicographic ordering, there exists some s such that
as(zM) < a,(z®). Then by Proposition 2.3, u,m(A\) = 0. Thus 0 = R'(\) = ¢, um(N),
which implies ¢,y = 0. This is a contradiction, so we must have R' = 0. Thus I =I'. [

Our goal for the rest of this section is to show that if u, = u, (mod I), then u, = u,
(mod J). Our general strategy is as follows. Let [u,]; be the equivalence class of u, modulo
I. We will construct a representative word [z] such that uj,) € [u,];. This representative will
only depend on «a(z) and w(x), so if u, = u, (mod I), then [x] = [y]. We will then show
that u, = u) (mod J) and similarly for y, which will complete the proof.

Definition 3.3. For a word x, define
m(@) = ma(~ (s (x) + (@)} > 0,
n(z) = max{t € N | ¢ or ¢ appears in z}.
For any m > m(x),n > n(x), we let
(@] = (T ™) (0P @on(@) .87 @)
where 5" (z) = a;(z) + w;(x) + m.

Note that the definition of m ensures that all of the exponents appearing in the definition
of [x]m,, are nonnegative. We will often abbreviate [z] = [2],,,. We now show that indeed
U] € [ux] I

Proposition 3.4. For any word x, uy = uj, (mod I).

Proof. Let i € N. Then w;([z]) = —m + *(x) — a;(z) = w;(x). We now show that
a;([z]) = ay(x). For ease of notation, we will write oy = (), w; = w;(z), and 5; = B"(x).

Since a; relies only upon the appearances of i, i, (i + 1), and (i + 1) in z, we need only
consider the subword _

PTT  + 1) T 5
To calculate «;([z]), we need to find the maximum value of w;,1(Z) — w;(Z) for each suffix
subword Z. This value only increases when adding an occurrence of i or (i + 1) to . Thus
we need only verify a few choices of :

E=i: wi1(T) — wi(T) = a,
T = ('l + 1)Bi+1 (Z -+ 1)ai+l’iﬁigai . wi+1<£i'> — U)Z(QNT) = ﬁi+1 — Q1 — B@ + o
= Wiyl — Wi,
T = [.CL’] . wi+1(f) — wz(i:) = Wiy1 — W;.
The maximum of these is just «;. U

(mod J) for sufficiently large m and n. To that
end we will make use of the following two lemmas. As a reminder, we will use i and i to
represent u; and d;, respectively.

We now wish to show that u, = uj

w]m,n

Lemma 3.5. Let x =1---nin---1 for anyn € N. Then u, = id (mod J).
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Proof. First note the equivalence
(6) an(n—1)---1=(n—-1)(n—2)---1 (mod J),

which holds by repeated application of (5) and a single use of (4). Then

=
3
S
—
Il

by repeated application of (6).

Lemma 3.6. The following equivalences hold modulo J:

(7) w; = uidiug,
(9) Uili41U; = Uj1 U U,
(10) didi1d; = didid;yq,
(11) Ui 1 WU 1 = Uiy 1 U1 Uy,
(12) dip1didi = didipidigy.
Proof. For (7), we have
n=nl---An---1 (Lemma 3.5)
=1---(n—1)nAn---1 (3)
=1---(n—1)(+L(n+1n---1 (5)
=mn+n+nl---(n=1)(n—1)---1 (2),(3)
(n+1)(n+1)n (Lemma 3.5)
= nnn (5)
For (9) we have
nn+1)n=n(n+1)(n+1)(n+ 1)n (7)
n(n+2)(n+2)(n+ 1)n (5)
=(mn+2)(n+2)n(n+1)n (1),(3)
(n+1)(n+1)n(n+ 1)n (5)
=(m+1)n(n+1)(n+1)n (3)
= (n+ 1)nnnAn (5)
=(n+1)nn (7)
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For (11), assume n > 2 (the case when n = 1 is similar). Then
(n+Ln(n+1)=(n+ L)nAn(n + 1) (7)
()

(1), (3)

1)An (5)

(

(

(

= nn(n+ 1)n 3)

=(n (n+1)(n+1)(n+1)n 5)

=((m+1)(n+1)n 7)
The proofs of (8), (10), and (12) are similar to the proofs of (7), (9), and (11), respectively.
U

In particular, one can observe that (9) and (11) are Knuth relations, which, together with
(1), verify that the quadratic relations imply that J contains all the relations of the local
plactic monoid generated by the u; (see [1]).

We are now ready to prove the heart of our main theorem.

Proposition 3.7. Let x = x1---xp be a word. Then there exist M, N € N such that
Uy = U, , (mod J) forallm>M,n>N.

Proof. As before, we will abbreviate [x] = [x],,, and [y] = [y|m,n. We proceed by induction
on the length of x. First suppose ¢ = 0 (that is, x is the empty word), and take any m,n > 0.
Then we have [z] =17 ...n™n™...1™ and we wish to show that uy = id (mod J). By (1)
and (11),
n---ln=n(n—1)n(n—2)---1=nn(n—1)---1.
In other words, n and n---1 commute. Therefore
(n---Dn™ 1™t =nm((n—1)---1)(n — 1)m*1 coo1met

n™(n—1)"((n—=2)---1)(n—2)" "...1m!

so n™---1" = (n---1)™. Similarly by (2) and (12), T"---a™
Lemma 3.5 repeatedly to

Im...ﬁmnm...lmE(T...ﬁ)m(n...l)m

(1---m)™. Then applying

gives the claim.

Now suppose the proposition statement is true for all words of length less than ¢. Let
xr=ux1---xpand y = x1---x4_1. By induction we know the statement holds for y for some
N’ M’ € N. Then take M = max{m(z), M'} and N = max{n(z), N'} and let m > M
and n > N. By induction we have u, = u,u,, = ugju,, (mod J). From this we see that it
suffices to show wupu,, = up (mod J). For ease of notation we let o; = ai(y), Bi = B (y),
w; = w;(y), and B;(x) = B (z) for all .

We now split the argument into four cases depending on x, and «;. Note that if x; =t or
t for t > 1, then a;(x) = a;, wi(x) = w;, and B;(x) = B; for all i # ¢, ¢ — 1.
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Case 1. Suppose 2y =t and oy = 0. We have ay_1(z) = ay_1+1, wy_1(x) = w1, ay(x) = 0,
and w;(z) = wy + 1, so that B;_1(x) = Bi_1 + 1 and f;(z) = f; + 1. Then

upjug = -t (E=1)7 7 (1)
= ()P (1), (3)
= .t (1) e (t-1)" - (7)
= ) - D) T (5)
= ()P ) 9)

Case 2. Suppose that z, = ¢t and oy # 0. We have oy_1(z) = 41 + 1, wy_1(x) = wy_1,
a(r) = oy — 1, and wy(z) = wy + 1, so that 5;_1(z) = B;_1 + 1 and B;(x) = 5;. Then

upug = PR (e 1) Tt
= tP (=) - (1),(3)
= T ) )T ()
= u[m]

Case 3. Suppose that z, = t and ;1 = 0. We have o;_1(z) = 0, wy_1(x) = wy_1,
ai(x) = ap + 1, and wy(z) = wy — 1, so that G;_1(x) = Bi—1 and Fi(x) = F;. Then

updy = - (t-1) R
=MD (2),03)

Case 4. Finally, suppose that x, =t and o;_; # 0. We have ay_1(z) = a1 — 1, wy_1(x) =
wi—1, aq(x) = ay + 1, and wy(z) = w, — 1, so that §,_1(x) = f;—1 — 1 and S(z) = 5;. Then

wpyds = - PE (1) T
=T e 2), (3
=T (D) T DD e (10)
e I Vi 5
= ... o™ (t_l)ﬂm—lf(t_l)atﬂq o )
=.. .tlgtfaz—"_l(t_l)lgtfl—l(t_l)atfl—l (3)
= Uy
This completes the proof. -

It is now easy to complete the proof of our main theorem.

Theorem 3.8. The ideals I and J are equal. FEquivalently, the algebra of up- and down-
operators for Young’s lattice (generated by the u; and d;) is determined by relations (1)-(5).
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Proof. The inclusion J C I follows from Proposition 3.2. For the other direction, note that
by Proposition 3.1 we need only prove that u, = u, (mod I) implies u, = u, (mod J) for
words z and y. By Proposition 3.7 there exist nonnegative integers m and n sufficiently large
such that u, = up),,,, = Uy, = Uy (mod J). O

Remark 3.9. The up- and down-operators u; and d; refine the raising and lowering operators
U and D on Young’s lattice introduced by Stanley [7] in his study of differential posets via
U=>.u;and D =} d;. (Although these sums are infinite, only finitely many terms yield
a nonzero result when applied to a particular element of C[Y].) Therefore the main relation
DU —UD = id defining differential posets must be a consequence of relations (1)—(5). Indeed,
we see that

DU —-UD = Z(dlu] — Ujdl) + Z(di+1ui+1 — Uzdl) + d1u1 =1d.

i#] i>1
4. SUBALGEBRAS

We now turn our attention to various subalgebras generated by up- and down-operators.
We briefly discuss a subalgebra studied by the authors in [5], and we introduce two other
subalgebras of interest, giving a complete list of relations for each of them.

4.1. Up-operators and down-operators. We first consider the subalgebra generated by
the up-operators u;. Let U’ be the subalgebra of U generated by u; for i € N. Furthermore,
let I,y = I NU'" be the ideal of U’ consisting of all elements of U’ that annihilate Y. We
call U' /Iy the subalgebra of up-operators for Young’s lattice. In [5], the present authors
described this as the algebra of Schur operators and proved the following theorem. (See also
Meinel [6].)
Theorem 4.1. The ideal I, is generated by the following relations:

Uil = UjU; for |t —j| > 2,

Ui Ui 1Uj = Uip1UiUs,s
Uit 1 UUjp1 = Ui 1 Uiy 1 U,y
U1 Uj+2Ui41 U = Uj1 Uj4-2Ui Uit 1 -

Note that most of these relations do not appear in the list of relations for the algebra of
up- and down-operators, as they are implied by the quadratic relations (1)—(5) when the
down-operators are included.

It is natural to also consider the subalgebra generated by the down-operators. Let D be
the subalgebra of U generated by d; for ¢ € N, and let Ip = I ND. The subalgebra of
down-operators for Young’s lattice is then D/Ip. Recall that with respect to the basis Y,

we have u! = d;. Applying this transpose property to the relations in Theorem 4.1 gives the
following characterization of D/Ip.

Theorem 4.2. The ideal Ip is generated by the following relations:
did; = d;d; for i —j] > 2,
didi1d; = didid;ga,
dip1didipr = didiprdig,
didii1diyodiyr = dip1didiyodiy.
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4.2. uy and d; for fixed t. Fix some 1 <t € N. Let B be the subalgebra of U generated
by u; and d;, and consider the subalgebra B/Ig = B/(I; N B) C U/I;. We will show that
its ideal of relations Iz is generated by

(13) utd = Wt d
(14) uldi™t = duittdit!
for all i € N. Let Jg be the ideal generated by relations (13) and (14), so that we wish to
show JB = [3.
(When ¢t = 1, it is straightforward to verify that the only relation between u; and d; is

(4), namely dyu; = id, as this relation can be used to rewrite any monomial in the form
uid’, and all such monomials act independently on Y.)

4.2.1. Peaks and valleys. One convenient way to interpret a word consisting only of the
letters ¢t and t is as a graph of diagonal steps. More precisely, we construct a graph corre-
sponding to a word z in the following way. Starting at the origin in the plane we read x from
right to left. When we encounter a ¢t we take a diagonal step up and to the left by adding
(—1,1), and when we encounter a t we take a diagonal step down and to the left by adding
(—1,—1). One must be careful since we are reading both the word and its graph from right
to left.

We call a point of the graph with maximal height a peak and a point with minimal height
a valley. (Peaks and valleys need not be unique.) It is straightforward to see that if (a,b) is
a peak and (¢, d) is a valley, then o;_1(z) = b and ay(x) = —d. Also note that if (e, f) is the
(leftmost) endpoint of the graph, then w;(xz) = f. Therefore by Corollary 2.4, the action of
x on Y is determined entirely by the heights of its peaks, valleys, and endpoint.

Example 4.3. The word z = #2743 has the graph shown below.

This graph has a peak at (—3,3) and a valley at (—7,—1). Correspondingly, a;_1(z) = 3
and ay(x) = 1. The leftmost point of the graph is (=9, 1), so w(z) = 1.

Note that relations (13) and (14) are not bounded in degree since the only condition on i
is that it be a nonnegative integer. This differs from the previous algebras that we examined
in that the largest degree needed in those cases was 4 (as in the subalgebra of up-operators
U'/I;). Indeed, relations of unbounded degree are required due to the following proposition.

Proposition 4.4. The ideal Iz cannot be generated by elements of bounded degree.

Proof. Suppose for contradiction that the largest degree appearing among the generators
of Is is h € N. Choose an integer k > h, and let = t* and y = th" ¢tk Observe that
w(z) = w(y) = (0,...,0,k,0,...) and a(x) = a(y) = (0,...,0,k,0,...), and so u, = u,
(mod I) by Corollary 2.4.

Note that in the graph of x, there is never a peak occurring to the right of a valley. In other
words, if z = x7 ...z, then there do not exist ¢ < j such that (—i,ay_1(x)) and (=7, —ay(x))
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appear in the graph of x. We will call an instance of a peak occurring to the right of a valley
a peak/valley pair. For instance, = has no peak/valley pair but y does, corresponding to the

suffix subwords #* and 7°t*, respectively.

We now show that for words z satisfying ay—1(2) + a(2) > h, our degree boundedness
assumption implies that the existence of a peak/valley pair is invariant modulo Iz. This
will then lead to an immediate contradiction when applied to z and y. Let u,, — u,, be a
generator of Iz of degree at most h. It suffices to show that if the word z = m;mmsy has a
peak/valley pair, then so does 2z’ = mym/ma.

Since Uy, = U,y (mod Ig), the graphs of m and m’ must have their peaks, valleys, and
endpoints at the same heights. Therefore z has a peak or valley within m if and only if 2’
has a peak or valley within m’. If z has a peak/valley pair with neither peak nor valley
occurring within m, then 2’ has a peak/valley pair at the same locations. If at most one of
the peak or valley occurs within m, say the peak, then the valley must occur within m;, so 2’
will have a peak within m’ and a valley within m; and hence a peak/valley pair. (The other
case is similar.) The only remaining possibility is if both the peak and valley occur within
m (for they might switch order in m'). However, since ay_1(2) 4+ ax(z) > h, the difference in
height between the peak and valley is more than h, so they cannot both appear within m,
which has length at most h. This completes the proof. O]

4.2.2. Proof of relations. We now prove that relations (13) and (14) suffice. The proofs
for the following two propositions are essentially the same as the proofs of the analogous
propositions in Section 3.

Proposition 4.5. The ideal Iz is a binomial ideal.
Proposition 4.6. The inclusion of ideals Jg C Ig holds.

As in Section 3, our approach is to construct a standard equivalence class representative
ufy (modulo I) for every monomial u, and to then show that w, = up) (mod Jg).

Definition 4.7. For any word z be a word in ¢ and ¢, define

[J}] = twt(m)“‘ai (m)fo‘t*1(x)+at(x)tat—1(m) )

We say that such a word [z] is the standard representative for x, or alternatively that it is
in standard form.

Note that all the exponents appearing in [z| are nonnegative: in particular, by the defini-
tion of ay(x) we have ay(x) > —wy(x), and so wy(z)+ay(x) > 0. It is straightforward to check
that w(z) = (0,...,0,w(x),0,...) = w([z]) and a(z) = (0,...,0,4_1(x),x(x),0,...) =
a([z]), so Corollary 2.4 implies that [z]| is the unique word in standard form such that
Uy = Ufy (mod Ip).

Proposition 4.8. Let x = x--- x4 be a word int and t. We have u, = ufy (mod Jg).

Proof. We prove this by induction on the length of z. If £ = 0 or if z = ¢, then [z] = x, so
there is nothing to prove. If x = t, then [z] = ttt, and t = ttt by (13) for i = 0.

Now suppose the statement holds for all words shorter than . We have that u, = u,, u,
where y = x5---2,. By induction, u, = g uy = uzup (mod Jg), so we need to show
Ugy Uly] = Ufa]-



12 RICKY INI LIU AND CHRISTIAN SMITH

If 2y =t and wi(y) < ay—1(y), then wy(x) = w(y)+ 1 while a(x) = a(y). Hence [z] = t[y],
so there is nothing to show. Similarly if 1 = ¢ and a;(y) = —w,(y), then

2] = o O i) _ gy

so again there is nothing to show.

Suppose z1 =t and w(y) = az—1(y). Then wy(x) = wi(y) + 1, ap—1(x) = av—1(y) + 1, and
ay(x) = a4(y). Here the graph of z has a new peak at its leftmost point, so t[y] is not in
standard form. Applying (13) with i = w;(y) + au(y) gives

wpup) = twe() o () +1gwe ) teny) o1 (y)

twe (W) +ee (y)+1gwe (y)+ar (y)+1tat, 1(y)+

1 = u[m].

Finally, suppose z; = ¢ and a;(y) > —w,(y). We then have w,(z) = w;(y) — 1 and
a(x) = a(y). Again t[y] is not in standard form since it begins with ¢. Note that by
definition oy _1(y) > w(y), so ay_1(y) + a4 (y) > wi(y) + a4(y). Therefore we can apply (14)
with i = wi(y) + a4 (y) — 1 = wi(z) + ay(z) to get

dyup,) = froe )t (w)ger-1 @) Faev) o (v)

= t’wt(y)“rat(y)—lfat—l(y)—"_at(y)tat*l(y) — U/[SC]

Theorem 4.9. The ideals Iz and Jg are equal.
Proof. This follows from Propositions 4.5, 4.6, and 4.8. ([l

4.2.3. Up- and down-operators on finite chains. Consider again the operators u, and d; for
some fixed ¢ > 1. The action of these operators on Y splits up as a direct sum of the action
on chains C', where C' is a set of partitions A that have fixed values for X, for all i # ¢t. The
action is then determined entirely by p = X,_; — A}, ;, the difference between the (¢t — 1)st
and (¢ + 1)st columns. (Equivalently, C' is a chain with p + 1 elements, and u; and d; act as
up- and down-operators on this chain.)

Fix p, and let I be the two-sided ideal of B containing all elements which annihilate C, a
chain with p+ 1 elements. We characterize the algebra B/I. by showing that . is generated
by the following relations:

(15) utd = ultd My, for 0 <i<p-—1,
(16) udi™ = dp Tt for 0<i<p—1,
(17) ut =0,
(18) = 0.

Let Je be the ideal generated by relations (15)—(18). We will show that Jz = I by
exploiting the close relationship between these ideals and I5.

Theorem 4.10. The ideals I and Je are equal.

Proof. Recall that Iy is the two-sided ideal of B containing all elements which annihilate
Y. Let P be the two-sided ideal of B which is generated by relations (17) and (18). It is
straightforward to see that Jeo = Ig + P (since (13) and (14) for ¢ > p are implied by (17)
and (18)), so we need to show that Io = Iz + P.
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The inclusion Iz + P C I¢ holds since both (17) and (18) annihilate C. For the reverse
direction, note that by Proposition 4.8, B/Iz has a basis consisting of the standard repre-
sentatives up). A basis element uy, annihilates C' if and only if the power of t appearing
in it is larger than p, which occurs if and only if it lies in P. The other basis elements act
independently on C' as in the proof of Proposition 3.2. It follows that I C Iz + P. U

5. CONCLUSION

While the results of this paper and [5] have answered various questions about up- and
down-operators, there still remain directions to explore on this subject. For instance, recall
that the ideal of relations among the up- and down-operators is generated by relations
of bounded degree (in fact, of degree 2), while some subalgebras such as B/Iz cannot be
presented by relations of bounded degree. It would be interesting to determine for which
subalgebras this is true. In other words, can one characterize when the generating relations
among a subset of operators are bounded versus unbounded in degree?

More generally, it would be interesting to explore these up- and down-operators for posets
other than Young’s lattice. Let P be a poset with an edge labeling from an index set I.
We can define up-operators u; for i € I such that, for p € P, u;(p) = q if p < ¢ and the
edge between p and ¢ is labeled ¢, and otherwise u;(p) = 0 if no such ¢ exists. Note that for
Young’s lattice as considered above, the label between A and p where A\ < p is the column ¢
in which the unique box of /A appears. One can consider the algebras generated by these
operators (or the analogously defined d;) and try to describe their relations for other posets
of interest, such as Bruhat order or absolute order on a Coxeter group. (The case of weak
order leads to the study of nil-Coxeter algebras [3].) It would also be interesting if it were
possible to relate structural properties of these algebras to the structure of the corresponding
posets in some way.
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