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Abstract. We show that for any permutation w that avoids a certain set of 13
patterns of length 5 and 6, the Schubert polynomial Sw can be expressed as the
determinant of a matrix of elementary symmetric polynomials in a manner similar
to the Jacobi-Trudi identity. For such w, this determinantal formula is equivalent
to a (signed) subtraction-free expansion of Sw in the basis of standard elementary
monomials.

1. Introduction

The Schubert polynomials Sw form an important basis of the polynomial ring
Z[x1, x2, . . . ], primarily due to their role as representatives for the classes of Schubert
varieties in the cohomology of the �ag variety. In this paper, we consider the ex-
pansion of Schubert polynomials in the SEM basis consisting of standard elementary
monomials

ej1j2··· = ej1(x1)ej2(x1, x2)ej3(x1, x2, x3) · · · ,
where ek is the kth elementary symmetric polynomial and only �nitely many of the
ji are nonzero. Such SEM expansions of Schubert polynomials have been studied
previously in [8, 11, 13, 16, 17]. In particular, it was shown by Fomin, Gelfand,
and Postnikov [8] that these expansions are important for the construction of quan-
tum Schubert polynomials, which can be used to compute Gromov-Witten invariants
for the small quantum cohomology ring of the �ag variety. Additionally, Postnikov
and Stanley [16] noted that the problem of �nding the SEM expansion of Schubert
polynomials is equivalent to the problem of computing the inverse Schubert-Kostka
matrix�that is, the expansion of monomials in the Schubert basis.
One special case of Schubert polynomials are the Schur polynomials sλ(x1, . . . , xn),

which have a determinantal formula in terms of elementary symmetric polynomials
via the famous Jacobi-Trudi identity. It was observed by Kirillov [11] that this identity
can be slightly modi�ed to give a determinantal formula that, when expanded, gives
the SEM expansion for Schur polynomials. (See Corollary 4.12 below.) A similar
determinantal formula was given in [16] forSw when w is a 213-avoiding permutation.
Such determinants can be interpreted via a nonintersecting lattice path model using
the Lindström-Gessel-Viennot lemma.
Our main focus will be to study which Schubert polynomialsSw can be expressed as

a Jacobi-Trudi-like determinant that yields its SEM expansion (and can therefore be
described by a nonintersecting lattice path model). Such determinantal formulas are
particularly notable because any coe�cient appearing in such an SEM expansion has
absolute value at most 1. Our main result will be to show that such a determinantal
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formula exists when w avoids the following 13 patterns of length 5 and 6:

51324, 15324, 52413, 25413, 53142, 35142, 31542,

143265, 143625, 143652, 146352, 413265, 413625.

(This is not a necessary condition�see �5 for further discussion.)
Our approach will utilize the fact that certain operations such as divided di�erence

operators can be seen to act on the generating functions for nonintersecting lattice
paths by moving the endpoints in a simple combinatorial way. A similar observa-
tion was also used in [5, 6] to give lattice path interpretations for certain �agged
double Schur functions and �agged skew Schubert polynomials (though the interpre-
tations there primarily yield formulas in terms of complete homogeneous symmetric
polynomials rather than elementary symmetric polynomials).
The organization of this paper is as follows: In �2, we will discuss background

information on permutations, Schubert polynomials, and standard elementary mono-
mials, as well as de�ne lattice path representations for polynomials. We will also
discuss how these lattice path models apply to the context of quantum Schubert
polynomials. In �3, we will discuss various operations for manipulating lattice path
representations. In �4, we will use the operations in �3 to �rst prove a special case
regarding 1324-avoiding separable permutations and then build on this case to prove
our main result in Theorem 4.13. We will conclude in �5 with some remaining open
questions.

2. Background

In this section, we will introduce necessary background about permutations, Schu-
bert polynomials, standard elementary monomials, and nonintersecting lattice paths.
For more information, see, for instance, [15].

2.1. Permutations. Let Sn denote the symmetric group of permutations on [n] =
{1, . . . , n}. We will often denote a permutation w ∈ Sn in one-line notation w =
w1w2 · · ·wn.
The simple transpositions si = (i i+ 1) for i = 1, . . . , n− 1 generate the group Sn.

For a permutation w ∈ Sn, its length `(w) is the length of the shortest expression
for w as a product of simple transpositions si1 . . . si` (called a reduced expression).
Alternatively, `(w) is the number of inversions of w, where an inversion is an ordered
pair (wi, wj) satisfying j > i and wj < wi. We denote by 1n the identity permutation

in Sn, and we denote by w0 = w
(n)
0 the permutation n(n− 1) · · · 1 ∈ Sn of maximum

length in Sn.
The (Lehmer) code of a permutation w ∈ Sn is the sequence c = c(w) = (c1, . . . , cn),

where ci = #{j > i | wj < wi}. The map from w ∈ Sn to its code c is a bijection
from Sn to the set of integer vectors (c1, . . . , cn) satisfying 0 ≤ ci ≤ n− i for all i.
For a permutation w, we say that wi is a left-to-right maximum of w if wj < wi for

all j < i.
Sometimes it will be convenient to consider the direct limit S∞ of symmetric groups

under the natural embeddings ι : Sn ↪→ Sn+1 in which Sn acts on the �rst n letters.
Equivalently, any element w ∈ S∞ is a permutation of N = {1, 2, . . . } that �xes all
but �nitely many elements.
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2.1.1. Pattern avoidance. Given a permutation (or pattern) p = p1 · · · pk ∈ Sk, we
say that a permutation w ∈ Sn contains the pattern p if w has a subsequence in the
same relative order as p, that is, if there exist i1 < i2 < · · · < ik such that wia < wib
if and only if pia < pib . We say that w avoids p if w does not contain the pattern
p. We will sometimes abuse terminology and refer to either p ∈ Sk or wi1 · · ·wik as
being a pattern of w.
A permutation w ∈ Sn is called dominant if it avoids the pattern 132. Equivalently,

a permutation is dominant if and only if its code is nonincreasing, that is, c1 ≥ c2 ≥
· · · ≥ cn.

2.1.2. Direct and skew sum. The following two operations can be used to combine
permutations.

De�nition 2.1. The direct sum of permutations u ∈ Sm and v ∈ Sn is the permuta-
tion u⊕ v ∈ Sm+n de�ned by

(u⊕ v)(i) =

{
u(i) if i ≤ m,

v(i−m) +m if i > m.

The skew sum of u ∈ Sm and v ∈ Sn is the permutation u	 v ∈ Sm+n de�ned by

(u	 v)(i) =

{
u(i) + n if i ≤ m,

v(i−m) if i > m.

De�nition 2.2. A permutation is called separable if it can be built from copies of
the permutation 1 ∈ S1 using only direct sum and skew sum operations.

In [4], it was shown that separable permutations can alternatively be described as
those that avoid the patterns 2413 and 3142.

2.2. Schubert polynomials. The symmetric group Sn acts on Z[x1, ..., xn] in a
natural way by permuting variables. For instance, if f ∈ Z[x1, . . . , xn], then sif is
the polynomial obtained by switching xi and xi+1 in f .
For i = 1, . . . , n− 1, the divided di�erence operator ∂i is de�ned by

∂if =
1− si

xi − xi+1

f =
f − sif
xi − xi+1

for all f ∈ Z[x1, . . . , xn]. If w = si1 · · · si` is a reduced expression, then we de�ne
∂w = ∂i1 · · · ∂i` (which is independent of the reduced expression).
The Schubert polynomials Sw for w ∈ Sn can be de�ned recursively as follows: for

the long word w0 ∈ Sn, Sw0 = xn−1
1 xn−2

2 · · ·xn−1. Otherwise,

Swsi = ∂i(Sw) if `(wsi) < `(w)

(while ∂i(Sw) = 0 if `(wsi) > `(w)). Equivalently, Sw = ∂w−1w0
(xn−1

1 xn−2
2 · · ·xn−1)

for all w ∈ Sn.
Schubert polynomials are stable under the natural embeddings ι : Sn ↪→ Sn+1,

which implies that Sw is well-de�ned for any w ∈ S∞. The set {Sw | w ∈ S∞} forms
a basis for the polynomial ring Z[x1, x2, . . . ] called the Schubert basis.
The expansion of any Schubert polynomial in terms of monomials has nonnegative

coe�cients. One combinatorial interpretation for these coe�cients is as follows (see
[1, 3, 9] for more details).
A pipe dream (or rc-graph) is a type of wiring diagram in which each box (i, j)

with i, j ≥ 1 (indexed using matrix conventions) contains either a cross or a pair of



4 HASSAN HATAM, JOSEPH JOHNSON, RICKY INI LIU, AND MARIA MACAULAY

1 2 3 4

4

1

3

2

1 2 3 4

4

1

3

2

Figure 1. The two reduced pipe dreams for 4132. (In this diagram,
only the �rst four pipes are drawn; all other pipes consist only of el-
bows.)

elbows. (See Figure 1.) A pipe dream corresponds to the permutation w ∈ S∞ if the
wire that enters at the left of row i exits at the top of column wi. A pipe dream is
called reduced if no two wires cross more than once.
Every reduced pipe dream for w contains exactly `(w) crosses. Assign to each cross

the weight xi if it occurs in row i, and de�ne the weight of the pipe dream to be the
product of the weights of its crosses. Then Sw is the sum of the weights of all reduced
pipe dreams for w.

Example 2.3. Let w = 4132. Figure 1 shows the two reduced pipe dream corre-
sponding to w. Hence S4132 = x3

1x2 + x3
1x3.

One special case of Schubert polynomials occurs when w is a dominant (132-
avoiding) permutation. In this case, Sw is the monomial xc11 x

c2
2 · · · , where (c1, c2, . . . )

is the code of w.
Another special case occurs when w is a Grassmannian permutation satisfying

w1 < w2 < · · · < wr and wr+1 < wr+2 < · · · < wn for some r. In this case, Sw is a
symmetric polynomial in x1, . . . , xr called a Schur polynomial sλ(x1, . . . , xr), where
λ is the partition (wr− r, wr−1− (r− 1), . . . , w1− 1). A more common combinatorial
description for Schur polynomials is given by semistandard tableaux�see [10] for the
connection to lattice paths discussed later.
The following proposition describes how Schubert polynomials behave under direct

sum and skew sum (see also, for instance, [3, 12]).

Proposition 2.4. Let u ∈ Sm and v ∈ Sn. Then:

(a) Su⊕v = Su ·S1m⊕v, and
(b) Su	v = Su ·S1m	v = Su · (x1 · · · xm)n ·Sv(xm+1, . . . , xm+n).

Proof. For (a), any reduced pipe dream for u ⊕ v must have the �rst m pipes lying
strictly above the last n pipes. Thus such a pipe dream can be factored uniquely into
a reduced pipe dream for u and (by replacing the �rst m pipes with the identity pipe
dream containing only elbows) a reduced pipe dream for 1m ⊕ v.
For (b), any reduced pipe dream for u	 v must have crosses in the �rst n boxes of

the �rst m rows. The remaining part consists of a reduced pipe dream for u (shifted
to the right by n) and a reduced pipe dream for v (shifted down by m). The result
follows easily. �



DETERMINANTAL FORMULAS FOR SEM EXPANSIONS OF SCHUBERT POLYNOMIALS 5

2.3. Standard elementary monomials. For integers j and k with k ≥ 0, denote
by

e
(k)
j =

∑
1≤i1<···<ij≤k

xi1 · · ·xij

the jth elementary symmetric polynomial in x1, . . . , xk. (By convention, e
(k)
j = 1 for

j = 0, while e
(k)
j = 0 if j > k or j < 0.) Note that e

(k)
j is symmetric in xi and xi+1

for all i 6= k.
Let L be the set of sequences of integers (j1, j2, . . . ) satisfying 0 ≤ jk ≤ k for which

all but �nitely many of the jk vanish. (We will sometimes omit trailing zeroes from
such sequences for convenience.) Then for any (j1, j2, . . . ) ∈ L we de�ne the standard
elementary monomial ej1j2··· to be the polynomial

ej1j2··· =
∏
k≥1

e
(k)
jk
.

(Note that all but �nitely many terms in the product are 1.)
It was shown in [8] that as (j1, j2, . . . ) ranges over all sequences in L, the stan-

dard elementary monomials ej1j2··· form a basis for the polynomial ring Z[x1, x2, . . . ],
which we call the SEM basis. (Though we will not need it here, each standard ele-
mentary monomial has nonnegative coe�cients when expanded in the Schubert basis,
as determined by the Pieri rule for Schubert polynomials�see, for instance, [13].)
Given a permutation w ∈ Sn, consider the expansion of the corresponding Schubert

polynomial in the SEM basis

Sw =
∑

αj1j2···jn−1ej1j2···jn−1 .

Most notably, this expansion appears in the study of quantum Schubert calculus:
Fomin, Gelfand, and Postnikov [8] de�ne the quantum Schubert polynomial as

(†) Sq
w =

∑
αj1j2···jn−1Ej1j2···jn−1 ,

where Ej1j2···jn−1 =
∏

k E
(k)
jk

is a product of quantum elementary polynomials E
(k)
j =

Ej(x1, . . . , xk) de�ned by

(‡) det(I + λGk) =
k∑
j=0

E
(k)
j λj, where Gk =


x1 q1 0 · · · 0
−1 x2 q2 · · · 0
0 −1 x3 · · · 0
...

...
...

. . .
...

0 0 0 · · · xk

 .
Hence any formula for the SEM expansion of Schubert polynomials may also be
thought of as a formula for quantum Schubert polynomials. See [8] for further back-
ground on quantum Schubert polynomials and their role in the quantum cohomology
of the �ag variety.
In [16, Section 17], it is shown that the coe�cients αj1j2··· are also the entries in

the inverse Schubert-Kostka matrix expressing monomials in terms of the Schubert
basis. In general, computational evidence suggests that most of the αj1j2··· are small in
absolute value. For instance, all such coe�cients have absolute value at most 1 when
n ≤ 6�see Winkel [17] for more observation and discussion about these coe�cients.
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2.4. Nonintersecting lattice paths. A key result for �nding determinantal formu-
las is the following Lindström-Gessel-Viennot lemma [10, 14].
Let G = (V,E) be a locally �nite acyclic directed graph, and suppose that each

edge e ∈ E is assigned an edge weight we (lying in some commutative ring). For any
path in G, we de�ne its weight to be the product of the weights of all edges in the
path. For any two vertices a and b, we will write e(a, b) for the total weight of all
directed paths from a to b.
Let A = {a1, . . . , ak} and B = {b1, . . . , bk} be subsets of V . A collection of nonin-

tersecting paths P = (P1, . . . , Pk) from A to B is a sequence of vertex-disjoint paths
such that, for some permutation σ ∈ Sk, Pi is a directed path from ai to bσ(i) for all
i. Denote by P(A,B) the set of all such P . For any P ∈ P(A,B), we will write
σ(P ) for the corresponding permutation σ and w(P ) for the product of the weights
of paths in P .

Lemma 2.5 (Lindström-Gessel-Viennot). Let G be a locally �nite acyclic directed
graph, and let A = {a1, . . . , ak} and B = {b1, . . . , bk} be subsets of vertices of G.
Then ∑

P∈P(A,B)

sgn(σ(P )) · w(P ) = det(e(ai, bj))
k
i,j=1.

In particular, if σ(P ) is the identity permutation for all P , then the left hand side
is just the sum of the weights of all collections of nonintersecting paths.
One standard application of Lemma 2.5 is the (dual) Jacobi-Trudi identity.

Proposition 2.6 (Dual Jacobi-Trudi). Let λ be a partition with largest part r. Then
the Schur polynomial sλ(x1, . . . , xn) is given by the determinant

sλ(x1, . . . , xn) = det(e
(n)

λ′i+j−i
)ri,j=1,

where each entry is an elementary symmetric polynomial in x1, . . . , xn.

(Here, λ′ is the conjugate partition to λ, so that for any positive integer i, λ′i =
#{j | λj ≥ i}.)
The proof of this result involves applying Lemma 2.5 on the following graph. Let

G have vertex set Z × Z≥0�by convention, we will draw the positive x-axis to the
east and the positive y-axis to the north. Whenever both endpoints lie in G, add
a directed edge from (a, b) to (a, b + 1) of weight xb+1 (which we call an �upstep�),
as well as a directed edge from (a, b) to (a − 1, b + 1) of weight 1 (which we call a
�diagonal step�). See Figure 2.
Observe that any directed path from (a, 0) to (b, c) must use a− b diagonal steps

and c + b− a upsteps. Moreover, each upstep must occur at a di�erent one of the c

possible heights. It follows that e((a, 0), (b, c)) = e
(c)
c+b−a. Applying Lemma 2.5 then

immediately implies the following result.

Proposition 2.7. Let G be de�ned as above, and let

A = {(a1, 0), (a2, 0), . . . , (ak, 0)},
B = {(b1, c1), (b2, c2), . . . (bk, ck)}.

Then ∑
P∈P(A,B)

sgn(σ(P )) · w(P ) = det(e
(cj)
cj+bj−ai)

k
i,j=1.
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x1

x2

x3

x4

Figure 2. An induced subgraph ofG on Z×Z≥0. All vertical edges are
directed up, weighted according to height as shown, while all diagonal
edges are directed up with weight 1.

Figure 3. Nonintersecting lattice paths for a lattice path representa-
tion of S4132 = x3

1x2 + x3
1x3. (The points in A and B are given by red

and blue nodes, respectively.)

De�nition 2.8. A polynomial F has a lattice path representation (A,B) if

A = {(a1, 0), (a2, 0), . . . , (ak, 0)},
B = {(b1, c1), (b2, c2), . . . (bk, ck)},

and

(∗) F =
∑

P∈P(A,B)

sgn(σ(P )) · w(P ) = det(e
(cj)
cj+bj−ai)

k
i,j=1.

Example 2.9. Consider the Schubert polynomial S4132 as in Example 2.3. One can
verify that

S4132 = x3
1x2 + x3

1x3 = e112 − e103 − e022 =

∣∣∣∣∣∣∣
e

(1)
1 e

(2)
2 0

e
(1)
0 e

(2)
1 e

(3)
3

0 e
(2)
0 e

(3)
2

∣∣∣∣∣∣∣ .
This corresponds to the lattice path representation (A,B) with

A = {(0, 0), (1, 0), (2, 0)}, B = {(0, 1), (0, 2), (1, 3)}

whose nonintersecting paths are depicted in Figure 3.

The order of the labelings of the points in A and B only a�ects F up to a sign.
Therefore we will often abuse notation slightly by considering A and B as unordered
sets for ease of exposition. In most of the situations that we will consider, each
collection P of nonintersecting paths will have the same σ(P ), and so we can label
the elements of B so that σ(P ) is the identity.
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The lattice path representation of a polynomial is not unique: for example, the
constant polynomial 1 can be represented by any pair (A,B) such that ai = bi+ci for
all i (as the corresponding matrix will be upper triangular with 1's on the diagonal).
Given a determinantal expression whose entries are elementary symmetric poly-

nomials that vary as in (∗), it is straightforward to �nd corresponding sets A and
B.

Example 2.10. The dual Jacobi-Trudi identity involves a determinant whose (i, j)th

entry is given by e
(n)

λ′i+j−i
. This can be obtained from Proposition 2.7 by setting, for

instance, ai = n+ i− λ′i, bj = j, and cj = n.
One can then give a weight-preserving bijection between P(A,B) and, for instance,

semistandard Young tableaux of shape λ to deduce the dual Jacobi-Trudi identity:
see [10].

A particular case of interest is when the points in B all lie at di�erent heights.

De�nition 2.11. Let (A,B) be a lattice path representation with

A = {(a1, 0), (a2, 0), . . . , (ak, 0)},
B = {(b1, c1), (b2, c2), . . . , (bk, ck)}.

We say that the lattice path representation (A,B) is proper if the ci are distinct. (We
call {c1, . . . , ck} the multiset of heights of (A,B).)

Observe that if (A,B) is proper, then in the expansion of the determinant in (∗),
each term either vanishes or equals, up to sign, a standard elementary monomial. In
addition, all of the nonzero terms obtained in this way will necessarily be distinct.
Therefore when this occurs, this determinant can be thought of as a concise repre-
sentation of the SEM expansion of the resulting polynomial. Our goal for most of the
remainder of this paper is to investigate which Schubert polynomials have a proper
lattice path representation.

2.5. Quantization. As a brief digression, we will �rst discuss a slight modi�cation
of these lattice path representations for computing quantum Schubert polynomials.
(This section will not be needed for the remainder of this paper.)
The quantum Schubert polynomials Sq

w are de�ned by computing the SEM expan-

sion of Sw and replacing each elementary polynomial e
(k)
j with the quantum elemen-

tary polynomial E
(k)
j �see equations (†) and (‡) in �2.3. In the event that Sw has

a proper lattice path representation and hence a determinantal formula for its SEM
expansion by Proposition 2.7, it follows that Sq

w is also expressible as a determinant

whose entries are of the form E
(k)
j . In fact, there exists a simple modi�cation to our

underlying graph G on Z× Z≥0 that yields the quantum elementary polynomials as
weights.
Let Gq be the graph on Z × Z≥0 with the same edges as G as before but with

additional edges from (a, b) to (a, b + 2) of weight qb+1. (Thus if we set all qi = 0,
then the graph Gq essentially reverts to the original graph G.)

Proposition 2.12. The total weight e((a, 0), (b, c)) of all paths from (a, 0) to (b, c)

in Gq is E
(c)
c+b−a.

Proof. In (‡), expanding the determinant along the last column of I + λGk gives

E
(k)
j = E

(k−1)
j + xkE

(k−1)
j−1 + qk−1E

(k−2)
j−2 .
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Similarly, any path in Gq from (a, 0) ending at (b, c) must come from (b+ 1, c− 1)
with an edge of weight 1, from (b, c− 1) with an edge of weight xc, or from (b, c− 2)
with an edge of weight qc−1. Hence e((a, 0), (b, c)) equals

e((a, 0), (b+ 1, c− 1)) + xce((a, 0), (b, c− 1)) + qc−1e((a, 0), (b, c− 2)).

Since e((a, 0), (b, c)) and E
(c)
c+b−a satisfy the same base cases (equaling 1 if c+b−a = 0

and 0 if c+ b− a < 0), the result follows easily by induction. �

The following corollary is then immediate.

Corollary 2.13. Suppose Sw has a proper lattice path representation (A,B). Then

Sq
w =

∑
P∈Pq(A,B)

sgn(σ(P )) · w(P ),

where Pq(A,B) is the set of all collections of nonintersecting paths from A to B in
the graph Gq.

Proof. By Proposition 2.7 and (†), Sq
w is given by a determinant of quantum elemen-

tary polynomials. This determinant is precisely the one given by applying Lemma 2.5
to Gq and (A,B) by Proposition 2.12. �

As we will see, a large class of permutations w to which this corollary applies will
be described by our main result Theorem 4.13.

3. Operations

In this section, we will describe several operations on lattice path representations
that act predictably on the corresponding polynomials.

Proposition 3.1. Let (A,B) be a lattice path representation of a polynomial F , and
suppose (b, c), (b + 1, c) ∈ B. Then (A,B′) is a lattice path representation for F ,
where B′ is formed by replacing (b+ 1, c) with (b, c+ 1) in B.

Proof 1. Any path that ends at (b, c+ 1) that does not pass through (b, c) must end
with a diagonal step from (b + 1, c). Removing this last diagonal step (which has
weight 1) then gives a weight-preserving bijection from P(A,B′) to P(A,B). �

An alternative proof can also be obtained by manipulating the determinantal for-
mula for F .

Proof 2. Let E be the matrix given in (∗). Note that E contains two columns whose

entries in each row i have the form e
(c)
c+b−ai and e

(c)
c+b+1−ai . Adding xc+1 times the �rst

column to the second does not change the value of the determinant. The entries in
the second column then become

xc+1e
(c)
c+b−ai + e

(c)
c+b+1−ai = e

(c+1)
c+b+1−ai ,

so that the resulting matrix corresponds to the new representation (A,B′). �

Our next operation concerns the action of the divided di�erence operators ∂i. For
a similar result, see [5, Lemma 4.4].

Proposition 3.2. Let (A,B) be a lattice path representation of a polynomial F , and
suppose that B has a unique point (b, c) at height c. Then (A,B′) is a lattice path
representation for ∂c(F ), where B′ is formed by replacing (b, c) with (b, c− 1) in B.
If instead B has no point at height c, then ∂c(F ) = 0.
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∂2 ∂3

Figure 4. Application of Proposition 3.3. The center picture gives
a lattice path representation for F = x3

1x
2
2 + x3

1x2x3. (Both sets of
nonintersecting paths are overlaid for conciseness.) The left and right
pictures represent ∂2F = x3

1x2 + x3
1x3 and ∂3F = x3

1x2, respectively.

Proof. From (∗), F is the determinant of a matrix (e
(cj)
cj+bj−ai)

k
i,j=1. Each entry of this

matrix is symmetric in xc and xc+1 unless c = cj, which occurs in a unique column
(since B has a unique point at height c). Then in the Laplace expansion of the

determinant along this column, each term has the form e
(c)
c+b−ai · g for some minor g

that is symmetric in xc and xc+1. Applying ∂c then gives

∂c(e
(c)
c+b−ai · g) = ∂c(e

(c)
c+b−ai) · g = e

(c−1)
(c−1)+b−ai · g.

Thus ∂c has the e�ect of replacing e
(c)
c+b−ai with e

(c−1)
(c−1)+b−ai in the determinant. By

Proposition 2.7, this new determinant for ∂c(F ) corresponds to the lattice path rep-
resentation (A,B′), as desired.
If instead B has no point at height c, then every entry of the determinant for F is

symmetric in xc and xc+1, so ∂c(F ) = 0. �

By combining Propositions 3.1 and 3.2, we arrive at the following operation that
preserves heights.

Proposition 3.3. Let (A,B) be a lattice path representation for F , and suppose that
B has a unique point (b, c) at height c.

(a) If (b + 1, c − 1) ∈ B, then (A,B′) is a lattice path representation for −∂c(F ),
where B′ is formed by replacing (b+ 1, c− 1) by (b, c− 1) in B.

(b) If (b−1, c−1) ∈ B, then (A,B′′) is a lattice path representation for ∂c(F ), where
B′′ is formed by replacing (b, c) by (b− 1, c) in B.

Proof. Apply Proposition 3.2 to the point (b, c), and then apply Proposition 3.1 to
the two points at height c− 1. �

Example 3.4. Let F = x3
1x

2
2 + x3

1x2x3, which has lattice path representation

A = {(0, 0), (1, 0), (2, 0)}, B = {(0, 2), (1, 1), (1, 3)}
as shown in the middle diagram of Figure 4.
Applying Proposition 3.3(a) with c = 2 shows that we can obtain a representation

for ∂2F = x3
1x2 +x3

1x3 by moving the endpoint (1, 1) to (0, 1) (and permuting the set
B appropriately to get rid of the sign), as shown on the left of Figure 4.
Alternatively, applying Proposition 3.3(b) with c = 3 shows that we can obtain a

representation for ∂3F = x3
1x2 by moving the endpoint (1, 3) to (0, 3), as shown on

the right of Figure 4.

Our last operation concerns products of polynomials. Observe that there exists a
directed path from (a, 0) to (b, c) if and only if b ≤ a ≤ b+ c.
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Proposition 3.5. Let (A,B) and (A′, B′) be lattice path representations for polyno-
mials F and G, respectively, such that there do not exist any directed paths from a
point in A to a point in B′. Then (A∪A′, B ∪B′) is a lattice path representation for
the product FG.

Proof. By the given condition, the only points of A ∪ A′ that points in B′ can be
connected to are those in A′. No paths from A to B intersect any paths from A′ to
B′ (or else there would be a path from A to B′), so the elements of P(A∪A′, B∪B′)
are formed by pairing an element of P(A,B) with an element of P(A′, B′). �

Note that one can always translate (A,B) horizontally to make the condition of
Proposition 3.5 true while leaving weights unchanged.
As a special case, we can derive the following result that allows us to delete (or

add) certain points from a lattice path representation.

Proposition 3.6. Let (A,B) be a lattice path representation of a polynomial F , and
suppose that for some s ≥ 0,

A′ = {(a, 0), (a+ 1, 0), . . . , (a+ s, 0)} ⊆ A,

B′ = {(a, 0), (a, 1), . . . , (a, s)} ⊆ B.

Then (A \ A′, B \B′) is also a lattice path representation of F .

Proof. There are no directed paths from any point in A\A′ to any point in B′. Since
there is a unique collection of nonintersecting paths from A′ to B′, and these paths
use only diagonal steps, (A′, B′) is a lattice path representation of 1. The result then
follows from Proposition 3.5. �

4. Representing Schubert polynomials

In this section, we will use the operations described in �3 to construct lattice path
representations for a large pattern avoidance class of Schubert polynomials.

4.1. Compact representations. We will �rst investigate a special type of lattice
path representation.

De�nition 4.1. A lattice path representation (A,B) is compact if {a1, . . . , ak} =
{c1, . . . , ck} = {0, . . . , k − 1}, and 0 ≤ bi ≤ k − 1 for all i, where k = |A| = |B|.

In other words, a compact lattice path representation is proper, and all endpoints
�t within a square of side length k − 1, where k = |A| = |B|. Note that in order for
there to exist at least one set of nonintersecting lattice paths, we must have that at
least s of the bi are less than s (so that the paths starting at the �rst s points of A
have endpoints), that is, the sequence of bi must be a parking function.
Our main result of this section will be the following theorem.

Theorem 4.2. Let w ∈ Sn be a permutation that avoids 1324, 2413, and 3142. Then
Sw has a compact lattice path representation.

Recall that a permutation is called separable if it avoids 2413 and 3142. Hence the
permutations in the theorem above are the 1324-avoiding separable permutations.
To prove this theorem, we �rst consider the special cases of dominant (132-avoiding)

permutations and 213-avoiding permutations.
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Lemma 4.3. Let w ∈ Sn be a 132-avoiding permutation. Then (−1)(
n
2)−`(w)Sw has

a compact lattice path representation (A,B), where

A = {(n− 1, 0), (n− 2, 0), . . . , (0, 0)},
B = {(b1, 0), (b2, 1), . . . (bn, n− 1)},

where w has code c(w) = (b1, b2, . . . , bn)

Proof. We will induct on
(
n
2

)
− `(w). When w = w0, bi = n− i, and the only way to

connect A and B with nonintersecting lattice paths is via vertical paths, which have
combined weight Sw0 = xn−1

1 xn−2
2 · · · xn−1.

Suppose w 6= w0 and let c(w) = (b1, . . . , bn). Since w is dominant, we must have
n− 1 ≥ b1 ≥ b2 ≥ · · · ≥ bn ≥ 0. Since w 6= w0, there exists a minimum index i such
that bi = bi+1, so that wi < wi+1. Then w

′ = wsi has length `(w
′) = `(w) + 1 and has

code c(w′) = (b1, . . . , bi−1, bi + 1, bi+1, . . . bn). Since c(w′) is still weakly decreasing,

w′ is also dominant and therefore by induction (−1)(
n
2)−`(w′)Sw′ has a corresponding

lattice path representation (A,B′).
Note that B′ contains the two points (bi + 1, i− 1) and (bi+1, i) = (bi, i). We may

then construct B from B′ by replacing (bi+1, i−1) with (bi, i−1), so that by Propo-

sition 3.3(a), (−1)(
n
2)−`(w)∂i(Sw′) = (−1)(

n
2)−`(w)Sw has lattice path representation

(A,B). �

Alternatively, since w is dominant, Sw is a monomial. Hence one can also prove
Lemma 4.3 by verifying that there exists a unique collection of nonintersecting lattice
paths from A to B of the appropriate weight.
One can similarly prove the following result for 213-avoiding permutations. (Note

that w is 213-avoiding if and only if w0ww0 is dominant.)

Lemma 4.4. Let w ∈ Sn be a 213-avoiding permutation. Then Sw has compact
lattice path representation (A,B), where

A = {(n− 1, 0), (n− 2, 0), . . . , (0, 0)},
B = {(b1, n− 1), (b2, n− 2), . . . , (bn, 0)},

where c(w0ww0) = (b1, b2, . . . , bn).

Proof. We induct on
(
n
2

)
− `(w). When w = w0, bi = n− i, and there is a unique set

of nonintersecting paths from A to B with weight Sw0 .
Suppose w 6= w0, and let u = w0ww0. Since u is dominant, we can de�ne u′ = usi

such that u′ is dominant as in Lemma 4.3. Then w′ = w0u
′w0 = w0uw0sn−i = wsn−i is

also 213-avoiding with `(w′) = `(w)+1. Hence by induction Sw′ has a corresponding
lattice path representation (A,B′).
Since (as in Lemma 4.3) c(u′) = (b1, . . . , bi−1, bi + 1, bi+1, . . . , bn), B′ contains the

two points (bi + 1, n− i) and (bi+1, n− i− 1) = (bi, n− i− 1). Then if we construct
B from B′ by replacing (bi + 1, n − i) with (bi, n − i), by Proposition 3.3(b), (A,B)
is a lattice path representation for ∂n−iSw′ = Sw. �

Applying Proposition 2.7 to the lattice path representation in Lemma 4.4 yields a
determinantal formula that gives the SEM expansion for Sw when w is 213-avoiding
as in Corollary 17.12 of [16].
We are now ready to prove that any 1324-avoiding separable permutation has a

compact lattice path representation.
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Proof of Theorem 4.2. We proceed by induction on n. The case n = 1 is trivial. For
n > 1, since w avoids 2413 and 3142, it is separable. Hence we can either write
w = u	 v or w = u⊕ v for separable permutations u ∈ Sm and v ∈ Sn−m that avoid
1324.
Suppose �rst that w = u 	 v. By induction, u and v have compact lattice point

representations (Au, Bu) and (Av, Bv), respectively. Using addition to indicate trans-
lation, we claim that if

Aw = (Au + (n−m, 0)) ∪ Av = {(n− 1, 0), (n− 2, 0), . . . , (0, 0)},
Bw = (Bu + (n−m, 0)) ∪ (Bv + (0,m)),

then (Aw, Bw) is a lattice point representation for Sw. Note that if Av and Bv+(0,m)
are connected by nonintersecting lattice paths, then all paths must start with m
upsteps by compactness. It follows that (Av, Bv + (0,m)) represents the polynomial
(x1 · · ·xm)n−m · Sv(xm+1, . . . , xn) = S1m	v as in Proposition 2.4. Also (Au + (n −
m, 0), Bu+(n−m, 0)) represents Su as before. Since there are no directed paths from
Av to Bu + (n−m, 0), Proposition 3.5 implies that (Aw, Bw) represents the product
Su ·S1m	v, which equals Sw by Proposition 2.4.
Suppose instead that w = u ⊕ v. Since w avoids 1324, u must avoid 132 and v

must avoid 213. Hence v′ = 1m ⊕ v must also avoid 213. We can then construct a
lattice path representation (Av′ , Bv′) of v′ using Lemma 4.4. Note that the code of

w
(n)
0 v′w

(n)
0 = w

(n−m)
0 vw

(n−m)
0 ⊕ 1m ends with m zeroes. Thus (0, 0), (0, 1), . . . , (0,m−

1) ∈ Bv′ . By Proposition 3.6, it follows that (A′v′ , B
′
v′) is also a lattice path represen-

tation of v′, where

A′v′ = Av′ \ {(0, 0), (1, 0), . . . , (m− 1, 0)},
B′v′ = Bv′ \ {(0, 0), (0, 1), . . . , (0,m− 1)}.

(In fact, if Bv is constructed for v using Lemma 4.4, then B′v′ is the translation
Bv + (0,m).)
Now consider the lattice path representation (Au, Bu) as constructed by Lemma 4.3.

If (bi, i−1) ∈ Bu, then bi ≤ m− i by the de�nition of the code of u. Hence there does
not exist a directed path from any point of A′v′ to any point in Bu. By Proposition 3.5,
it follows that (Aw, Bw) = (Au ∪ A′v′ , Bu ∪ B′v′) is a lattice path representation of
Su ·S1m⊕v, which equals Sw by Proposition 2.4. �

Example 4.5. Let w = 87321564 = 21	 v, where v = 321564.
Since v = 321 ⊕ 231, Sv = S321 · S123564 by Proposition 2.4(a). Now 321 is

132-avoiding with code (2, 1, 0) (see Lemma 4.3), while 123564 is 213-avoiding with

c(w0 · 123564 · w0) = c(312456) = (2, 0, 0, 0, 0, 0)

(see Lemma 4.4). Reversing this second code and combining with the �rst gives
(2, 1, 0, 0, 0, 2), so following the last case of the proof of Theorem 4.2, 321564 has
compact lattice path representation (Av, Bv) (up to sign) with

Av = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0)},
Bv = {(2, 0), (1, 1), (0, 2), (0, 3), (0, 4), (2, 5)}.
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Figure 5. The set Bw for a compact lattice path representation for
Sw, where w = 87321564 = 21	 (321⊕231). The dashed squares from
bottom to top are translations of B-sets for 21, 321, and 231.

Now Sw = S21 · (x1 · · ·x6)2 · Sv by Proposition 2.4(b). Shifting Bv up by 2 and
placing a representation for S21 to its right as in the �rst case of Theorem 4.2 gives

Aw = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0)},
Bw = {(7, 0), (6, 1), (2, 2), (1, 3), (0, 4), (0, 5), (0, 6), (2, 7)}.

Then (Aw, Bw) is a compact lattice path representation (up to sign) for Sw. To see
how the representations for S21, S321, and S231 �t together geometrically to give the
representation for Sw, see Figure 5.

4.2. Lowering points. Given a lattice path representation, one can use Proposi-
tion 3.6 to remove lattice points at height 0 and Proposition 3.2 to shift lattice points
downward into empty rows, thereby generating additional representations. In this
section, we will use these two operations on the collection of compact lattice path
representations to construct representations for a large pattern avoidance class of
Schubert polynomials.
Application of these two operations can be described succinctly in the following

way.

De�nition 4.6. We say a permutation v ∈ Sn is a lowering permutation if v satis�es

v−1(1) > v−1(2) > · · · > v−1(k) = 1 < v−1(k + 1) < · · · < v−1(n)

for some integer k. In other words, in one-line notation, v contains k(k − 1) · · · 21
and k(k + 1) · · · (n− 1)n as subsequences.

Equivalently, v avoids the patterns 132 and 312. If we let pi = v−1(i) for 1 ≤ i ≤ k,
then v has the reduced expression

v = (s1s2 · · · sp1−1) · (s1s2 · · · sp2−1) · · · (s1s2 · · · spk−1−1).

Put another way, the e�ect of multiplying a permutation u on the right by v is to
shu�e uk · · ·u1 and uk+1 · · ·un by placing uk, . . . , u1 in positions pk, . . . , p1.
The signi�cance of these permutations to our current study lies in the following

proposition.



DETERMINANTAL FORMULAS FOR SEM EXPANSIONS OF SCHUBERT POLYNOMIALS 15

Proposition 4.7. Let (A,B) be a lattice path representation of a polynomial F of
the form

A = {(a1, 0), (a2, 0), . . . , (an, 0)},
B = {(b1, 0), (b2, 1), . . . (bn, n− 1)}.

Suppose further that v is a lowering permutation with v1 = k, and that ai = bi for
i = 1, . . . , k. Then ∂v−1F has lattice path representation (A′, B′), where

A′ = {(ak+1, 0), (ak+2, 0), . . . , (an, 0)},
B′ = {(bk+1, v

−1(k + 1)− 1), (bk+2, v
−1(k + 2)− 1), . . . , (bn, v

−1(n)− 1)}.

Proof. Let pi = v−1(i). By Proposition 3.6, removing (a1, 0) = (b1, 0) from A and B
yields a lattice path representation for F . Then by Proposition 3.2, lowering each of
the points (bi, i− 1) to (bi, i− 2) for i = 2, . . . , p1 yields a lattice path representation
for ∂p1−1 · · · ∂2∂1F with points at heights {0, 1, . . . , n− 1} \ {p1 − 1}.
We can then repeat this process by removing (a2, 0) = (b2, 0) from both A and

B and then lowering the points (bi, i − 2) to (bi, i − 3) for i = 3, . . . , p2, giving a
lattice path representation for (∂p2−1 · · · ∂2∂1)(∂p1−1 · · · ∂2∂1)F with points at heights
{0, 1, . . . , n−1}\{p1−1, p2−1}. Continuing in this manner, we arrive at a lattice path
representation for ∂v−1F with points at heights {0, 1, . . . , n−1}\{p1−1, . . . , pk−1} =
{v−1(k + 1)− 1, . . . , v−1(n)− 1}, as desired. �

For an illustration, see Figure 6 as well as Example 4.10 below.
Note that any compact lattice path representation (up to reordering the elements

of A and B) has the form required in Proposition 4.7. Therefore, combining Propo-
sition 4.7 with Theorem 4.2 gives the following result.

Theorem 4.8. Let u, v ∈ Sn be permutations such that u avoids the patterns 1324,
2413, and 3142, v avoids the patterns 132 and 312, and `(uv) = `(u) − `(v). Then
Suv has a proper lattice path representation.

Proof. By Theorem 4.2, Su has a compact lattice path representation. Since v is a
lowering permutation, Proposition 4.7 implies that ∂v−1Su has a proper lattice path
representation. The length condition then implies ∂v−1Su = Suv. �

The following proposition gives an explicit description of when the length condition
in Theorem 4.8 holds.

Proposition 4.9. Let u, v ∈ Sn be permutations such that v is a lowering permuta-
tion. Suppose v1 = k and let pi = v−1(i). If w = uv, then `(w) = `(u) − `(v) if and
only if wpi is a left-to-right maximum of w for all i = 1, . . . , k.

Proof. The e�ect of multiplying u by

v = (s1s2 · · · sp1−1) · (s1s2 · · · sp2−1) · · · (s1s2 · · · spk−1−1)

is to shift u1 to position p1, then shift u2 to position p2, and so forth. The length
condition will then be satis�ed if and only if while shifting ui, it only moves past
smaller letters. This occurs exactly when wpi is a left-to-right maximum of w. �

Note that the wpi need only be a subset of the left-to-right maxima of w, not the
entire set of them.
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Figure 6. Illustration of Proposition 4.7. On the left is a proper
lattice path representation for Su (where u = 87321564), and on the
right is a lattice path representation for Suv, where v = 34562718.

Example 4.10. Let u = 87321564 as in Example 4.5, and let v = 34562718, so that
p1 = 7, p2 = 5, and p3 = 1. Then w = uv = 32157684. Since w1 = 3, w5 = 7, and
w7 = 8 are left-to-right maxima, `(w) = `(u)− `(v).
From Example 4.5, Su has compact lattice path representation

Au = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0)},
Bu = {(7, 0), (6, 1), (2, 2), (1, 3), (0, 4), (0, 5), (0, 6), (2, 7)}.

By Proposition 4.7, Sw then has lattice path representation

Aw = {(0, 0), (1, 0), (3, 0), (4, 0), (5, 0)},
Bw = {(1, 1), (0, 2), (0, 3), (0, 5), (2, 7)}.

See Figure 6 for an illustration.

As another illustrative example, we consider the case of 321-avoiding permutations,
whose Schubert polynomials are known to be �agged skew Schur polynomials [3].

Corollary 4.11. Let w ∈ Sn be a 321-avoiding permutation. Let q̄1 < · · · < q̄n−k
be the elements of [n] that are not left-to-right maxima of w, and let p̄i = w−1(q̄i).
Then Sw has lattice path representation (A,B), where

A = {(q̄1 − 1, 0), (q̄2 − 1, 0), . . . , (q̄n−k − 1, 0)},
B = {(0, p̄1 − 1), (0, p̄2 − 1), . . . , (0, p̄n−k − 1)},

and therefore

Sw = det(e
(p̄j−1)
p̄j−q̄i )ki,j=1.

Proof. Let w ∈ Sn have left-to-right maxima in positions p1 > p2 > · · · > pk = 1,
and let qi = wpi be the values of these maxima (so that q1 > q2 > · · · > qk).
Since w is 321-avoiding, the letters q̄1, . . . , q̄n−k must appear in increasing or-

der in w, so p̄1 < · · · < p̄n−k. Let v be the lowering permutation with v−1 =
p1 · · · pkp̄1 . . . p̄n−k. If we let u = wv−1, then u = q1 · · · qkq̄1 · · · q̄n−k and `(w) =
`(u)− `(v) by Proposition 4.9.
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Now observe that u is 132-avoiding and c(u) = (q1 − 1, . . . , qk − 1, 0, . . . , 0), so by
Lemma 4.3, ±Su has lattice path representation (A′, B′), where

A′ = {(n− 1, 0), (n− 2, 0), . . . , (0, 0)},
B′ = {(q1 − 1, 0), (q2 − 1, 1), . . . , (qk − 1, k − 1), (0, k), . . . , (0, n− 1)}.

Applying Proposition 4.7, we �nd that Sw has lattice path representation (A,B), as
desired. (The sign is easily seen to be positive.) The determinantal formula then
follows from Proposition 2.7. �

Since Grassmannian permutations are special cases of 321-avoiding permutations,
Corollary 4.11 specializes to a formula for Schur polynomials akin to the dual Jacobi-
Trudi identity, as also shown in [11, 17]. (Compare the following to Proposition 2.6.)

Corollary 4.12. Let λ be a partition with largest part r. Then the Schur polynomial
sλ(x1, . . . , xn) is given by the determinant

sλ(x1, . . . , xn) = det(e
(n+j−1)

λ′i+j−i
)ri,j=1.

Proof. The Schur polynomial sλ(x1, . . . , xn) is equal to the Schubert polynomial Sw,
where w ∈ Sn+r is the Grassmannian permutation q1q2 · · · qnq̄1q̄2 · · · q̄r, where qi =
λn+1−i + i and q̄i = n− λ′i + i. Since the left-to-right maxima are precisely q1, . . . , qn
and p̄i = w−1(q̄i) = n+ i, the result follows from Corollary 4.11. �

One can also deduce Corollary 4.12 by interpreting the usual dual Jacobi-Trudi
identity (Proposition 2.6) as a lattice point representation (albeit not a proper one)
and applying Proposition 3.1 repeatedly to turn it into a proper representation.

4.3. Pattern avoidance criterion. In this section, we will give an explicit descrip-
tion of the permutations to which Theorem 4.8 applies via the following theorem.

Theorem 4.13. A permutation w has a factorization of the form w = uv as in
Theorem 4.8 if and only if it avoids the following 13 patterns:

51324, 15324, 52413, 25413, 53142, 35142, 31542,

143265, 143625, 143652, 146352, 413265, 413625.

Therefore, for any such permutation w, Sw has a proper lattice path representation.

For example, there are 569 permutations of length 6, 2932 permutations of length
7, and 15226 permutations of length 8 avoiding these 13 patterns. Note that this
theorem gives a su�cient, but not necessary, condition for Sw to have a proper
lattice path representation. For further discussion, see �5.
While the proof of the forward direction of Theorem 4.13 will be relatively straight-

forward, for the reverse direction we will need to describe for each permutation w
avoiding the given 13 patterns how to construct the corresponding permutations u
and v. By Proposition 4.9, we will choose v by choosing a certain subset of the
left-to-right maxima of w. We will then verify that u = wv−1 avoids 2413, 3142, and
1324 as required.
Fix a permutation w ∈ Sn that avoids the 13 patterns in Theorem 4.13. We

construct a set Q ⊆ [n] as follows. Consider the left-to-right maxima of w from
largest to smallest (i.e., from right to left). For each such q, add it to Q unless w has
an occurrence of the pattern 1342 consisting of letters aqq′b, where q′ /∈ Q.
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Example 4.14. Let w = 32157684, which avoids the 13 patterns in Theorem 4.13.
The left-to-right maxima of w are 8, 7, 5, and 3.

• We �rst add 8 to Q since it cannot be the second letter in a 1342 pattern.
• Although 7 is the second letter of several 1342 patterns, the third letter in
such patterns is always 8 ∈ Q, so we add 7 to Q.
• Now 5 occurs in 1564 and 6 /∈ Q, so we do not add 5 to Q.
• Finally, we add 3 to Q, so that Q = {3, 7, 8}.

The elements of Q occur at positions 1, 5, and 7. Note that if we let v be the lowering
permutation 34562718, then the permutation u = wv−1 = 87321564 obtained by
shifting the elements of Q to the left in decreasing order is a 1324-avoiding separable
permutation.

We will also need some technical lemmas about the structure of the permutations
in Theorem 4.13.

Lemma 4.15. Let w be a permutation that avoids the 13 patterns in Theorem 4.13.
If w has a subsequence abcde that forms a 13542 pattern, then any letter that occurs
between b and d in w must be greater than b.

Proof. Suppose x lies between b and d in w. If x < e, then w must contain either
the 31542 pattern bxcde or the 35142 pattern bcxde. If instead e < x < b, then w
contains either the 143652 pattern abxcde or the 146352 pattern abcxde. Since all of
these patterns are forbidden, we must have x > b. �

Lemma 4.16. Let w be a permutation that avoids the 13 patterns in Theorem 4.13,
and �x a left-to-right maximum b /∈ Q. Let c be the rightmost letter of w such that
c /∈ Q and w contains a 1342 pattern abcd. Then either w contains a 13542 pattern
abxcd, or w contains a 2413 pattern bcde.

Proof. Since c /∈ Q, there are two possibilities.

• If c is not a left-to-right maximum, then there must be a larger letter x to its
left. Since b is a left-to-right maximum and x > c > b, w must have the 13542
pattern abxcd.
• If c is a left-to-right maximum, then since c /∈ Q, it must be part of a 1342
pattern fcge with g /∈ Q. By our choice of c to be rightmost, we must have
that g lies to the right of d (or else abgd would be a 1342 pattern). Then:
� If a < e < b, then abge would be a 1342 pattern that contradicts our
choice of c.

� If e < a, then f cannot lie to the left of b or else fbge would be a
1342 pattern that contradicts our choice of c. Hence f has to lie to the
right of b, but then w would contain the 35142 pattern abfde, which is a
contradiction.

� The only remaining possibility is that e > b, which implies that w has
the 2413 pattern bcde, as desired. �

Using Lemmas 4.15 and 4.16, we can now prove most of the pattern conditions
that we will need for Theorem 4.13.

Lemma 4.17. Let w be a permutation that avoids the 13 patterns in Theorem 4.13.

(a) Suppose w contains the 2413 pattern abcd. Then b ∈ Q.
(b) Suppose w contains the 3142 pattern abcd. Then c ∈ Q.
(c) Suppose w contains the 1324 pattern abcd with d /∈ Q. Then b ∈ Q.
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(d) Suppose w contains the 1342 pattern abcd with c /∈ Q. Then b /∈ Q.

Proof. For (a), note that b must be a left-to-right maximum, for if it were not, then
some letter to the left of b would be greater than b, which would cause w to contain
a forbidden 52413 or 25413 pattern.
Suppose the claim does not hold, and let us take b to be the rightmost left-to-right

maximum in a 2413 pattern abcd with b /∈ Q. By Lemma 4.16, either w has some
2413 pattern befg with e /∈ Q, which contradicts our choice of b, or w contains a
13542 pattern ebfgh. In the latter case, by Lemma 4.15, since c and d are both less
than b, they must lie to the right of g. But then w contains the forbidden 25413
pattern afgcd, completing the proof of (a).
Note that (a) implies that the second possibility in Lemma 4.16 can never hold. In

other words, any left-to-right maximum that does not lie in Q must appear second
in a 13542 pattern.
For (b), note that c must be a left-to-right maximum or else w would contain a

forbidden 53142, 35142, or 31542 pattern. Suppose c 6∈ Q. Then by Lemma 4.16
(as per the discussion above) there exists a 13542 pattern ecfgh. By Lemma 4.15,
d < c cannot lie between c and g, so d must lie to the right of g. But then abfgd is
a forbidden 31542 pattern in w. So c ∈ Q.
For (c), for a �xed b, let us choose d /∈ Q to be rightmost. If d were a left-to-right

maximum, then there would have to be a 1342 pattern edfg with f /∈ Q. But then
the 1324 pattern abcf would contradict the choice of d. Hence d is not a left-to-right
maximum. Therefore, there exists some h > d to the left of d. If h lies to the left of
b, then w would either contain the 51324 pattern habcd or the 15324 pattern ahbcd,
which are both forbidden. Thus h lies to the right of b (and to the left of d).
Suppose b is not a left-to-right maximum. Then there exists some i > b to the left

of b. But we cannot have i > d for then w would contain iabcd or aibcd, which would
be a 51324 or 15324 pattern, nor can we have i < d for then w would contain one
of iabhcd, iabchd, aibhcd, or aibchd, which would be a 413625, 413265, 143625, or
143265 pattern. Thus b must be a left-to-right maximum.
Now suppose for the sake of contradiction that b /∈ Q. By Lemma 4.16, there exists

a 13542 pattern jbklm. By Lemma 4.15, c < b cannot appear between b and l, so
it must appear after l. If d < l, then bklcd would be a forbidden 25413 pattern. If
l < d < k, then aklcd would be a forbidden 15324 pattern. Hence d > k.
Recall that h > d lies to the right of b. If h lies to the left of l, then ahlcd would be

a forbidden 15324 pattern. Then h must lie to the right of l, but now w must contain
either the 143265 pattern aklchd or the 143625 pattern aklhcd, which are forbidden.
It follows that we must have b ∈ Q, as desired.
Finally, (d) follows immediately from the construction of Q. �

It is now straightforward to deduce our main result.

Proof of Theorem 4.13. We �rst verify that any permutation w with a factorization
w = uv as in Theorem 4.8 must avoid the given 13 patterns. Note that if w′ is a
pattern of w, then there exist patterns u′ of u and v′ of v such that w′ = u′v′. Any
pattern v′ contained in the lowering permutation v is again a lowering permutation.
By Proposition 4.9, the length condition `(w) = `(u)− `(v) implies that multiplying
u by v has the e�ect of shifting the �rst k letters in u to become left-to-right maxima
of w. But any left-to-right maximum of w chosen to appear in w′ will still be a
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left-to-right maximum. It follows that `(w′) = `(u′) − `(v′), so w′ must also satisfy
the conditions of Theorem 4.8.
Therefore, we need only verify that none of the 13 patterns w′ have such a factor-

ization u′v′. To see this, observe that each pattern other than 143652 and 146352
contains a 1324, 2413, or 3142 pattern that does not involve any left-to-right maxima
except for possibly the �rst letter. Since these would necessarily remain in the same
order in u′, u′ cannot avoid these three patterns. For the last two patterns 143652
and 146352, depending on whether the left-to-right maximum 4 is moved, u′ must
contain either the 1324-pattern 1435 or the 3142-pattern 4152.
For the reverse direction, we need to verify that any permutation w that avoids

the given 13 patterns has the requisite factorization w = uv. De�ning the set Q as
described, let u be the permutation obtained from w by shifting the elements of Q
to the left and placing them in decreasing order, so that u = wv−1 for some lowering
permutation v with `(w) = `(u) − `(v) as in Proposition 4.9. If u were to contain
one of the patterns 2413, 3142, or 1324, then there are only four possibilities for how
these letters could be ordered in w:

(a) w contains the 2413 pattern abcd and b /∈ Q, so that abcd occurs in u;
(b) w contains the 3142 pattern abcd and c /∈ Q, so that abcd occurs in u;
(c) w contains the 1324 pattern abcd and b, d /∈ Q, so that abcd occurs in u;
(d) w contains the 1342 pattern abcd with b ∈ Q and c /∈ Q, so that the 3142 pattern

bacd occurs in u.

However, all of these are impossible by Lemma 4.17, which completes the proof. �

5. Conclusion

Although Theorem 4.13 gives a determinantal formula for a wide class of Schubert
polynomials, the precise characterization of which Schubert polynomials admit such
a formula remains open.

Question 5.1. For which permutations w ∈ S∞ does Sw admit a proper lattice path
representation (and hence a determinantal formula for its SEM expansion)? Is the
set of such permutations closed under pattern containment?

We note in particular that the condition in Theorem 4.13 is su�cient but not
necessary. For example, although 413625 is a forbidden pattern,

S413625 =

∣∣∣∣∣∣∣∣∣
e

(1)
1 e

(2)
2 0 0

e
(1)
0 e

(2)
1 e

(4)
4 e

(5)
5

0 e
(2)
0 e

(4)
3 e

(5)
4

0 0 e
(4)
0 e

(5)
1

∣∣∣∣∣∣∣∣∣
has the proper lattice path representation shown in Figure 7. From this, one can then
use Proposition 3.3 to derive representations for S413265, S143625, and S143265. (The
Schubert polynomials for the remaining nine forbidden patterns, including all of the
ones of length 5, do not have proper lattice path representations.)
Recall that any polynomial with a proper lattice path representation also has the

property that its SEM expansion only has coe�cients of absolute value at most 1.
One can then ask similar questions about the class of Schubert polynomials satisfying
this weaker property. (See Winkel [17] for some discussion, as well as [2, 7] for some
similar studies.)
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Figure 7. Lattice path representation for S413625. (Edges that appear
in at least one collection of nonintersecting lattice paths are solid.)

Question 5.2. For which permutations w ∈ S∞ does the SEM expansion of Sw have
only coe�cients of absolute value at most 1? Is the set of such permutations closed
under pattern containment?

Our proof of Theorem 4.13 is algebraic as opposed to combinatorial. A bijective
proof certainly exists for certain subclasses of permutations (for instance, Grassman-
nian permutations), and to some extent one can use the operations of �3 to generate
bijections for other cases covered by Theorem 4.13. However, it is unclear whether a
uniform bijection exists in general, particularly in cases not covered by Theorem 4.13.

Question 5.3. When Sw has a proper lattice path representation, is there a natural
bijection between the corresponding collections of nonintersecting lattice paths and
other known combinatorial interpretations for Sw (such as reduced pipe dreams)?

References

[1] Bergeron, N., and Billey, S. RC-graphs and Schubert polynomials. Experiment. Math. 2,
4 (1993), 257�269.

[2] Billey, S., and Pawlowski, B. Permutation patterns, Stanley symmetric functions, and
generalized Specht modules. J. Combin. Theory Ser. A 127 (2014), 85�120.

[3] Billey, S. C., Jockusch, W., and Stanley, R. P. Some combinatorial properties of
Schubert polynomials. J. Algebraic Combin. 2, 4 (1993), 345�374.

[4] Bose, P., Buss, J. F., and Lubiw, A. Pattern matching for permutations. Inform. Process.
Lett. 65, 5 (1998), 277�283.

[5] Chen, W. Y. C., Li, B., and Louck, J. D. The �agged double Schur function. J. Algebraic
Combin. 15, 1 (2002), 7�26.

[6] Chen, W. Y. C., Yan, G.-G., and Yang, A. L. B. The skew Schubert polynomials. Euro-
pean J. Combin. 25, 8 (2004), 1181�1196.

[7] Fink, A., Mészáros, K., and St. Dizier, A. Zero-one Schubert polynomials. Math. Z.
(2020). To appear.

[8] Fomin, S., Gelfand, S., and Postnikov, A. Quantum Schubert polynomials. J. Amer.
Math. Soc. 10, 3 (1997), 565�596.

[9] Fomin, S., and Kirillov, A. N. The Yang-Baxter equation, symmetric functions, and Schu-
bert polynomials. In Proceedings of the 5th Conference on Formal Power Series and Algebraic
Combinatorics (Florence, 1993) (1996), vol. 153, pp. 123�143.

[10] Gessel, I., and Viennot, G. Determinants, paths, and plane partitions. Preprint.
[11] Kirillov, A. N. Quantum Schubert polynomials and quantum Schur functions. vol. 9. 1999,

pp. 385�404. Dedicated to the memory of Marcel-Paul Schützenberger.
[12] Knutson, A., and Yong, A. A formula forK-theory truncation Schubert calculus. Int. Math.

Res. Not., 70 (2004), 3741�3756.
[13] Lascoux, A., and Schützenberger, M.-P. Polynômes de Schubert. C. R. Acad. Sci. Paris

Sér. I Math. 294, 13 (1982), 447�450.



22 HASSAN HATAM, JOSEPH JOHNSON, RICKY INI LIU, AND MARIA MACAULAY

[14] Lindström, B. On the vector representations of induced matroids. Bull. London Math. Soc.
5 (1973), 85�90.

[15] Manivel, L. Symmetric functions, Schubert polynomials and degeneracy loci, vol. 6 of
SMF/AMS Texts and Monographs. American Mathematical Society, Providence, RI; Société
Mathématique de France, Paris, 2001. Translated from the 1998 French original by John R.
Swallow, Cours Spécialisés [Specialized Courses], 3.

[16] Postnikov, A., and Stanley, R. P. Chains in the Bruhat order. J. Algebraic Combin. 29,
2 (2009), 133�174.

[17] Winkel, R. On the expansion of Schur and Schubert polynomials into standard elementary
monomials. Adv. Math. 136, 2 (1998), 224�250.

North Carolina State University, Department of Mathematics, Raleigh, NC 27695

Email address: hhatam@ncsu.edu

North Carolina State University, Department of Mathematics, Raleigh, NC 27695

Email address: jwjohns5@ncsu.edu

University of Washington, Department of Mathematics, Seattle, WA 98195

Email address: riliu@uw.edu

North Carolina State University, Department of Mathematics, Raleigh, NC 27695

Email address: mlmacaul@ncsu.edu


