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Abstract

Core electron binding energies (CEBE) of nickel and copper atoms have been calcu-

lated using single-configuration energy differences, the so-called Δ-self-consistent

field (Δ-SCF) method. Basis set convergence has been examined for calculated L-shell

and M-shell core electron binding energies, and a wide array of density functionals

have been evaluated. Scalar relativistic corrections have been estimated using the

popular Douglas-Kroll-Hess (DKH) approximation. While basis set convergence and

functional dependence mirror the behavior reported in the literature for main group

elements, the simplest Δ-SCF calculations with pure Hartree-Fock (HF) exchange and

no correlation surprisingly outperform all density functionals in reproducing free-

atom CEBE values for Ni and Cu.
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1 | INTRODUCTION

1.1 | Δ-SCF and related methods

The Δ-self-consistent field (Δ-SCF) method, also referred to as the ΔKohn-Sham (Δ-KS) method when used with density functionals, accurately

predicts core electron binding energies (CEBE) of lighter elements in a variety of molecules [1–6, 9]. Such calculations are facilitated by using the

maximum overlap method to prevent the collapse of a core-ionized Slater determinant [3, 10].

Cavigliasso and Chong showed that Δ-KS calculations using core-valence correlated Dunning-style basis sets could reproduce 1s CEBE

values for main-group, second row nonmetal atoms such as B, C, N, O, and F in small molecules [1]. Besley, Gilbert, and Gill demonstrated

that reasonable accuracy also could be obtained with uncontracted Pople-style basis sets, and that the method could be applied successfully

to copper (II) ions in coordination compounds [3]. Fouda and Besley showed that the improved description of core electrons by IGLO-type

basis sets could be leveraged to yield accurate CEBE values of first-row and second-row atoms in small molecules [4]. However, Takahashi

and Petersson among others have noted a dependence of such calculations on the choice of density functionals, finding the description of

exchange to be particularly important [2]. More recently, Hait and Head-Gordon showed that the SCAN meta-GGA functional and the

wB97X-V range-separated hybrid functional yield accurate CEBE values for these lighter elements in small molecules, albeit without relativ-

istic corrections [5]. A recent review by Norman and Dreuw noted that when density functionals are used, the self-interaction error (SIE)

must be larger for core electrons than for valence electrons and thus should affect the description of CEBE values [6]. One approach to

address the difference in SIE for heavier elements is to use a short-range corrected functional parameterized for core excitations by Besley

and others [7]. Even so, increased accuracy is not guaranteed, and relativistic corrections also must be considered [8]. Accurate prediction of

CEBE values within the Δ-KS approach therefore should not be taken for granted, and should be re-examined whenever differences in

exchange energy and/or SIE are expected to be larger than in previously benchmarked data sets. Indeed, Besley's most recent review warns
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that conclusions drawn from benchmarking on lighter nuclei may not apply to heavier nuclei, noting that Δ-KS performance for core ioniza-

tion energies differs dramatically from the first row to the second row of the periodic table [9].

Δ-SCF calculations are simple enough in principle and practice to be applied straightforwardly to core electron binding energies of transition

metal atoms and ions [3]. Such an approach is appealing not only for the practicality of its implementation, but also for its conceptual simplicity.

Core-ionized state energies and ground-state energies are calculated separately at the same level of theory, and their difference is taken to repre-

sent the core electron binding energy. The use of two separate calculations allows for orbital relaxation in the core-ionized state as well as in the

ground state. The core-ionized state wavefunction is targeted by a core-ionized initial guess, and variational collapse to the ground state is

prevented by an algorithm such as the maximum-overlap method [3, 10]. Resulting core ionization energies typically are much more accurate than

those predicted by time-dependent density functional theory (TD-DFT), a widely used method in which orbitals are optimized only for the ground

state [5]. For the first-row transition metal atoms that are the focus of the present study, L-shell (2s and 2p) and M-shell (3s and 3p) CEBE values

have been calculated by calculating energies for the core-ionized states and subtracting the ground state energy from each of these. The Δ-SCF

approach can be extended in a straightforward manner from first-row transition metal atoms to their molecules or complexes, and the relative

core electron binding energies can be used to predict transferable chemical shifts across related species. Chemical shifts may then be attributed

to the metal oxidation state, and/or to subtler effects of the coordination environment on the electronic structure of the metal atom. Relative to

the free-atom calculations reported here, performance should improve when applied to the prediction of chemical shifts due to cancellation of

systematic errors in predicted binding energies. The present work aims to evaluate the performance of these methods when predicting absolute

CEBE values of first-row transition metal atoms, and by extension to provide upper bounds to the error in predicted chemical shifts.

1.2 | Density functionals and basis sets for core electron binding energies

Δ-SCF calculations of core ionization energies usually employ density functionals that have been optimized for ground-state calculations. These

can be expected to capture some effects of dynamic correlation on the ground state, but may not capture as much on a core-ionized state. On

the other hand, density functional methods may introduce a smaller self-interaction error (SIE) in the calculation of a core-ionized state than on

the ground state [6]. Therefore, accurate prediction of CEBE values with the Δ-SCF method may depend on a delicate balance of approxima-

tions not anticipated in the development of widely used density functionals. Various density functionals have been reported to yield acceptable

estimates of CEBE values in light atoms by the Δ-SCF method [1, 11–13]. Some families of density functionals, such as local spin-density

approximation (LSDA) or range-separated hybrid (RSH) functionals with default parameters may not perform as well, but the converse does not

follow: no family of density functionals performs well uniformly [11]. The aggressively parameterized Minnesota functionals often outperform

other functionals within a given family, with the meta-GGA functional M06-L standing out in one survey [12]. While existing benchmarking

studies of Δ-SCF calculations of core ionization energies have focused on lighter main-group atoms, transition metal atoms may require a differ-

ent balance of approximations.

Basis sets to be used in Δ-SCF calculations should offer adequate flexibility to describe both the ground and core-ionized state

wavefunctions. Basis sets optimized for ground-state and valence-excited state calculations may not offer much flexibility in describing core elec-

trons, which limits their usefulness in describing core-ionized state wavefunctions. One approach to address this issue is to uncontract the core

basis functions of standard atom-centered basis sets [3]. Another is to add in core functions from the atom with the next higher atomic number

(Z + 1) to approximately describe the loss of shielding to remaining core electrons upon ionization [14]. A third approach is to use core-valence

polarized, correlation consistent basis sets (cc-pCVnZ) or uncontracted, core-interpolated, polarization-consistent basis sets (pcX-n) [15, 16].

IGLO-type basis sets developed for NMR calculations also may be applied [4]. A recent survey in the literature found the cc-pCVTZ basis to pro-

vide a good balance between cost and accuracy for Δ-SCF calculations of core ionization energies in light atoms, and the cc-pwCVnZ basis sets

are parameterized in the same way for first-row transition metal atoms [4].

1.3 | Scalar relativistic corrections

Relativistic corrections must be considered when calculating CEBE values of heavier atoms [17]. Even a scalar relativistic correction substan-

tially reduces the systematic underestimation of CEBE values within the Δ-SCF approach. Explicit relativistic calculations of spin-orbit cou-

pling could be used to predict multiplet splitting in 2p and 3p core ionization spectra, but this is beyond the scope of the present work. The

Douglas-Kroll-Hess approach to calculate scalar relativistic corrections as implemented in NWChem may be straightforwardly applied to cal-

culate energy levels in first-row transition metal atoms, when using the appropriately contracted basis sets [18–20]. Corrections thus

obtained in the present work fell within ≈ 1 eV of those previously reported in the literature for 2s core ionization of copper and nickel atoms

[17, 21].
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1.4 | Core electron binding energies of transition metal atoms

Transition metal atoms and ions can possess multiple low-lying states, due to their large number of valence electrons and unpaired valence

electrons. For core-ionized free atoms, the presence of these low-lying states may complicate the interpretation of experimental photoioniza-

tion spectra as well as the convergence and complexity of quantum chemical calculations [22–25]. Late-transition metal nickel and copper

atoms were chosen for the present study, because of their potential to form stable, low-valent organometallic and coordination complexes.

These two atoms also offer a contrast between the most complex (Ni) and least complex (Cu) photoelectron spectra among first-row transi-

tion metals.

Nickel atoms have a ground state valence electron configuration of 4s 23d 8, and a low-lying excited state valence electron configuration of

4s 13d 9. For core-ionized nickel atoms, the order of energies for these two valence electron configurations is reversed [23]. At the elevated tem-

peratures required to atomize nickel, population of low-lying states of both neutral and core-ionized nickel atoms gives rise to a complex multiplet

structure in the regions of photoionization spectra attributed to 2p and 3p core ionization [26, 27]. Thus in addition to the 2p1/2, 2p3/2 multiplet

splitting due to spin-orbit coupling, further splitting on the order of a few eV may be attributed to states with different electron configurations at

these elevated temperatures.

Copper atoms have a ground state valence electron configuration of 4s 13d 10, which does not change upon core ionization. Their photoelec-

tron spectra do not exhibit the more complex multiplet structure observed for nickel atoms, even at elevated temperatures [24, 25]. Only the

2p1/2, 2p3/2 multiplet splitting due to spin-orbit coupling is observed.

For the present work, calculated CEBE values were compared to empirical free-atom values from the literature, using the appropriate

weighted average to combine the reported 2p1/2, 2p3/2 multiplet energies into a single 2p core electron binding energy [28]. These empirical

values are within a few eV of those reported more recently for atomic photoelectron spectra of nickel and copper atoms, and permit both nickel

and copper atoms to be treated in a consistent manner despite the difference in complexity of their photoelectron spectra [24, 25]. For the nickel

atom 2p and 3p multiplets, this choice eliminates the added complexity associated with thermal population of multiple low-lying states in more

recently measured atomic spectra. Small and subtle differences between measured values in the literature are beyond the scope of the present

work, and would not substantially affect its conclusions.

2 | COMPUTATIONAL METHODS

2.1 | Δ-SCF calculations

The Δ-SCF approach was used to calculate 2s, 2p, 3s, and 3p core electron binding energies of nickel and copper atoms within the framework

of single-configuration quantum chemical calculations. This approach uses standard ground-state, single determinant methods to calculate the

ground state and the core-ionized state energy, and takes the difference in energy to represent the core ionization energy. The maximum-

overlap method (MOM), as implemented in both Q-Chem and in the DFT module of NWChem, was used to ensure convergence on selected

TABLE 1 Restricted open-shell and spin-unrestricted Hartree-Fock core electron binding energies in eV, with the cc-pwCVTZ basis set

Nickel atom Non-relativistic Non-relativistic Relativistic Relativistic

Core hole CEBE (ROHF) CEBE (UHF) CEBE (ROHF) CEBE (UHF)

2s 1001.1 1001.1 1020.5 1020.5

2p 864.1 863.9 868.3 868.1

3s 119.0 118.9 122.4 122.4

3p 74.6 74.6 75.7 75.7

Copper atom Non-relativistic Non-relativistic Relativistic Relativistic

Core hole CEBE (ROHF) CEBE (UHF) CEBE (ROHF) CEBE (UHF)

2s 1084.7 1084.6 1107.1 1107.0

2p 941.5 941.2 946.2 945.9

3s 128.3 128.2 132.0 131.9

3p 82.9 82.8 83.8 83.6

Note: The Hartree-Fock method was used with and without Douglas-Kroll-Hess (DKH) scalar relativistic corrections, within the DFT module of NWChem.
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core-ionized determinants [3, 10]. Reported results were based on spin-unrestricted calculations, and restricted open-shell Hartree-Fock calcu-

lations were performed for comparison as shown in Table 1. Restricted open-shell and unrestricted Hartree-Fock calculations of core electron

binding energies agree to within a few tenths of an eV. Values of ⟨S 2⟩ are consistent with minimal spin contamination, and are listed in the

Supporting information for all reported calculations.

Energy differences were taken between the lowest-energy single determinants of neutral atoms and of core-ionized atoms at a given level of

theory. Eigenvectors were printed out to verify the electron configuration for each calculation. The ground state HF/cc-pwCVTZ energy obtained

for neutral nickel atoms corresponds to the [Ar]4s 23d 8 electron configuration as expected, but when calculated with MP2 and some density func-

tionals, an electron configuration of [Ar]4s 13d 9 was found to be lower in energy. The valence electron configuration of 4s 13d 9 also is associated

with the lowest energy core-ionized states. Thus, CEBE values calculated for the nickel atom may or may not include the energy associated with a

change in valence electron configuration. This contribution to the calculated binding energy, when present, is not large enough to alter the overall

conclusions.

While atomic core ionization energies may be calculated to a higher level of accuracy using explicit multi-configurational wavefunction

methods, and/or with a full relativistic treatment of spin-orbit coupling, such methods would be computationally expensive for larger systems

[22, 23, 29]. These calculations are beyond the scope of the present work.

TABLE 2 Basis set convergence, for nickel and copper atom 2s, 2p, 3s, and 3p core electron binding energies in eV

Basis set Relativistic Ni 2s Ni 2p Ni 3s Ni 3p

cc-pVDZ – 1003.1 866.9 119.0 74.8

cc-pVTZ – 1002.3 865.9 119.0 74.7

cc-pVQZ – 1001.7 865.0 119.0 74.6

cc-pV5Z – 1001.3 864.5 118.9 74.6

cc-pwCVTZ – 1001.1 863.9 118.9 74.6

cc-pwCVQZ – 1001.0 863.8 118.9 74.6

cc-pwCV5Z – 1001.0 863.8 118.9 74.6

cc-pVDZ-DK DKH 1022.7 871.3 122.4 75.9

cc-pVTZ-DK DKH 1021.9 870.1 122.4 75.7

cc-pVQZ-DK DKH 1021.2 869.3 122.4 75.7

cc-pV5Z-DK DKH 1020.8 868.7 122.4 75.7

cc-pwCVTZ-DK DKH 1020.5 868.1 122.4 75.7

cc-pwCVQZ-DK DKH 1020.5 868.1 122.4 75.7

cc-pwCV5Z-DK DKH 1020.4 868.0 122.4 75.7

Expt. [28] N/A 1024 876 125 82

Basis set Relativistic Cu 2s Cu 2p Cu 3s Cu 3p

cc-pVDZ – 1086.7 944.2 128.3 82.9

cc-pVTZ – 1085.8 943.0 128.2 82.8

cc-pVQZ – 1085.3 942.3 128.2 82.8

cc-pV5Z – 1084.9 941.7 128.2 82.8

cc-pwCVTZ – 1084.6 941.2 128.2 82.8

cc-pwCVQZ – 1084.6 941.1 128.2 82.8

cc-pwCV5Z – 1084.6 941.1 128.2 82.8

cc-pVDZ-DK DKH 1109.2 949.1 131.9 83.8

cc-pVTZ-DK DKH 1108.3 947.8 131.9 83.7

cc-pVQZ-DK DKH 1107.7 947.0 131.9 83.7

cc-pV5Z-DK DKH 1107.4 946.5 131.9 83.6

cc-pwCVTZ-DK DKH 1107.0 945.9 131.9 83.6

cc-pwCVQZ-DK DKH 1107.0 945.9 131.9 83.6

cc-pwCV5Z-DK DKH 1107.0 945.9 131.9 83.6

Expt. [28] N/A 1105.7 947.0 128.8 83

Note: The Hartree-Fock method was used with and without Douglas-Kroll-Hess (DKH) scalar relativistic corrections, within NWChem.
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2.2 | Basis sets and density functionals

The Hartree-Fock (HF) method was used as implemented in Q-Chem and as exact exchange within the DFT module of NWChem [18, 30].

MP2 calculations were performed as implemented in Q-Chem using the resolution of identity approximation (RI-MP2) to reduce the computa-

tional cost [31]. Density functionals of different types were evaluated: LSDA, GGA, meta-GGA, and hybrid, using the default standard grids as

implemented in Q-Chem [30, 32, 33]. Relativistic corrections were evaluated for Hartree-Fock exact exchange and selected density func-

tionals as implemented in NWChem, using fine grids for Minnesota functionals and medium grids for all others. Range-separated hybrid func-

tionals were not considered.

Correlation-consistent cc-pVnZ and cc-pwCVnZ-NR basis sets were used to assess basis set convergence for non-relativistic calculations, and

the corresponding cc-pVnZ-DK and cc-pwCVnZ-DK relativistic basis sets were used for scalar relativistic calculations [16]. For RI-MP2 calcula-

tions, the associated RI-cc-pwCVnZ-NR basis sets were used as auxiliary basis functions.

2.3 | Scalar relativistic corrections

Hartree-Fock Δ-SCF calculations reported in this work were carried out with and without Douglas-Kroll-Hess scalar relativistic corrections

as implemented in NWChem, and their differences were taken as estimates of the relativistic correction for a given core electron binding energy

[18, 19]. These differences were found to be nearly independent of the basis set employed (Table 3). Relativistic corrections also were calculated in the

same manner with a few selected density functionals, and were found to be similar to the corresponding values from Hartree-Fock calculations (Table 3).

TABLE 3 Scalar relativistic corrections, for nickel and copper atom 2s, 2p, 3s, and 3p core electron binding energies in eV

Basis sets Method Ni 2s Ni 2p Ni 3s Ni 3p

cc-pVDZ, cc-pVDZ-DK HF 19.6 4.3 3.4 1.1

cc-pVTZ, cc-pVTZ-DK HF 19.5 4.3 3.4 1.1

cc-pVQZ, cc-pVQZ-DK HF 19.5 4.3 3.4 1.1

cc-pV5Z, cc-pV5Z-DK HF 19.5 4.3 3.4 1.1

cc-pwCVTZ, cc-pwCVTZ-DK HF 19.5 4.2 3.4 1.1

cc-pwCVQZ, cc-pwCVQZ-DK HF 19.4 4.2 3.4 1.1

cc-pwCV5Z, cc-pwCV5Z-DK HF 19.4 4.2 3.4 1.1

cc-pVQZ, cc-pVQZ-DK BOP (med. grid) 18.9 4.1 3.1 0.8

cc-pwCVTZ, cc-pwCVTZ-DK BOP (med. grid) 18.8 3.9 3.0 0.8

cc-pVQZ, cc-pVQZ-DK M06-L (fine grid) 19.1 4.2 3.2 1.0

cc-pwCVTZ, cc-pwCVTZ-DK M06-L (fine grid) 19.0 4.2 3.2 0.7

Lit. [17] MC-DBF 18.2 – – –

Basis sets Method Cu 2s Cu 2p Cu 3s Cu 3p

cc-pVDZ, cc-pVDZ-DK HF 22.5 4.8 3.6 0.9

cc-pVTZ, cc-pVTZ-DK HF 22.5 4.8 3.6 0.9

cc-pVQZ, cc-pVQZ-DK HF 22.4 4.8 3.6 0.9

cc-pV5Z, cc-pV5Z-DK HF 22.4 4.8 3.6 0.9

cc-pwCVTZ, cc-pwCVTZ-DK HF 22.4 4.7 3.6 0.9

cc-pwCVQZ, cc-pwCVQZ-DK HF 22.4 4.7 3.6 0.9

cc-pwCV5Z, cc-pwCV5Z-DK HF 22.4 4.7 3.6 0.9

cc-pVQZ, cc-pVQZ-DK BOP (med. grid) 22.2 4.9 3.6 0.9

cc-pwCVTZ, cc-pwCVTZ-DK BOP (med. grid) 22.1 4.8 3.6 0.9

cc-pVQZ, cc-pVQZ-DK M06-L (fine grid) 22.2 4.9 3.6 1.0

cc-pwCVTZ, cc-pwCVTZ-DK M06-L (fine grid) 22.1 4.9 3.6 1.0

Lit. [17] MC-DBF 21.6 – – –

Note: Hartree-Fock exact exchange and selected density functionals were used within the DFT module of NWChem, evaluated over standard grids as

indicated. Calculations were performed with and without Douglas-Kroll-Hess (DKH) scalar relativistic corrections as implemented in NWChem, to find

the difference.
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Thus, the relativistic correction at the Hartree-Fock level was added to non-relativistic Δ-SCF energies as a reasonable estimate when comparing the

accuracy of these calculations across a large number of density functionals, an approach that has previously been reported in the literature [3].

3 | RESULTS AND DISCUSSION

3.1 | Basis set convergence and relativistic corrections

Hartree-Fock Δ-SCF calculations of core electron binding energies of nickel and copper atoms were compared for a series of correlation-

consistent basis sets. Unsurprisingly, the core-valence polarized cc-pwCVnZ basis sets were found to be far superior to the cc-pVnZ basis sets for

TABLE 4 Nickel atom core electron binding energies in eV calculated with Δ-SCF methods and the cc-pwCVTZ basis set, including a DKH
scalar relativistic correction calculated at the Hartree-Fock level

Method Family Ni 2s Ni 2p Ni 3s Ni 3p RMSEa MUEb

Experiment [28] 1024 875.7 125 82

HF 1020.5 868.1 122.4 75.7 1.4% 4.1

RI-MP2 1021.4 870.2 124.1 76.9 0.6% 2.7

Slater-VWN LSDA 994.8 864.4 112.1 72.8 6.0% 14.8

Slater-PZ81 LSDA 994.8 865.2 112.2 72.8 6.0% 14.6

Slater-PW92 LSDA 994.7 865.1 112.1 72.8 6.0% 14.6

Slater-Wigner LSDA 993.9 863.5 111.5 72.1 6.4% 15.6

B88-P86 GGA 996.7 864.0 112.5 72.8 5.9% 14.3

B88-PW91 GGA 996.4 863.9 112.4 72.7 6.0% 14.5

B88-PBE GGA 996.3 863.8 112.4 72.6 6.0% 14.6

B88-LYP GGA 996.5 864.0 112.2 72.6 6.0% 14.5

PW86-P86 GGA 996.9 863.6 112.8 73.0 5.7% 14.2

PW86-PW91 GGA 996.5 863.4 112.7 72.8 5.8% 14.5

PW86-PBE GGA 996.5 863.3 112.7 72.8 5.8% 14.5

PW86-LYP GGA 996.7 863.6 112.5 72.7 5.9% 14.4

PBE-P86 GGA 996.6 863.8 112.6 72.9 5.8% 14.3

PBE-PW91 GGA 996.3 863.7 112.4 72.7 5.9% 14.6

PBE-LYP GGA 996.4 863.8 112.3 72.6 6.0% 14.5

PBE GGA 996.2 863.3 112.4 72.7 6.0% 14.6

PBEOP GGA 996.2 863.7 112.2 72.5 6.1% 14.7

BOP GGA 996.4 863.9 112.1 72.5 6.1% 14.6

M11-L meta-GGA 1022.6 862.1 123.9 75.8 1.2% 4.7

M06-L meta-GGA 1005.6 866.1 116.3 73.8 4.2% 10.4

BR89-B94 meta-GGA 1003.2 866.8 114.3 79.4 4.7% 11.2

BR89-PK06 meta-GGA 1005.7 868.2 116.2 74.8 3.9% 9.6

PBE0 Hybrid GGA 1002.1 864.6 114.8 73.8 4.7% 12.0

B3LYP Hybrid GGA 1001.2 865.0 114.2 73.6 5.0% 12.3

B97 Hybrid GGA 1001.1 864.7 114.2 73.6 5.0% 12.4

M05 Hybrid meta-GGA 1004.0 864.7 115.4 73.6 4.5% 11.4

M06 Hybrid meta-GGA 1005.7 867.0 115.8 73.9 4.3% 10.2

M05-2X Hybrid meta-GGA 1003.7 864.9 115.2 74.2 4.4% 11.3

M06-2X Hybrid meta-GGA 1003.6 865.2 115.6 74.3 4.3% 11.2

Note: Error measures relate to experimental values listed in the first row. Italicized rows include a change in valence electron configuration from 4s 23d 8 in

the ground state to 4s 13d 9 in the core-ionized state.

aRoot mean squared error: 100%�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 �

P4
i¼1

xi�xi,exp:
xi,exp:

� �2
r

.
bMean unsigned error: 14 �Σ4

i¼1 xi�xi,exp:
� ��� ��.
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these calculations. Table 2 shows that cc-pVnZ calculations converge by n = 3 to within ±0.1 eV for M-shell (3s and 3p) CEBE values, but are not

yet converged at n = 5 for L-shell (2s and 2p) CEBE values. The cc-pwCVnZ calculations do converge by n = 3 to within ±0.1 eV for both L-shell

and M-shell CEBE values. The rate of basis set convergence is consistent between scalar relativistic and non-relativistic calculations, so the relativ-

istic correction (taken as their difference) converges even more rapidly.

Douglas-Kroll-Hess scalar relativistic corrections to CEBE values were calculated as the difference between relativistic and non-relativistic

values obtained with cc-pVnZ, cc-pVnZ-DK and cc-pwCVnZ, cc-pwCVnZ-DK basis sets. These corrections were obtained using the Hartree-Fock

method and a few selected density functionals. Table 3 shows that these corrections are not very sensitive to basis set size, as the values obtained

in the smallest basis sets are already converged to within ≈ ±0.1 eV. Relativistic corrections calculated with the M06-L meta-GGA density func-

tional are similar to those calculated with the Hartree-Fock method, to within a few tenths of an eV. Relativistic corrections calculated with the

BOP hybrid density functional differ slightly more from the Hartree-Fock values for the nickel atom. Still, these differences among density

TABLE 5 Copper atom core electron binding energies in eV calculated with Δ-SCF methods and the cc-pwCVTZ basis set, including a DKH
scalar relativistic correction calculated at the Hartree-Fock level

Method Family Cu 2s Cu 2p Cu 3s Cu 3p RMSEa MUEb

Experiment [28] 1106 947.0 128.8 83.0

HF 1107.0 945.9 131.9 83.6 1.3% 1.0

MP2 1114.2 950.8 132.0 84.0 1.4% 4.1

Slater-VWN LSDA 1081.2 943.2 121.1 79.4 3.8% 9.9

Slater-PZ81 LSDA 1081.2 943.3 121.1 79.4 3.8% 9.9

Slater-PW92 LSDA 1081.2 943.2 121.1 79.4 3.8% 9.9

Slater-Wigner LSDA 1080.3 942.2 120.4 78.7 4.3% 10.7

B88-P86 GGA 1083.4 942.8 121.7 79.5 3.6% 9.3

B88-PW91 GGA 1083.1 942.7 121.6 79.3 3.7% 9.5

B88-PBE GGA 1083.0 942.6 121.5 79.3 3.7% 9.5

B88-LYP GGA 1083.1 942.8 121.4 79.2 3.8% 9.5

PW86-P86 GGA 1083.4 942.3 122.1 79.6 3.5% 9.3

PW86-PW91 GGA 1083.1 942.2 121.9 79.4 3.6% 9.4

PW86-PBE GGA 1083.0 942.1 121.9 79.4 3.6% 9.5

PW86-LYP GGA 1083.2 942.3 121.7 79.3 3.7% 9.5

PBE-P86 GGA 1083.2 942.6 121.8 79.5 3.6% 9.3

PBE-PW91 GGA 1082.9 942.5 121.6 79.4 3.7% 9.5

PBE-LYP GGA 1083.0 942.6 121.4 79.2 3.8% 9.6

PBE GGA 1082.8 942.3 121.6 79.3 3.7% 9.6

BOP GGA 1083.0 942.7 121.3 79.1 3.9% 9.6

PBEOP GGA 1082.8 942.5 121.3 79.1 3.9% 9.7

M11-L meta-GGA 1109.0 940.7 135.7 82.9 2.7% 4.2

M06-L meta-GGA 1092.5 944.7 126.3 81.2 1.6% 5.0

BR89-B94 meta-GGA 1090.3 945.8 123.8 80.5 2.6% 6.0

BR89-PK06 meta-GGA 1092.7 947.0 125.7 81.6 1.6% 4.4

PBE0 Hybrid GGA 1089.0 943.4 124.4 80.6 2.4% 6.7

B3LYP Hybrid GGA 1088.1 943.8 123.7 80.4 2.6% 7.1

B97 Hybrid GGA 1088.0 943.6 123.7 80.3 2.7% 7.2

M05 Hybrid meta-GGA 1090.5 943.4 125.7 81.1 1.8% 5.9

M06 Hybrid meta-GGA 1092.3 945.8 125.9 81.2 1.7% 4.8

M05-2X Hybrid meta-GGA 1090.8 943.7 124.5 81.6 2.0% 5.9

M06-2X Hybrid meta-GGA 1090.7 944.0 124.8 81.7 1.9% 5.8

Note: Error measures relate to experimental values listed in the first row.

aRoot mean squared error: 100%�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 �

P4
i¼1

xi�xi,exp:
xi,exp:

� �2
r

.
bMean unsigned error: 14 �Σ4

i¼1 xi�xi,exp:
� ��� ��.
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functionals are small. For 2s CEBE values, these single-configurations, scalar relativistic corrections differ by only ≈ 1 eV from available literature

values based on a multi-configurational, fully relativistic treatment [17].

3.2 | Core electron binding energies

Core electron binding energies were calculated using the Δ-SCF approach and the cc-pwCVTZ basis set with a variety of single-configuration

methods. Scalar relativistic corrections calculated at the Hartree-Fock level were added to each calculated binding energy. Some calculations for

the nickel atom include a change in valence electron configuration, indicated by italics in Table 4.

Surprisingly, none of the methods tested could unambiguously improve upon the accuracy of the Hartree-Fock method. Correlation energy

captured in MP2 calculations lowered the ground state energy more than those of core-ionized states, increasing all CEBE values. All methods

underestimated the core electron binding energies of the nickel atom, so the MP2 method offered a modest improvement in accuracy for the

nickel atom. However, the Hartree-Fock method overestimated the Cu 2s, 3s, and 3p CEBE values and only slightly underestimated the Cu 2p

CEBE value, and thus outperformed MP2 predictions for the copper atom (Table 5).

Density functional methods underestimated core electron binding energies of both nickel and copper atoms. Most density functionals

lowered the ground state energy less than those of core-ionized states, decreasing all predicted CEBE values. This behavior contrasts with that of

the MP2 calculations, and is consistent with a reduced self-interaction error in core-ionized states relative to the ground state. The notable excep-

tion is the Minnesota meta-GGA functional M11-L, which lowered the 2s and 3s core-ionized state energies less than the ground state energy,

yielding higher core electron binding energies for these states than the Hartree-Fock method. This substantially improved the accuracy of M11-L

predictions for the nickel atom. It was not advantageous for the copper atom, as the Hartree-Fock method already overestimated the Cu 2s and

3s CEBE values.

Of the density functional methods, only a few meta-GGA functionals could reproduce CEBE values at a level of accuracy comparable to the

Hartree-Fock method. The Minnesota meta-GGA functional M11-L performed well for both nickel and copper atoms. For the copper atom, sev-

eral other meta-GGA functionals also performed well, including an older Minnesota meta-GGA functional M06-L and a combination of BR89

exchange with PK06 correlation. Hybrid meta-GGA functionals including M06 also performed well for the copper atom.

4 | CONCLUSIONS

Core electron binding energies have been calculated for selected, first-row transition metal atoms using standard quantum chemical methods with

the Δ-SCF approach. This approach also could be applied to transition metal compounds, for which chemical shifts in photoelectron spectra are

sensitive to the metal oxidation state and other aspects of the coordination environment.

The Δ-SCF approach predicts core electron binding energies by leveraging single-determinant, ground-state quantum chemical methods to

calculate core-ionized state energies. For lighter atoms such as carbon and nitrogen, benchmarking studies are available in the literature to show

that some density functionals can improve the accuracy of these predictions by capturing some correlation energy. Highly parameterized density

functionals such as M06-L appear successful in this regard, and the SCAN functional also appears promising [5], but there is no single family of

density functionals that performs well uniformly. In this context, the present study on transition metal atoms suggests that these highly accurate

Δ-SCF predictions of core electron binding energies for lighter, main group atoms rely on a fortuitous cancellation of errors. More specifically, gro-

und state densities suffer from a greater self-interaction error than core-ionized densities, but for lighter atoms the resulting error seems to be

offset by an unbalanced treatment of correlation that trends in the opposite direction. While a short-range corrected functional such as those

parameterized by Besley and others could rebalance the treatment of SIE for core-ionized states [7], accurate prediction of CEBE values for all

elements would additionally require a balanced treatment of correlation.

The present work demonstrates that Δ-SCF calculations using density functionals systematically underestimate CEBE values for nickel and

copper, rather than improving upon the accuracy of pure Hartree-Fock exchange. This could be explained by a substantial reduction in self-

interaction error for core ionized states of these heavier atoms, due to their higher nuclear charge and resulting compactness of core hole densi-

ties. Calculations with the MP2 method imply that the treatment of correlation is unbalanced in the opposite direction, even leading to

overestimation of core electron binding energies for the copper atom. Yet for these atoms, correlation energy differences captured by standard

density functionals do not appear large enough to offset the difference in self-interaction.

Although pure Hartree-Fock exchange outperforms all density functionals, some meta-GGA functionals offer a comparable level of accuracy.

The performance of the M11-L functional is comparable to that of the Hartree-Fock method for both of the selected atoms. For the copper atom,

several meta-GGA functionals and even meta-GGA hybrid functionals perform comparably well. Meta-GGA functionals may therefore be useful

when predicting chemical shifts in larger systems, for which they may be better suited than the Hartree-Fock method to represent changes in

valence electronic structure that influence these chemical shifts. Systematic error due to imbalance in the treatment of core-ionized and ground
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states should be similar for closely related species, and thus cancel out when predicting chemical shifts. Therefore, accurate prediction of absolute

core electron binding energies in transition metal atoms can easily justify the use of these methods to predict chemical shifts in more complex

environments. Such calculations are the focus of a forthcoming manuscript that will focus on chemical shifts in closed-shell, charge-neutral

complexes.
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